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Raquel Muñiz-Salazar
Universidad Autónoma de Baja California

CONTENTS

6.1 Introduction ...................................................................................................100
6.2 Cough monitoring and analysis .....................................................................101
6.3 Electrocardiogram monitoring and analysis ..................................................104
6.4 Chest radiography and deep learning ............................................................106
6.5 Next-Generation Sequencing in the Diagnosis of Infectious Lung Diseases 110

6.5.1 Most widely used sequencing technologies ...................................110
6.5.2 Sequencing data processing and analysis.......................................111
6.5.3 Applications of next-generation sequencing in the

diagnosis of infectious pulmonary diseases......................................113
6.5.4 Integration of Deep Learning and Next-Generation

Sequencing for TB Diagnosis...........................................................113
6.6 Limitations.....................................................................................................114
6.7 Conclusions ...................................................................................................115

6.1 INTRODUCTION
Pulmonary infectious diseases, such as COVID-19 and tuberculosis (TB), are a sig-
nificant cause of morbidity and mortality worldwide. Timely and accurate diag-
nosis is critical to ensure appropriate treatment and prevent disease transmission.
Deep learning, a subset of machine learning, has shown promise in various medical
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applications, including image analysis and classification. In recent years, there has
been increasing interest in using deep learning techniques to classify pulmonary
infectious diseases using chest radiographs (CRX) or computed tomography (CT)
scans. By training deep learning algorithms on large datasets of annotated medical
images, these models can learn to accurately classify different types of pulmonary
infections, allowing for more efficient and accurate diagnosis. This approach has the
potential to improve patient outcomes, reduce healthcare care costs, and improve
public health efforts by facilitating early detection and treatment of lung infections.

Deep learning models can be trained on large data sets of annotated medical im-
ages, allowing them to identify patterns and features that are characteristic of dif-
ferent types of lung infections. For example, a deep-learning model can learn to
recognize the presence of infiltrates, nodules, or cavities in CRX or CT scans that
are indicative of specific types of pulmonary infections. Furthermore, deep learning
models can continuously learn and improve their diagnostic accuracy over time as
they are exposed to more data. This means that as more medical images are available
for training, deep-learning models can become even more accurate in their diagnosis
of pulmonary infections.

6.2 COUGH MONITORING AND ANALYSIS
Coughing is considered a defense mechanism by which the body expels secretions
or any blockage that restricts the passage of air in the upper airways. The causes
of coughing can be environmental (dust, smoke), bacteria, viruses, or some chronic
or acute health condition [412]. In several respiratory diseases, cough is one of the
main symptoms, and depending on the type of cough, it is possible to obtain a clini-
cal diagnosis. The cough has different characteristics that can give information about
the severity of a certain disease, including disease identification. Among the main
attributes of cough are intensity, frequency, duration, and pattern [489]. In patients
with TB, for example, the pattern of coughing depends on the amount of M. tuber-
culosis present in the lungs [733]. Also, it has been possible to diagnose COVID-19
in asymptomatic patients using Artificial Intelligence (AI) on the record of a forced
cough [327].

There are some criteria to classify cough. According to the resistance, which indi-
cates the duration of the cough, it is classified as acute (less than 3 weeks), subacute
(3-8 weeks), and chronic (more than 8 weeks). According to its sound, which is
due to the sudden expulsion of air, the cough is classified as dry or wet. In patients
with TB and chronic obstructive pulmonary disease (COPD), the majority experi-
ence a chronic, wet cough, while in patients with COVID-19, or with exacerbation
of asthma, acute and dry cough predominates [262]. It can then be seen that the
cough produces characteristic sounds that help identify some respiratory diseases.

The cough is compounded by two sounds and an intermediate stage between
them. The first sound provides information about the peripheral airways at the level
of the tracheal bifurcation, the second sound provides information about the larynx,
and the intermediate zone reflects the processes in the trachea [313]. The duration
and intensity of each of these stages will depend on the respiratory health condition
of the subject, as shown in Figure 6.1.
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Figure 6.1 Pattern of cough sounds. Reprinted from (Rudraraju et al., 2020) with permission
from Elsevier.

There are medical devices that detect cough in hospital environments, such as
spirometers, and pneumotachographs, among others. However, these devices require
special skills to operate and use procedures that are performed in controlled environ-
ments, giving short-term information, which makes it difficult to observe the evolu-
tion of the disease or the effectiveness of treatment. Carrying out continuous or peri-
odic measurements on an outpatient basis, and in real-time, would allow coughing to
be recorded for prolonged periods, helping to assess the progress of the disease. In
this sense, there are ambulatory cough monitoring systems that allow 24-h records
to be obtained. Among them are the Leicester monitor [408] and the Cayetano mon-
itor [490]. These devices have a microphone and an audio recorder, which stores the
data of the cough sounds so that they can be analyzed later. In the case of the Leices-
ter monitor, the data is stored in .mpeg format, while in the Cayetano monitor the
data is stored in .mp3 format.

Some proposals detect cough in non-hospital conditions for longer than 24 hours
using the wearable paradigm. Because coughing causes a turbulent flow of air in the
airways, the vibrations that this flow produces in the upper airways can be measured.
In this sense, some proposals use piezoelectric or piezoresistive flexible films, which
are attached to the subject’s throat and thorax to measure the vibrations produced by
coughing [31, 373]. Although it is a proposal allowing real-time measurements, its
long-term use can cause discomfort in the subject because an object must be attached
to the skin at the throat or thorax level. There are proposals that detect the sounds
of coughing more comfortably. One of the best-known systems is the LifeShirtT M

(Vivometrics) [577], which is a jacket with multiple sensors that allow the detection
of several cardiac and respiratory parameters. This system can detect cough sounds,
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thanks to the addition of a microphone placed near the throat. LifeShirtT M has been
used to detect cough in COPD outpatients for 24 hours with a sensitivity and speci-
ficity of 78.1% and 99.6%, respectively [133]. Other simpler approaches use micro-
phones incorporated into wearable electronic stethoscopes [373] or use microphones
that are integrated into smartphones [641]. Smartphones have been used to detect
biomarkers related to COVID-19, and lower respiratory tract infections [65]. Also,
to discriminate TB coughs from COVID-19 and healthy coughs [464]. However, the
drawback of using microphones is that cough sounds are superimposed on environ-
mental sounds, which often require complex algorithms to reliably extract cough
characteristics.

From the signal point of view, cough sounds have frequency components that can
vary according to the state of health of the respiratory tract. In healthy subjects, cough
sounds range from 300 Hz to 500 Hz; however, these frequencies may increase up
to 1200 Hz in subjects with bronchitis [313]. Cough sounds can be analyzed in the
time domain using their amplitude-time characteristics, or in the frequency domain.
The spectrogram of cough sounds has also been used to extract their characteristics
using AI algorithms [733].

There are several characteristics of cough sounds that provide information about
various respiratory diseases, but these characteristics are not audible to the human
ear. In that sense, various AI-based algorithms have been developed that analyze
these characteristics. Among the most widely used spectral characteristics are the
Mel-Frequency Cepstral Coefficients (MFCC) [28, 69, 116, 412], Mel-Scaled Spec-
trogram, Tonal Centroid, Chromagram, Spectral Contrast [116], and Log Spectral
Energies [69]. Regarding the classifiers, there are different points of view about their
performance. In TB patients, the rapid increase in signal energy has been used to be
able to differentiate the cough from the voice signal [620]. The algorithm detected
cough and non-cough events using classifiers based on machine learning (ML) al-
gorithms. Multilayer perceptrons (MLP), machine support vectors (SVM), and min-
imum sequential optimization (SMO) were compared. They chose SMO for its sim-
plicity, obtaining a sensitivity of 81% and false positives of 3.3/hour. The algorithm
was able to detect a reduction in cough events in 28 patients with drug-sensitive TB.
Some works have compared the Log Spectral Energies with MFCC in short-term
recordings of cough in subjects with TB, to then apply classifiers through statisti-
cal models using linear regression, Hidden Markov Models (HMM), and Decision
Trees [69]. In this study, cough could be distinguished between TB and healthy sub-
jects with an accuracy of 80% and a specificity of 95%. MFCCs discard information
that is useful for classifying sounds, so their accuracy was only 63% and their speci-
ficity was 80%. Linear regression has been used as a classifier to differentiate cough
from non-cough in various respiratory diseases, including COVID-19 and TB, and
to differentiate the cough from other sounds present in the environment. Artificial
neural networks (ANN) and Random Forests (RF) have been also used as classi-
fiers in cough sounds detected by spirometry [28]. In patients with COVID-19, it has
been possible to diagnose the disease from the sounds of coughing in symptomatic
and asymptomatic subjects. Chowdhury et al. (2022) used different ML classifiers to
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distinguish patients with COVID-19. The classifiers based on Extra-Trees, HGBoost,
and RF showed the best performance, obtaining accuracies of the order of 87%

6.3 ELECTROCARDIOGRAM MONITORING AND ANALYSIS
The electrocardiogram (ECG) is the representation of the bioelectric potentials of
cardiac cells. It is composed of several waves (P, Q, R, S, T) that describe the de-
polarization (electrical activity before contraction) and repolarization (recovery after
depolarization) of the atria and ventricles. In summary, the P-wave represents the de-
polarization of the atria, the QRS complex represents the depolarization of the ven-
tricles and repolarization of the atria, and the T-wave represents the repolarization of
the ventricles [116]. In addition, some intervals also provide information about the
bioelectrical functioning of the heart. These intervals represent the time that elapses
between two ECG waves. Said intervals are, RR, PQ, and QT. The RR interval pro-
vides information about the heart rate since it is the time that elapses between one
beat and another. The PQ interval represents the time between the onset of atrial de-
polarization and the onset of ventricular depolarization. The QT interval is the time
it takes for the ventricle to start to contract and to finish relaxing and is measured
from the beginning of the Q wave to the end of the T wave [116]. The amplitude and
duration of each of these waves, and the duration of the intervals provide informa-
tion about the heart condition of a subject, therefore, any alteration in the ECG is an
indication of a cardiac problem.

ECG detection for diagnostic purposes is carried out using 12 leads that are widely
known in the literature [666]. These leads are I, II, III, aVR, aVL, aVF, and V1-V6.
To do this, 10 electrodes are attached to the surface of the skin at different locations
on the body. The 12-lead ECG is measured in clinical settings and is performed by
qualified personnel; however, under these conditions, patterns or abnormalities in
the ECG that can appear during daily activities are often not detected. In this sense,
there are Holter systems that record the ECG continuously for 24–48 hours on an
outpatient basis. However, they also require various electrodes that cause discomfort
and need a specialist to place them on the subject. The importance of ECG detection
during activities of daily living has driven the development of portable and wearable
systems that detect long-term ECG comfortably and simply, and without the need
for specific knowledge to use them. There are systems based on smartwatches [199],
which detect lead I when used in the standard way, however, it has also been possible
to detect leads II and V2 using a different configuration [580]. There are also sys-
tems based on mobile applications, such as the KardiaMobile® (ALIVECOR), which
can obtain 6-lead medical grade records of the ECG (https://www.kardia.com/).
Other wearable technologies, but less conventional, are embedded in objects such
as glasses, bands, and patches [199, 540]. Figure 6.2 shows various wearable and
portable systems capable of detecting multiparameter, including ECG in daily life.

There is evidence that some respiratory diseases produce ECG abnormalities. In
subjects with COPD, the most common abnormalities are a rightward P wave axis
(≥ 70◦) and a rightward QRS axis (≥ 90◦), as well as transient atrial and ventric-
ular arrhythmias [516]. The presence of P pulmonale (a peaked P wave in lead II)
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Figure 6.2 Depiction of wearable and smartphone-based solutions for continuous ambula-
tory cardiac monitoring, along with a summary of potential use cases. Reprinted from Sana et
al. (2020) with permission from Elsevier.

is indicative of the severity of COPD even without the need for spirometry. COPD
does not cause changes in the duration of the P wave, nor in the amplitude of the
QRS complex [16]. On the other hand, there is evidence that P wave dispersion is
a good predictor of COPD exacerbations. In the case of subjects with TB, although
the disease itself does not cause significant changes in the electrocardiogram, certain
drugs used for the treatment of TB cause a prolongation of the corrected QT in-
terval (QTc) [227]. The QTc is used since the QT interval changes with the heart
rate, so, this effect must be corrected. For this, several formulae have been pro-
posed, namely, Bazett, Fridericia, Framingham, Hodges, and Rautaharju [636]. A
prolonged QTc (450 ms in men, 460 ms in women) is an indicator of risk for Tor-
sade de Pointe [202], which is a rare ventricular tachycardia and is also a potential
indicator of sudden death. Therefore, long-term ECG monitoring is considered good
practice in subjects receiving treatment for multidrug-resistant tuberculosis. Some
ECG abnormalities have also been found in subjects with COVID-19. These include
T-wave inversions [373, 410] and sinus tachycardia [379]. Prolongation of the QTc
interval has also been found, but it is mainly caused by the different pharmacological
treatments [410]. Some studies reveal alterations in the ST segment in subjects with
COVID-19, specifically an elevation of this segment, which is due to coronary artery
disease or heart muscle disease (myocarditis) [373]. ST segment deviations are also
considered a predictive indicator of mortality risk in subjects with COVID-19 [330].
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From all the ECG alterations caused by respiratory diseases, one of the most stud-
ied is the prolongation of the QTc interval due to the implications it has on the sub-
ject’s life. Accurately estimating the QTc is not easy since it is necessary to identify
the point where the end of the T-wave coincides with the isoelectric line. In situations
where there are motion artifacts, this can be a difficult task. Commonly, the QTc is
measured manually by a trained personal using printed or digital ECG recordings.
QTc should be measured using leads II, V5, or V6, and should be estimated from the
average of at least 3 beats [206]. Artificial intelligence for the QTc from the ECG
recorded using the KardiaMobile® device (ALIVECOR) has been proposed. Using
deep neural networks (DNN), it was possible to estimate the QTc with a specificity
of 94.4%, making it an effective method to estimate congenital or acquired prolonga-
tion of the QTc [202]. The algorithm was trained, tested, and validated on more than
1.6 million 12-lead ECG records from 538,200 subjects. These types of tools can be
helpful for subjects with TB and COVID-19 who are under drug treatment. There
are other proposals that use the single-lead ECG, which is the one normally detected
by smartwatches. Maille et al. (2021) used a deep convolutional neural network,
composed of 11 U-net architectures with 11 convolutional layers and six residual
blocks. The results showed a great similarity with the QTc measured manually in
ECG recordings in leads II, V5 and V6, where a difference of 50 ms was obtained in
98.4% of the 85 patients who participated in the study.

There is a wide variety of artificial intelligence algorithms that have been used
to detect abnormalities in the ECG recordings, especially arrhythmias. According to
Saini and Gupta, the most popular are ANN, Fuzzy Systems, Neuro-fuzzy Systems,
Genetic-Fuzzy Systems, Probabilistic Neural Networks (PNN), CNN, Support Vec-
tor Machines (SVMs), and Linear Discriminants (DNs) [537]. However, the most
used in the extraction and classification of ECG characteristics are the CNNs due to
their self-learning capacity.

Among the characteristics of ECG recordings, the most studied are the follow-
ing: time-domain, frequency-domain, time-frequency domain, statistics features, and
non-linear features. Commonly, these features are extracted from the raw ECG data,
however, the generated ECG image has been used instead of the raw data to apply
neural networks. The advantage of using images of ECG traces is that they can be
captured by smartphones. Using heat maps helps the algorithm to focus on a certain
area of the image to make decisions, which helps the clinician to find abnormalities in
the ECG that may be indicative of COVID, TB, and other cardiac diseases [223,500].
Figure 6.3 shows the image of an abnormal ECG trace of a subject with COVID-19,
where those areas where the abnormalities are highlighted, and that is where the
algorithm should focus on making decisions.

6.4 CHEST RADIOGRAPHY AND DEEP LEARNING
There are numerous diagnostic methods for TB, each with advantages and limita-
tions. Chest radiography (CXR) is one of the most used diagnostic tools to detect
pulmonary TB [443]. We will discuss the benefits and disadvantages of using CXR
for pulmonary TB diagnosis compared to other diagnostic techniques and how the
combination of CXR with AI addresses its limitations.
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Figure 6.3 Score-CAM visualization of abnormal (COVID-19) ECG. Taken from Rahman
et al. (2022) with the permission of Springer Nature BV.

CXR is a relatively inexpensive, non-invasive, and widely available diagnostic
tool that can provide valuable information on the presence and extent of TB-related
lung abnormalities. It is beneficial for detecting characteristic lung parenchymal
changes and the presence of cavitations indicative of active TB disease [322].

CXR has a reported sensitivity of 92% [72]; it can detect TB cases in early stages,
even before characteristic symptoms occur, allowing to find individuals at high risk
of developing the disease, such as close contact with patients with active disease or
people from TB-endemic regions (2016). CXR can be used as a screening method. It
can be applied in large groups to find individuals initially considered healthy, lead-
ing to rapid treatment and reduced disease transmission (2016). On the other hand, in
recent years, there have been significant improvements in the portability of the equip-
ment for taking CXR; currently, there is FDA-approved equipment with a weight of
less than 4 kg, which makes them accessible to remote areas where there are no other
diagnostic tests Table 6.1.

Although CXR is a useful diagnostic tool for pulmonary TB, it has some limita-
tions that should be considered. CXR reports low levels of specificity; in practice,
the CXR is examined and interpreted by a medical radiologist, so the process is sub-
jective to the medical staff’s experience. Different diseases show similar radiological
patterns to pulmonary TB, leading to a high false-positive rate in people with other
lung diseases or conditions, such as COPD or lung cancer [633]. One of the sig-
nificant problems with CXR is the need for more trained radiologists available in
low-resource areas, in conjunction with the absence of other diagnostic techniques,
which play a significant role in the prevalence and spread of the disease [496].
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Table 6.1
Characteristics of commercially available ultraportable X-ray equipment.

Manufacturer Fujifilm Delft
Model FDR Xair Light
Price(USD) $ 47,000 $ 66,750
X-ray generator weight (kg) 3.5 7
Weight of complete system (kg) 29.4 33.2
Sockets per battery charge 100 200

AI has the potential to revolutionize medical care by improving diagnostic accu-
racy, efficiency, and access to care. In recent years, there has been growing interest in
using AI to develop computer-aided diagnosis (CAD) systems to detect pulmonary
TB [311]. CAD systems use machine learning algorithms to analyze medical images,
such as chest X-rays or CT scans, and provide diagnostic results automatically [311].

AI-based CAD systems have several potential benefits for TB diagnosis. First,
they can provide accurate and consistent diagnoses without a radiologist or trained
medical professional, which is very helpful in resource-limited settings where ac-
cess to trained medical professionals may be limited [493]. Second, AI-based CAD
systems can improve diagnostic efficiency by reducing the time required for image
interpretation and diagnosis, increasing the throughput of diagnostic services, reduc-
ing waiting times, and improving patient outcomes. Third, AI-based CAD systems
can help reduce diagnostic errors and improve the accuracy of TB diagnosis, leading
to better patient outcomes [493]. On the other hand, AI-based CAD systems have the
potential to be used for active screening of people at high risk for TB, identifying
early TB cases, leading to prompt treatment and reduced disease transmission [266].
AI-based CAD systems can also monitor disease progression and response to treat-
ment, providing valuable information for patient management and care [321].

One of the main problems of commercially available CAD systems for pulmonary
TB diagnosis is their high cost; an InferRead DR software license costs USD 5,552,
including installation service and support, while a CAD4TB license costs USD
28,475, including installation service and support for three years [495]. The high
costs of commercial systems make it difficult for them to be acquired and imple-
mented in high-burden countries, so developing new CAD systems to support TB
diagnosis is a viable option. An example is the MIA-TB RX UABC system [218],
developed by the Autonomous University of Baja California in collaboration with
the Tijuana Tuberculosis Clinic and Laboratory, which serves patients in northwest-
ern Mexico. This CAD system was developed by implementing pre-trained convo-
lutional neural networks using CXR radiographic images of patients collected over
two years. It can classify radiographs into three categories: TB, normal, or other
pathology. The system obtained a sensitivity value of 1.0 and an accuracy of 0.92 for
pulmonary TB Table 6.2
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Table 6.2
Characteristics of the software currently available on the market.

Company Delft Imag-

ing Systems

Infervision JLK Lunit Qure.ai RadiSen

Country The Nether-
lands

Beijing,
China

Seoul,
Republic
of Korea

Seoul,
Republic
of Korea

Mumbai,
India

Seoul,
Republic
of Korea

Product CAD4TB InferRead
DR Chest

JLD-02K Lunit IN-
SIGHT
CXR

qXR AXIR

Version 7 1.0 1.0 3.1.0.0 3.0 1.1.2.2
Intended

Age Group

(years)

4+ 16+ 10+ 6+ 6+ 16+

Chest X-

ray image

format

input

DICOM,
PNG, JPEG

DICOM,
PNG,
JPEG

DICOM,
PNG,
JPEG

DICOM DICOM,
PNG,
JPEG

DICOM

Chest X-

ray type

input

PA AP/PA AP/PA AP/PA AP/PA PA

Output

Abnormality score for TB, Heat map,
Binary classification “TB” or “not TB”

Product

Devel-

opment

Method

Supervised
deep learn-
ing (CNN,
RNN) plus
manual
feature en-
gineering

Supervised
deep
learning
(CNN,
RNN)

Supervised
deep
learning
(CNN,
DBNs)

Supervised
deep
learning
(CNN)

Deep
learning
to anal-
yse chest
X-ray
scans.

Supervised
deep
learning
(CNN)

In conclusion, CXR is a useful diagnostic tool for pulmonary TB, particularly
in resource-limited settings where other diagnostic techniques may not be available
or affordable. CXR can provide valuable information on the presence and extent of
TB-related lung abnormalities and can be used to detect TB in high-risk individ-
uals. However, CXR has some limitations, such as the possibility of false-positive
results when the interpreting physician confuses other pulmonary pathologies. AI-
based CAD systems have the potential to revolutionize TB diagnosis by reducing
the limitations of CXR alone, thereby providing accurate, efficient, and consistent
diagnostic results.
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6.5 NEXT-GENERATION SEQUENCING IN THE DIAGNOSIS OF
INFECTIOUS LUNG DISEASES

Next-generation sequencing (NGS) is a high-throughput sequencing technique that
has revolutionized the field of genomics and transcriptomics. This technology
involves the fragmentation of DNA or RNA into small pieces that are simultane-
ously amplified and sequenced into thousands or even millions of fragments. The
next-generation sequencing process generates a large amount of data that are pro-
cessed by bioinformatics algorithms to reconstruct the complete genome or tran-
scriptome [37, 567].

NGS has become a fundamental tool in the study of genetic diversity and evo-
lution of microorganisms, allowing the identification of mutations and genetic vari-
ations associated with diseases and the elucidation of complex metabolic pathways
and gene regulatory networks [512, 585].

The ability to sequence large amounts of genetic material in a short period of time
is one of the main advantages of next-generation sequencing compared to traditional
sequencing techniques. Furthermore, NGS has enabled an exponential increase in the
identification of genetic causes in rare diseases and heterogeneous disorders. NGS is
used in research and clinical settings, accelerating diagnosis, and reducing costs. De-
spite the enthusiasm, there are limitations in coverage and accuracy and challenges
in the interpretation of variants and ethical issues. There is a need to define quality
and control standards in NGS to further improve its application for the benefit of
patients [375].

In the study of bacterial genomics, next-generation sequencing has allowed the
characterization of the genetic diversity of Mycobacterium tuberculosis populations,
which has facilitated the identification of strains associated with resistance to anti-
tuberculosis drugs. In addition, NGS has improved the detection and diagnosis of
tuberculosis by identifying mutations and genetic variations associated with disease,
characterizing the genetic diversity of populations of microorganisms, and elucidat-
ing complex metabolic pathways and gene regulatory networks [458, 541, 649].

6.5.1 MOST WIDELY USED SEQUENCING TECHNOLOGIES

NGS technologies have become valuable tools in the diagnosis of infectious lung
diseases. Bioinformatics processes in NGS significantly influence disease manage-
ment and patient care. Lack of standardization leads to variability in bioinformatics
procedures, generating inaccurate results that affect patient care. Therefore, in re-
cent years, several guidelines have been proposed to homogenize processes and stan-
dardize knowledge of bioinformatics data management [307, 530]. Among the most
widely used technologies are Illumina, Ion Torrent, PacBio, and Oxford Nanopore.
All these technologies are used in the diagnosis of infectious lung diseases to iden-
tify respiratory pathogens, detect mutations associated with antibiotic resistance and
characterize the genetic diversity of pathogens. The main features, advantages and
disadvantages, and specific applications of each of these technologies are described
in Table6.3.
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NGS technologies are valuable tools in the diagnosis of infectious lung diseases.
Each of these technologies has its own advantages and disadvantages, and their spe-
cific application depends on the type of analysis required. They are constantly chang-
ing and being updated, so these descriptions of their advantages and disadvantages
can quickly become obsolete. It is necessary to constantly update their performance
and recommended implementations. The choice of the appropriate technology will
depend on factors such as the complexity of the genome, the length of sequences
required, and the available budget.

6.5.2 SEQUENCING DATA PROCESSING AND ANALYSIS

NGS data analysis is a complex process that requires the use of advanced bioinfor-
matics tools for processing, alignment, and identification of genetic variants. The
WHO recently published a technical guide for workflow in NGS of Mycobacterium
tuberculosis . It is mainly structured in four steps DNA extraction and quality con-
trol, DNA library preparation, Sequencing, Data Analysis [458]. Since the first three
steps vary depending on access to the sequencing platform, available budget, avail-
able sample quality, and the desired quality of the output files, we proceed with
general comments on the process of analyzing the raw sequencing data. The analysis
process begins with obtaining raw sequencing data, which undergo a series of steps
before they can be analyzed.

The first step in sequencing data processing is the removal of low-quality se-
quences and filtering of adapter and contaminant sequences. This is done using qual-
ity control programs such as FastQC or Trim Galore, which can identify and remove
low-quality sequences and filter out adapter and contaminant sequences [33, 319].
Once low-quality sequences have been removed and adapter and contaminant se-
quences have been filtered out, sequences are aligned to a genomic or transcriptomic
reference using alignment programs such as Bowtie or BWA [144]. This allows
the identification of genetic variants and characterization of the genetic diversity of
pathogens.

There are several alignment programs available (Bowtie, BWA, HISAT2, TopHat,
and other). Each of these programs has its own features and advantages, and the
choice of the appropriate alignment program will depend on the type of sequencing
data and the purpose of the analysis.

The next step is the identification of genetic variant using bioinformatics tools
such as GATK, FreeBayes or SAMtools, or pipelines as MTBseq, which allow the
identification of SNPs (Single Nucleotide Polymorphisms), indels and other types
of genetic variants. These tools can also be used to identify mutations associated
with antibiotic resistance. This program may differ in their ability to detect different
types of variants, such as SNPs, indels, and other types of structural variants. These
programs use different approaches for the identification of SNPs, such as the com-
parison of read sequences with a reference genome or the detection of base changes
in the alignment of reads [138, 144, 308, 344, 409, 634].

Indels (insertions and deletions) are variants that involve the insertion or deletion
of one or more nucleotides in a DNA sequence. The identification of indels can be
more difficult than the identification of SNPs, due to the greater complexity of the
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Table 6.3
Next-Generation Sequencing technologies

Platform Key features Advantages Disadvantages Ref.
Illumina Sequencing technol-

ogy based on DNA
strand synthesis. It
uses DNA cluster
amplification to gen-
erate large amounts
of short, high quality
DNA sequences. Se-
quencing products are
read simultaneously
on millions of DNA
fragments using a
fluorescent camera
system.

Is a high-throughput
sequencing technology
with high accuracy and
reproducibility. It can
generate large amounts
of data in a short pe-
riod of time at rela-
tively low cost. The
read length is suit-
able for genetic variant
analysis and mutation
detection in pathogens.

The read length is
limited and does not
allow sequencing
of longer genomic
regions. In addition,
there may be prob-
lems in sequence
alignment due to the
high homology be-
tween some genomic
regions.

[426]

Ion Gen-
eStudio
S5 System
and the
Ion Torrent
Genexus
System.

A sequencing tech-
nology based on the
detection of protons
released during DNA
strand synthesis. It
uses DNA cluster
amplification to gen-
erate high-quality
short DNA sequences.
Sequencing products
are read sequentially
using a pH sensor
system.

Fast, accurate and
easy-to-use sequencing
technology. It allows
sequencing of short
DNA fragments and
can detect genetic
variants and mutations
in pathogens.

Sequencing quality
may be affected
by the presence of
homopolymers, and
the number of read
errors may increase in
repetitive regions.

[328]

PacBio Sequencing technol-
ogy based on the
detection of fluores-
cent light generated
during DNA strand
synthesis. It uses
real-time DNA am-
plification to generate
long DNA sequences
with high quality.

High-quality sequenc-
ing technology that can
generate long DNA
sequences with high
quality, allowing the
resolution of complex
genomic regions and
the identification of
genetic variants. It
is also capable of
detecting epigenetic
modifications.

Expensive sequencing
technology that re-
quires a large amount
of data to generate
reliable results. In ad-
dition, the sequencing
error rate can be high
in regions with high
homology.

[4,
497]

Oxford
Nanopore

Sequencing technol-
ogy based on the
detection of electrical
currents generated
by the interaction
between DNA and
pores in a membrane.
It uses nanopores
to directly sequence
DNA molecules
without amplification

Portable, real-time
sequencing technology
that can generate long
DNA sequences. It
allows the detection
of epigenetic mod-
ifications and the
identification of ge-
netic variants in real
time.

Sequencing error rate
can be high, espe-
cially in repetitive
or high-homology
regions. In addition,
sequencing quality
can be affected by the
presence of contam-
inants and genome
complexity.

[385]

regions containing indels and the variability in their size. Programs such as GATK
and VarScan are commonly used for the identification of indels from sequencing
data. These programs use different methods for indel identification, such as compar-
ison of read sequences with a reference genome, identification of misaligned read
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positions or detection of base read imbalances [306, 409].
In addition to SNPs and indels, there are other types of genetic variants that

can be detected by next-generation sequencing data analysis programs. For exam-
ple, structural variants, which include inversions, translocations, and duplications,
can be detected by programs such as Delly, Lumpy, Manta, Visor among others
[66, 108, 332, 508]. However, adequate detection of sequence copy number changes
remains a challenging problem. Recently published machine learning approaches
suggested that it is more effective than standard methods at accurately detecting
sequence copy number changes in lower quality or coverage next-generation se-
quencing data, and is equally powerful in high-coverage data, including the iden-
tification of novel CNVs in genomes previously analyzed for CNVs using long-read
data [244].

6.5.3 APPLICATIONS OF NEXT-GENERATION SEQUENCING IN THE
DIAGNOSIS OF INFECTIOUS PULMONARY DISEASES

Identification of differential gene expression and analysis of genetic diversity are
two important approaches in Mycobacterium tuberculosis research. In Mtb, identifi-
cation of differential gene expression is often performed using next-generation RNA
sequencing (RNA-Seq) technologies. RNA-Seq data can be analyzed techniques,
such as differential cell lysis, probe-based ribosomal depletion, and genome-wide
metabolic network analysis, scientists can investigate the regulatory networks and
gene expression patterns of Mtb and its host during infection to identify genes that
are over- or under-expressed compared to control conditions. This approach has been
used to investigate the molecular mechanisms underlying M. tuberculosis virulence,
drug resistance, and host immune response [131, 188, 390, 420, 734].

Analysis of the genetic diversity of M. tuberculosis involves the analysis of ge-
netic variation within and between populations of the bacterium. This can be accom-
plished by analyzing the DNA sequence of multiple strains of M. tuberculosis. Next-
generation sequencing data are often used to generate complete or partial genomes of
M. tuberculosis strains. These genomes can be compared to identify mutations and
genetic variations that occur in different strains. Genetic diversity analysis is used to
understand the epidemiology of tuberculosis, including the spread of drug-resistant
strains, the identification of new emerging strains, and the evolutionary history of the
bacterium [274, 392, 402, 449, 452, 541, 542, 546, 653].

6.5.4 INTEGRATION OF DEEP LEARNING AND NEXT-GENERATION
SEQUENCING FOR TB DIAGNOSIS

NGS enables rapid and accurate identification of Mtb bacteria in sputum samples
and other body fluids. While deep learning enables rapid analysis of large genomic
datasets to identify patterns of genetic variation and classify Mtb strains. The use of
these techniques could allow a faster and more accurate diagnosis of TB, which could
help reduce the spread of the disease and improve treatment outcomes. In addition,
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it could be a useful tool for monitoring disease progression and identifying potential
drug-resistant strains [274].

Recently, WHO has published and endorsed the first catalog of resistance-
associated genetic variants based on more than 38,000 MTBC isolates to predict
clinically relevant resistance phenotypes from genetic data. This mutation catalog
provides a common, standardized reference for the interpretation of resistance to all
first-line drugs (RIF, INH, ethambutol, and pyrazinamide ) and also to second-line
group A drugs (levofloxacin , moxifloxacin , bedaquiline, and linezolid ), group B
(clofazimine ), and group C (delamanid, amikacin , streptomycin, ethionamide, and
prothionamide [457].

Barely a year later, the Comprehensive Resistance Prediction for Tuberculosis:
an International Consortium (CRyPTIC) has published a compendium of data from
12,289 global clinical isolates of Mycobacterium tuberculosis , all of which have
been subjected to whole genome sequencing and measured for their minimum in-
hibitory concentrations against 13 antituberculosis drugs processed uniformly in
23 countries in a single assay. This is the largest matched phenotypic and geno-
typic dataset of Mtb to date. The compendium contains 6,814 isolates resistant to
at least one drug, including 2,129 samples that fully meet the clinical definitions of
rifampicin-resistant (RR), multidrug-resistant (MDR), pre-extensively drug-resistant
(pre-XDR) or extensively drug-resistant (XDR). This combination of an extensive
catalog and open availability of an immense amount of data provides an ideal frame-
work for the development of artificial intelligence implementations, especially deep
learning [128, 129].

Several investigations have addressed the processing of genome datasets with ma-
chine learning techniques [39, 146, 287, 315, 694]. However, most with smaller scale
sets than those recently published. With the recent increase in the availability of mas-
sive data, a trend to explore deep learning-based solutions can be observed. Moving
from the predominance of machine learning classification models (Support Vector
Machine, Random Forest, and ensemble models, etc.) to solutions based on deep
learning, (convolutional networks, LSTM, GRU, ANN, etc.) [106, 269, 273, 534].

These technologies can also be used to develop new diagnostic approaches,
such as early detection of TB. However, the integration of these technologies also
presents challenges. Adequate computational infrastructure is needed to process
large amounts of sequencing and phenotypic data. In addition, it is important to val-
idate the results in clinical studies to ensure their accuracy and reliability.

6.6 LIMITATIONS
First, deep learning models rely on large amounts of high-quality annotated data for
training. However, such data may not always be readily available, particularly in low-
resource settings. Additionally, data quality can vary, which may affect the accuracy
of the model’s diagnosis.

Secondly, deep learning models can be limited by the scope of the data they are
trained on. If a model is trained on a specific set of medical images, it may not be able
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to accurately diagnose pulmonary infections that present differently or have atypical
features.

Third, deep-learning models are often considered “black boxes” because they are
highly complex and difficult to interpret. This can make it difficult to understand how
the model arrived at its diagnosis, which can be problematic for healthcare profes-
sionals who need to justify their diagnoses to patients or other healthcare providers.

Lastly, there may be ethical and legal concerns related to the use of deep learn-
ing for medical diagnosis. For example, if a deep learning model produces a false-
positive or false-negative diagnosis, this may lead to unnecessary treatments or
missed diagnoses, respectively, which can have serious consequences for patients.

6.7 CONCLUSIONS
Timely and accurate diagnosis is essential in treating and preventing the spread of
pulmonary infectious diseases like COVID-19, COPD, and TB, which are signifi-
cant causes of illness and death globally. Deep learning, a machine learning type,
has proven useful in medical applications, particularly in analyzing and classifying
biosignals and medical images. More recently, there has been growing interest in us-
ing deep learning techniques to diagnose pulmonary infections by analyzing cough
signals, the ECG, chest radiographs, or computed tomography scans. By training
deep learning algorithms on large medical datasets, these models can learn to ac-
curately classify different types of pulmonary infections, leading to more efficient
and accurate diagnosis. This improves patient outcomes by enabling early detection
of lung infections and enhancing the effectiveness of treatments. Machine learning
can also be used to predict drug resistance by summarizing the predictive ability of
various factors. This can aid in clinical decision-making and detect single nucleotide
polymorphisms as whole genome sequencing data increases.
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López-Bonilla, Esteban Tlelo-Cuautle, Didier López-Mancilla, and Everardo Inzunza-
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camera-drones and artificial intelligence to automate warehouse inventory. In AAAI
Spring Symposium: Combining Machine Learning with Knowledge Engineering, 2021.

296. Muhammad Umar Karim Khan. Towards continual, online, self-supervised depth.
arXiv preprint arXiv:2103.00369, 2021.

297. Wahab Khawaja, Ismail Guvenc, David W. Matolak, Uwe-Carsten Fiebig, and Nico-
las Schneckenburger. A survey of air-to-ground propagation channel modeling for un-
manned aerial vehicles. IEEE Communications Surveys & Tutorials, 21(3):2361–2391,
2019.

298. M. S. Khusro, A. Q. Hashmi, A. Q. Ansari, and M. Auyenur. A new and Reliable
Decision Tree Based Small-Signal Behavioral Modeling of GaN HEMT. IEEE 62nd
International Midwest Symposium on Circuits and Systems (MWSCAS), pages 303–
306, 2019.

299. Kristine Kiernan, Robert Joslin, and John Robbins. Standardization roadmap for un-
manned aircraft systems, version 2.0. 2020.



336 References

300. Dae Han Kim, Chun Hyuk Park, and Young J Moon. Aerodynamic analyses on the
steady and unsteady loading-noise sources of drone propellers. International Journal
of Aeronautical and Space Sciences, 20:611–619, 2019.

301. Daewoon Kim and Kwanghee Ko. Camera localization with siamese neural networks
using iterative relative pose estimation. Journal of Computational Design and Engi-
neering, 9(4):1482–1497, 2022.

302. Jangho Kim, Jeesoo Kim, and Nojun Kwak. Stacknet: Stacking feature maps for con-
tinual learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pages 242–243, 2020.

303. James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Des-
jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

304. Simon Klenk, Lukas Koestler, Davide Scaramuzza, and Daniel Cremers. E-NeRF:
Neural Radiance Fields from a Moving Event Camera. August 2022.

305. Yejun Ko, Sunghoon Kim, Kwanghyun Shin, Youngmin Park, Sundo Kim, and Dong-
suk Jeon. A 65nm 12.92nj/inference mixed-signal neuromorphic processor for image
classification. IEEE Transactions on Circuits and Systems II: Express Briefs, pages
1–1, 2023.

306. D. Koboldt, Q. Zhang, D. Larson, D. Shen, M. McLellan, L. Lin, C. Miller, E. Mardis,
L. Ding, and R. Wilson. Varscan 2: Somatic mutation and copy number alteration
discovery in cancer by exome sequencing. Genome Research, 22:568–576, 2012.

307. D. C. Koboldt. Best practices for variant calling in clinical sequencing. Genome
Medicine, 12:1–13, 2020.

308. T. Kohl, C. Utpatel, V. Schleusener, M. De Filippo, P. Beckert, D. Cirillo, and S. Nie-
mann. Mtbseq: A comprehensive pipeline for whole genome sequence analysis of
mycobacterium tuberculosis complex isolates. PeerJ, 2018, 2018.

309. O. Kömmerling and M. Kuhn. Design principles for tamper-resistant smartcard pro-
cessors. Smartcard, 99:9–20, 1999.

310. Naruya Kondo, Yuya Ikeda, Andrea Tagliasacchi, Yutaka Matsuo, Yoichi Ochiai, and
Shixiang Shane Gu. VaxNeRF: Revisiting the Classic for Voxel-Accelerated Neural
Radiance Field, November 2021. arXiv:2111.13112 [cs].

311. I. Kononenko. Machine learning for medical diagnosis: History, state of the art and
perspective. Artificial Intelligence in Medicine, 23:89–109, 2001.

312. Nicholas Blaise Konzel and Eric Greenwood. Ground-based acoustic measurements of
small multirotor aircraft. In Vertical Flight Society 78th Annual Forum & Technology
Display, Fort Worth, TX, pages 10–12, 2022.

313. J. Korpas, J. Sadlonova, and M. Vrabec. Analysis of the cough sound: an overview.
Pulm Pharmacol, 9:261–268, 1996.

314. Adam R. Kosiorek, Heiko Strathmann, Daniel Zoran, Pol Moreno, Rosalia Schneider,
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527. Martin Rosalie, Grégoire Danoy, Serge Chaumette, and Pascal Bouvry. Chaos-
enhanced mobility models for multilevel swarms of UAVs. Swarm and Evolutionary
Computation, 41:36–48, August 2018.
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thesis, Instituto de Investigación en Comunicación Óptica, UASLP, San Luis Potosı́,
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644. Niclas Vödisch, Daniele Cattaneo, Wolfram Burgard, and Abhinav Valada. Contin-
ual slam: Beyond lifelong simultaneous localization and mapping through continual
learning. In Robotics Research, pages 19–35. Springer, 2023.



358 References
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