

Reporte Técnico Final de Proyecto de Investigación:

, , , , , ,	
Caracterización fís Chamizal"	ica, química y biológica de suelos del parque "El
	Tipo de financiamiento
Sin financiamiento	
,	
Ciudad Juárez, Ch	nihuahua, México
Fecha de Inicio: 07	
	Tipo de Reporto
	r
	Final
Autor (es) del reporte t	récnico:
Director de Proyec	cto: Dr. Juan Pedro Flores Margez (UACJ-ICB)
Colaboradores:	Arq. Daniel Zamarrón (Director de Parques y Jardines) Dr. Hugo Rojas Villalobos (UACJ) Dr. Pedro Osuna Ávila (UACJ)
Estudiantes:	Daniela Gutiérrez Herrera (187377) Armando Andrés Domínguez Vázquez (165928) Adilene Villanueva Sandoval (172365) Karina Adilene Guillen Gutiérrez (177355) Daniel Soto Morales (187371) Sebastián López Hidalgo (177284)

Tabla de Contenido

Sección	Contenido	Página
	Resumen (Summary)	3
	Usuarios potenciales (del proyecto de investigación)	7
	Reconocimientos	7
1	Introducción	8
2	Planteamiento (antecedentes)	9
	2.2. Marco Teórico	10
3	Objetivos (general y específicos)	13
4	Metodología	14
5	Instituciones participantes	21
<u>6</u>	Resultados	22
	6.1. Propiedades Físicas del suelo	23
	6.1.1. Humedad del suelo	23
	6.1.2. Densidad Aparente	26
	6.1.3. Textura del suelo	31
	6.2. Propiedades químicas del suelo	42
	6.2.1. pH	42
	6.2.2. Conductividad eléctrica (salinidad)	46
	6.2.3. Nitrógeno inorgánico (amonio y nitratos)	50
	6.2.4. Fósforo inorgánico (Olsen)	59
	6.2.5. Nitrógeno total Kjeldahl	64
	6.2.6. Materia Orgánica del suelo	67
7	Productos esperados	73
8	Conclusiones	75
9	Mecanismos de transferencia	77
10	Contribución e impacto del proyecto	79
11	Impacto económico, social y ambiental	79
12	Referencias	80
13	Anexos	82
	13.1.1. Taxonomía de los Roles de Colaborador	83
	13.1.2. Estudiantes participantes en el proyecto	84

Resumen

El parque "El Chamizal" es un área recreativa forestal de gran importancia con una dimensión de 124 hectáreas ubicado al norte de Ciudad Juárez, Chihuahua. Este enfrenta serios problemas como el deficiente manejo de agua y suelo que impacta en vegetación irregular y raquítica con áreas en sequedad y mortandad frecuente de árboles. La falta de información sobre las propiedades físicas, químicas y biológicas del suelo es lo que motivó este estudio, ya que se considera estratégica para la toma de decisiones en el manejo adecuado de los recursos agua, suelo y vegetación del parque. Los objetivos del proyecto fueron: i) identificar áreas por sectores conforme la geografía, vegetación y manejo del parque para un muestreo de suelos a dos profundidades, ii) procesar las muestras de suelo colectadas mediante secado, molienda y tamizado, iii) analizar la textura y densidad aparente de suelos, el pH, conductividad eléctrica, nitrógeno inorgánico, nitrógeno total, fósforo, materia orgánica y carbono orgánico, y iv) difundir la información de suelos para su aplicación por el personal de manejo del parque el Chamizal. Los análisis de suelo se realizaron en el laboratorio de ciencias ambientales del Instituto de Ciencias Biomédicas de la UACJ conforme los métodos indicados en la norma oficial mexicana NOM-021-RECNAT-2000. Los datos se analizaron mediante estadística descriptiva, correlaciones entre los parámetros evaluados, análisis de varianza de dos vías con efecto anidado de sitio dentro de áreas y profundidad dentro de sitio, y prueba de comparación múltiple de promedios Tukey con el Programa SPSS versión 25.0. Se lograron identificar cuatro áreas de importancia en el parque, se colectaron 38 muestras de suelo a profundidades de 0 a 30 y 30 a 60 cm mediante un método de muestreo en zig-zag y colectando muestras compuestas por triplicado. El suelo fue secado y tamizado a 2 mm. Por la naturaleza del proyecto sin financiamiento, la cantidad de reactivos y materiales disponibles solo fueron suficientes para las muestras indicadas, por ello no fue posible hacer análisis de propiedades biológicas como la respiración del suelo y se dio énfasis a las propiedades físicas y químicas más relevantes y de utilidad.

De acuerdo con los resultados, el contenido de humedad al momento del muestreo vario entre 1 y 24%, fue significativa la diferencia entre sitios específicos de muestreo dentro de cada área. La densidad aparente vario de manera significativa entre áreas con rango de 0.84 a 1.71 g/cm³. El análisis granulométrico de los suelos mostró que los porcentajes de arena, limo y arcilla varían considerablemente entre áreas y sitios dentro de las áreas de muestreo. El 42% de los suelos fueron con textura franco arenoso, y 34% con textura franco. Se encontró una correlación significativa entre la densidad aparente y los porcentajes de partículas de arena, así como de las finas (limo+arcilla). El pH de los suelos vario de 6.83 a 8.56 clasificado como neutro a moderadamente alcalino. Esta variable fue diferente significativamente entre áreas y profundidades de suelo. La salinidad de los suelos estuvo entre 1.3 y 14.0 dS/m, es decir desde no salinos hasta fuertemente salinos. La concentración de N inorgánico fue de 1.0 a 157.3 mg/kg y predomino en forma de nitratos. Se encontró diferencia significativa entre áreas de muestreo, pero no entre profundidades. La concentración de fósforo fue de 4.7 a 471 mg/kg, el NTK fue de 377 a 1760 mg/kg, el contenido de materia orgánica estuvo entre 0.05 y 3.5% para todos los suelos, con una correlación significativa entre el NTK y la materia orgánica. Aunque se logró un avance importante de análisis de suelo que representan casi el 50% del área total del parque, se recomienda solicitar recursos económicos al gobierno municipal para completar el análisis del área completa. Los parámetros físicos y químicos de suelo analizados en este estudio se consideran estratégicos para la toma de criterios en el manejo de los suelos y del agua de riego del parque, ya que las áreas varían considerablemente debido al uso social recreativo, por ello un buen manejo se traducirá en mejoras para la vegetación y paisajes que sean de aprovechamiento social.

Palabras clave: Suelos, Granulometría, Nutrientes, Materia Orgánica.

Summary

The "El Chamizal" park is a forest recreational area of great importance with a dimension of 124 hectares located north of Ciudad Juárez. It faces serious problems such as poor water and soil management that impacts irregular and stunted vegetation with dry areas and frequent tree deaths. The lack of information on the physical, chemical and biological properties of the soil is what motivates this study, since it is considered strategic for decision-making in the proper management of water, soil and vegetation resources of the park. The objectives of the project are i) to identify areas by sectors according to the geography, vegetation and management of the park for soil sampling at two depths, ii) to process the soil samples collected by drying, grinding and sieving, iii) analyze the texture and apparent density of soils, pH, electrical conductivity, organic matter, nitrogen, phosphorus, and iv) disseminate soil information for its application by the management personnel of the Chamizal Park. The soil analyzes will be carried out in the environmental sciences laboratory of the Institute of Biomedical Sciences of the UACJ, according to the methods indicated in the official Mexican standard NOM-021-RECNAT-2000. The data were analyzed using descriptive statistics, correlations between the evaluated parameters, two-way analysis of variance with nested effect of site within areas and depth within site, and multiple comparison test of Tukey averages with SPSS version 25.0. Four areas of importance in the park were identified, 38 soil samples were collected at depths of 0 to 30 and 30 to 60 cm using a zig-zag sampling method and collecting composite samples in triplicate. The soil was dried and sieved to 2 mm. Due to the nature of the unfunded project, the amount of reagents and materials available were only sufficient for the indicated samples, therefore it was not possible to analyze biological properties such as soil respiration and emphasis was placed on the most relevant physical and chemical properties and useful. According to the results, the moisture content at the time of sampling varied between 1 and 24%, the difference between specific sampling sites within each area was significant. The apparent density varied significantly between areas with a range of 0.84 to 1.71 g/cm3. The granulometric analysis of

the soils showed that the percentages of sand, silt and clay vary considerably between areas and sites within the sampling areas. 42% of the soils had a sandy loam texture, and 34% had a loam texture. A significant correlation was found between the apparent density and the percentages of sand particles, as well as fine particles (silt+clay). The pH of the soils varied from 6.83 to 8.56, classified as neutral to moderately alkaline. This variable was significantly different between areas and soil depths. The salinity of the soils was between 1.3 and 14.0 dS/m, that is, from non-saline to strongly saline. The concentration of inorganic N was from 1.0 to 157.3 mg/kg and predominated in the form of nitrates. A significant difference was found between sampling areas, but not between depths. The phosphorus concentration was from 4.7 to 471 mg/kg, the NTK was from 377 to 1760 mg/kg, the organic matter content was between 0.05 and 3.5% for all soils, with a significant correlation between the NTK and the organic matter. Although, a significant progress was achieved in soil analysis that represents almost 50% of the total area of the park, it is recommended to request financial resources from the municipal government to complete the analysis of the entire area. The physical and chemical soil parameters analyzed in this study are considered strategic for making criteria in the management of soils and irrigation water in the park, since the areas vary considerably due to social recreational use, therefore good management It will translate into improvements for vegetation and landscapes that are for social use.

Keywords: Soils, Granulometry, Nutrients, Organic Matter.

Usuarios potenciales (del proyecto de investigación)

El usuario principal de los resultados del presente estudio es el personal administrativo, técnico y de campo en la Dirección de Parques y Jardines del Municipio de Juárez, Chihuahua, responsables del manejo del parque "El Chamizal". Los datos de las condiciones físicas y químicas del suelo generadas en este proyecto se consideran básicos para la toma de decisiones en el manejo de los suelos y del agua de riego del parque, que al final se traducirá en mejoras para la vegetación y paisajes que sean de aprovechamiento social. Otro usuario de la información generada son los investigadores, académicos y estudiantes interesados en estudios y proyectos de desarrollo del parque, así como los ciudadanos que tengan inquietud en conocer las condiciones edáficas del área.

Reconocimientos

Agradecimientos a la Dirección de Parques y Jardines del Municipio de Juárez, Chihuahua (2023-2024), por haber facilitado el acceso de alumnos y docentes de la UACJ a las áreas del parque "El Chamizal" para realizar el diagnostico de las áreas y el muestreo de los suelos.

Gracias al Cuerpo Académico "Sistemas de Producción Agrícola" UACJ-CA-CA, por haber facilitado los materiales, reactivos químicos y equipos de laboratorio e invernadero para llevar a cabo el muestreo de suelos, el procesamiento de muestras y el análisis físico y químico de suelos.

Agradecemos al Laboratorio de Ciencias Ambientales, Departamento de Ciencias Químico Biológicas en el Instituto de Ciencias Biomédicas de la Universidad Autónoma de Ciudad Juárez (UACJ) por el uso de la infraestructura, servicios y equipos de laboratorio.

Gracias a los estudiantes que colaboraron al realizar su tesis de licenciatura en el Programa de Biología, así como a quienes prestaron su servicio social durante este proyecto.

1. Introducción

El parque "El Chamizal" se encuentra ubicado en la zona norte de Ciudad Juárez, Chihuahua y colinda con el Río Bravo y la ciudad de El Paso, Texas. Tiene una superficie de 124 ha de áreas verdes y construcciones, las cuales son utilizadas por los usuarios como centro familiar y deportivo, se considera el principal pulmón de la ciudad y tiene gran importancia histórica para México y los juarenses. Actualmente, la calidad del parque se ha visto deteriorado debido al mal uso y manejo histórico que se le ha dado, sin embargo la actual administración (2023-2024) lleva a cabo acciones de mejora en limpieza y mantenimiento de las áreas verdes. El uso frecuente del parque por la ciudadanía trae como resultado la contaminación por basura sólida y liquida, deterioro de jardines y árboles, en el mantenimiento de las áreas verdes, las podas de pastos no se incorporan al suelo ó junto a los troncos de árboles para retención de humedad, es escasa a nula aplicación de abonos orgánicos como compostas y estiércoles, sin embargo, se riega con agua residual tratada que en corto plazo puede enriquecer el suelo con exceso de algunos nutrientes como el amonio, nitratos y fosfatos. Estas circunstancias a largo plazo pueden causar un deterioro en las propiedades físicas, químicas y biológicas de los suelos, especialmente las concentraciones de sales solubles, de nutrientes como el nitrógeno y fosforo, que son macronutrientes importantes para la vegetación. La falta de información sobre las propiedades del suelo no permite establecer técnicas apropiadas para el manejo del agua y nutrientes, así como de la vegetación. Al hacer un análisis sobre el contenido de nutrientes, parámetros físicos, químicos y biológicos del suelo, se tendría información importante actualizada para estimar dosis de aplicación de fertilizantes y abonos orgánicos, así como para un uso eficiente del agua, lo cual repercute en mejoras de la vegetación.

2. Planteamiento

2.1. Antecedentes

El presente estudio se enfocó en la necesidad de generar información sobre las propiedades de los suelos, lo cual permitirá apoyar el manejo de nutrientes y aqua para mejorar la vegetación del parque. La propuesta se justifica porque actualmente existe nula información sobre las características físicas, químicas y biológicas que presenta el suelo del parque "El Chamizal". Es decir, lo que se aplica en el parque como el uso de compostas, fertilizantes, riegos con aqua tratada, entre otros, se hacen al tanteo sin conocimiento real de las condiciones edáficas. Dado que este parque de 124 hectáreas tiene gran importancia para los Juarenses, considerado el pulmón de la ciudad por su gran cantidad de vegetación, además es un importante área recreativa, cultural y educativa. También tiene una importancia histórica remarcable debido a su impacto político y diplomático entre Estados Unidos y México (Brooks, 2019). Dado lo anterior, es importante conocer las condiciones de los suelos en las que se encuentra el parque actualmente. Los contaminantes como plásticos, desechos metálicos, vidrios, orgánicos, líquidos, así como el poco cuidado de áreas verdes, la compactación del suelo, el desecho de fluidos inorgánicos en el suelo y la inadecuada distribución del agua de riego, han provocado un deterioro de la vegetación, lo cual se ha reflejado en el retiro de una gran cantidad de árboles, además existen muchos secos, puede existir afectación principalmente en sus macronutrientes como el nitrógeno y el fósforo, por su parte, tienen un valor significativo para las plantas, ya que se consideran uno de los principales elementos para su crecimiento y supervivencia (Ortiz, 2010). En el caso del nitrógeno, el cual se encuentra en forma de nitrato (NO₃-) y amonio (NH₄⁺) en el suelo, es parte de la producción de aminoácidos en la célula y es un componente básico del ADN, además de ser necesario para el crecimiento vegetativo; un desequilibrio en este puede provocar un debilitamiento en la planta, pudiendo ser vulnerable a plagas y enfermedades. El fósforo (P) es otro macronutriente responsable de la fosforilación, respiración y fotosíntesis de la planta, además de ayudar en la eficiencia de uso del agua; la deficiencia de este macronutriente afecta en el desarrollo de las raíces y la floración (Brady & Weil, 2016). Hoy en día se ha observado un deterioro vegetal del parque, que podría ser en parte por las bajas o excesos de concentraciones de estos macronutrientes y la baja eficiencia del uso del agua de riego. Al realizar un estudio nutrimental del suelo, se podría determinar si existe una deficiencia o suficiencia que este afectando la vegetación. Así mismo, con la información sería posible determinar un mejor uso de fertilizantes o abonos orgánicos, que permitan mejorar las condiciones del suelo, del uso del agua y de la vegetación para un aprovechamiento social integral.

2.2. Marco Teórico

El suelo es uno de los recursos más importantes para la vida terrestre, está formado por la fragmentación de la roca madre y algunos factores biológicos como la acumulación de materia orgánica (Buckman y Brady, 1977). Este recurso no removable tiene propiedades físicas, químicas y biológicas que ayudan a determinar su calidad y salud (Castro, 2022; FAO, 2023a; Sánchez et al., 2012). La calidad del suelo está ligada a la biodiversidad que hay dentro y fuera de este, mientras que su salud y calidad se determina por el estado de sus propiedades dinámicas (Bautista et al, 2004; Sánchez et al., 2012; Fowler, 2013).

Algunas de las principales propiedades físicas del suelo son: Textura que se refiere a la proporción de elementos minerales según el tamaño de las partículas, como arena, limo y arcilla. Estos granulos pueden estar en distintas cantidades según áreas determinadas y profundidad del suelo, lo que define su clase textural (Rucks et al., 2004; FAO, 2023a). La clase textural de un suelo pueden utilizarse varios métodos, uno de los más conocidos es mediant eel hidrometro de Boyoucos y el triángulo de texturas.

La porosidad del suelo se refiere a los espacios que no están siendo ocupados por solidos, formados por la agregación del suelo, considerando textura y densidad aparente que lo forman (FAO, 2023b). Gracias a la porosidad es posible una circulación del agua en forma vertical y lateralmente, así como del aire, nutrientes y gases (Sánchez et al., 2012). La porosidad está estrechamente relacionada con la estructura del suelo, ya que este último determina la cantidad y tamaño de los poros (Martínez et al., 2008; Rucks et al., 2004). La Estructura del suelo se refiere al arreglo o agregación de las partículas de arena, limo, arcilla y otras unidades estructurales considerando forma, grado y tamaño de agregados. La estructura, al igual que la porosidad, está directamente relacionado con la retención del agua, contenido de aire y nutrientes (FAO, 2023b; Martínez et al., 2008; Rucks et al., 2004).

Entre las propiedades químicas del suelo esta el pH, el cual mide el nivel de alcalinidad o acidez que presenta una solución acuosa, va de un rango del 1 al 14, siendo 1 un nivel alto de acidez y el 14 un nivel alto de alcalinidad, en el nivel 7 hay neutralidad. El pH del suelo tiene importancia para indicar la disponibilidad de nutrientes para plantas y otros organismos. Generalmente, el suelo cuenta con un rango de pH entre 4.0 a 9.0, pero existen múltiples factores que pueden alterarlo (López, 2005; Osorio, 2012), entre ellos el carbono orgánico del suelo (Martínez et al., 2008). La capacidad de Intercambio Catiónico (CIC) es un indicador de la capacidad amortiguadora de los suelos basándose en la saturación del suelo con un catión índice. Existen diversos métodos para estimar la CIC, como el de la tiourea de plata, que estima la variación de CIC debido a la adsorción de este compuesto en las arcillas de los suelos (Pérez et al., 2017). Idealmente, el método que se utilice debe ser capaz de medir la capacidad de los suelos para adsorber cationes de una solución acuosa con el mismo pH, fuerza iónica, constante dieléctrica y composición, ya que el CIC varia con estos parámetros (Henríquez et al, 2005). La conductividad eléctrica del suelo permite realizar un mapeo que establece la factibilidad de productos en suelos específicos de forma rápida y económica (Cortez et al., 2013). Con respecto a los nutrientes, su uso eficiente determina la eficacia en el crecimiento y desarrollo de la planta (Moron, 1992; Ceron et al., 2012). Entre las principales fuentes de nutrientes se pueden encontrar el uso de fertilizantes, residuos de corral, deposición atmosférica y mineralización (Stewart, 2007).

Con respecto a las propiedades biologicas de los suelos, existen diversos organismos que cumplen con una función formadora de suelo, así como parte importante en el reciclaje de nutrients (Mayz, 2004). Estos organismos son principalmente bacterias, plantas, hongos y algunos animales, todos ellos formando un ciclo biológico equilibrado (López, 2005; Montagnini & Jordan, 2002), estos intervienen en la degradación de materia orgánica y la mineralización de N (Socarrás, 2013). Se considera que la calidad del suelo puede medirse por su diversidad biológica (Ortiz, 2010), ya que existe mesofauna edáfica que funcionan como bioindicadores a cambios ambientales (Socarrás, 2013). En el suelo existen muchos nutrientes que son utilizados por las plantas y otros organismos que ahí residen, al mismo tiempo son de vital importancia para su estabilidad y fertilidad (Mengel et al., 2001). Los nutrientes como el Nitrógeno (N), Fosforo (P) y Potasio (K), son de los más importantes, puesto que son utilizados por las plantas en mayor medida, por eso son llamados macronutrientes (Bautista et al., 2004; FAO, 2023c; Tapi y Garcia, 2013; Picone y Zamuner, 2002; Cardenas et al., 2004).

Con relación a estudios previos en el parque El Chamizal, en el año 2017 el Instituto Municipal de investigación y Planeación (IMIP) propuso un Plan maestro para el parque, en donde se pretendía mejorar las condiciones e imagen de esta área recreativa (IMIP, 2017), sin embargo, no se toman en cuenta las áreas verdes o condiciones ambientales. En el año 2018 se presentó un proyecto llamado "Plan Maestro Mega Parque el Chamizal, realizado por la Secretaría de Desarrollo Urbano y Ecología del Municipio de Juárez, donde se proponen las investigaciones, diagnósticos, metas, objetivos, estrategias, esquemas y demás para lograr recuperar el parque (Secretaría de Desarrollo Urbano y Ecología, 2018; Martinez, 2022; Sanchez, 2020). En el año 2022 se implementó un Plan

de manejo en el parque para determinar la situación actual de las áreas verdes, en donde participaron la Universidad Autónoma de Ciudad Juárez (UACJ), la Secretaría de Desarrollo Urbano y Ecología, la Dirección General de Desarrollo Urbano, Dirección General de Servicios Públicos, entre otras organizaciones que ayudaron y dieron asesoría para lograr el Plan de Manejo del Chamizal (Villalpando, 2022; Moreno, 2019; Brooks, 2019).

3. Objetivos (general y específicos)

3.1 Objetivo General

Conocer las propiedades físicas y químicas de los suelos en el parque El Chamizal.

3.2. Objetivos específicos

- a) Identificar áreas por sectores conforme la geografía, vegetación y manejo del parque El Chamizal para llevar a cabo un muestreo de suelos a dos profundidades.
- b) Colectar y procesar las muestras de suelo mediante secado, molienda y tamizado para los análisis físicos y químicos.
- c) Determinar la textura y densidad aparente como propiedades físicas relevantes y su relación con la capacidad de retención de agua.
- d) Analizar propiedades químicas del suelo como el pH, conductividad eléctrica, materia orgánica, carbono orgánico, nitrógeno inorgánico y total, así como fósforo inorgánico de los suelos.
- e) Difundir la información generada de suelos para su aplicación por el personal de manejo del parque el Chamizal.

4. Metodología

La definición de áreas de muestreo fue con base en planos del parque "El Chamizal" proporcionado por la Secretaría de Desarrollo Urbano y Ecología & Secretaría de Comunicaciones y Obras Públicas (2022), y por personal del Instituto de Ciencias y Tecnologia de la UACJ y el programa Google earth® (Figura 1). Las cuatro áreas seleccionadas fueron determinadas con base en tener mayor vegetacion por lotes del parque, tomando en cuenta que presenten pocas construcciones y sean de interés para la Dirección General de Parques y Jardines. En cada área se tuvieron cinco sitios especificos para la colecta de muestras del suelo, las cuales fueron según el tamaño y homogeneidad del área, se colectaron tres sub-muestras por sitio en cuatro áreas del parque, ya que por razones de tiempo y reactivos químicos limitados no fue posible analizar todo el suelo del parque, de momento para este Proyecto (sin financiamiento) se tuvieron 38 muestras.

El muestreo de suelo fue con el uso de una barrena o nucleador y con el método de zigzag, en cada punto seleccionado se tomó una muestra compuesta de suelo a dos profundidades: 0 a 30 y 30 a 60 cm. De estas muestras compuestas para cada profundidad se colectó un kilogramo de cada una, fueron puestas en bolsas de plástico con su respectiva etiqueta. Las muestras fueron llevadas al laboratorio de Ciencias Ambientales ubicada en el Instituto de Ciencias Biomédicas de la UACJ, para ser secadas a temperatura ambiente, después se procedió a molienda y tamizado de las muestras con un molino marca Humboldt® tamizadas en criba de 2 mm, finalmente almacenadas para el análisis físico y químico.

Parque "El Chamizal: áreas de muestreo de suelo

Figura 1. Areas de muestreo de suelo en el parque "El Chamizal".

Figura 2. Sitios específicos de muestreo de suelo en el área "A" del parque "El Chamizal".

Lote B (sitios de muestreo de suelo)

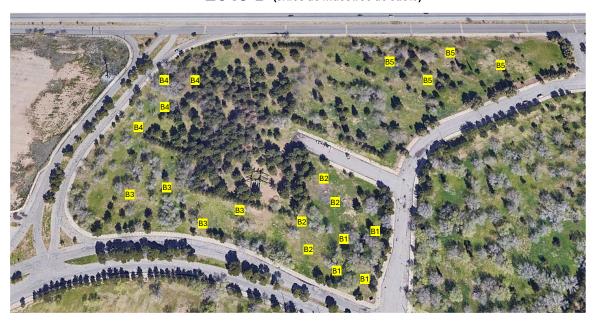


Figura 3. Sitios específicos de muestreo de suelo en el área "B" del parque "El Chamizal".

$Lote \ C \ (\text{sitios de muestreo de suelo})$

Figura 4. Sitios específicos de muestreo de suelo en el área "C" del parque "El Chamizal".

Lote D (sitios de muestreo de suelo)

Figura 5. Sitios específicos de muestreo de suelo en el área "D" del parque "El Chamizal".

Las metodologías de los análisis de suelo fueron conforme a lo indicado por la Norma official mexicana NOM-021-RECNAT-2000, que incluye la preparación de reactivos y el uso de materiales. Tambien se utilizaron los metodos recomendados por el manual de procedimientos de analisis de suelos y plantas del Colegio de Postgraduados (2008), así como Aguilar et al. (1988). La NOM 021 indica que para realizar estudios e inventarios con propósitos de evaluar la fertilidad de los suelos, es necesario en primera instancia ejecutar el procedimiento de muestreo en campo recomendado para tal fin, además de la realización de una serie de determinaciones analíticas y finalmente la elaboración de las interpretaciones respectivas a los análisis. Las principales

determinaciones analíticas realizadas en este estudio para evaluaciones de fertilidad consideradas en la presente NOM son las siguientes:

AS-01 Preparación de la muestra.

AS-02 pH: medido en agua.

AS-03 Densidad aparente.

AS-05 Contenido de humedad del suelo.

AS-07 Contenido de materia orgánica.

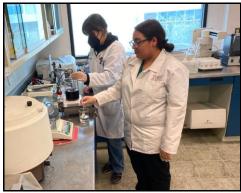
AS-08 Nitrógeno inorgánico y NTK.

AS-09 Determinación de la textura del suelo.

AS-10 Fósforo extraíble en suelos de neutros a alcalinos.

Los datos obtenidos se analizaron a través de estadística descriptiva, principalmente con la media aritmética, desviación estándar, rangos, valores mínimos y máximos, con respecto a la cantidad de parametros y niveles presentes en el Parque "El Chamizal". También se utilizaron los cuadros de clasificación para pH, salinidad, nitrógeno, fosforo y materia orgánica por la NOM-021-RECNAT-2000 (SEMARNAT, 2000). Los análisis estadisticos se llevaron a cabo utilizando los programas de Microsoft Excel, SPSS ver. 25. Se realizaron también análisis de varianza y correlación de Pearson para determinar la relación entre los parametros analizados de suelo en cada sector y area del parque.

Las siguientes fotografías muestran las actividades de campo y laboratorio realizadas en este proyecto:


Muestreo de suelos en el parque El Chamizal. 2023.

Secado de las muestras de suelo.

Análisis físico y químico de muestras de suelo en el laboratorio de Ciencias Ambientales de ICB, UACJ. 2023. Karina Guillen Gutiérrez, Daniela Gutiérrez herrera y Dr. Juan Pedro Flores Margez.

5. Instituciones, organismos o empresas de los sectores social, público o productivo participantes (Si aplica)

El organismo del sector Público participante fue la Dirección de Parques y Jardines del Municipio de Juárez, Chihuahua, encargados del manejo y mantenimiento del parque "El Chamizal".

Taxonomía de los Roles de Colaborador¹:

Roles	Definición de los roles	Nombre de él(la) investigador(a)	Figura	Grado de contribución	Actividades a realizar en la ejecución del proyecto
Responsabilidad en asignar áreas de muestreo en el parque el chamizal	Facilitar accesos al parque y supervisión del perosnal	Arq. Daniel Zamarron Saldaña	Director de Parques y Jardines Mpo. Juarez	Principal de apoyo	Apoyos de acceso a las áreas de muestreo de suelos

Al presentar incumplimiento en las metas y entregables comprometidos asumo la responsabilidad y las acciones que la Coordinación General de Investigación y Posgrado establecen en la sección de responsabilidades en los TRPCF.

Atentamente

Arq. Daniel Zamarron Saldaña

Colaborador (a) del proyecto

6. Resultados

El suelo del parque "El Chamizal" corresponde conforme a la clasificación mundial WRB al grupo Calcisoles (del latín *calx*, cal), son suelos con acumulación sustancial de material calcáreo (carbonato cálcico), ricos en bases, que están muy extendidos en ambientes áridos y semiáridos. Estos suelos provienen de depósitos aluviales, coluviales y eólicos de material meteorizado, con un horizonte subsuperficial Cámbico o Árgico, por sus cambios en contenidos de arcilla (IUSS, 2007).

De manera más específica, la clasificación del suelo a nivel Serie, se ubica en la *Serie Juárez*, esto de acuerdo con la clasificación de suelos del Distrito de riego del Valle de Juárez realizado en 1969 por la Secretaría de Recursos hidráulicos (CIEPS, 1970). Son suelos jóvenes, mixtos (aluvial-eólico) y originados de rocas ígneas, calizas y areniscas; profundos de color café claro a café, de textura pesada y semipesado hasta 90 cm y descansan sobre un lecho arenoso. Presentan una topografía sensiblemente plana, su desagüe superficial es eficiente y su drenaje interno varía de eficiente a deficiente. Desde esa época (1970), a los suelos cercanos al parque El Chamizal", se les clasificó como pobres en nitrógeno materia orgánica, medios en fósforo, muy ricos en potasio, calcio y magnesio, con pH que varía de 7.4 a 8.3. La mayoría de los suelos estaban indicados como afectados por sales, se recomendaba aplicar sobre riegos y mejoradores de suelo. La mayoría de los cultivos de la zona se adaptan a estos suelos. Esta información antecedente es muy importante para comparar los cambios de la situación actual de los suelos.

A continuación, se presentan los resultados del proyecto actual sobre las propiedades físicas y químicas mas importantes para la descripción de los suelos.

6.1. Propiedades Físicas del Suelo

Las condiciones físicas del suelo tienen efecto en su productividad, ya que tienen influencia en el desarrollo de la raíz. Las variables físicas de un suelo incluyen: color, textura, densidad aparente, estructura, parámetros de humedad (punto de saturación y capacidad de campo), consistencia, plasticidad y profundidad. En el presente estudio se analizaron la textura, densidad y humedad del suelo.

6.1.1. Humedad del suelo

El contenido gravimétrico de humedad en los suelos muestreados en el parque El Chamizal vario de 0.91 a 23.6±5.81% para la profundidad de 0 a 15 cm (Cuadro 1). Estos datos mostraron distribución normal de acuerdo con la prueba de Kolmogorov-Smirnov (p=0.2). No se encontró diferencia significativa para el contenido de humedad entre las áreas grandes del parque, pero si se detectó efecto significativo (p<0.01) entre los sitios específicos de muestreo dentro de cada área conforme el ANOVA (Cuadro 2). Esto se puede explicar por las diferencias de aplicación del agua de riego y por diferencias en texturas del suelo, lo cual causa heterogeneidad en los contenidos de humedad y consecuentemente en diferencias en crecimiento de la vegetación. Así, por ejemplo, el Cuadro 3 muestra que en las áreas B y C se observaron diferencias entre sitios específicos de muestreo, el sitio B4 mostro la menor humedad (3.2%), mientras que B5 la mayor (21%), y así en sitio C7 (7.6%) fue diferente significativamente a C2 (14.5%). La humedad del suelo es un factor muy variable que depende del manejo sobre aplicación de riego y condiciones climáticas, aunque se relaciona con la textura y contenido de materia orgánica del suelo, ya que al aumentar el contenido de limo y arcilla la retención de humedad se incrementa. La Figura 1 permite apreciar los valores extremos de contenido de humedad detectados en cada área al realizar el muestreo de los suelos. El área A fue la más variable, mientras el área C mostró menos variabilidad en el contenido de humedad.

Cuadro 1. Datos descriptivos de humedad y densidad aparente del suelo.

Estadísticos descriptivos							
					Desviación		
	N	Mínimo	Máximo	Media	estándar		
Humedad de Suelo (%)	57	.909	23.656	10.33242	5.814230		
Densidad Aparente de Suelo	57	.845	1.714	1.30251	.190225		
(g/cm3)							
N válido (por lista)	57						

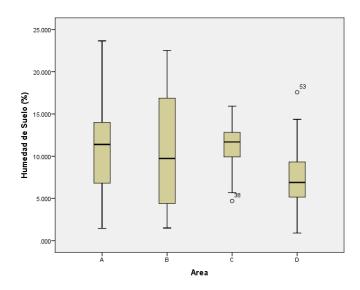


Figura 1. Diagrama de caja para los datos de contenido de humedad del suelo en las cuatro áreas muestreadas en el parque El Chamizal.

Cuadro 2. Análisis de varianza para los datos de contenido de humedad de los suelos.

Pruebas de efectos inter-sujetos							
Variable dependiente:							
	Tipo III de suma		Media				
Origen	de cuadrados	gl	cuadrática	F	Sig.		
Modelo corregido	1145.587 ^a	18	63.644	3.235	0.001		
Intersección	5924.186	1	5924.186	301.159	0.000		
Area	105.863	3	35.288	1.794	0.165		
sitiosn(Area)	1039.724	15	69.315	3.524	0.001		
Error	747.508	38	19.671				
Total	7978.354	57					
Total corregido	1893.095	56					

Cuadro 3. Promedios del contenido de humedad (%) en los suelos de acuerdo con la prueba de comparación múltiple Tukey para sitios específicos y áreas de muestreo (A, B, C, D).

Sitio	Α	В	С	D		
especifico						
1	18.16 a	11.61abc	7.62 b	9.99 a		
2	12.37 a	13.92 ab	14.49 a	6.45 a		
3	3.78 a	5.14 bc	9.68 ab	6.90 a		
4	10.13 a	3.21 c	12.56 ab	7.43 a		
5	11.24 a	21.06 a	10.51 ab	n.a.		
Prueba Tukey: Promedios con letras iguales no son diferentes significativamente (p<0.05)						

Cuadro 4. Valores del contenido de humedad (%) en los suelos al momento del muestreo, ordenados de menor a mayor por sitio especifico de muestreo en cada área.

Num. Lab

			_
Area	Sitio	Prof.suelo(cr	Humedad(%)
В	B4	0-30	3.215
Α	A3	0-30	3.783
В	В3	0-30	5.146
D	D2	0-30	6.454
D	D3	0-30	6.904
D	D4	0-30	7.435
С	C1	0-30	7.619
С	С3	0-30	9.685
D	D1	0-30	9.992
Α	A4	0-30	10.131
С	C5	0-30	10.512
Α	A5	0-30	11.248
В	B1	0-30	11.607
Α	A2	0-30	12.373
С	C4	0-30	12.566
В	B2	0-30	13.926
С	C2	0-30	14.497
Α	A1	0-30	18.163
В	B5	0-30	21.059
	B A B D D D C C C A B A C B C A	B B4 A A3 B B3 D D2 D D3 D D4 C C1 C C3 D D1 A A4 C C5 A A5 B B1 A A2 C C4 B B2 C C2 A A1	B B4 0-30 A A3 0-30 B B3 0-30 D D2 0-30 D D3 0-30 D D4 0-30 C C1 0-30 C C3 0-30 D D1 0-30 A A4 0-30 C C5 0-30 A A5 0-30 B B1 0-30 A A2 0-30 C C4 0-30 B B2 0-30 C C2 0-30 A A1 0-30

6.1.2. Densidad Aparente

La densidad aparente del suelo esta asociada a la porosidad y textura, expresa el contenido de sólidos por unidad de volumen (g/cm³), es una propiedad relacionada también a la compactación del suelo y del grado de facilidad o dificultad que podría tener la raíz para penetrar al suelo y explorarlo. La densidad varía entre 0.845 y 1.714±0.19 g/cm³ (Cuadro 1). El área D presentó la mayor variación, mientras que el área A fue mas uniforme en densidad (Figura 2). De acuerdo con el ANOVA, se encontró diferencia significativa (p<0.05) para las densidades aparentes entre las áreas y los sitios específicos de muestreo dentro de cada área (Cuadro 5). Esto se puede explicar por la posible variabilidad de texturas existentes entre áreas y sitios en la

profundidad 0 a 15 cm. El Cuadro 6 muestra que las áreas A y B tuvieron las mayores densidades significativamente (p<0.05), mientras que las áreas C y D las menores densidades que se asocian a mayor contenido de arena de los suelos, tal como se aprecia en el Cuadro 7, donde las muestras D3, D4 y D2 (1.02 a 1.12 g/cm³) tuvieron las menores densidades aparentes que estarían relacionadas con texturas arcillosa a franco-arcillosa, mientras que la B3 y B4 con las mayores densidades (1.54 a 1.56 g/cm³) relacionadas a texturas arenosa y franco-arenosa (NOM-021-RECNAT-2000). Esta información tiene relevancia para planear la frecuencia de aplicación de agua y sistemas de riego en los suelos del parque, para ello en el Cuadro 8 se presentan las densidades aparentes de menor a mayor.

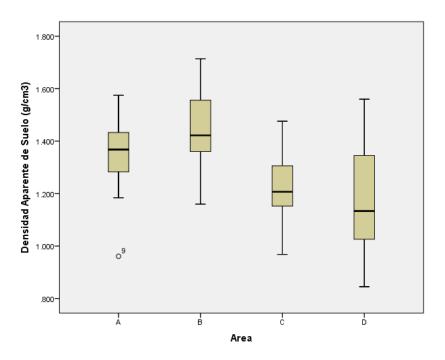


Figura 2. Diagrama de caja para los datos de densidad aparente del suelo en las cuatro áreas muestreadas en el parque El Chamizal.

Cuadro 5. Análisis de varianza para los datos de densidad aparente de los suelos.

	Pruebas	s de efectos	inter-sujetos	•	
Variable dependient	e:				
	Tipo III de suma		Media		
Origen	de cuadrados	gl	cuadrática	F	Sig.
Modelo corregido	1.259 ^a	18	0.070	3.467	0.001
Intersección	95.329	1	95.329	4723.501	0.000
Area	0.637	3	0.212	10.518	0.000
sitiosn(Area)	0.623	15	0.042	2.057	0.037
Error	0.767	38	0.020		
Total	98.729	57			
Total corregido	2.026	56			

Cuadro 6. Promedios de densidad aparente del suelo de acuerdo con la prueba Tukey de comparación múltiple para las cuatro áreas muestreadas en el parque El Chamizal.

densidad aparente de suelo							
			Subconjunto				
Area		N 1 2					
HSD Tukey ^{a,b,c}	D .	12	1.17067				
	С	15	1.22040	1.22040			
	A	15		1.35040	1.35040		
	В	15			1.44220		
	Sig.		0.789	0.088	0.329		

Nom-021-RECNAT-2000:

INTERPRETACION DE RESULTADOS

Tipos de suelos	g/cm ³
Orgánicos y volcánicos	Menor de 1.00
Minerales	
Arcillosos	1.0 1.19
Francosos	1.20 1.32
Arenosos	Mayor a 1.32

Cuadro 7. Promedios de densidad aparente del suelo de acuerdo con la prueba Tukey de comparación múltiple para todos los sitios de muestreo en el parque El Chamizal.

	densidad aparente de suelo								
					Subconjunto				
Sitio de muestreo		N		1	2	3			
HSD Tukey ^{a,b}	D4	3	3	1.02467					
	D3	3	3	1.11933	1.11933				
	D2	3	3	1.12200	1.12200	1.12200			
	A3	3	3	1.15033	1.15033	1.15033			
	C5	3	3	1.16567	1.16567	1.16567			
	C4	3	3	1.18367	1.18367	1.18367			
	C1	3	3	1.22700	1.22700	1.22700			
	C3	3	3	1.25233	1.25233	1.25233			
	C2	3	3	1.27333	1.27333	1.27333			
	A5	3	3	1.31133	1.31133	1.31133			
	B5	3	3	1.31433	1.31433	1.31433			
	B2	3	3	1.35233	1.35233	1.35233			
	A1	3	3	1.39100	1.39100	1.39100			
	D1	3	3	1.41667	1.41667	1.41667			
	A2	3	3	1.42900	1.42900	1.42900			
	B1	3	3	1.43967	1.43967	1.43967			
	A4	3	3		1.47033	1.47033			
	B4	3	3		1.54733	1.54733			
	В3	3	3			1.55733			
	Sig.			0.079	0.061	0.052			

Cuadro 8. Valores del contenido de densidad aparente (g/cm3) en los suelos ordenados de menor a mayor por sitio específico de muestreo en cada área.

Num. Lab

Nulli. Lab							
Muestra	Area	Sitio	Prof.suelo(cr	Densidad ap			
37	D	D4	0-30	1.025			
35	D	D3	0-30	1.119			
33	D	D2	0-30	1.122			
5	Α	А3	0-30	1.150			
29	С	C5	0-30	1.166			
27	С	C4	0-30	1.184			
21	С	C1	0-30	1.227			
25	С	С3	0-30	1.253			
23	С	C2	0-30	1.273			
9	Α	A5	0-30	1.312			
19	В	B5	0-30	1.314			
13	В	B2	0-30	1.352			
1	Α	A1	0-30	1.391			
31	D	D1	0-30	1.417			
3	Α	A2	0-30	1.429			
11	В	B1	0-30	1.440			
7	Α	A4	0-30	1.470			
17	В	B4	0-30	1.547			
15	В	В3	0-30	1.558			

6.1.3. Textura del Suelo

El análisis granulométrico del suelo permite determinar el porcentaje de partículas de arena con diámetro (0.05 a 2 mm), limo (0.005 a 0.002 mm) y arcilla (< 0.002 mm), de lo cual se genera la clasificación textural. El Cuadro 9 muestra los descriptivos del análisis de textura del suelo, donde los rangos de cada porcentaje de partículas permiten visualizar la naturaleza física de los suelos. Los diagramas de las Figuras 3 a 6 presentan la variabilidad de cada tamaño de partícula (arena, limo y arcilla) en cada área y profundidad de muestreo, lo cual es de amplia utilidad para determinar el tipo de plantas a establecer y el manejo del agua y fertilizantes.

Cuadro 9. Variables descriptivas de los porcentajes de cada tamaño de partícula en el análisis de textura de suelo para todos los sitios de muestreo.

Estadísticos des	criptivos				
	N	Mínimo	Máximo	Media	Desviación estándar
Arena (%)	38	29.2	87.92	55.00	11.81
Limo (%)	38	5.56	60.28	33.85	11.30
Arcilla (%)	38	4.52	27.96	11.15	4.41
Limo + Arcilla	38	12.08	70.8	45.00	11.81

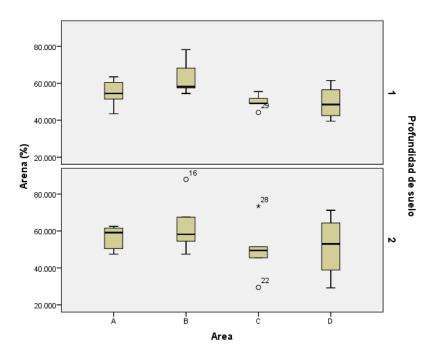


Figura 3. Diagrama de caja para los datos del porcentaje de arena en las cuatro áreas muestreadas en el parque El Chamizal.

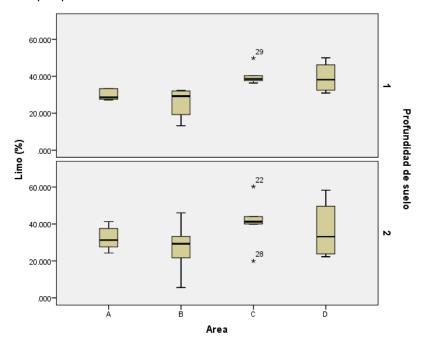


Figura 4. Diagrama de caja para los datos del porcentaje de limo en las cuatro áreas muestreadas en el parque El Chamizal.

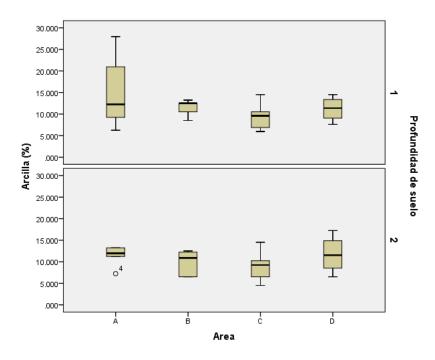


Figura 5. Diagrama de caja para los datos del porcentaje de arcilla en las cuatro áreas muestreadas en el parque El Chamizal.

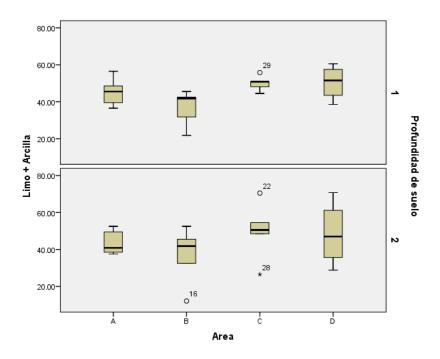


Figura 6. Diagrama de caja para los datos del porcentaje de limo + arcilla en las cuatro áreas muestreadas en el parque El Chamizal.

El analisis estadistico para los datos del procentaje de particulas (area, limo y arcilla) fue con el modelo de efecto anidado, así los factores de variación fueron: Area, Sitio, Profundidad, Sitio(Profundidad). En cuanto al análisis de Arena (Cuadro 10), se detectó diferencia significativa (p<0.01) entre Sitios especificos de muestreo dentro de las Areas para el porcentaje de arena. Las Areas A y B presentaron el mayor porcentaje de arena significativamente (p<0.05) con 55 a 63% en promedio.

Cuadro 10. Promedios del porcentaje de arena del suelo de acuerdo con la prueba Tukey de comparación múltiple para todos los sitios de muestreo en el parque El Chamizal.

Arena (%)				
HSD Tukey ^{a,b,o}				
		Subco	njunto	
Area	N	1	2	
С	10	49.91600		
D	8	50.53500		
A	10	55.44400	55.44400	
В	10		63.21200	
Sig.		0.418	0.164	

El análisis del porcentaje de Limo presentó diferencia significativa entre Areas de muestreo (p=0.015). El área B tuvó el menor porcentaje de limo (26.1%), mientras que las demas areas tuvieron valores mayores significativamente, de 31 a 40.8% (Cuadro 11). Los promedios generales para áreas y sitios de muestreo fueron de 34.1 y 34.7% de limo para las profundidades de suelo 0 a 30 y 30 a 60 cm, respectivamente, lo cual resultó no significativo.

Cuadro 11. Promedios del porcentaje de limo del suelo de acuerdo con la prueba Tukey de comparación múltiple para todos los sitios de muestreo en el parque El Chamizal.

Limo (%)				
HSD Tukey ^{a,b,c}				
		Subco	njunto	
Area	N	1	2	
В	10	26.18800		
А	10	31.20000	31.20000	
D	8	38.00500	38.00500	
С	10		40.83200	
Sig.		0.090	0.211	

El análisis de Arcilla no mostró diferencia significativa entre áreas, ni sitios y profundidades de suelos. En promedio el porcentaje de arcilla vario de 9.2 a 13.3%, donde el área C tuvó el menor contenido de arcilla (Cuadro 12). Sin embargo, al analizar los porcentajes de las particulas mas pequeñas en conjunto (limo+arcilla) se observó que el área C presentó los valores mayores en promedio. En general, los valores promedios para áreas y sitios de muestreo fueron de 11.7 y 10.3% de arcilla para las profundidades de suelo 0 a 30 y 30 a 60 cm, respectivamente.

Cuadro 12. Promedios del porcentaje de arcilla del suelo de acuerdo con la prueba Tukey de comparación múltiple para todos los sitios de muestreo en el parque El Chamizal.

Arcilla (%)				
HSD Tukey ^{a,b,c}				
		Subconjunto		
Area	N	1		
С	10	9.25200		
В	10	10.60000		
D	8	11.46000		
Α	10	13.35600		
Sig.		0.161		

Limo + Arcilla HSD Tukey ^{a,b,c}				
		Subconjunto		
Area	N	1		
В	10	36.7880		
Α	10	44.5560		
D	8	49.4650		
С	10	50.0840		
Sig.		0.106		

Con respecto a la clasificación textural de los suelos, la mayor frecuencia fueron de textura franco y franco arenoso, las cuales se presentaron en 13 y 16 muestras, aunque se observó amplia variabilidad de clases texturales desde arenosos hasta franco limosos, lo cual también es de utilidad para el manejo del agua y aplicación de fertilizantes o abonos orgánicos.

Cuadro 13. Frecuencias de la clasificación textural de los suelos para todos los sitios de muestreo en el parque El Chamizal.

Clasif textural	Frecuencia	Porcentaje
Arena	1	2.6
Areno franco	2	5.3
Areno Franco	1	2.6
Arenoso Franco	1	2.6
Franco	13	34.2
Franco arenoso	16	42.1
Franco limoso	4	10.5
Total	38	100

Cuadro 14. Contenido de arena, limo y arcilla, así como la clasificación textural de todos los suelos muestreados en el parque El Chamizal.

		Muestra					
Area	Sitio	prof. Suelo	%arena	%Limo	%Arcilla	Textura	limo+arcilla
Α	_					_	
	1	0-30	54.48			Franco arenoso	45.52
A	1	30-60	47.48	_		Franco	52.52
Α	2	0-30	63.48			Franco arenoso	36.52
Α	2	30-60	61.48	31.28	7.24	Franco arenoso	38.52
Α	3	0-30	51.48	27.56	20.96	Franco	48.52
Α	3	30-60	50.48	37.56	11.96	Franco	49.52
А	4	0-30	43.48	28.56	27.96	Franco	56.52
Α	4	30-60	62.48			Franco arenoso	37.52
Α	5	0-30	60.48			Franco arenoso	39.52
A	5	30-60	59.12			Arenoso Franco	40.88
В	1	0-30	54.48			Franco arenoso	45.52
В	1	30-60	54.48			Franco	45.52
В	2	0-30	58.2			Franco arenoso	41.8
В	2	30-60	58.2			Franco arenoso	41.8
В	3	0-30	78.2			Areno Franco	21.8
В	3	30-60	87.92			Arena	12.08
В	4	0-30	68.2			Franco arenoso	31.8
В	4	30-60	67.48			Franco arenoso	32.52
В	5	0-30	57.48			Franco arenoso	42.52
В	5	30-60	47.48			Franco	52.52
С	1	0-30	51.84			Franco	48.16
C	1	30-60	29.48			Franco limoso	70.52
C	2	0-30	55.48				
C	2					Franco arenoso	44.52
		30-60	51.48			Franco arenoso	48.52
С	3	0-30	49.12			Franco	50.88
С	3	30-60	45.48			Franco	54.52
С	4	0-30	49.12			Franco	50.88
С	4	30-60	73.48			Areno franco	26.52
С	5	0-30	44.2			Franco limoso	55.8
С	5	30-60	49.48			Franco	50.52
D	1	0-30	61.48			Franco arenoso	38.52
D	1	30-60	71.2			Areno franco	28.8
D	2	0-30	45.48			Franco	54.52
D	2	30-60	48.48			Franco	51.52
D	3	0-30	51.48	34	14.52	Franco arenoso	48.52
D	3	30-60	57.48	25.28	17.24	Franco arenoso	42.52
D	4	0-30	39.48	50	10.52	Franco limoso	60.52
D	4	30-60	29.2	58.28	12.52	Franco limoso	70.8

Las propiedades físicas del suelo comúnmente están asociadas y tienen correlación. En este estudio se encontró una correlación significativa entre el porcentaje de área y la densidad aparente del suelo (p<0.001), donde el 56.4% de la variación en la densidad es explicada por el contenido de arena. A medida que se incrementa el contenido de arena, la densidad aumenta en 0.0159 g/cm³, por unidad de porcentaje en arena (Figura 7). Otra correlación de interés en estudios de suelos, en este caso fue con tendencia inversa significativa (p<0.001) fue detectada para la densidad aparente y el porcentaje de limo del suelo (Figura 8). En este caso la densidad disminuye en 0.0162 g/cm³ por cada unidad de aumento en el porcentaje de limo. La Figura 9 presenta una correlación similar significativa donde la densidad aparente es función de la suma de las partículas más pequeñas (< 0.05 mm). Una tendencia interesante (p=0.069) fue detectada al correlacionar el contenido de humedad con el porcentaje de arcilla del suelo (Figura 10). Aunque no fue significativa estadísticamente, permite visualizar la lógica de que los suelos con mas arcilla permiten la retención de mas humedad, lo cual es ampliamente conocido en estudios de suelos y ayuda en las decisiones del manejo de riegos. En el aspecto metodológico del estudio se encontró que al correlacionar los datos de diferentes muestras de suelo colectadas en sitios cercanos como repeticiones, la correlación de las densidades aparentes en sitios específicos de muestreo en cada área del parque resultaron significativas (p<0.01), lo cual da confiabilidad a la repetibilidad del muestreo, manejo y registro de datos de suelo (Figura 11). También, la Figura 12 muestra una correlación significativa (p<0.01) entre los registros de humedad del suelo de diferentes muestras colectadas en sitios cercanos de la misma área de muestreo, lo cual indica confiabilidad del correcto muestreo de suelo. Es importante aclarar que los porcentajes de humedad corresponden a las muestras en que se determinó la densidad aparente.

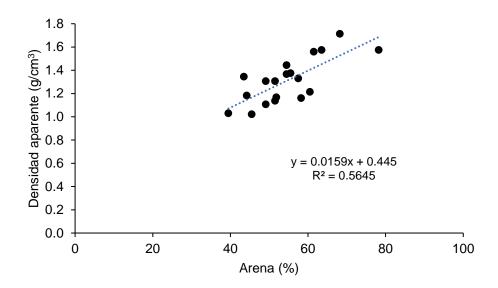


Figura 7. Correlación entre la densidad aparente del suelo y el porcentaje de arena en suelos del parque El Chamizal.

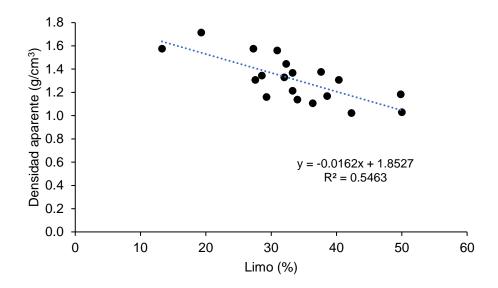


Figura 8. Correlación entre la densidad aparente del suelo y el porcentaje de limo en suelos del parque El Chamizal.

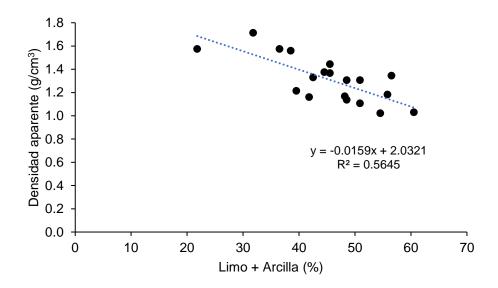


Figura 9. Correlación entre la densidad aparente del suelo y la suma de las particulas más pequeñas limo + arcilla (< 0.05 mm) en suelos del parque El Chamizal.

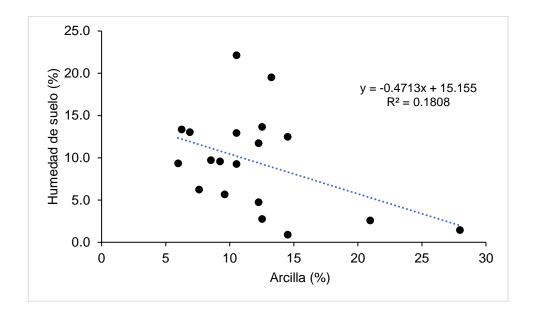


Figura 10. Correlación entre el contenido de humedad al momento del muestreo y el porcentaje de arcilla del suelo en el parque El Chamizal.

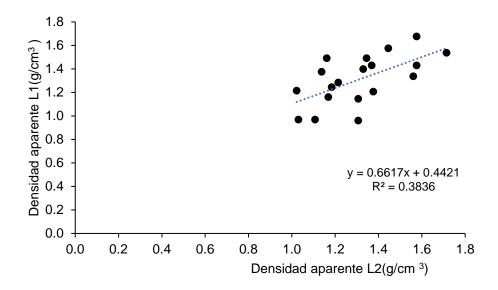


Figura 11. Correlación entre las densidades aparentes del suelo (L1 y L2) registradas el parque El Chamizal.

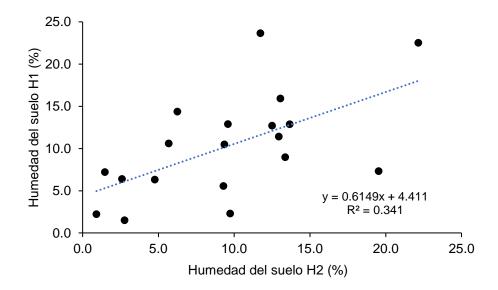


Figura 12. Correlación entre la humedad del suelo (H1 y H2) registradas el parque El Chamizal.

6.2. Propiedades Químicas del Suelo

Las propiedades químicas incluidas en el presente estudio fueron el pH, conductividad eléctrica, nitrógeno, fósforo, nitrógeno total, carbono orgánico, y materia orgánica.

6.2.1. pH

La alcalinidad de los suelos tiene gran importancia en la disponibilidad de nutrientes en los suelos. El pH varió entre 6.83 y 8.56 para todos los suelos del presente estudio (Cuadro 15). En la Figura 13 se observa la variación del pH por áreas y profundidades del suelo.

Cuadro 15. Valores descriptivos de pH, conductividad eléctrica, sólidos disueltos totales y contenido de cloro en los suelos.

Estadísticos descriptivos

			-		Desviación
	N	Mínimo	Máximo	Media	estándar
CEajust	38	1.31	14.05	4.7300	3.22842
SDTajustados	38	679.50	7115.00	2368.6711	1621.54767
cloro	38	.50	5.20	1.7132	1.17615
рН	38	6.83	8.56	7.8782	.40936
N válido (por lista)	38				

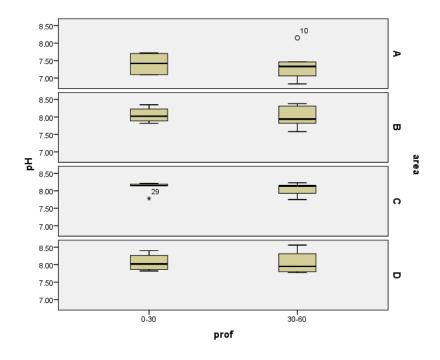


Figura 13. Diagrama de caja para los datos de pH del suelo en las áreas muestreadas en el parque El Chamizal.

El ANOVA indica efecto significativo para el pH del suelo (p<0.05) entre áreas, entre sitios dentro de cada área y entre profundidades dentro de cada sitio específico de muestreo (Cuadro 14), pero en general entre las profundidades 0 a 30 y 30 a 60 cm no se encontró diferencia estadística (Cuadro 15). No se considera el efecto de sitios, ya que estos estuvieron anidados dentro de cada área de muestreo.

Interpretación del pH en suelo: NOM-021-RECNAT-2000.

Interpretación de resultados de pH

Para la clasificación del suelo en cuanto a su valor de pH se presenta el cuadro siguiente:

Clasificación	рН
Fuertemente ácido	< 5.0
Moderadamente ácido	5.1-6.5
Neutro	6.6-7.3
Medianamente alcalino	7.4-8.5
Fuertemente alcalino	> 8.5

Cuadro 14. Análisis de varianza para los datos de pH del suelo en las áreas muestreadas en el parque El Chamizal.

Pruebas de efectos inter-sujetos

Variable dependiente: pH						
	Tipo III					
	de suma					
	de					
	cuadrad		Media			
Origen	os	gl	cuadrática	F	Sig.	
Intersección	Hipótesi	2335.72	1	2335.72	29996	.00
	S	7		7	0.863	1
	Error	.008	1.019	.008a		
area	Hipótesi	3.313	3	1.104	92.019	.00
	S					0
	Error	.168	14	.012 ^b		
prof	Hipótesi	.008	1	.008	.155	.71
	S					4
	Error	.199	4.020	.050c		
Sitio(area)	Hipótesi	1.544	11	.140	11.697	.00
	S					0
	Error	.168	14	.012 ^b		
prof(Sitio)	Hipótesi	.200	4	.050	4.167	.02
	s					0
	Error	.168	14	.012b		

a. 1.001 MS(prof) + .002 MS(prof(Sitio)) -

.003 MS(Error)

Cuadro 15. Promedios de pH del suelo entre profundidades y entre áreas muestreadas en el parque El Chamizal.

Variable dependiente: pH				
			Intervalo de	
		Error	confianza al	
		estánda	95%	
prof	Media	r	Límite inferior	Límite superior
0-30	7.899a	.025	7.845	7.953
30-60	7.857a	.025	7.803	7.911

a. Se basa en la media marginal de población modificada.

HSD Tukey ^{a,b,c}						
		Subco	njunto			
area	N	1	2			
Α	10	7.3870				
В	10		8.0340			
D	8		8.0613			
С	10		8.0670			
Sig.		1.000	.913			

b. MS(Error)

c. .990 MS(prof(Sitio)) + .010 MS(Error)

Cuadro 16. Valores de pH del suelo ordenados de menor a mayor para todas las muestras del parque El Chamizal.

Num. Lab

Nulli. Lab				
Muestra	Area	Sitio	Prof.suelo(cm)	рН
2	Α	A1	30-60	6.83
4	Α	A2	30-60	7.06
1	Α	A1	0-30	7.10
3	Α	A2	0-30	7.10
8	Α	A4	30-60	7.33
7	Α	A4	0-30	7.42
6	Α	A3	30-60	7.46
12	В	B1	30-60	7.58
9	Α	A5	0-30	7.70
5	Α	A3	0-30	7.72
22	С	C1	30-60	7.75
34	D	D2	30-60	7.77
29	С	C5	0-30	7.78
11	В	B1	0-30	7.82
14	В	B2	30-60	7.82
37	D	D4	0-30	7.82
38	D	D4	30-60	7.83
19	В	B5	0-30	7.89
33	D	D2	0-30	7.91
30	С	C5	30-60	7.93
20	В	B5	30-60	7.94
13	В	B2	0-30	8.02
32	D	D1	30-60	8.07
31	D	D1	0-30	8.13
28	С	C4	30-60	8.14
25	С	C3	0-30	8.14
10	А	A5	30-60	8.15
23	С	C2	0-30	8.15
26	С	C3	30-60	8.15
27	С	C4	0-30	8.19
21	С	C1	0-30	8.21
17	В	B4	0-30	8.23
24	С	C2	30-60	8.23
16	В	В3	30-60	8.31
15	В	В3	0-30	8.35
18	В	B4	30-60	8.38
35	D	D3	0-30	8.40
36	D	D3	30-60	8.56
	-	1		

6.2.2. Conductividad eléctrica del suelo

La concentración de sales solubles en los suelos es un parámetro de clasificación de calidad de los suelos y su posible afectación por salinidad que limita el crecimiento vegetal. El rango observado de la conductividad eléctrica para todos los suelos fue de 1.3 a 14.0 dS/m, mientras que los sólidos disueltos totales estuvieron entre 679 y 7115 mg/L, valores de cloro estimados entre 0.5 y 5.2% (Cuadro 15). La variabilidad de los datos se puede apreciar en la Figura 14, donde la salinidad de los suelos estuvo mas amplia en la profundidad 30 a 60 cm, principalmente en las áreas A y D. De acuerdo con el ANOVA se encontró diferencia significativa (p<0.05) entre áreas y entre sitios específicos (dentro de cada área) muestreados, pero no entre profundidades (Cuadro 17). La comparación de promedios entre profundidades, aunque no significativa, indica valores mayores de salinidad para la profundidad 30 a 60 cm con 5.83 dS/m, mientras en la profundidad superficial fue de 3.63 dS/m (Cuadro 18). Las áreas A, D y C mostraron los valores mayores de salinidad significativamente, es decir el área B no tuvo problemas de salinidad.

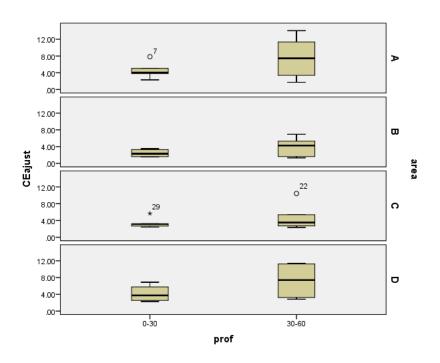


Figura 14. Diagrama de caja para los valores de salinidad del suelo en las dos profundidades y las áreas muestreadas en el parque El Chamizal.

Cuadro 17. Análisis de varianza para los datos de conductividad eléctrica de los suelos.

Dependent Variable: CEajust

		Type III Sum of					
Source		Squares	df	Mean Square	F	Sig.	
Intercept	Hypothesis	847.876	1	847.876	21.281	.136	
	Error	39.865	1.001	39.843ª			
area	Hypothesis	52.088	3	17.363	5.292	.012	
	Error	45.936	14	3.281 ^b			
prof	Hypothesis	39.787	1	39.787	4.099	.112	
	Error	39.099	4.028	9.706°			
Sitio(area)	Hypothesis	138.309	11	12.574	3.832	.010	
	Error	45.936	14	3.281 ^b			
prof(Sitio)	Hypothesis	39.095	4	9.774	2.979	.057	
	Error	45.936	14	3.281 ^b			

a. 1.001 MS(prof) + .002 MS(prof(Sitio)) - .003 MS(Error)

Cuadro 18. Promedios de conductividad eléctrica de los suelos para las dos profundidades y áreas muestreadas, prueba de promedios Tukey (p<0.05).

Dependent Variable: CEajust						
			95% Confide	ence Interval		
prof	Mean	Std. Error	Lower Bound	Upper Bound		
0-30	3.632a	.416	2.741	4.523		
30-60	5.828a	.416	4.937	6.720		

a. Based on modified population marginal mean.

CEajust							
Tukey HSD ^{a,b,c}							
		Sub	oset				
area	N	1	2				
В	10	3.1697					
С	10	4.1445	4.1445				
D	8		5.7025				
Α	10		6.0980				
Sig.		.656	.136				

b. MS(Error)

c. .990 MS(prof(Sitio)) + .010 MS(Error)

NOM-021-RECNAT-2000:

Interpretación de conductividad eléctrica

CE dS m ⁻¹ a 25°C	Efectos
< 1.0	Efectos despreciables de la salinidad
1.1 - 2.0	Muy ligeramente salino
2.1 - 4.0	Moderadamente salino
4.1 - 8.0	Suelo salino
8.1 - 16.0	Fuertemente salino
> 16.0	Muy fuertemente salino

Cuadro 19. Valores de conductividad eléctrica de los suelos ordenados de menor a mayor para las dos profundidades y áreas muestreadas.

Num. Lab

Muestra Area Sitio Prof.suelo(cm) C.E. (dS/m) 16 B B3 30-60 1.3065 15 B B3 0-30 1.54 17 B B4 0-30 1.605 18 B B4 30-60 1.635 10 A A5 30-60 1.73 35 D D3 0-30 2.285 13 B B2 0-30 2.315 5 A A3 0-30 2.315 5 A A3 0-30 2.342 24 C C2 30-60 2.34 27 C C4 0-30 2.67 28 C C4 30-60 2.695 31 D D1 0-30 2.815 25 C C3 0-30 3.115 21 C C1 0-30 3.225 11 B	INUIII. Lab				
15 B B3 0-30 1.54 17 B B4 0-30 1.605 18 B B4 0-30 1.605 10 A A5 30-60 1.73 35 D D3 0-30 2.285 13 B B2 0-30 2.315 5 A A3 0-30 2.315 5 A A3 0-30 2.315 24 C C2 30-60 2.34 27 C C4 0-30 2.42 23 C C2 0-30 2.695 31 D D1 0-30 2.815 36 D D3 30-60 2.845 25 C C3 0-30 3.115 21 C C1 0-30 3.225 11 B B1 0-30 3.28 6 A A3 3	Muestra	Area	Sitio	Prof.suelo(cm)	C.E. (dS/m)
17 B B4 0-30 1.605 18 B B4 30-60 1.635 10 A A5 30-60 1.73 35 D D3 0-30 2.285 13 B B2 0-30 2.315 5 A A3 0-30 2.315 24 C C2 30-60 2.34 27 C C4 0-30 2.42 23 C C2 0-30 2.67 28 C C4 30-60 2.695 31 D D1 0-30 2.815 36 D D3 30-60 2.845 25 C C3 0-30 3.115 21 C C1 0-30 3.225 11 B B1 0-30 3.28 6 A A3 30-60 3.51 32 D D1 <t< td=""><td>16</td><td>В</td><td>В3</td><td>30-60</td><td>1.3065</td></t<>	16	В	В3	30-60	1.3065
18 B B4 30-60 1.635 10 A A5 30-60 1.73 35 D D3 0-30 2.285 13 B B2 0-30 2.315 5 A A3 0-30 2.315 24 C C2 30-60 2.34 27 C C4 0-30 2.42 23 C C2 0-30 2.67 28 C C4 30-60 2.695 31 D D1 0-30 2.815 36 D D3 30-60 2.845 25 C C3 0-30 3.115 21 C C1 0-30 3.225 11 B B1 0-30 3.28 6 A A3 30-60 3.51 32 D D1 30-60 3.51 32 D D1 <t< td=""><td>15</td><td>В</td><td>В3</td><td>0-30</td><td>1.54</td></t<>	15	В	В3	0-30	1.54
10 A A5 30-60 1.73 35 D D3 0-30 2.285 13 B B2 0-30 2.315 5 A A3 0-30 2.315 24 C C2 30-60 2.34 27 C C4 0-30 2.42 23 C C2 0-30 2.67 28 C C4 30-60 2.695 31 D D1 0-30 2.815 36 D D3 30-60 2.845 25 C C3 0-30 3.115 21 C C1 0-30 3.225 11 B B1 0-30 3.28 6 A A3 30-60 3.38 19 B B5 0-30 3.51 32 D D1 30-60 3.51 32 D D1	17	В	B4	0-30	1.605
35 D D3 0-30 2.285 13 B B2 0-30 2.315 5 A A3 0-30 2.315 24 C C2 30-60 2.34 27 C C4 0-30 2.42 23 C C2 0-30 2.67 28 C C4 30-60 2.695 31 D D1 0-30 2.815 36 D D3 30-60 2.845 25 C C3 0-30 3.115 21 C C1 0-30 3.225 11 B B1 0-30 3.28 6 A A3 30-60 3.51 32 D D1 30-60 3.51 32 D D1 30-60 3.51 32 D D1 30-60 3.775 1 A A1 <td< td=""><td>18</td><td>В</td><td>B4</td><td>30-60</td><td>1.635</td></td<>	18	В	B4	30-60	1.635
13 B B2 0-30 2.315 5 A A3 0-30 2.315 24 C C2 30-60 2.34 27 C C4 0-30 2.42 23 C C2 0-30 2.67 28 C C4 30-60 2.695 31 D D1 0-30 2.815 36 D D3 30-60 2.845 25 C C3 0-30 3.115 21 C C1 0-30 3.225 11 B B1 0-30 3.28 6 A A3 30-60 3.38 19 B B5 0-30 3.5 26 C C3 30-60 3.51 32 D D1 30-60 3.775 1 A A1 0-30 4.060 20 B B5 3	10	Α	A5	30-60	1.73
5 A A3 0-30 2.315 24 C C2 30-60 2.34 27 C C4 0-30 2.42 23 C C2 0-30 2.67 28 C C4 30-60 2.695 31 D D1 0-30 2.815 36 D D3 30-60 2.845 25 C C3 0-30 3.115 21 C C1 0-30 3.225 11 B B1 0-30 3.28 6 A A3 30-60 3.38 19 B B5 0-30 3.5 26 C C3 30-60 3.51 32 D D1 30-60 3.775 1 A A1 0-30 4.060 20 B B5 30-60 4.255 33 D D2	35	D	D3	0-30	2.285
24 C C2 30-60 2.34 27 C C4 0-30 2.42 23 C C2 0-30 2.67 28 C C4 30-60 2.695 31 D D1 0-30 2.815 36 D D3 30-60 2.845 25 C C3 0-30 3.115 21 C C1 0-30 3.225 11 B B1 0-30 3.28 6 A A3 30-60 3.38 19 B B5 0-30 3.51 32 D D1 30-60 3.51 32 D D1 30-60 3.775 1 A A1 0-30 4.060 20 B B5 30-60 4.255 33 D D2 0-30 5.035 34 A A2 <t< td=""><td>13</td><td>В</td><td>B2</td><td>0-30</td><td>2.315</td></t<>	13	В	B2	0-30	2.315
27 C C4 0-30 2.42 23 C C2 0-30 2.67 28 C C4 30-60 2.695 31 D D1 0-30 2.815 36 D D3 30-60 2.845 25 C C3 0-30 3.115 21 C C1 0-30 3.225 11 B B1 0-30 3.28 6 A A3 30-60 3.38 19 B B5 0-30 3.5 26 C C3 30-60 3.51 32 D D1 30-60 3.64 9 A A5 0-30 3.775 1 A A1 0-30 4.060 20 B B5 30-60 4.255 33 D D2 0-30 5.035 34 A A2 0	5	Α	А3	0-30	2.315
23 C C2 0-30 2.67 28 C C4 30-60 2.695 31 D D1 0-30 2.815 36 D D3 30-60 2.845 25 C C3 0-30 3.115 21 C C1 0-30 3.225 11 B B1 0-30 3.28 6 A A3 30-60 3.38 19 B B5 0-30 3.5 26 C C3 30-60 3.51 32 D D1 30-60 3.64 9 A A5 0-30 3.775 1 A A1 0-30 4.060 20 B B5 30-60 4.255 33 D D2 0-30 4.66 3 A A2 0-30 5.035 30 C C5 30	24	С	C2	30-60	2.34
28 C C4 30-60 2.695 31 D D1 0-30 2.815 36 D D3 30-60 2.845 25 C C3 0-30 3.115 21 C C1 0-30 3.225 11 B B1 0-30 3.28 6 A A3 30-60 3.38 19 B B5 0-30 3.5 26 C C3 30-60 3.51 32 D D1 30-60 3.51 32 D D1 30-60 3.775 1 A A1 0-30 4.060 20 B B5 30-60 4.255 33 D D2 0-30 4.66 3 A A2 0-30 5.035 30 C C5 30-60 5.37 29 C C5 <td< td=""><td>27</td><td>С</td><td>C4</td><td>0-30</td><td>2.42</td></td<>	27	С	C4	0-30	2.42
31 D D1 0-30 2.845 36 D D3 30-60 2.845 25 C C3 0-30 3.115 21 C C1 0-30 3.225 11 B B1 0-30 3.28 6 A A3 30-60 3.38 19 B B5 0-30 3.5 26 C C3 30-60 3.51 32 D D1 30-60 3.75 1 A A5 0-30 3.775 1 A A1 0-30 4.060 20 B B5 30-60 4.255 33 D D2 0-30 4.66 3 A A2 0-30 5.035 14 B B2 30-60 5.37 29 C C5 0-30 5.67 37 D D4 0-3	23	С	C2	0-30	2.67
36 D D3 30-60 2.845 25 C C3 0-30 3.115 21 C C1 0-30 3.225 11 B B1 0-30 3.28 6 A A3 30-60 3.38 19 B B5 0-30 3.5 26 C C3 30-60 3.51 32 D D1 30-60 3.64 9 A A5 0-30 3.775 1 A A1 0-30 4.060 20 B B5 30-60 4.255 33 D D2 0-30 4.66 3 A A2 0-30 5.035 14 B B2 30-60 5.37 29 C C5 30-60 5.37 29 C C5 0-30 5.67 37 D D4 0-3	28	С	C4	30-60	2.695
25 C C3 0-30 3.115 21 C C1 0-30 3.225 11 B B1 0-30 3.28 6 A A3 30-60 3.38 19 B B5 0-30 3.5 26 C C3 30-60 3.51 32 D D1 30-60 3.64 9 A A5 0-30 3.775 1 A A1 0-30 4.060 20 B B5 30-60 4.255 33 D D2 0-30 4.66 3 A A2 0-30 5.035 14 B B2 30-60 5.37 29 C C5 30-60 5.37 29 C C5 0-30 5.67 37 D D4 0-30 6.88 12 B B1 30-60	31	D	D1	0-30	2.815
25 C C3 0-30 3.115 21 C C1 0-30 3.225 11 B B1 0-30 3.28 6 A A3 30-60 3.38 19 B B5 0-30 3.5 26 C C3 30-60 3.51 32 D D1 30-60 3.64 9 A A5 0-30 3.775 1 A A1 0-30 4.060 20 B B5 30-60 4.255 33 D D2 0-30 4.66 3 A A2 0-30 5.035 14 B B2 30-60 5.37 29 C C5 30-60 5.37 29 C C5 0-30 5.67 37 D D4 0-30 6.88 12 B B1 30-60	36	D	D3	30-60	2.845
11 B B1 0-30 3.28 6 A A3 30-60 3.38 19 B B5 0-30 3.5 26 C C3 30-60 3.51 32 D D1 30-60 3.64 9 A A5 0-30 3.775 1 A A1 0-30 4.060 20 B B5 30-60 4.255 33 D D2 0-30 4.66 3 A A2 0-30 5.035 14 B B2 30-60 5.305 30 C C5 30-60 5.37 29 C C5 0-30 5.67 37 D D4 0-30 6.88 12 B B1 30-60 7.440 7 A A4 0-30 7.84 22 C C1 30-60	25	С	C3	0-30	
6 A A3 30-60 3.38 19 B B5 0-30 3.5 26 C C3 30-60 3.51 32 D D1 30-60 3.64 9 A A5 0-30 3.775 1 A A1 0-30 4.060 20 B B5 30-60 4.255 33 D D2 0-30 4.66 3 A A2 0-30 5.035 14 B B2 30-60 5.305 30 C C5 30-60 5.37 29 C C5 0-30 5.67 37 D D4 0-30 6.88 12 B B1 30-60 7.440 7 A A4 0-30 7.84 22 C C1 30-60 10.43 34 D D2 30-	21	С	C1	0-30	3.225
19 B B5 0-30 3.5 26 C C3 30-60 3.51 32 D D1 30-60 3.64 9 A A5 0-30 3.775 1 A A1 0-30 4.060 20 B B5 30-60 4.255 33 D D2 0-30 4.66 3 A A2 0-30 5.035 14 B B2 30-60 5.305 30 C C5 30-60 5.37 29 C C5 0-30 5.67 37 D D4 0-30 6.88 12 B B1 30-60 6.955 4 A A2 30-60 7.440 7 A A4 0-30 7.84 22 C C1 30-60 10.43 34 D D2 30-60 11.345 8 A A4 30-60 11.355 <	11	В	B1	0-30	3.28
26 C C3 30-60 3.51 32 D D1 30-60 3.64 9 A A5 0-30 3.775 1 A A1 0-30 4.060 20 B B5 30-60 4.255 33 D D2 0-30 4.66 3 A A2 0-30 5.035 14 B B2 30-60 5.305 30 C C5 30-60 5.37 29 C C5 0-30 5.67 37 D D4 0-30 6.88 12 B B1 30-60 6.955 4 A A2 30-60 7.440 7 A A4 0-30 7.84 22 C C1 30-60 10.43 34 D D2 30-60 11.345 8 A A4 <td< td=""><td>6</td><td>Α</td><td>A3</td><td></td><td></td></td<>	6	Α	A3		
26 C C3 30-60 3.51 32 D D1 30-60 3.64 9 A A5 0-30 3.775 1 A A1 0-30 4.060 20 B B5 30-60 4.255 33 D D2 0-30 4.66 3 A A2 0-30 5.035 14 B B2 30-60 5.305 30 C C5 30-60 5.37 29 C C5 0-30 5.67 37 D D4 0-30 6.88 12 B B1 30-60 6.955 4 A A2 30-60 7.440 7 A A4 0-30 7.84 22 C C1 30-60 10.43 34 D D2 30-60 11.345 8 A A4 <td< td=""><td>19</td><td>В</td><td>B5</td><td>0-30</td><td>3.5</td></td<>	19	В	B5	0-30	3.5
32 D D1 30-60 3.64 9 A A5 0-30 3.775 1 A A1 0-30 4.060 20 B B5 30-60 4.255 33 D D2 0-30 4.66 3 A A2 0-30 5.035 14 B B2 30-60 5.305 30 C C5 30-60 5.37 29 C C5 0-30 5.67 37 D D4 0-30 6.88 12 B B1 30-60 6.955 4 A A2 30-60 7.440 7 A A4 0-30 7.84 22 C C1 30-60 10.43 34 D D2 30-60 11.345 38 D D4 30-60 11.345 8 A A4 <	26	С	C3	30-60	3.51
9 A A5 0-30 3.775 1 A A1 0-30 4.060 20 B B5 30-60 4.255 33 D D2 0-30 4.66 3 A A2 0-30 5.035 14 B B2 30-60 5.305 30 C C5 30-60 5.37 29 C C5 0-30 5.67 37 D D4 0-30 6.88 12 B B1 30-60 6.955 4 A A2 30-60 7.440 7 A A4 0-30 7.84 22 C C1 30-60 10.43 34 D D2 30-60 11.15 38 D D4 30-60 11.345 8 A A4 30-60 11.355	32	D		+	
20 B B5 30-60 4.255 33 D D2 0-30 4.66 3 A A2 0-30 5.035 14 B B2 30-60 5.305 30 C C5 30-60 5.37 29 C C5 0-30 5.67 37 D D4 0-30 6.88 12 B B1 30-60 6.955 4 A A2 30-60 7.440 7 A A4 0-30 7.84 22 C C1 30-60 10.43 34 D D2 30-60 11.15 38 D D4 30-60 11.345 8 A A4 30-60 11.355	9	Α	A5	0-30	
20 B B5 30-60 4.255 33 D D2 0-30 4.66 3 A A2 0-30 5.035 14 B B2 30-60 5.305 30 C C5 30-60 5.37 29 C C5 0-30 5.67 37 D D4 0-30 6.88 12 B B1 30-60 6.955 4 A A2 30-60 7.440 7 A A4 0-30 7.84 22 C C1 30-60 10.43 34 D D2 30-60 11.15 38 D D4 30-60 11.345 8 A A4 30-60 11.355	1	Α	A1	+	
3 A A2 0-30 5.035 14 B B2 30-60 5.305 30 C C5 30-60 5.37 29 C C5 0-30 5.67 37 D D4 0-30 6.88 12 B B1 30-60 6.955 4 A A2 30-60 7.440 7 A A4 0-30 7.84 22 C C1 30-60 10.43 34 D D2 30-60 11.15 38 D D4 30-60 11.345 8 A A4 30-60 11.355	20	В	B5		
3 A A2 0-30 5.035 14 B B2 30-60 5.305 30 C C5 30-60 5.37 29 C C5 0-30 5.67 37 D D4 0-30 6.88 12 B B1 30-60 6.955 4 A A2 30-60 7.440 7 A A4 0-30 7.84 22 C C1 30-60 10.43 34 D D2 30-60 11.15 38 D D4 30-60 11.345 8 A A4 30-60 11.355	33	D	D2	0-30	4.66
14 B B2 30-60 5.305 30 C C5 30-60 5.37 29 C C5 0-30 5.67 37 D D4 0-30 6.88 12 B B1 30-60 6.955 4 A A2 30-60 7.440 7 A A4 0-30 7.84 22 C C1 30-60 10.43 34 D D2 30-60 11.15 38 D D4 30-60 11.345 8 A A4 30-60 11.355	3	Α	A2	+	
30 C C5 30-60 5.37 29 C C5 0-30 5.67 37 D D4 0-30 6.88 12 B B1 30-60 6.955 4 A A2 30-60 7.440 7 A A4 0-30 7.84 22 C C1 30-60 10.43 34 D D2 30-60 11.15 38 D D4 30-60 11.345 8 A A4 30-60 11.355	14	В		+	
37 D D4 0-30 6.88 12 B B1 30-60 6.955 4 A A2 30-60 7.440 7 A A4 0-30 7.84 22 C C1 30-60 10.43 34 D D2 30-60 11.15 38 D D4 30-60 11.345 8 A A4 30-60 11.355	30	С	C5	30-60	
37 D D4 0-30 6.88 12 B B1 30-60 6.955 4 A A2 30-60 7.440 7 A A4 0-30 7.84 22 C C1 30-60 10.43 34 D D2 30-60 11.15 38 D D4 30-60 11.345 8 A A4 30-60 11.355	29	С	C5	0-30	5.67
12 B B1 30-60 6.955 4 A A2 30-60 7.440 7 A A4 0-30 7.84 22 C C1 30-60 10.43 34 D D2 30-60 11.15 38 D D4 30-60 11.345 8 A A4 30-60 11.355	37	D	D4	0-30	6.88
7 A A4 0-30 7.84 22 C C1 30-60 10.43 34 D D2 30-60 11.15 38 D D4 30-60 11.345 8 A A4 30-60 11.355	12	В	B1	30-60	
7 A A4 0-30 7.84 22 C C1 30-60 10.43 34 D D2 30-60 11.15 38 D D4 30-60 11.345 8 A A4 30-60 11.355	4	Α	A2	30-60	7.440
22 C C1 30-60 10.43 34 D D2 30-60 11.15 38 D D4 30-60 11.345 8 A A4 30-60 11.355	7	Α	A4		
34 D D2 30-60 11.15 38 D D4 30-60 11.345 8 A A4 30-60 11.355	22	С	C1	30-60	
38 D D4 30-60 11.345 8 A A4 30-60 11.355	34	D	-	+	
8 A A4 30-60 11.355		D	-		
				+	
	2	Α	A1	+	

6.2.3. Nitrógeno inorgánico en el suelo

El nitrógeno (N) es considerado un macronutriente esencial para las plantas, ya que lo requieren en grandes cantidades. En el Cuadro 20 se puede observar que las concentraciones de N en forma de amonio fueron muy bajas entre 0.09 y 1.36 mg/kg, mientras que en forma de nitrato fueron muy variables y excesivas entre 1.04 y 157.3 mg/kg, es decir esta fue la forma principal de N encontrada en los suelos. La estimación en términos prácticos dados en kg/ha fue de 5.9 a 552 para la profundidad 0 a 30 cm. La variabilidad de los datos de amonio y nitratos se pueden apreciar en las Figuras 15, 16 y 17, para profundidades y áreas de muestreo, lo cual es importante para conocer la concentración de N en cada condición del parque y tomar decisiones de fertilización. En el Cuadro 21 se indica el resultado del ANOVA para el contenido de N como amonio, no se encontró diferencia significativa para las concentraciones de N-NH4 entre áreas, sitios y profundidades del suelo, lo cual podría atribuirse a la enorme variabilidad de este nutriente encontrado en las muestras analizadas, ya que es común por la movilidad del N debido al manejo del agua y actividades recreativas que ocurren este parque con regularidad. De hecho, en el Cuadro 22 se observa que no existe diferencia entre los promedios de N-NH4 entre profundidades y áreas.

Cuadro 20. Estadísticos descriptivos para los valores de nitrógeno de los suelos en el parque El Chamizal.

		_		
Fetar	dietica	s des	crintiv	INS

					Desviación
	N	Mínimo	Máximo	Media	estándar
Amonio mg/kg	38	.089	1.357	.39769	.308589
Nitrato mg/kg	38	1.039	157.274	60.65668	39.841742
N inorganico mg/kg	38	1.498	157.601	61.05438	39.823450
Kg N inorg por ha	38	5.904	552.752	238.80447	158.784743
N válido (por lista)	38				

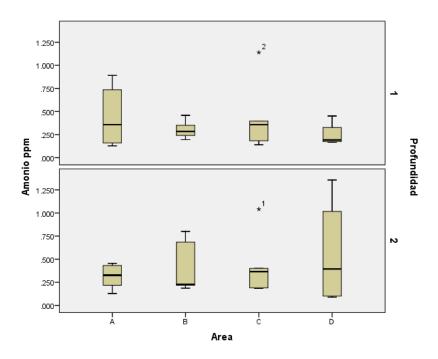


Figura 15. Diagrama de caja para los valores de N-amonio del suelo en las dos profundidades y las áreas muestreadas en el parque El Chamizal.

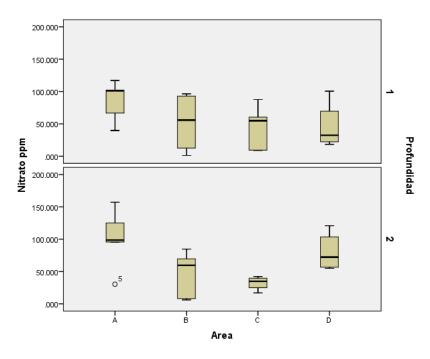


Figura 16. Diagrama de caja para los valores de N-nitrato del suelo en las dos profundidades y las áreas muestreadas en el parque El Chamizal.

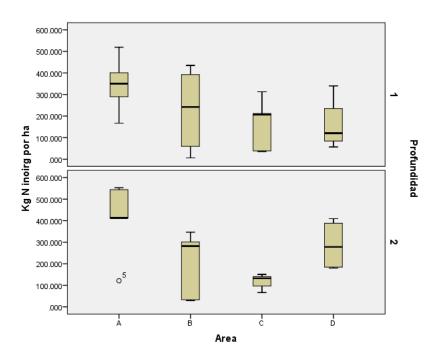


Figura 17. Diagrama de caja para los valores de N inorgánico (suma de amonio y nitratos) en kg por ha para las áreas muestreadas en el parque El Chamizal.

Cuadro 21. Análisis de varianza para los datos de nitrógeno en forma de amonio (N-NH₄) del suelo.

Variable dependiente: Amonio ppm

Variable dependiente. Amonio ppm						
	Tipo III de suma			Media		
Origen		de cuadrados	gl	cuadrática	F	Sig.
Intersección	Hipótesis	5.839	1	5.839	178.157	.047
	Error	.033	1.003	.033ª		
Area	Hipótesis	.032	3	.011	.110	.953
	Error	1.371	14	.098 ^b		
Prof	Hipótesis	.033	1	.033	.195	.681
	Error	.678	4.049	.167°		
Sitio(Area)	Hipótesis	.829	11	.075	.770	.664
	Error	1.371	14	.098 ^b		
Prof(Sitio)	Hipótesis	.673	4	.168	1.717	.202
	Error	1.371	14	.098 ^b		

- a. 1.001 MS(Prof) + .002 MS(Prof(Sitio)) .003 MS(Error)
- b. MS(Error)
- c. .990 MS(Prof(Sitio)) + .010 MS(Error)

Cuadro 22. Promedios de N en forma de amonio para las dos prfundidades de suelo y áreas del parque El Chamizal.

Profundidad

Variable dependiente: Amonio ppm

			Intervalo de confianza al 95%	
Profundidad	Media	Error estándar	Límite inferior	Límite superior
1	.369ª	.072	.215	.523
2	.426a	.072	.272	.580

a. Se basa en la media marginal de población modificada.

Amonio ppm

 $\mathsf{HSD}\ \mathsf{Tukey}^{\mathsf{a},\mathsf{b},\mathsf{c}}$

	•	Subconjunto
Area	N	1
В	10	.36439
Α	10	.38306
D	8	.40494
С	10	.43984
Sig.		.952

El análisis de varianza (ANOVA) para los datos de N en forma de nitratos (N-NO₃) indica diferencia significativa entre áreas y entre sitios específicos de muestreo (p<0.01), pero no entre profundidades de suelo (Cuadro 23). En el Cuadro 24 se observa que el área A y D tuvieron los mayores valores significativamente donde la concentración de N-NO₃ fue 93.4 mg/kg. Dado que los nitratos fueron la forma dominante del nutriente, el ANOVA de la suma amonio+nitratos, es decir como N inorgánico, mostró un resultado similar expresado en el Cuadro 25. Así también, en los Cuadro 26 y 27 se pueden observar los promedios de N expresados en kg/ha para fines de manejo práctico y apoyo en la toma de decisiones de fertilización. Finalmente, en el Cuadro 28 se muestran todos los datos de N ordenados de menor a mayor, donde el sitio específico de muestreo B5 presentó el menor valor con 1.49 mg/kg de N, mientras que el sitio A3 tuvo el mayor con 157.6 mg/kg.

Cuadro 23. Análisis de varianza para los datos de nitrógeno en forma de Nitratos (N-NO₃) del suelo.

Variable dependiente: Nitrato ppm

Variable dependience: Timate ppin						
	Tipo III de suma			Media		
Origen		de cuadrados	gl	cuadrática	F	Sig.
Intersección	Hipótesis	135293.597	1	135293.597	615.262	.025
	Error	220.407	1.002	219.896ª		
Area	Hipótesis	17252.905	3	5750.968	10.664	.001
	Error	7549.839	14	539.274 ^b		
Prof	Hipótesis	219.391	1	219.391	.241	.649
	Error	3691.332	4.050	911.504°		
Sitio(Area)	Hipótesis	23354.368	11	2123.124	3.937	.009
	Error	7549.839	14	539.274 ^b		
Prof(Sitio)	Hipótesis	3661.687	4	915.422	1.698	.206
	Error	7549.839	14	539.274 ^b		

a. 1.001 MS(Prof) + .002 MS(Prof(Sitio)) - .003 MS(Error)

b. MS(Error)

c. .990 MS(Prof(Sitio)) + .010 MS(Error)

Cuadro 24. Promedios de nitrógeno en forma de Nitratos (N-NO₃) entre profundidades y áreas de muestreo de suelo, conforme a la técnica de comparación múltiple de promediosTukey.

Variable dependiente: Nitrato ppm

			Intervalo de confianza al 95%	
Profundidad	Media	Error estándar	Límite inferior	Límite superior
1	57.366a	5.328	45.940	68.793
2	63.947 ^a	5.328	52.521	75.374

a. Se basa en la media marginal de población modificada.

Nitrato ppm

HSD Tukey^{a,b,c}

		Subconjunto		
Area	N	1	2	
С	10	38.04614		
В	10	48.69292		
D	8	62.99155	62.99155	
Α	10		93.36309	
Sig.		.138	.057	

Cuadro 25. Análisis de varianza para los datos de nitrógeno inorgánico (suma de amonio y nitratos) del suelo.

Variable dependiente: N inorganico ppm

•		9 11				
		Tipo III de suma		Media		
Origen		de cuadrados	gl	cuadrática	F	Sig.
Intersección	Hipótesis	137077.053	1	137077.053	608.410	.026
	Error	225.841	1.002	225.304a		
Area	Hipótesis	17232.578	3	5744.193	10.740	.001
	Error	7487.522	14	534.823 ^b		
Prof	Hipótesis	224.779	1	224.779	.247	.645
	Error	3687.140	4.049	910.550°		
Sitio(Area)	Hipótesis	23281.053	11	2116.459	3.957	.009
	Error	7487.522	14	534.823 ^b		
Prof(Sitio)	Hipótesis	3658.019	4	914.505	1.710	.204
	Error	7487.522	14	534.823 ^b		

a. 1.001 MS(Prof) + .002 MS(Prof(Sitio)) - .003 MS(Error)

b. MS(Error)

c. .990 MS(Prof(Sitio)) + .010 MS(Error)

Cuadro 26. Promedios de nitrógeno inórganico (amonio+nitratos) entre profundidades y áreas de muestreo de suelo.

Variable dependiente: N inorganico ppm

			Intervalo de confianza al 95%	
Profundidad	Media	Error estándar	Límite inferior	Límite superior
1	57.736a	5.306	46.356	69.115
2	64.373 ^a	5.306	52.994	75.752

a. Se basa en la media marginal de población modificada.

N inorganico ppm

HSD Tukey^{a,b,c}

		Subconjunto		
Area	N	1	2	
С	10	38.48598		
В	10	49.05731		
D	8	63.39649	63.39649	
Α	10		93.74615	
Sig.		.137	.056	

c. Alfa = .05.

Nom-021-RECNAT-2000:

Interpretación de resultados de Nitrógeno inorgánico

Los resultados de los análisis de nitrógeno inorgánico pueden interpretarse conforme al siguiente cuadro. Los datos que se presentan en él son referidos para aplicarse a cereales de grano pequeño.

Clase	N inorgánico en el suelo	
	mg Kg-1	
Muy bajo	0 - 10	
Bajo	10 - 20	
Medio	20 - 40	
Alto	40 - 60	
Muy alto	> 60	

Cuadro 27. Promedios de nitrógeno inorgánico (amonio+nitratos) expresado en kg/ha para las profundidades y áreas de muestreo de suelo.

Profundidad

Variable dependiente: Kg N inorg por ha

			Intervalo de confianza al 95%	
Profundidad	Media	Error estándar	Límite inferior	Límite superior
1	226.688a	20.312	183.122	270.254
2	250.921a	20.312	207.355	294.487

a. Se basa en la media marginal de población modificada.

Kg N inorg por ha

HSD Tukeva,b,c

-			
	Subconjunto		
N	1	2	
10	139.29753		
10	212.78697		
8	222.95439		
10		377.00896	
	.217	1.000	
	N 10 10 8	Subco N 1 10 139.29753 10 212.78697 8 222.95439 10	

Cuadro 28. Promedios de nitrógeno inorgánico (amonio+nitratos) expresado en mg/kg para todas las muestras, ordenados de menor a mayor.

Num. Lab				N inorganico
Muestra	Area	Sitio	Prof.suelo(cm)	Suma
19	В	B5	0-30	1.498
18	В	B4	30-60	6.300
20	В	B5	30-60	8.392
21	С	C1	0-30	9.796
23	С	C2	0-30	10.093
17	В	B4	0-30	12.839
22	С	C1	30-60	18.034
37	D	D4	0-30	18.447
24	С	C2	30-60	25.338
31	D	D1	0-30	26.399
10	Α	A5	30-60	30.814
26	С	C3	30-60	35.332
35	D	D3	0-30	38.532
1	Α	A1	0-30	40.021
30	С	C5	30-60	40.143
28	С	C4	30-60	42.462
25	С	C3	0-30	55.042
11	В	B1	0-30	56.117
36	D	D3	30-60	56.443
38	D	D4	30-60	58.439
16	В	В3	30-60	60.354
29	С	C5	0-30	60.509
3	Α	A2	0-30	67.616
12	В	B1	30-60	69.758
14	В	B2	30-60	85.490
32	D	D1	30-60	86.314
27	С	C4	0-30	88.111
15	В	В3	0-30	93.136
4	А	A2	30-60	96.152
13	В	B2	0-30	96.690
2	А	A1	30-60	98.840
33	D	D2	0-30	101.014
5	Α	A3	0-30	101.490
9	Α	A5	0-30	101.888
7	Α	A4	0-30	117.737
34	D	D2	30-60	121.585
8	Α	A4	30-60	125.303
6	Α	A3	30-60	157.601

6.2.4. Fósforo (P) inorgánico en suelo

El fósforo es el segundo macronutriente de importancia para las plantas. En este estudio se encontró un rango de 4.7 a 471.2 mg/kg, equivalente a 20.9 y 2187 kg/ha para fines prácticos (Cuadro 28). Se incluye el peso del suelo en t/ha, el cual fue estimado con la densidad aparente de los suelos y al considerar una profundidad de 0 a 30 cm. La Figura 18 muestra que el área C mostró la mayor variación de P en el perfil superficial, mientras que el área B fue mas variable en la profundidad 30 a 60 cm.

Cuadro 28. Valores descriptivos para la concentración de fósforo de los suelos en el parque El Chamizal.

	Est	adísticos c	descriptivo	S	
					Desviación
	N	Mínimo	Máximo	Media	estándar
Peso de suelo (t/ha)	38	3074.085	4672.610	3907.70816	452.046305
Fosforo (mg/kg)	38	4.752	471.249	70.04734	114.819489
Fosforo (kg P / ha)	38	20.964	2187.475	285.62071	503.003937
N válido (por lista)	38				

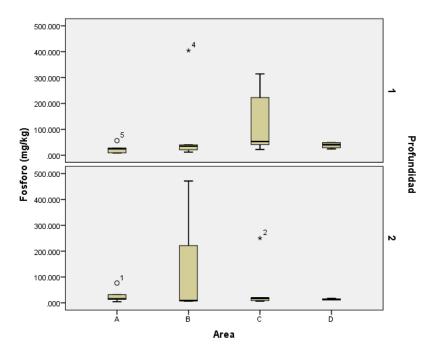


Figura 18. Diagrama de caja para los valores de fósforo inorgánico del suelo.

Se detectó diferencia significativa (p<0.05) entre áreas y sitios específicos (dentro de área) de muestreo para las concentraciones de fósforo (Cuadro 29), pero no se detectó efecto significativo entre profundidades de suelo. Las áreas C y B mostraron los mayores valores de P (Cuadro 30), con promedios de 95 y 122 mg/kg, respectivamente. Aunque la concentración de P no varió entre profundidades, se encontró que en 0 a 30 cm la concentración fue mayor en 12 mg/kg. En términos prácticos los promedios expresados en kg/ha se muestran en el Cuadro 31, así como se indicó, predominan las áreas C y B con valores de 357 y 548 kg de P por ha. Aunque no fue significativa, se encontró una tendencia interesante de correlación logarítmica entre las concentraciones de N y P inorgánico (Figura 19). En general, el rango observado para todos los suelos fue de 4.75 mg/kg en el sitio A4 y el mayor de 471.2 mg/kg en B4 (Cuadro 32).

Cuadro 29. Análisis de varianza para el contenido de fósforo inorgánico en los suelos.

	Variable	dependiente:	Fosforo	(ma/ka)
--	----------	--------------	---------	---------

variable depon	alonto. I oolo	io (iiig/itg)				
		Tipo III de suma		Media		
Origen		de cuadrados	gl	cuadrática	F	Sig.
Intersección	Hipótesis	172522.472	1	172522.472	199.122	.047
	Error	849.984	.981	866.417 ^a		
Area	Hipótesis	70334.369	3	23444.790	5.442	.011
	Error	60308.667	14	4307.762 ^b		
Prof	Hipótesis	873.753	1	873.753	.310	.606
	Error	11630.437	4.130	2815.890°		
Sitio(Area)	Hipótesis	300852.428	11	27350.221	6.349	.001
	Error	60308.667	14	4307.762 ^b		
Prof(Sitio)	Hipótesis	11200.745	4	2800.186	.650	.636
	Error	60308.667	14	4307.762 ^b		

a. 1.001 MS(Prof) + .002 MS(Prof(Sitio)) - .003 MS(Error)

b. MS(Error)

c. .990 MS(Prof(Sitio)) + .010 MS(Error)

Cuadro 30. Promedios de la concentración de fósforo entre profundidades y áreas de suelo.

Variable dependiente: Fosforo (mg/kg)

			Intervalo de co	nfianza al 95%
Profundidad	Media	Error estándar	Límite inferior	Límite superior
1	76.088ª	15.057	43.793	108.383
2	64.007ª	15.057	31.712	96.301

a. Se basa en la media marginal de población modificada.

Fosforo (mg/kg)

HSD Tukey^{a,b,c}

	Ĭ	Subconjunto		
Area	N	1	2	
D	8	26.06388		
Α	10	26.76400		
С	10	95.81710	95.81710	
В	10		122.74770	
Sig.		.144	.810	

Cuadro 31. Promedios de la concentración de fósforo expresados en kg/ha para profundidades y áreas de muestreo.

Profundidad

Variable dependiente: Fosforo (kg P / ha)

			Intervalo de co	onfianza al 95%
Profundidad	Media	Error estándar	Límite inferior	Límite superior
1	304.481a	57.118	181.976	426.987
2	266.760a	57.118	144.254	389.266

a. Se basa en la media marginal de población modificada.

Fosforo (kg P / ha)

HSD Tukey^{a,b,c}

		Subconjunto			
Area	N	1	2		
D	8	89.69425			
Α	10	107.80480			
С	10	357.61880	357.61880		
В	10		548.17970		
Sig.		.137	.379		

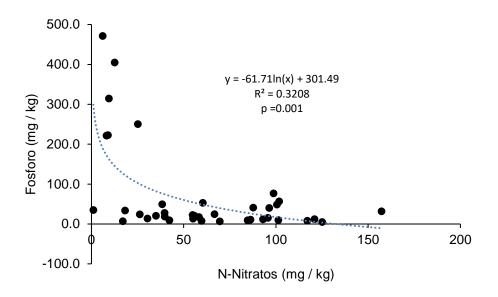


Figura 19. Correlación entre la concentración de fósforo inorgánico y N en forma de nitratos de los suelos del parque El Chamizal.

NOM-021-RECNAT-2000:

Interpretación de resultados Fósforo Olsen

Los resultados de los análisis pueden interpretarse de forma aproximada con el siguiente cuadro.

Clase	mg Kg-1 de P	
Bajo	< 5.5	
Medio	5.5 – 11	
Alto	> 11	

Cuadro 32. Promedios de nitrógeno fósforo inorgánico expresado en mg/kg para todas las muestras, ordenados de menor a mayor.

Num. Lab				Fosforo
Muestra	Area	Sitio	Prof.suelo(cm)	mg/kg
8	Α	A4	30-60	4.752
12	В	B1	30-60	6.494
22	С	C1	30-60	6.929
16	В	В3	30-60	7.654
7	Α	A4	0-30	7.799
28	С	C4	30-60	9.250
14	В	B2	30-60	9.250
5	Α	A3	0-30	9.396
32	D	D1	30-60	10.847
15	В	В3	0-30	11.717
34	D	D2	30-60	11.862
36	D	D3	30-60	13.168
10	Α	A5	30-60	13.603
4	Α	A2	30-60	15.345
38	D	D4	30-60	17.231
30	С	C5	30-60	18.392
26	С	C3	30-60	20.278
11	В	B1	0-30	20.568
25	С	С3	0-30	22.309
31	D	D1	0-30	24.196
3	Α	A2	0-30	24.341
1	Α	A1	0-30	27.678
6	А	A3	30-60	31.741
37	D	D4	0-30	33.482
19	В	B5	0-30	34.643
13	В	B2	0-30	40.012
27	С	C4	0-30	41.027
33	D	D2	0-30	48.427
35	D	D3	0-30	49.298
29	С	C5	0-30	52.926
9	Α	A5	0-30	56.408
2	Α	A1	30-60	76.577
20	В	B5	30-60	221.387
23	С	C2	0-30	222.693
24	С	C2	30-60	250.116
21	С	C1	0-30	314.251
17	В	B4	0-30	404.503
18	В	B4	30-60	471.249

6.2.5. Nitrógeno Total Kjeldahl (NTK)

El contenido de NTK en los suelos varió de 377 a 1760 mg/kg (Cuadro 33) para el perfil 0 a 30 cm de suelo. En la Figura 20 se observa la variabilidad de NTK en cada área de muestreo, las áreas A y B fueron las más variables, quizás debido al manejo y efecto de los visitantes durante eventos de recreación en este parque.

Cuadro 33. Contenido de NTK en los suelos del parque El Chamizal para el perfil 0 a 30 cm.

Descriptive Statistics						
	N	Minimum	Maximum	Mean	Std. Deviation	
NTK (mg/kg)	19	377.92	1760.49	1080.0756	368.10144	
Valid N (listwise)	19					

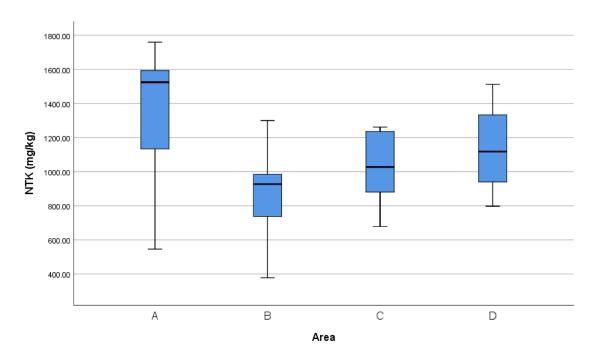


Figura 20. Contenido de NTK en los suelos para las cuatro áreas de muestreo en el parque El Chamizal.

Cuadro 34. Análisis de varianza para el contenido de NTK en los suelos.

	Pruebas de efectos inter-sujetos						
Variable deper	ndiente:						
Origen	Tipo III de suma de cuadrados	gl	Media cuadrática	F	Sig.		
Modelo corregido	531871.577 ^a	3	177290.526	1.394	0.283		
Intersección	22074718.549	1	22074718.549	173.625	0.000		
area	531871.577	3	177290.526	1.394	0.283		
Error	1907104.503	15	127140.300				
Total	24603677.349	19					
Total corregido	2438976.080	18					

Aunque el ANOVA no detectó efecto significativo entre las áreas para el contenido de NTK (Cuadro 34), al omitir dos datos que salieron fuera de rango, la prueba de promedios Tukey genera los siguientes grupos. Las áreas A, C y D tienen los valores de NTK mayores significativamente (p<0.05), en tanto el área B la menor cantidad de NTK.

Cuadro 35. Promedios del contenido de NTK en los suelos en las cuatro áreas de muestreo.

NTK						
			Subconjunto			
area		N	1 2			
HSD	В	5	865.5532			
Tukey ^{a,b,c}	С	5	1017.1151	1017.1151		
	D	3	1250.0696	1250.0696		
	A	4		1503.5188		
	Sig.		0.253	0.111		

Cuadro 36. Valores del contenido de NTK en los suelos en las cuatro áreas de muestreo, ordenados de menor a mayor por sitio específico de muestreo para la profundidad 0 a 30 cm de suelo.

NTK suelo	
mg/kg	Sitio
377.92	В3
546.03	A4
678.70	C1
737.39	B5
797.78	D1
880.67	C2
927.20	B4
984.75	B1
1027.81	C5
1081.86	D4
1134.44	A3
1155.04	D3
1236.27	C4
1262.13	C3
1300.51	В2
1513.30	D2
1525.11	A1
1594.04	A2
1760.49	A5

NOM-021-RECNAT-2000:

Interpretación de resultados de nitrógeno total

Los resultados de los análisis de nitrógeno total pueden interpretarse con el siguiente cuadro:

Nitrógeno total		
%		
< 0.05		
0.05 - 0.10		
0.10 - 0.15		
0.15 - 0.25		
> 0.25		

6.2.6. Materia Orgánica del suelo

El contenido de carbono y materia orgánica en los suelos es de importancia, ya que se asocia con la liberación de N y P, entre otros nutrientes como Fe, Mn, Cu y Zn por la acción quelatante, también es fuente de ácidos húmicos y fúlvicos que participan en la fisicoquímica del suelo y la fisiología de las plantas. El rango de C orgánico y materia orgánica observado en estos suelos fue de 0.03 a 2.02% y de 0.05 a 3.5%, respectivamente (Cuadro 37). De acuerdo con las Figuras 21 y 22 el área A presentó los valores mayores de materia orgánica en los suelos, que corresponden a una clasificación media (Cuadro 38). Se encontró una correlación significativa ($r^2 = 0.7624$) entre los contenidos de NTK y de materia orgánica de los suelos para el perfil 0 a 30 cm (Figura 23). Se observa que el contenido de NTK aumenta en 462 mg/kg por unidad (%) de aumento en la concentración de materia orgánica. Al correlacionar el NTK obtenido en el perfil 0 a 30 cm con el contenido de materia orgánica de 30 a 60 cm de suelo (Figura 24), se observó que no existe asociación significativa, pero la tendencia es en aumento de ambos parámetros como en la Figura 23.

Cuadro 37. Contenido de carbono y materia orgánica en los suelos del parque El Chamizal.

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Carbono Orgánico (%)	33	.030	2.019	.88367	.549071
Materia Orgánica (%)	33	.052	3.504	1.52567	.949210
Valid N (listwise)	33				

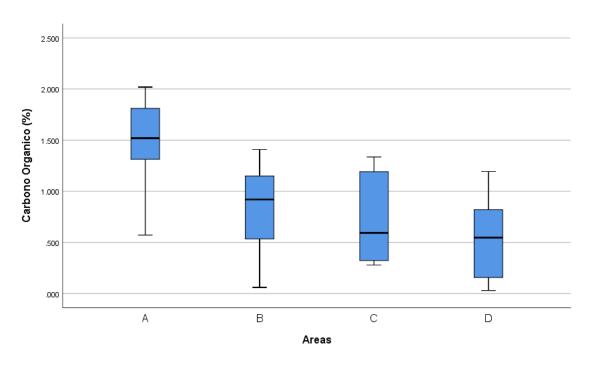


Figura 21. Diagrama de cajas para los valores de carbono orgánico en los suelos del parque El Chamizal

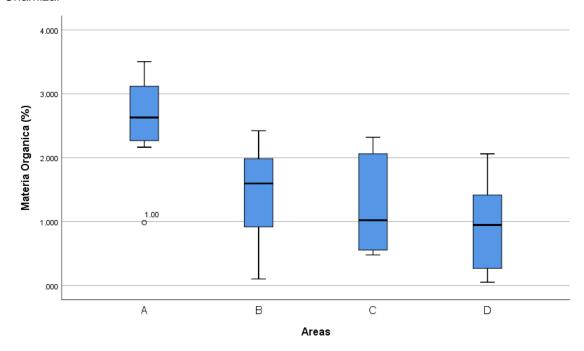


Figura 22. Diagrama de cajas para los valores de materia orgánica en los suelos del parque El Chamizal.

Cuadro 38. Valores de referencia para clasificar el contenido de materia orgánica de los suelos segun la Norma NOM-021-RECNAT-2000.

Interpretación de Resultados de Materia Orgánica

Los valores de referencia para clasificar la concentración de la materia orgánica en los suelos minerales y volcánicos se presenta en el cuadro siguiente:

Clase	Materia orgánica (%)		
	Suelos volcánicos	Suelos no volcánicos	
Muy bajo	< 4.0	< 0.5	
Bajo	4.1 - 6.0	0.6 - 1.5	
Medio	6.1 - 10.9	1.6 - 3.5	
Alto	11.0 - 16.0	3.6 - 6.0	
Muy Alto	> 16.1	> 6.0	

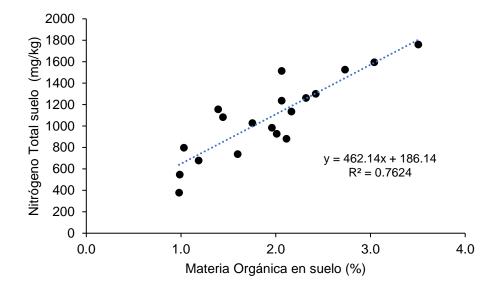


Figura 23. Correlación entre los contenidos de NTK y materia orgánica en los suelos del parque El Chamizal para el perfil 0 a 30 cm de suelo.

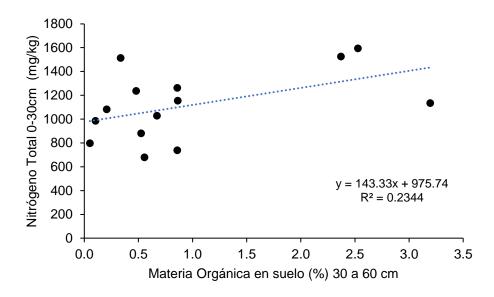
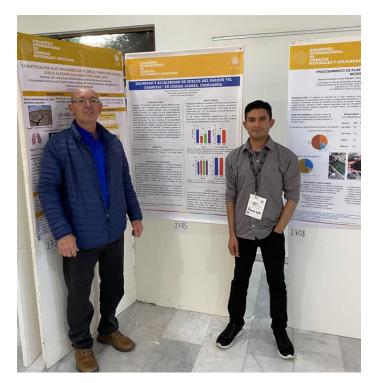


Figura 24. Correlación entre los contenidos de NTK (0 a 30 cm) y materia orgánica (30 a 60 cm) en los suelos del parque El Chamizal.

Cuadro 39. Contenido de carbono en los suelos del parque El Chamizal. Valores ordenados de menor a mayor.

Num. Lab				C org.
	Area	Sitio	Prof.suelo(cm)	(%)
32	D	D1	30-60	0.030
12	В	B1	30-60	0.060
38	D	D4	30-60	0.119
34	D	D2	30-60	0.195
28	С	C4	30-60	0.279
24	С	C2	30-60	0.305
22	С	C1	30-60	0.323
30	С	C5	30-60	0.390
26	С	C3	30-60	0.499
20	В	B5	30-60	0.499
36	D	D3	30-60	0.501
15	В	В3	0-30	0.569
7	Α	A4	0-30	0.572
31	D	D1	0-30	0.594
21	С	C1	0-30	0.687
35	D	D3	0-30	0.804
37	D	D4	0-30	0.836
19	В	B5	0-30	0.920
29	С	C5	0-30	1.018
11	В	B1	0-30	1.135
17	В	B4	0-30	1.165
27	С	C4	0-30	1.191
33	D	D2	0-30	1.193
23	С	C2	0-30	1.229
5	Α	А3	0-30	1.245
25	С	С3	0-30	1.336
2	Α	A1	30-60	1.380
13	В	B2	0-30	1.408
4	Α	A2	30-60	1.469
1	Α	A1	0-30	1.569
3	Α	A2	0-30	1.765
6	Α	А3	30-60	1.857
9	Α	A5	0-30	2.019
8	Α	A4	30-60	
16	В	В3	30-60	
14	В	B2	30-60	
10	Α	A5	30-60	
18	В	B4	30-60	

Cuadro 40. Contenido de materia orgánica en los suelos del parque El Chamizal. Valores ordenados de menor a mayor.


			Mat.
			Organica
	-		(%)
			0.052
			0.103
			0.206
			0.335
	C4		0.479
	C2		0.524
			0.556
		30-60	0.671
С	C3	30-60	0.858
В	B5	30-60	0.858
D	D3	30-60	0.863
В	В3	0-30	0.979
Α	A4	0-30	0.986
D	D1	0-30	1.031
С	C1	0-30	1.185
D	D3	0-30	1.391
D	D4	0-30	1.443
В	B5	0-30	1.598
С	C5	0-30	1.752
В	B1	0-30	1.958
В	B4	0-30	2.010
С	C4	0-30	2.061
D	D2	0-30	2.061
С	C2	0-30	2.113
Α	A3	0-30	2.165
	C3		2.319
Α	A1	30-60	2.371
В	B2		2.422
	A2		2.527
	A1		2.731
			3.041
			3.194
			3.504
			-
			_
			-
			•
	D B A D C D D B C B C B C C A C	D D1 B B1 D D4 D D2 C C4 C C2 C C1 C C5 C C3 B B5 D D3 B B3 A A4 D D1 C C1 D D3 D D4 B B5 C C5 B B B1 B B5 C C5 B B B1 B B4 C C4 D D2 C C4 D D2 C C4 D D2 C C5 C C3 C C3 C C4 D C4 D C5 C C5 C C5 C C5 C C4 D C5 C C4 C C4	D D1 30-60 B B1 30-60 D D4 30-60 D D2 30-60 C C4 30-60 C C2 30-60 C C5 30-60 C C3 30-60 B B5 30-60 B B5 30-60 B B3 0-30 B B3 0-30 A A4 0-30 B B3 0-30 C C1 0-30 D D1 0-30 D D4 0-30 B B5 0-30 C C5 0-30 B B4 0-30 B B4 0-30 B B4 0-30 C C4 0-30 C C4 0-30 A A3 0-30 A

7. Productos Esperados

- a) Se logró llevar a cabo este estudio con los recursos disponibles (sin financiamiento) y se presenta el informe técnico final, el cual cubre cuatro áreas o sectores de importancia en el parque El Chamizal" que representan una de las de mayor uso por la ciudadanía. Se obtuvieron 38 muestras de suelo a dos profundidades 0 a 30 y 30 a 60 cm, se obtuvieron las concentraciones y clasificación de tres propiedades físicas del suelo y siete propiedades químicas. El informe incluye recomendaciones de cada variable estudiada y sitio para la Dirección de Parques y Jardines del Municipio de Juárez. Esto ayudará en el manejo del suelo con énfasis en fertilizantes y abonos orgánicos, relacionados al uso del agua y optimización de nutrientes que mejoren la vegetación.
- b) Otros productos de suma importancia son las cinco tesis de alumnos que cursan la licenciatura en Biología con fecha de terminación en diciembre 2024. Los estudiantes fueron entrenados en las metodologías de muestreo y análisis de suelo, además de participar como ponentes en congreso científico de UACJ-ICB en 2023. Los alumnos y matriculas son:

Armando Andrés Domínguez Vázquez (165928) Adilene Villanueva Sandoval (172365) Karina Adilene Guillen Gutiérrez (177355) Daniel Soto Morales (187371) Sebastián López Hidalgo (177284)

- c) La información se difundió con dos ponencias en el congreso Internacional de Ciencias Naturales y Aplicadas, ICB, UACJ, noviembre de 2023. http://econferencias.uacj.mx/ocs/index.php/cicna/1cicna/index, fotografías del evento se presentan enseguida.
- d) Con base en los resultados se pretende escribir un artículo técnicocientífico en revista indizada nacional, esperando que la información sea aceptada.

Congreso Internacional de Ciencias Naturales y Aplicadas, ICB, UACJ, noviembre de 2023. http://econferencias.uacj.mx/ocs/index.php/cicna/1cicna/index,

Dr. Juan Pedro Flores Margez (izq.), Daniel Soto Morales (der.)

Congreso Internacional de Ciencias Naturales y Aplicadas, ICB, UACJ, noviembre de 2023. http://econferencias.uacj.mx/ocs/index.php/cicna/1cicna/index, Izq. a der.; Daniel Soto Morales, Dr. Juan Pedro Flores Margez, Armando Domínguez Vázquez, Daniela Gutiérrez Herrera.

8. Conclusiones

Este proyecto representó un avance significativo en la obtención de información sobre las propiedades físicas y químicas del suelo en algunas áreas representativas del parque El Chamizal en Ciudad Juárez, Chihuahua. Aun cuando este estudio fue *sin financiamiento*, se lograron resultados que servirán de base para la caracterización de los suelos y mejoras en el uso de fertilizantes y agua de riego. Por la cantidad de reactivos y materiales disponibles solo fue posible el muestreo y análisis de 38 muestras compuestas de suelo de cuatro áreas del parque (342 análisis físico y químicos), es decir cerca de un 50% del área total del parque más utilizada por la población.

La densidad aparente del suelo vario de manera significativa entre áreas con rango de 0.84 a 1.71 g/cm³. El análisis granulométrico de los suelos mostró que los porcentajes de arena, limo y arcilla varían considerablemente entre áreas y sitios dentro de las áreas de muestreo. El 42% de los suelos fueron con textura franco arenoso, y 34% con textura franco. Los sitios A2, B5, B3, B4 y D1 tuvieron los mayores porcentajes de área, se recomienda aplicar abonos orgánicos o mayor frecuencia de reigos. El pH de los suelos vario de 6.83 a 8.56 clasificado como neutro a moderadamente alcalino. Los sitios B3, B4, C1, C2 y D3, requieren bajar el pH de 8.5 para mejorar la disponibilidad de nutrientes. La salinidad de los suelos estuvo entre 1.3 y 14.0 dS/m, es decir desde no salinos hasta fuertemente salinos. Los suelos más afectados por sales son: A1, A4, C1, D2 y D4. La concentración de N inorgánico fue de 1.0 a 157.3 mg/kg y predomino en forma de nitratos. Los sitios más deficientes en N fueron: B4, B5, C1 y C2. La concentración de fósforo fue de 4.7 a 471 mg/kg, es decir medio a alto, sin embargo, los sitios B4, B5, C1 y C2 tuvieron valores excesivos donde sería necesario corregir el pH para aumentar su disponibilidad por las plantas. El contenido de NTK fue de 377 a 1760 mg/kg (0.0377 a 0.176%) y el contenido de materia orgánica estuvo entre 0.05 y 3.5%, donde los sitios con mas bajos contenidos fueron: A4, B3, C1, D1, D3 y D4, donde se requiere aplicar abonos orgánicos.

Se recomienda solicitar recursos económicos al gobierno municipal para completar el análisis de suelo de todo el parque, así como ampliar los parámetros físicos, químicos y biológicos de suelo que permitan un diagnostico completo para la toma de decisiones y uso eficiente de recursos como los fertilizantes, el agua, abonos orgánicos, plantación de jardines y árboles, entre otros, que embellezcan el parque y se traduzcan en mejoras para los ciudadanos y sus familias.

9. Mecanismos de Transferencia (si aplica)

La transferencia de la información se realizó de manera directa mediante las siguientes recomendaciones de utilidad práctica para la Dirección de Parques y Jardines del Municipio de Juárez, por cada parámetro de suelo analizado:

- a) Densidad aparente: los sitios específicos con densidades mayores que 1.32 g/cm³ en el perfil 0 a 30 cm, relacionados a texturas de suelo arenoso: B2, C1, A1, D1, A2, A4, B1, B4, B3, aunque debe relacionarse con el dato de porcentaje de arena enseguida.
- b) <u>Textura</u>: los suelos de los sitios específicos con porcentajes de arena mayores a 60% fueron: A5, A2, B4, D1, C4 y B3. Algunos tuvieron mas arena en el perfil 0 a 30, mientras que otros en el perfil 30 a 60 cm. Significan que requieren mayor frecuencia de riego, o bien aplicar abonos orgánicos para aumentar la retención de humedad.
- c) <u>pH del suelo</u>: el rango fue de neutro a medianamente alcalino (6.83 a 8.56). En estos valores de pH se reduce la disponibilidad de B, Cu, Zn, Mn, Fe y Al para las plantas, es decir los suelos son deficientes en estos nutrimentos. Cuando el pH esta entre 8 y 8.5 el fósforo esta poco disponible debido a formas insolubles e inhibición por el calcio. Existe una reducción de la disponibilidad de nitrógeno a medida que el pH aumenta de 8.5. Sin embargo, nutrientes como potasio (K), azufre (S), molibdeno (Mo), nitrógeno (N), calcio (Ca) y magnesio (Mg) no están afectados por el pH de estos suelos. Los sitios con pH mayores a 8.0 fueron: C1, B4, C2, B3 y D3, los cuales requieren de corrección (disminución) para aumentar la disponibilidad de algunos nutrimentos.
- d) <u>Conductividad eléctrica</u>: con respecto a la concentración de sales solubles de los suelos, estuvieron de 1.3 a 14 dS/m, muy ligeramente salinos a fuertemente salinos. Después de 4.0 se considera suelo salino y puede afectar el crecimiento vegetal de algunas especies susceptibles. Los sitios con valores cercanos y mayores a 8.0 dS/m fueron: A4, C1, D2, D4 y A1. Aunque habría que analizar el contenido de sodio intercambiable (% de PSI) para los cálculos de mejoradores de suelo, estos requieren de

- lavados y aplicación de yeso agrícola (CaSO₄) para reducir el problema de salinidad.
- e) Nitrógeno inorgánico: (1.5 a 157.6 mg/kg), muy bajo a muy alto. Los sitios menores a 20 mg N/kg considerado bajo fueron: C1, B4, C2 y B5. Estos requieren aplicación de fertilizantes N. Los sitios con valores de N mayores a 60 mg/kg muy alto fueron: C5, A2, C4, B3, B2, D2, A3, A5, A4, en el perfil 0 a 30 cm, mientras que en el perfil profundo fueron: B1, B2, D1, A2, A4 y A3. Aunque existe una suficiencia de N para los pastos y árboles del parque, los excesos de nitratos tienen el riesgo de lixiviación al acuífero.
- f) <u>Fósforo inorgánico</u>: (4.7 a 471 mg/kg): concentración media a alta. Valores mayores a 11 mg/kg son altos conforme la demanda de plantas cultivadas. El 79% de los sitios tuvieron exceso de fósforo, sobresalen con valores mayores a 221 mg/kg los sitios: B5, C2, C1 y B4. Estos suelos coinciden con los pH mayores a 8.0 donde el fósforo esta poco disponible por ello no lo absorben las raíces y se acumula debido a formas insolubles e inhibición por el calcio. Mediante un cambio del pH del suelo es posible mejorar la disponibilidad del P para las plantas, esto se logra a través de la aplicación de ácidos.
- g) Nitrógeno total Kjeldahl: el N orgánico del suelo estuvo entre 377 y 1760 mg/kg, que corresponde a 0.0377 y 0.176 % de NTK, clasificado como muy bajo a alto. Valores mayores de 0.15% se consideran medios y tienen relación con buena proporción de material orgánico del suelo. Los sitios con valores mayores a 0.15% fueron: D2, A1, A2 y A5, mientras que aquellos bajos en NTK fueron B3, A4, C1, B5, D1 y C2, los cuales requieren de aplicación de abonos orgánicos (compostas, estiércoles, abonos verdes, etc.).
- h) Materia orgánica y Carbono orgánico: (0.052 a 3.5%): contenido muy bajo a medio. Los sitios con valores bajos menores a 1.5% en el perfil 0 a 30 cm fueron: B3, A4, D1, C1, D3, y D4, los cuales requieren de aplicación de abonos orgánicos (compostas, estiércoles, abonos verdes, etc.).

10. Contribución e impacto del proyecto

La información de las propiedades físicas y químicas de los suelos aportadas en este estudio se considera inédita, ya que no existe información anterior ni actualizadas de este recurso vital, y los datos generados con sus interpretaciones y recomendaciones serán de gran utilidad estratégica para el manejo de áreas verdes y optimización del agua de riego en áreas de uso social, así como aplicación eficiente de fertilizantes y abonos orgánicos como compostas en la mejora del suelo y la vegetación, lo cual impactara en beneficios a la sociedad de un millón de habitantes en Ciudad Juárez, Chihuahua, que utiliza el parque con fines recreativos, culturales y deportivos.

11. Impacto económico, social y/o ambiental en la región

El impacto económico será en el ahorro y optimización del uso de agua de riego, fertilizantes y abonos orgánicos hasta en un 50% de los costos en las mejoras de la fertilidad de los suelos, de tal manera que en términos económicos es mejorar el uso de insumos en un metro cuadrado de suelo (considerando profundidad).

En lo social será la mejora en manejo del suelo que impactara en la vegetación, lo cual es beneficio para las personas que se recrean, hacen deporte y actividades culturales en este parque, la cual tiene un potencial de un millón de habitantes.

En lo ambiental, el impacto es en el conocimiento generado de sus propiedades físicas y químicas, sobre el cuidado del suelo como recurso no renovable vital para el crecimiento vegetal, el cual tiene aportes ecológicos cruciales como medio de filtración de agua, hábitat de macro y microrganismos, medio de descomposición de materia orgánica, captador de carbono, entre otros.

12. Referencias (bibliografía citada)

- Aguilar S.A., 1988. Materia orgánica In: Aguilar S. A. (Ed.). Métodos de análisis de suelos. Sociedad Mexicana de la Ciencia del Suelo, A.C., Departamento de Suelos, Universidad Autónoma Chapingo.
- Bautista Cruz, A., Etchevers Barra, J., del Castillo, R.F. & Gutierrez, C. (2004). *La calidad del suelo y sus indicadores. Ecosistemas, 13*(2). https://www.revistaecosistemas.net/index.php/ecosistemas/article/view/572
- Brooks, D. (2019). El Chamizal: la fascinante historia del único territorio que Estados Unidos le devolvió a México tras más de un siglo de disputas. https://www.bbc.com/mundo/noticias-america-latina-47274457
- Buckman, H. O., & Brady, N. C. (1977). *Naturaleza y propiedades de los suelos*. Editorial LIMUSA S.A de C.V. (4ta ed.)
- Cárdenas-Navarro, R., Sánchez-Yáñez, J. M., Farías-Rodríguez, R., & Peña-Cabriales, J. J. (2004). Los aportes de nitrógeno en la agricultura. Revista Chapingo Serie Horticultura, 10(2), 173-178. DOI:10.5154/r.rchsh.2002.07.039
- Castro, M. (2022). Suelo. Lifeder. https://www.lifeder.com/caracteristicas-del-suelo/#tipos-de-suelo
- Cerón Rincón, L. E., Aristizábal Gutiérrez, F. A. (2012). *Dinámica del ciclo del nitrógeno y fosforo en suelos. Revista Colombiana de Biotecnología, 14.* 285-295. http://www.scielo.org.co/scielo.php?script=sci arttext&pid=S0123-34752012000100026&lng=en&tlng=es.
- CIEPS s.c. 1970. Estudio de Factibilidad para la rehabilitación del Distrito de Riego (Valle de Juárez, Chihuahua), Secretaria de Recursos hidráulicos, Irrigación y Control de Ríos.
- Colegio de Postgraduados. (2008). Manual de procedimientos de análisis de suelos y plantas. Documento de laboratorio del Centro de Edafología. Montecillos, Edo. De México, 32 p.
- Cortez-D, D. L., Perez-B, J.H., & Camacho-Tamayo, J. H. (2013). Relación espacial entre la conductividad eléctrica y algunas propiedades químicas del suelo. Revista UDCA Actualidad & Divulgación Científica, 16(2), 401-408. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-42262013000200014
- FAO, Food and Agriculture Organization of the United Nations (2023a). *Propiedades físicas del suelo.* https://www.fao.org/soils-portal/soil-survey/propiedades-del-suelo/propiedades-fisicas/es/
- FAO. (2023b). *Propiedades biológicas del suelo.* https://www.fao.org/soils-portal/soil-survey/propiedades-del-suelo/propiedades-biologicas/es/
- FAO. (2023c). *Propiedades Químicas*. https://www.fao.org/soils-portal/soil-survey/clasificacion-de-suelos/sistemas-numericos/propiedades-quimicas/es/
- FAO. (2015). Estado mundial del recurso suelo. https://www.fao.org/3/i5126s/i5126s.pdf
- Fowler, S., Roush, R., Wise, J. (2013). Biogeochemical cycles en Concepts of Biology.

 OpenStax. https://openstax.org/books/concepts-biology/pages/20-2-biogeochemical-cycles.
- Henríquez, M., Pérez, J., Gascó, J. M., & Rodríguez, O. (2005). Determinación de la capacidad de intercambio catiónica en arena y caolín usando acetato de amonio, acetato de sodio y cloruro de amonio. Bioagro vol.17 (1) Barquisimeto. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1316-33612005000100008
- Instituto Municipal de Investigación y Planeación [IMIP]. (2017). *Plan maestro para el parque "El Chamizal"*. https://www.imip.org.mx/imip/node/137

- IUSS Grupo de Trabajo WRB. 2007. Base Referencial Mundial del Recurso Suelo. Primera actualización 2007. Informes sobre Recursos Mundiales de Suelos No. 103. FAO, Roma.
- López, A. J. (2005). Manual de edafología. Departamento de Cristalografía, Mineralogía y Química. Agrícola de la Universidad de Sevilla. https://www.udocz.com/apuntes/80240/manual-de-edafologia-antonio-jordan
- Martínez H., E., Fuentes E., J. P. y Acevedo H., E. (2008). Carbono orgánico y propiedades del suelo. R.C. Suelo Nutr. Veg. 8 (1) (68-96) http://dx.doi.org/10.4067/S0718-27912008000100006
- Martínez, J. (2022). Parque 'El Chamizal' en Ciudad Juárez, área histórica convertida en basurero. Milenio. https://www.milenio.com/estados/parque-chamizal-ciudad-juarez-area-convertida-basurero
- Mayz-Figueroa, J. (2004). Fijación biológica del nitrógeno. Revista UDO Agrícola, 4(1). 1-20. https://dialnet.unirioja.es/servlet/articulo?codigo=2221548
- Mengel, K., Kirkby, E.A., Kosegarten, H., Appel, T. (2001). Nitrogen. In: Mengel, K., Kirkby, E.A., Kosegarten, H., Appel, T. (eds) *Principles of Plant Nutrition. Springer, Dordrecht*. https://doi.org/10.1007/978-94-010-1009-2 7
- Moreno Sánchez, E. C. (2019). Espacio público abierto transfronterizo. Análisis comparativo del área correspondiente al territorio del Parque el Chamizal en(tre) Ciudad Juárez, Chihuahua-El Paso, Texas. Pacarina del Sur. https://bit.ly/41q26vE
- Moron, A. (1992). Fosforo: disponibilidad y dinámica en el suelo. Manejo y fertilidad de suelos. http://www.ainfo.inia.uy/digital/bitstream/item/8454/1/111219240807135249-Moron-p.37-44.pdf
- Ortiz Solorio, C. A. (2010). *Edafología* (8va ed.). Universidad Autónoma Chapingo. Estado de México.
- Osorio, N. W., (2012). pH del suelo y disponibilidad de nutrientes. Manejo Integral del Suelo y Nutrición Vegetal, 1(4). Facultad de Ciencias, Universidad Nacional De Colombia-Sede Medellin. ttps://www.bioedafologia.com/sites/default/files/documentos/pdf/pH-del-suelo-y-nutrientes.pdf
- Pérez Rosales, A., Galvis Spínola, A., Bugarín Montoya, R., Hernández Mendoza, T. M., Vázquez Peña, M. A. & Rodríguez González, A. (2017). *Capacidad de intercambio catiónico: descripción del método en la tiourea de plata (AgTU + n). Rev. Mex. Cienc. Agric. Vol.8* (1) Texcoco https://doi.org/10.29312/remexca.v8i1.80
- Picone, L. I., Zamuner, E., (2002). Fosforo orgánico y fertilidad fosfórica. INPOFOS Simposio de Fosforo: "Enfoque sistémico de la fertilización Fosfórica". http://www.ipni.net/publication/ia-lacs.nsf/0/E8E2F139150F1B6D8525799C0058C6C3/\$FILE/nota3.pdf
- Rucks, L., García, F., Kaplán, A., Ponce de León, J., & Hill, M. (2004). *Propiedades físicas del suelo. Universidad de la República: Facultad de agronomía. Montevideo, Uruguay.* http://bibliofagro.pbworks.com/f/propiedades%20fisicas%20del%20suelo.pdf
- Sánchez De P, M., Prager M, M., Naranjo, R. E., & Sanclemente, O. E. (2012). *El suelo, su metabolismo, ciclaje de nutrientes y prácticas agroecológicas. Agroecología, 7*(1), 19-34. https://revistas.um.es/agroecologia/article/view/170971
- Sánchez Soledad, J. M. (2020). *El Chamizal, su historia y una oportunidad*. La verdad. https://laverdadiuarez.com/2020/06/21/el-chamizal-su-historia-v-una-oportunidad/
- Secretaría de Desarrollo Urbano y Ecología. (2018). Plan Maestro Mega Parque El Chamizal.
- Secretaría de Desarrollo Urbano y Ecología & Secretaría de Comunicaciones y Obras Públicas. (2022). *Análisis Costo-Beneficio Megaparque El Chamizal, Cd. Juárez Chihuahua.*
- Secretaria de Medio Ambiente y Recursos Naturales. (2000). NOM-021-RECNAT-2000. Medio ambiente y recursos naturales. Establece las especificaciones de fertilidad, salinidad y clasificación de suelos; estudios, muestreo y análisis. https://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/libros2009/DO2280.pdf

- Socarrás, A. (2013). *Mesofauna edáfica: indicador biológico de la calidad del suelo. Pastos y Forrajes, 36*(1), 5-13. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942013000100001&lng=es&tlng=es.
- Stewart, W. M. (2007). Consideraciones en el uso eficiente de nutrientes. Informaciones Agronómicas, 67(7). https://bit.ly/3VO6KTg
- Tapia-Torres, Y., & García-Oliva, F. (2013). La disponibilidad del fósforo es producto de la actividad bacteriana en el suelo en ecosistemas oligotróficos: una revisión crítica. Terra Latinoamericana, 31(3), 231-242. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-57792013000400231&lng=es&tlng=es.
- Villalpando, R. (2022). Gobierno de Ciudad Juárez presenta estudio sobre El Chamizal. La jornada. https://www.jornada.com.mx/notas/2022/09/04/estados/gobierno-de-ciudad-juarez-presenta-estudio-sobre-el-chamizal/

13. ANEXOS

13.1. Taxonomía de los Roles de Colaborador (con las actividades logradas)

Roles	Definición de los roles	Nombre de él(la) investigador(a)	Figura	Grado de contribució n	Actividades logradas durante el proyecto	Tiempo promedio semanal (en horas) dedicado al proyecto
Dirección y ejecución del proyecto	Responsabilidad de la dirección y ejecución del proyecto	Dr. Juan Pedro Flores Margez.	Docente e investigad or en ICB -UACJ	100%: Dirigir el proyecto en su totalidad	Planeación, obtención de recursos, asignación de tareas, entrenar alumnos, dirigir análisis de lab., escribir los reportes, publicar resultados	10
Colaborad or	Colaborador	Arq. Daniel Zamarron	Director de Parques y Jardines Mpo. Juarez	Apoyo parcial 10%	Facilitar el acceso a las áreas del parque y gestión de apoyos	1
Colaborad or	Colaborador	Dr. Hugo Rojas Villalobos	Coordina dor de Bioinform atica UACJ en Cd Cuauthe moc	Apoyo parcial: 10%	Mapas del parque e información de los sistemas de riego	1
Colaborad or	Colaborador	Dr. Pedro Osuna Avila	Docente e investigad or en ICB -UACJ	Apoyo parcial 10%	revisión del informe	1

13.1.1. Estudiantes participantes en el proyecto

Nombre de estudiante(s)	Matrícula	Tiempo promedio semanal (en horas) dedicado al proyecto	Actividades logradas en la ejecución del proyecto
Armando Dominguez	165928	2	Procesar muestras de suelo y análisis de humedad, textura y densidad aparente
Adilene Villanueva	172365	2	Procesar muestras de suelo y análisis de nitrógeno y fosforo
Karina Guillen	177355	2	Procesar muestras de suelo y análisis de materia orgánica y NTK
Daniel Soto Morales	187371	2	Procesar muestras de suelo y análisis de pH y conductividad eléctrica
Sebastian Lopez Hidalgo	177284	1	Procesar muestras de suelo y análisis de humedad y retención de agua
Daniela Gutierrez Herrera	187377	5	Procesar muestras y apoyo a todos los análisis de suelo físicos y químicos

Gobierno Municipal 2021-2024

DIRECCIÓN DE PARQUES Y JARDINES Oficio: DGSP/DPYJ/118/2024 Cd. Juárez Chihuahua, a 15 de abril del 2024

Dr. Juan Pedro Flores Margez Docente e Investigador Departamento de Ciencias Químico Biológicas Universidad Autónoma de Ciudad Juárez

Por medio de la presente me permito confirmar de RECIBIDO el informe técnico final del proyecto de investigación:

Caracterización física, química y biológica de suelos del parque "El Chamizal"

Reconocemos que este proyecto fue realizado "sin financiamiento", con el apoyo de los equipos, materiales y reactivos químicos de los investigadores integrantes del Cuerpo Académico Sistemas de Producción Agrícola UACJ-CA-60, apoyado con alumnos del Programa de Biología en el laboratorio de Ciencias Ambientales de ICB.

Agradecemos la información de suelos generada, la cual será de utilidad en el manejo de las áreas verdes del parque, sistemas de riego y mejoras en la vegetación.

Atentamente

Arq. Daniel Iván Zamarron Saldaña

Director De Parques y Jardines.

"2024, Año de Felipe Carrillo Puerto, Benemerito del Proletariado, Revolucionano y Defensor del Mayab"

"2024, Año del Bicentenario de la fundación del Estado de Chiliuahua"

DJZS/e.v.h.e.

Ubicados en el interior del Parque El Chamizal, a espaldas del museo Tel +52 (656) 737 02 30

N CONTROL OF TRACEMENT

DIRECCIÓN DE PARQUES

www.juarez.gob.mx

Cuadro A1. Coordenadas geográficas de los sitios de muestreo de suelo en el parque El Chamizal.

Sitios de muestreo de suelos en el Parque El Chamizal. 2023.				
Area	Sitio	Latitud (N)	Longitud (W)	
Α	A1	31.75676	106.46038	
Α	A2	31.75802	106.46092	
Α	A3	31.75824	106.46174	
Α	A4	31.75783	106.46277	
Α	A5	31.75690	106.46172	
В	B1	31.75918	106.46113	
В	B2	31.75903	106.46155	
В	B3	31.75886	106.46257	
В	B4	31.75962	106.46295	
В	B5	31.76050	106.46108	
С	C1	31.75923	106.46030	
С	C2	31.75984	106.46040	
С	C3	31.76040	106.45994	
С	C4	31.76057	106.45835	
С	C5	31.76056	106.45761	
D	D1	31.75917	106.45642	
D	D2	31.76006	106.45641	
D	D3	31.76000	106.45540	
D	D4	31.75913	106.45578	

Cuadro A2. Peso del suelo en seco de los sitios de muestreo en el parque El Chamizal.

Lista de muestras de suelo tamizadas

Lista de muestras de suelo tamizadas					
No LAB	MUESTRA	PROFUNDIDAD	PESO SECO- TAMIZADO (g)		
1	A1	0-30	967		
2	A1	30-60	946		
3	A2	0-30	674		
4	A2	30-60	644		
5	A3	0-30	536		
6	A3	30-60	699		
7	A4	0-30	983		
8	A4	30-60	873		
9	A5	0-30	688		
10	A5	30-60	954		
11	B1	0-30	956		
12	B1	30-60	759		
13	B2	0-30	923		
14	B2	30-60	879		
15	В3	0-30	982		
16	В3	30-60	1138		
17	B4	0-30	995		
18	B4	30-60	1262		
19	B5	0-30	844		
20	B5	30-60	811		
21	C1	0-30	901		
22	C1	30-60	923		
23	C2	0-30	710		
24	C2	30-60	976		
25	C3	0-30	1052		
26	C3	30-60	1177		
27	C4	0-30	881		
28	C4	30-60	875		
29	C5	0-30	675		
30	C5	30-60	785		
31	E1	0-30	735		
32	E1	30-60	878		
33	E2	0-30	707		
34	E2	30-60	768		
35	E3	0-30	698		
36	E3	30-60	723		
37	E4	0-30	786		
38	E4	30-60	1004		

Cuadro A3. Tipos de texturas de suelos en cada sitio especifico de muestreo en el parque Ël Chamizal".

i Area Sitio Prof.suelo(cr Textura 16 B B3 30-60 Arena 32 D D1 30-60 Areno franco 28 C C4 30-60 Areno franco 15 B B3 0-30 Areno Franco 10 A A5 30-60 Arenoso Franco 12 B B1 30-60 Franco 34 D D2 30-60 Franco 30 C C5 30-60 Franco 26 C C3 30-60 Franco 26 C C3 30-60 Franco 21 C C1 0-30 Franco 27 C C4 0-30 Franco 33 D D2 0-30 Franco 5 A A3 0-30 Franco 25 C C3 0-30 Franco 25	um. Lab				Clasif.	
32 D D1 30-60 Areno franco 28 C C4 30-60 Areno franco 15 B B3 0-30 Areno Franco 10 A A5 30-60 Arenoso Franco 12 B B1 30-60 Franco 34 D D2 30-60 Franco 30 C C5 30-60 Franco 26 C C3 30-60 Franco 7 A A4 0-30 Franco 21 C C1 0-30 Franco 27 C C4 0-30 Franco 33 D D2 0-30 Franco 5 A A3 0-30 Franco 25 C C3 0-30 Franco	3	Area	Sitio	Prof.suelo(ci	Textura	_
28 C C4 30-60 Areno franco 15 B B3 0-30 Areno Franco 10 A A5 30-60 Arenoso Fran 12 B B1 30-60 Franco 34 D D2 30-60 Franco 30 C C5 30-60 Franco 26 C C3 30-60 Franco 7 A A4 0-30 Franco 21 C C1 0-30 Franco 27 C C4 0-30 Franco 33 D D2 0-30 Franco 5 A A3 0-30 Franco 25 C C3 0-30 Franco	16	В	В3	30-60	Arena	
15 B B3 0-30 Areno Franco 10 A A5 30-60 Arenoso Franco 12 B B1 30-60 Franco 34 D D2 30-60 Franco 30 C C5 30-60 Franco 26 C C3 30-60 Franco 7 A A4 0-30 Franco 21 C C1 0-30 Franco 27 C C4 0-30 Franco 33 D D2 0-30 Franco 5 A A3 0-30 Franco 25 C C3 0-30 Franco	32	D	D1	30-60	Areno franco)
10 A A5 30-60 Arenoso Fran 12 B B1 30-60 Franco 34 D D2 30-60 Franco 30 C C5 30-60 Franco 26 C C3 30-60 Franco 7 A A4 0-30 Franco 21 C C1 0-30 Franco 27 C C4 0-30 Franco 33 D D2 0-30 Franco 5 A A3 0-30 Franco 25 C C3 0-30 Franco	28	С	C4	30-60	Areno franco)
12 B B1 30-60 Franco 34 D D2 30-60 Franco 30 C C5 30-60 Franco 26 C C3 30-60 Franco 7 A A4 0-30 Franco 21 C C1 0-30 Franco 27 C C4 0-30 Franco 33 D D2 0-30 Franco 5 A A3 0-30 Franco 25 C C3 0-30 Franco	15	В	В3	0-30	Areno Franco)
34 D D2 30-60 Franco 30 C C5 30-60 Franco 26 C C3 30-60 Franco 7 A A4 0-30 Franco 21 C C1 0-30 Franco 27 C C4 0-30 Franco 33 D D2 0-30 Franco 5 A A3 0-30 Franco 25 C C3 0-30 Franco	10	Α	A5	30-60	Arenoso Fran	ıco
30 C C5 30-60 Franco 26 C C3 30-60 Franco 7 A A4 0-30 Franco 21 C C1 0-30 Franco 27 C C4 0-30 Franco 33 D D2 0-30 Franco 5 A A3 0-30 Franco 25 C C3 0-30 Franco	12	В	B1	30-60	Franco	
26 C C3 30-60 Franco 7 A A4 0-30 Franco 21 C C1 0-30 Franco 27 C C4 0-30 Franco 33 D D2 0-30 Franco 5 A A3 0-30 Franco 25 C C3 0-30 Franco	34	D	D2	30-60	Franco	
7 A A4 0-30 Franco 21 C C1 0-30 Franco 27 C C4 0-30 Franco 33 D D2 0-30 Franco 5 A A3 0-30 Franco 25 C C3 0-30 Franco	30	С	C5	30-60	Franco	
21 C C1 0-30 Franco 27 C C4 0-30 Franco 33 D D2 0-30 Franco 5 A A3 0-30 Franco 25 C C3 0-30 Franco	26	С	C3	30-60	Franco	
27 C C4 0-30 Franco 33 D D2 0-30 Franco 5 A A3 0-30 Franco 25 C C3 0-30 Franco	7	А	A4	0-30	Franco	
33 D D2 0-30 Franco 5 A A3 0-30 Franco 25 C C3 0-30 Franco	21	С	C1	0-30	Franco	
5 A A3 0-30 Franco 25 C C3 0-30 Franco	27	С	C4	0-30	Franco	
25 C C3 0-30 Franco	33	D	D2	0-30	Franco	
	5	Α	А3	0-30	Franco	
2 A A1 30-60 Franco	25	С	C3	0-30	Franco	
	2	Α	A1	30-60	Franco	
6 A A3 30-60 Franco	6	Α	А3	30-60	Franco	
20 B B5 30-60 Franco	20	В	B5	30-60	Franco	
1 A A1 0-30 Franco areno	1	Α	A1	0-30	Franco areno	so
31 D D1 0-30 Franco areno	31	D	D1	0-30	Franco areno	so
3 A A2 0-30 Franco areno	3	А	A2	0-30	Franco areno	so
24 C C2 30-60 Franco areno	24	С	C2	30-60	Franco areno	so
36 D D3 30-60 Franco areno	36	D	D3	30-60	Franco areno	so
35 D D3 0-30 Franco areno	35	D	D3	0-30	Franco areno	so
19 B B5 0-30 Franco areno	19	В	B5	0-30	Franco areno	so
11 B B1 0-30 Franco arenos	11	В	B1	0-30	Franco areno	so
17 B B4 0-30 Franco areno	17	В	B4	0-30	Franco areno	so
23 C C2 0-30 Franco areno	23	С	C2	0-30	Franco areno	so
13 B B2 0-30 Franco areno	13	В	B2	0-30	Franco areno	so
4 A A2 30-60 Franco areno	4	А	A2	30-60	Franco areno	so
9 A A5 0-30 Franco areno	9	Α	A5	0-30	Franco areno	so
8 A A4 30-60 Franco areno	8	Α	A4	30-60	Franco areno	so
14 B B2 30-60 Franco areno	14	В	B2	30-60	Franco areno	so
18 B B4 30-60 Franco areno	18	В	B4	30-60	Franco areno	so
38 D D4 30-60 Franco limoso	38	D	D4	30-60	Franco limos	0
22 C C1 30-60 Franco limoso	22	С	C1	30-60	Franco limos	0
37 D D4 0-30 Franco limoso	37	D	D4	0-30	Franco limos	0
29 C C5 0-30 Franco limoso						

Cuadro A4. Promedios del porcentaje de arena (partículas de diámetro: 0.05 a 2.0 mm) a dos profundidades del suelo en el parque El Chamizal". Valores ordenados de menor a mayor.

Num. Lab

Num. Lab				-
Muestra	Area	Sitio	Prof.suelo(cm)	
38	D	D4	30-60	29.2
22	С	C1	30-60	29.48
37	D	D4	0-30	39.48
7	Α	A4	0-30	43.48
29	С	C5	0-30	44.2
33	D	D2	0-30	45.48
26	С	C3	30-60	45.48
2	Α	A1	30-60	47.48
20	В	B5	30-60	47.48
34	D	D2	30-60	48.48
27	С	C4	0-30	49.12
25	С	C3	0-30	49.12
30	С	C5	30-60	49.48
6	Α	A3	30-60	50.48
35	D	D3	0-30	51.48
5	Α	A3	0-30	51.48
24	С	C2	30-60	51.48
21	С	C1	0-30	51.84
1	Α	A1	0-30	54.48
11	В	B1	0-30	54.48
12	В	B1	30-60	54.48
23	С	C2	0-30	55.48
19	В	B5	0-30	57.48
36	D	D3	30-60	57.48
13	В	B2	0-30	58.2
14	В	B2	30-60	58.2
10	Α	A5	30-60	59.12
9	Α	A5	0-30	60.48
31	D	D1	0-30	61.48
4	Α	A2	30-60	61.48
8	Α	A4	30-60	62.48
3	Α	A2	0-30	63.48
18	В	B4	30-60	67.48
17	В	B4	0-30	68.2
32	D	D1	30-60	71.2
28	С	C4	30-60	73.48
15	В	В3	0-30	78.2
16	В	В3	30-60	87.92
	-	1	1	

Cuadro A5. Promedios del porcentaje de limo (partículas de diámetro: 0.05 a 0.002 mm) a dos profundidades del suelo en el parque El Chamizal". Valores ordenados de menor a mayor.

Num. Lab

Muestra	Area	Sitio	Prof.suelo(cm)	Limo (%)
16	В	В3	30-60	5.56
15	В	В3	0-30	13.28
17	В	B4	0-30	19.28
28	С	C4	30-60	20
18	В	B4	30-60	21.64
32	D	D1	30-60	22.28
8	Α	A4	30-60	24.28
36	D	D3	30-60	25.28
3	Α	A2	0-30	27.28
5	Α	A3	0-30	27.56
10	Α	A5	30-60	27.64
7	Α	A4	0-30	28.56
13	В	B2	0-30	29.28
14	В	B2	30-60	29.28
31	D	D1	0-30	30.92
4	Α	A2	30-60	31.28
19	В	B5	0-30	32
11	В	B1	0-30	32.28
1	Α	A1	0-30	33.28
12	В	B1	30-60	33.28
9	Α	A5	0-30	33.28
35	D	D3	0-30	34
27	С	C4	0-30	36.36
6	Α	A3	30-60	37.56
23	С	C2	0-30	37.64
21	С	C1	0-30	38.56
26	С	C3	30-60	40
25	С	C3	0-30	40.36
34	D	D2	30-60	41
2	Α	A1	30-60	41.28
30	С	C5	30-60	41.28
33	D	D2	0-30	42.28
24	С	C2	30-60	44
20	В	B5	30-60	46
29	С	C5	0-30	49.84
37	D	D4	0-30	50
38	D	D4	30-60	58.28
22	С	C1	30-60	60.28

Cuadro A6. Promedios del porcentaje de arcilla (partículas de diámetro: < 0.002 mm) a dos profundidades del suelo en el parque El Chamizal". Valores ordenados de menor a mayor.

Num. Lab

luestra	Area	Sitio	Prof.suelo(cm)	Arcilla (%)
1	Α	A1	0-30	12.24
24	С	C2	30-60	4.52
29	С	C5	0-30	5.96
9	Α	A5	0-30	6.24
16	В	В3	30-60	6.52
28	С	C4	30-60	6.52
32	D	D1	30-60	6.52
20	В	B5	30-60	6.52
23	С	C2	0-30	6.88
4	Α	A2	30-60	7.24
31	D	D1	0-30	7.6
15	В	В3	0-30	8.52
3	Α	A2	0-30	9.24
30	С	C5	30-60	9.24
21	С	C1	0-30	9.6
22	С	C1	30-60	10.24
25	С	С3	0-30	10.52
19	В	B5	0-30	10.52
37	D	D4	0-30	10.52
34	D	D2	30-60	10.52
18	В	B4	30-60	10.88
2	Α	A1	30-60	11.24
6	Α	A3	30-60	11.96
33	D	D2	0-30	12.24
12	В	B1	30-60	12.24
17	В	B4	0-30	12.52
13	В	B2	0-30	12.52
14	В	B2	30-60	12.52
38	D	D4	30-60	12.52
10	Α	A5	30-60	13.24
11	В	B1	0-30	13.24
8	Α	A4	30-60	13.24
35	D	D3	0-30	14.52
27	С	C4	0-30	14.52
26	С	C3	30-60	14.52
36	D	D3	30-60	17.24
5	Α	A3	0-30	20.96
7	А	A4	0-30	27.96

Cuadro A7.Promedios de sólidos disueltos totales a dos profundidades del suelo en el parque Ël Chamizal". Valores ordenados de menor a mayor.

Num. Lab				mg sal/kg suelo
I	Area	Sitio	Prof.suelo(cm)	SDT(ppm)
16	В	В3	30-60	680
15	В	В3	0-30	770
17	В	B4	0-30	800
18	В	B4	30-60	815
10	Α	A5	30-60	865
35	D	D3	0-30	1140
5	Α	A3	0-30	1155
24	С	C2	30-60	1170
13	В	B2	0-30	1175
27	С	C4	0-30	1220
23	С	C2	0-30	1340
28	С	C4	30-60	1345
31	D	D1	0-30	1410
36	D	D3	30-60	1420
25	С	C3	0-30	1550
21	С	C1	0-30	1610
11	В	B1	0-30	1650
6	А	A3	30-60	1690
19	В	B5	0-30	1750
26	С	C3	30-60	1770
32	D	D1	30-60	1800
9	Α	A5	0-30	1905
1	Α	A1	0-30	1990
20	В	B5	30-60	2115
33	D	D2	0-30	2330
3	А	A2	0-30	2520
14	В	B2	30-60	2635
30	С	C5	30-60	2715
29	С	C5	0-30	2835
37	D	D4	0-30	3460
12	В	B1	30-60	3465
4	Α	A2	30-60	3720
7	Α	A4	0-30	3930
22	С	C1	30-60	5200
34	D	D2	30-60	5570
38	D	D4	30-60	5680
8	А	A4	30-60	5700
2	А	A1	30-60	7115

Cuadro A8. Promedios de la concentración de nitrógeno en forma de amonio a dos profundidades del suelo en el parque El Chamizal". Valores ordenados de menor a mayor.

Num. Lab				N-NH4
Muestra	Area	Sitio	Prof.suelo(cm)	mg/kg suelo
32	D	D1	30-60	0.089
38	D	D4	30-60	0.113
2	Α	A1	30-60	0.128
9	Α	A5	0-30	0.128
29	С	C5	0-30	0.140
5	Α	A3	0-30	0.159
35	D	D3	0-30	0.167
31	D	D1	0-30	0.183
25	С	C3	0-30	0.183
24	С	C2	30-60	0.183
12	В	B1	30-60	0.187
28	С	C4	30-60	0.191
15	В	В3	0-30	0.194
37	D	D4	0-30	0.202
8	Α	A4	30-60	0.218
20	В	B5	30-60	0.218
18	В	B4	30-60	0.226
11	В	B1	0-30	0.241
17	В	B4	0-30	0.284
6	Α	A3	30-60	0.327
13	В	B2	0-30	0.350
1	А	A1	0-30	0.358
21	С	C1	0-30	0.358
26	С	C3	30-60	0.366
27	С	C4	0-30	0.397
30	С	C5	30-60	0.401
10	Α	A5	30-60	0.432
33	D	D2	0-30	0.451
4	А	A2	30-60	0.455
19	В	B5	0-30	0.459
34	D	D2	30-60	0.677
16	В	В3	30-60	0.684
7	Α	A4	0-30	0.735
14	В	B2	30-60	0.801
3	Α	A2	0-30	0.891
22	С	C1	30-60	1.042
23	С	C2	0-30	1.139
36	D	D3	30-60	1.357

Cuadro A9. Promedios de la concentración de nitrógeno en forma de nitratos a dos profundidades del suelo en el parque El Chamizal". Valores ordenados de menor a mayor.

Num. Lab

Num. Lab	Area	Sitio	Prof.suelo(cm)	N-NO3
				mg/kg suelo
19	В	B5	0-30	1.039
18	В	B4	30-60	6.074
20	В	B5	30-60	8.174
23	С	C2	0-30	8.953
21	С	C1	0-30	9.439
17	В	B4	0-30	12.555
22	С	C1	30-60	16.992
37	D	D4	0-30	18.245
24	С	C2	30-60	25.155
31	D	D1	0-30	26.216
10	А	A5	30-60	30.382
26	С	C3	30-60	34.966
35	D	D3	0-30	38.365
1	А	A1	0-30	39.663
30	С	C5	30-60	39.742
28	С	C4	30-60	42.271
25	С	C3	0-30	54.860
36	D	D3	30-60	55.086
11	В	B1	0-30	55.876
38	D	D4	30-60	58.326
16	В	В3	30-60	59.669
29	С	C5	0-30	60.369
3	Α	A2	0-30	66.726
12	В	B1	30-60	69.571
14	В	B2	30-60	84.689
32	D	D1	30-60	86.224
27	С	C4	0-30	87.715
15	В	В3	0-30	92.942
4	Α	A2	30-60	95.697
13	В	B2	0-30	96.340
2	А	A1	30-60	98.711
33	D	D2	0-30	100.563
5	Α	A3	0-30	101.331
9	А	A5	0-30	101.760
7	А	A4	0-30	117.002
34	D	D2	30-60	120.908
8	А	A4	30-60	125.086
6	Α	А3	30-60	157.274

Cuadro A10. Promedios de la concentración de nitrógeno inorgánico (suma de amonio y nitratos) a dos profundidades del suelo en el parque El Chamizal". Valores ordenados de menor a mayor.

Num. Lab				N inorganico
·a	Area	Sitio	Prof.suelo(cm)	Suma
19	В	B5	0-30	1.498
18	В	B4	30-60	6.300
20	В	B5	30-60	8.392
21	С	C1	0-30	9.796
23	С	C2	0-30	10.093
17	В	B4	0-30	12.839
22	С	C1	30-60	18.034
37	D	D4	0-30	18.447
24	С	C2	30-60	25.338
31	D	D1	0-30	26.399
10	Α	A5	30-60	30.814
26	С	С3	30-60	35.332
35	D	D3	0-30	38.532
1	Α	A1	0-30	40.021
30	С	C5	30-60	40.143
28	С	C4	30-60	42.462
25	С	C3	0-30	55.042
11	В	B1	0-30	56.117
36	D	D3	30-60	56.443
38	D	D4	30-60	58.439
16	В	В3	30-60	60.354
29	С	C5	0-30	60.509
3	Α	A2	0-30	67.616
12	В	B1	30-60	69.758
14	В	B2	30-60	85.490
32	D	D1	30-60	86.314
27	С	C4	0-30	88.111
15	В	В3	0-30	93.136
4	Α	A2	30-60	96.152
13	В	B2	0-30	96.690
2	Α	A1	30-60	98.840
33	D	D2	0-30	101.014
5	А	A3	0-30	101.490
9	Α	A5	0-30	101.888
7	А	A4	0-30	117.737
34	D	D2	30-60	121.585
8	Α	A4	30-60	125.303
6	А	A3	30-60	157.601

Cuadro A11. Promedios de la concentración de fósforo inorgánico a dos profundidades del suelo en el parque El Chamizal". Valores ordenados de menor a mayor.

Num. Lab				Fosforo
Muestra	Area	Sitio	Prof.suelo(cm)	mg/kg
8	Α	A4	30-60	4.752
12	В	B1	30-60	6.494
22	С	C1	30-60	6.929
16	В	В3	30-60	7.654
7	Α	A4	0-30	7.799
28	С	C4	30-60	9.250
14	В	B2	30-60	9.250
5	Α	A3	0-30	9.396
32	D	D1	30-60	10.847
15	В	В3	0-30	11.717
34	D	D2	30-60	11.862
36	D	D3	30-60	13.168
10	Α	A5	30-60	13.603
4	Α	A2	30-60	15.345
38	D	D4	30-60	17.231
30	С	C5	30-60	18.392
26	С	C3	30-60	20.278
11	В	B1	0-30	20.568
25	С	C3	0-30	22.309
31	D	D1	0-30	24.196
3	Α	A2	0-30	24.341
1	Α	A1	0-30	27.678
6	Α	А3	30-60	31.741
37	D	D4	0-30	33.482
19	В	B5	0-30	34.643
13	В	B2	0-30	40.012
27	С	C4	0-30	41.027
33	D	D2	0-30	48.427
35	D	D3	0-30	49.298
29	С	C5	0-30	52.926
9	Α	A5	0-30	56.408
2	Α	A1	30-60	76.577
20	В	B5	30-60	221.387
23	С	C2	0-30	222.693
24	С	C2	30-60	250.116
21	С	C1	0-30	314.251
17	В	B4	0-30	404.503
18	В	B4	30-60	471.249

Cuadro A12. Promedios de la concentración de nitrógeno total (Kjeldhal) del suelo en el parque El Chamizal". Valores ordenados de menor a mayor.

Num. Lab				NTK
Muestra	Area	Sitio	Prof.suelo(cm)	mg/kg
15	В	В3	0-30	377.920462
7	Α	A4	0-30	546.025444
21	С	C1	0-30	678.700955
19	В	B5	0-30	737.385878
31	D	D1	0-30	797.784712
23	С	C2	0-30	880.673303
17	В	B4	0-30	927.198942
11	В	B1	0-30	984.752532
29	С	C5	0-30	1027.8108
37	D	D4	0-30	1081.86237
5	Α	A3	0-30	1134.43981
35	D	D3	0-30	1155.04186
27	С	C4	0-30	1236.26526
25	С	C3	0-30	1262.12502
13	В	B2	0-30	1300.50825
33	D	D2	0-30	1513.30471
1	Α	A1	0-30	1525.10555
3	Α	A2	0-30	1594.04126
9	Α	A5	0-30	1760.48861
8	Α	A4	30-60	
12	В	B1	30-60	
22	С	C1	30-60	
16	В	В3	30-60	
28	С	C4	30-60	
14	В	B2	30-60	
32	D	D1	30-60	
34	D	D2	30-60	
36	D	D3	30-60	
10	Α	A5	30-60	
4	А	A2	30-60	
38	D	D4	30-60	
30	С	C5	30-60	
26	С	C3	30-60	
6	Α	A3	30-60	
2	A	A1	30-60	
20	В	B5	30-60	
24	C	C2	30-60	
18	В	B4	30-60	

Cuadro A13. Promedios del contenido de carbono orgánico a dos profundidades del suelo en el parque El Chamizal". Valores ordenados de menor a mayor.

Num. Lab				C org.
tra	Area	Sitio	Prof.suelo(cm)	(%)
32	D	D1	30-60	0.030
12	В	B1	30-60	0.060
38	D	D4	30-60	0.119
34	D	D2	30-60	0.195
28	С	C4	30-60	0.279
24	С	C2	30-60	0.305
22	С	C1	30-60	0.323
30	С	C5	30-60	0.390
26	С	C3	30-60	0.499
20	В	B5	30-60	0.499
36	D	D3	30-60	0.501
15	В	В3	0-30	0.569
7	Α	A4	0-30	0.572
31	D	D1	0-30	0.594
21	С	C1	0-30	0.687
35	D	D3	0-30	0.804
37	D	D4	0-30	0.836
19	В	B5	0-30	0.920
29	С	C5	0-30	1.018
11	В	B1	0-30	1.135
17	В	B4	0-30	1.165
27	С	C4	0-30	1.191
33	D	D2	0-30	1.193
23	С	C2	0-30	1.229
5	А	A3	0-30	1.245
25	С	C3	0-30	1.336
2	А	A1	30-60	1.380
13	В	B2	0-30	1.408
4	А	A2	30-60	1.469
1	А	A1	0-30	1.569
3	Α	A2	0-30	1.765
6	А	A3	30-60	1.857
9	А	A5	0-30	2.019
8	А	A4	30-60	
16	В	В3	30-60	
14	В	B2	30-60	
10	А	A5	30-60	
18	В	B4	30-60	

Cuadro A14. Promedios del contenido de materia orgánica a dos profundidades del suelo en el parque El Chamizal". Valores ordenados de menor a mayor.

Num. Lab			i	Mat. Organica
3	Area	Sitio	Prof.suelo(cm)	(%)
32	D	D1	30-60	0.052
12	В	B1	30-60	0.103
38	D	D4	30-60	0.206
34	D	D2	30-60	0.335
28	С	C4	30-60	0.479
24	С	C2	30-60	0.524
22	С	C1	30-60	0.556
30	С	C5	30-60	0.671
26	С	C3	30-60	0.858
20	В	B5	30-60	0.858
36	D	D3	30-60	0.863
15	В	В3	0-30	0.979
7	Α	A4	0-30	0.986
31	D	D1	0-30	1.031
21	С	C1	0-30	1.185
35	D	D3	0-30	1.391
37	D	D4	0-30	1.443
19	В	B5	0-30	1.598
29	С	C5	0-30	1.752
11	В	B1	0-30	1.958
17	В	B4	0-30	2.010
27	С	C4	0-30	2.061
33	D	D2	0-30	2.061
23	С	C2	0-30	2.113
5	Α	А3	0-30	2.165
25	С	C3	0-30	2.319
2	Α	A1	30-60	2.371
13	В	B2	0-30	2.422
4	Α	A2	30-60	2.527
1	Α	A1	0-30	2.731
3	Α	A2	0-30	3.041
6	Α	А3	30-60	3.194
9	Α	A5	0-30	3.504
8	Α	A4	30-60	
16	В	В3	30-60	
14	В	B2	30-60	
10	Α	A5	30-60	
18	В	B4	30-60	