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Abstract. Proper cash �ow forecasting is a complex task that can be
done by modelling the cash �ow data as a time series. Although para-
metric methods have been widely used to accomplish this task, they
require some assumptions about the data that are di�cult to hold. A
well-founded alternative is the use of fuzzy inference systems, which have
proven to be competitive in many practical problems. This paper presents
a statistical study that compares the performance of fuzzy inference fore-
casting systems with that of a traditional parametric approach, in a cash
�ow forecasting problem based on the weekly income and expense data of
340 self-employed workers over a period of 338 weeks with four di�erent
time horizons (1, 4, 9 and 13 weeks). We also check for signi�cant links
between several statistical characteristics and observed performance, to
determine which features might most a�ect the quality of the predic-
tions. After �nding that kurtosis is the most correlated feature, a more
detailed exploration is performed on it.

Keywords: Cash �ow · Self-employed workers · Time series · Forecast-
ing · Fuzzy inference systems · Statistical features · Kurtosis

1 Introduction

Cash �ow refers to the overall in�ows and out�ows of cash or cash equivalents
from a company over a given time period due to its operating, investing, and
�nancial activity. Cash �ow analysis helps to understand the situation of a busi-
ness and anticipate possible scenarios. In fact, the use of cash �ow analysis as
a key factor in risk assessment has become widespread [1]. Econometric models
for cash �ow analysis are based on a detailed study of a company's �nancial
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statements. These studies are usually too complex for companies with few re-
sources, as is the case of small and medium-sized enterprises, and especially for
the approximately 26.9 million self-employed workers in the European Union, as
of 2021 [2].

Another approach to predicting cash �ow is to model it as a time series fore-
casting problem (i.e. predicting future data using knowledge of the past obser-
vations). Time series forecasting has proven to be an e�ective tool for decision-
making processes in many economic and �nancial applications [3�5]. A time
series Z of size n can be formulated as an ordered sequence of observations
Z = (z1, z2, . . . , zn) distributed over time, where zt ∈ IR denotes the value for
the t-th time period. One of the simplest models in time series forecasting is the
random walk (RW) model [6], where the prediction of the next value zt is based
on the observation at the previous time step (zt−1) plus a random error term et
at time period t. Other models are based on inferring a parametric distribution
that might �t the data. For instance, a well-established procedure is the autore-
gressive integrated moving average (ARIMA) method [7], which is often used as
a baseline. However, although parametric models are popular, they require some
data assumptions such as normality, stationarity and lack of correlation that are
often violated [8].

An alternative to parametric methods for time series forecasting is the com-
putational approach, which is based on the extensive use of various machine
learning algorithms such as regression trees, neural networks or support vec-
tor machines [9, 10]. These methods do not require modelling the data under
any statistical assumption and o�er similar or even better performance than
traditional probabilistic models [11]. However, their main drawbacks are their
conceptual complexity, the hyper-parametrization of the model and high compu-
tational training costs. Another research line focuses on the nature of the data
itself through the concept of fuzzy logic [12] applied to time series forecasting.
Oancea et al. [13] suggested that fuzzy-based systems can be a plausible alter-
native to parametric methods in some scenarios, although the limits of these
scenarios are not well-de�ned.

To explore these limits, in this paper we compare the forecast performance
of the commonly used ARIMA model and some fuzzy-based methods. After
this general comparison, we also analyse some statistical features included in
the paper by Salas-Molina et al. [8] together with four time series autocorrela-
tion indices to verify any association between them and the performance of the
models. Both studies are carried out over time series based on the weekly cash
�ow data of 340 Spanish self-employed workers in a period of 338 weeks. The
models are �rst compared using the unscaled mean bounded relative absolute
error (UMBRAE) [14], the values of which are then used with the statistical
features of the time series to search for possible correlations. Second, we explore
the di�erences of UMBRAE with the correlation indices to identify changes,
or even degradation (inferred by comparing the results with RW), in forecast
performance.
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Henceforward, the rest of the paper is organized as follows: Section 2 intro-
duces the forecasting models included in this study. Section 3 presents the data
and describes the experimental set-up. The results are discussed in Section 4.
Finally, Section 5 summarizes the main �ndings and limitations, and suggests
possible avenues for future research.

2 The Forecasting Models

In the ARIMA parametric model, it is necessary to de�ne a set of parameters
(p, d, q), which refer to the number of autoregressive coe�cients, the di�erences
and the moving average coe�cients. These three parameters can be calculated
using the Box-Jenkins method [7], an iterative procedure based on three steps:
identi�cation of a candidate model, estimation of its parameters, and evaluation
of the candidate model.

The remaining methods in this study are fuzzy inference systems (FIS), which
are based on fuzzy logic [12]. This logic assumes the vagueness of data instead of
exact information represented by crisp data. The FIS algorithmic process consists
of four steps: (i) fuzzi�cation, (ii) de�nition of logical relations, (iii) making the
appropriate inference, and (iv) defuzzi�cation. The fuzzi�cation process trans-
forms the crisp input data into fuzzy sets according to the data structure and
the fuzzi�cation rules. Next, the association between the inputs and the outputs
is described in form of fuzzy logical relations (FLRs), which are IF-THEN rules.
The IF part is the antecedent and considers the input data, while the THEN
part or consequent describes the output values found when some input occurs.
Once the rules are generated, the new input data is processed in the third step
according to the FLRs and then the inferences are made. Finally, the defuzzi�-
cation process consists of the inverse transformation of the inferred fuzzy values
into crisp data and the generation of the �nal forecast.

This study considers two major approaches to how the FLRs are de�ned:
Mamdani [15, 16] and Takagi-Sugeno-Kang (TSK) [17, 18]. In both approaches,
the antecedent part of the FLRs is determined by fuzzy sets, with the de�nition
of the consequent part being the main di�erence between Mamdani and TSK.
While in Mamdani-based models it is de�ned by fuzzy sets, in TSK-based models
the THEN part is de�ned as a polynomial combination of the crisp input vari-
ables. Consequently, the FLRs rules generated under the Mamdani approach are
more interpretable and understandable, while the TSK-based rules allow more
accurate forecasts but are more di�cult to understand.

Two Mamdani-type models have been used in this study: the Wang-Mendel
(WM) model [19] and the hybrid neural fuzzy inference system (HYFIS) [20]. On
the other hand, the adaptive-network-based fuzzy inference system (ANFIS) [21]
and the dynamic evolving neural-fuzzy inference system (DENFIS) [22] are the
TSK-based approaches included.

The WM algorithm is based on �ve steps: (i) The crisp input data is par-
titioned into equally-spaced fuzzy regions, (ii) this data is used to de�ne the
Mamdani-based FLRs, (iii) weights are assigned to the rules to avoid con�icts,
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(iv) the fuzzy rules are combined to create a fuzzy rule base, and (v) the input
data is mapped to the output using the de�ned FLRs and �nally defuzzi�ed. It is
a simple and fast one-pass construction procedure, although this simplicity can
be a drawback in accuracy when trying to capture complex data interactions.

The WM method is the basis of HYFIS. The idea behind this algorithm
is to generate a fuzzy-based inference system where the FLRs are optimized
using a neural network. A WM model is �rst generated and then a �ve-layer
back-propagation network inspired by the FIS architecture is used to �t the
parameters of the fuzzy model using the gradient descent method. In the �rst
layer, the input data is fed into the network. The second layer calculates the
degrees of membership using Gaussian membership functions. The third layer
generates the �rst antecedent part of the FLR, whereas the consequent part is
computed in the fourth layer. Finally, the crisp output signal is calculated in the
�fth layer.

The TSK-based ANFIS model is also based on a �ve-layer network archi-
tecture. The fuzzi�cation process is done on the �rst layer. The second layer
implements the inference stage using a T-norm operator, where each node in
this layer represents the �re strength of a rule. Then all the �re strengths are
normalized in the third layer and used in the fourth to calculate the consequent
part of the FLRs. The �nal layer aggregates the results of the previous layer
forming the overall output. Each epoch in the training process comprises a for-
ward and a backward pass. The functional signals go forward to the fourth layer
in the forward pass, and the least-squares estimate identi�es the consequent pa-
rameters. The error rates are propagated backwards in the backward step, where
the premise parameters are updated using a gradient descent method.

Finally, the DENFIS model rests upon the idea that, depending on the po-
sition of the input vector in the input space, a FIS can be dynamically formed
based on the fuzzy rules created during the previous learning process. These
dynamic models are built by implementing an evolving clustering algorithm to
automatically determine both the input data partition and the consequent part
of the FLRs. The number of fuzzy sets used to partition the data in the fuzzi�ca-
tion process is de�ned according to a threshold parameter (Dthr). This method
can be executed both online and o�ine, the main di�erence being how the learn-
ing process is performed. In the online DENFIS model, the rules are created and
updated simultaneously along with the input space partition using the cluster-
ing algorithm. Each time new data is fed into the system, a new iteration of
the clustering algorithm is run with the established clusters and FLRs, which
are updated accordingly. In the o�ine version, all these dynamic processes are
executed once using a tailored version of the clustering algorithm.

3 Data and Experimental Set-up

Declarando, a Spanish online accounting consultancy specialized in self-employed
workers, provided the data for this study. The information on the pro�t of each
self-employed worker is used as the basis for the construction of each time series.
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Here, pro�t consists of the di�erence between accounting incomes and expenses.
The reason for using pro�t data instead of direct cash �ow data are: (i) these
data are validated by the Spanish Treasury Agency as they are used to calculate
taxes, (ii) the accounting of self-employed companies is relatively simple and
similar to cash �ow data and, (iii) direct cash �ow data is often unreliable as it
tends to mix personal and professional information, which can cause distortions.
We collected weekly information on income and expenses from 340 self-employed
workers, where all records were gathered in a range of 338 weeks between the
�rst week of 2016 and the 26th week of 2022. The weeks without income and
without expenses were considered inactive and imputed with 0. The statistical
indices used in this study are the length of the time series, percentage of weeks
without income and expenses (ratio of zeros), mean, median, standard deviation,
kurtosis, skewness, and four autocorrelation indices, from the second to the �fth.

We carried out an independent forecasting process by time series, predictive
method and four di�erent time horizons (h = {1, 4, 9, 13}). Each experiment
consisted of two parts: the parametrization of the model (training/validation
phase) and the forecast itself (test). The time series were divided into training,
validation and test groups according to the number of weeks (horizons, h) to
forecast. The parameters of the forecasting models are given in Table 1.

Table 1: Parameters of the models (lZ denotes the number of elements in a time
series Z).

Method Parameter
Variation range

(Initial: Final; Step)

ARIMA
p (AR order) 0:

√
log2(lZ); 2

d (degree of di�erencing) 0: 2; 1

q (MA order) 0:
√

log2(lZ); 2

WM; HYFIS; ANFIS
n (number of linguistic variables) 7: integer( lZ

2
− 1); 6

Number of lags 2: 4; 1

DENFIS
Dthr (dynamic threshold for clustering) 0.05: 5; 0.05
Number of lags 2: 4; 1

Except for the DENFIS model, all implementations of FIS require prior nor-
malization of the data in the range [0, 1]. Therefore, we normalized all input
data using the min-max method as indicated in Eq. 1. The forecasts were then
denormalized using Eq. 2 and compared with the true test values. The root mean
square error (RMSE) was taken as the selection criteria.

z′ =
z −min(z)

max(z)−min(z)
(1)

z = z′ × (max(z)−min(z)) + min(z) (2)

where z denotes the input data and z′ the normalized data.
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The UMBRAE measure [14] was used to estimate the performance of the
models. This is based on a modi�cation of the mean bounded relative absolute
error and describes a forecasting error in terms of that obtained from a bench-
mark model. The UMBRAE metric is symmetric, scale-independent, and easy
to interpret [14]. The meaning of the UMBRAE values is as follows:

� UMBRAE = 1 means that the model performs the same as the benchmark
method (in our experiments, RW was the benchmark algorithm),

� UMBRAE< 1means that the model performs approximately (1−UMBRAE)∗
100% better than RW, and

� UMBRAE > 1 means that the model performs (UMBRAE − 1) ∗ 100%
worse than RW.

The statistical signi�cance of di�erences between the forecasting models was
assessed using the Friedman rank sum test [23] at the 5% signi�cance level. When
the null hypothesis (i.e. all algorithms are equivalent) in the Friedman test was
rejected, the pairwise post-hoc Nemenyi test was run. This test is based on the
pairwise comparison of the ranked values and considering signi�cant di�erences
when the average of these ranks is greater than an overall critical di�erence
value.

4 Results

This section was divided into three blocks. First, we compared the performance
of all forecasting models considered in this study. In the second block, we ap-
plied Spearman's rank correlation test to verify any association between each
model and some statistical characteristics of the time series. In the last block,
we concentrated our experiments on exploring any possible relationship between
the UMBRAE values of ARIMA and WM with kurtosis.

4.1 Performance Comparison

In this block of experiments, we used the Friedman test to compare the di�erence
in the UMBRAE values obtained by each model. Here we also included the results
of RW as this was the benchmarking algorithm used to calculate UMBRAE. Note
that the UMBRAE values for RW are always equal to 1 due to the de�nition of
this metric (see Section 3).

In all cases, the Friedman test revealed high statistical evidence against the
null hypothesis of no signi�cant di�erences between the models at a signi�cance
level of 0.05 (p-value � 1 × 10−10). Therefore, we applied the pairwise post-
hoc Nemenyi test to compare each pair of models for each horizon and the
results were visually represented with a critical distance diagram in Figure 1.
The critical distance (CD) is shown above the graph, the top line represents
the axis on which the average ranks are plotted from the lowest (best) on the
left side to the highest (worst) on the right side of the diagram. The thick line
connecting models re�ects non-signi�cant di�erences.
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Fig. 1: Critical distance diagrams for the pairwise comparison of models.

The results of the Nemenyi test suggest that the Mamdani-based models
performed similarly to ARIMA, while the TSK-based methods were consistently
the worst in all cases. In fact, regarding the TSK-based models, DENFIS per-
formed well only for h = 1, while ANFIS performed signi�cantly worse than any
other model (including the RW benchmarking method as well) for all horizons.
When focusing on the Mamdani-based approaches, it appears that the WM re-
sults were better than those of HYFIS, but the di�erences were not statistically
signi�cant.

4.2 Correlation Analysis Between Performance and Statistical

Features

Here we applied Spearman's rank correlation coe�cient to test for any associa-
tion between the performance of the forecasting models and the statistical char-
acteristics of the time series at a signi�cance level of 5%. Table 2 summarizes
this analysis, where each value indicates how many times the UMBRAE derived
from the model in the column was signi�cantly correlated with the attribute in
the row for the four forecasting time horizons h considered in the experiments.
Note that standard deviation and time series length were omitted because no
statistically signi�cant correlation with model performance was found.

The results in Table 2 reveal that the statistical features of the time series
most correlated with the UMBRAE values were kurtosis and autocorrelation
lags. For kurtosis and autocorrelation lags 2, 3 and 4, the correlations were
positive, while for autocorrelation lag 5 they were negative. Although not shown
in this table, it should be noted that the correlation values were similar in all
cases (i.e. all model-attribute pairs) in which the association was statistically
signi�cant.

Kurtosis (K) measures the tailedness of a distribution, that is, it represents
the probability or frequency of values that are extremely high or low compared to
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Table 2: Summary of Spearman's correlation analysis.
ANFIS ARIMA DENFIS HYFIS WM Total

Kurtosis 1 3 4 3 4 15
Autocorrelation (lag 4) 3 2 3 3 3 14
Autocorrelation (lag 2) 1 3 3 3 3 13
Autocorrelation (lag 3) 2 1 3 4 3 13
Autocorrelation (lag 5) 3 3 2 3 2 13

Ratio of zeroes 1 0 3 1 1 6
Median 0 1 0 1 1 3
Mean 0 1 0 1 0 2
Skewness 2 0 0 0 0 2

the mean. Therefore, kurtosis measures the frequency of outliers. The K values
of our data were in the range [−0.13, 218], with a mean and median of 23.77 and
11.79, respectively. Although there is no consensus on what an acceptable K
would be, a general rule of thumb is to consider K > |10| as severe kurtosis [24].
We adopted this criterion to divide the 340 experimental time series into two
groups according to the severity of kurtosis: data with non-severe kurtosis (n =
152) and data with severe kurtosis (n = 188).

As in the analysis carried out in the previous section, here we applied the
post-hoc Nemenyi test to compare each pair of models for each forecasting time
horizon and each group of time series according to the severity of kurtosis. Fig-
ure 2 shows the eight critical distance diagrams for visualizing the test results.
As can be seen, the results for the time series with non-severe kurtosis (K ≤ |10|)
were quite similar to those represented in Figure 1, that is, the Mamdani-based
models performed the same as ARIMA and signi�cantly better than the TSK-
based methods and the benchmarking algorithm. In general, for the case of
non-severe kurtosis (plots on the right in the �gure), the best forecast models
were WM, ARIMA and HYFIS, regardless of the time horizon.

For the time series with severe kurtosis (k > 10), the plots on the left in
Figure 2 indicate that the performance of the RW algorithm was similar to that
of ARIMA, WM, HYFIS and DENFIS and even better than the performance of
ANFIS for the time horizons h = 1, h = 4 and h = 9. It is also worth noting that
di�erences between WM and HYFIS were much smaller than in the time series
with the non-severe kurtosis. However, it should be pointed out that again the
best models were WM and ARIMA, as was the case with the non-severe kurtosis
data.

4.3 E�ect of Kurtosis on the Performance of ARIMA and WM

The third block of the experiments focused on a deeper analysis of the possible
links between kurtosis and the UMBRAE values of ARIMA and WM, which
correspond to the best forecasting models, as shown in Figure 1. This analysis
used the Wilcoxon signed-rank sum test, running an independent comparison
for each forecast time horizon. The box plots in Figure 3 illustrate the range of
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Fig. 2: Critical distance diagram for the pairwise comparison of models based on
the time horizon and the severity of kurtosis.

UMBRAE values in log2 scale obtained by ARIMA and WM for each time series
group based on the severity of kurtosis. Signi�cant di�erences are highlighted
above each box plot as follows according to the level of signi�cance: p-value <
0.05 (*), p-value < 0.01 (**) and p-value < 0.001 (***).

In summary, we found signi�cant di�erences in both models for the time
horizons h = 4 and h = 9, while no signi�cant di�erence was detected for
h = 1. In the case of h = 13, only signi�cant di�erences were found when
applying WM. On the other hand, these plots also show that the time series with
severe kurtosis generally reached higher UMBRAE values than those with non-
severe kurtosis. The Wilcoxon signed-rank sum test suggests that the association
between kurtosis and prediction performance is stronger with WM than with
ARIMA.
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Fig. 3: Box plot of the UMBRAE values in log2 scale based on the severity of
kurtosis for each time horizon.

5 Conclusions and Future Work

This study compares the performance of four fuzzy inference systems (two Mamdani-
based models and two TSK-based models) for the weekly cash �ow forecasting
of self-employed workers, including ARIMA and RW as baseline methods. Next,
the possible associations of the forecast values in terms of UMBRAE with 11
statistical characteristics of the time series have been tested, �nding signi�cant
correlations with kurtosis and autocorrelation indices. A deeper exploration of
the di�erences between time series grouped according to the severity of kurtosis
has also been carried out.

From a global point of view, Mamdani-based models have performed better
than TSK-based approaches. Speci�cally, the WM results were better than those
of the other three fuzzy inference systems in all cases. However, the analyses have
revealed that in no case did any fuzzy-based models outperform the ARIMA
results, either globally or according to the severity of the kurtosis. In time series
with severe kurtosis, we have also identi�ed that RW behaves similarly to the
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best models for forecasting time horizons h = 4 and h = 9. These results suggest
a potential relationship between the kurtosis index and the complexity of the
forecasts, which will require a deeper and more exhaustive study.

Despite the interesting contributions of this study, some limitations that
could be addressed in future work should also be taken into account. First, the
nature of the data (the weekly balance of self-employed workers) has been ex-
tracted from a speci�c context made up of weekly time series. Secondly, a small
number of forecasting models and statistical characteristics of time series have
been included in the analyses carried out. Third, the study on the relation-
ship between statistical characteristics and forecasting methods was limited to
a comparison between the kurtosis index and the UMBRAE values obtained by
ARIMA or WM. Therefore, it might be useful to extend this study to other
contexts, forecasting models, and further exploration of the association between
forecasts and statistical features.
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