
Citation: Bolívar, A.; García, V.; Alejo,

R.; Florencia-Juárez, R.; Sánchez, J.S.

Data-Centric Solutions for Addressing

Big Data Veracity with Class

Imbalance, High Dimensionality, and

Class Overlapping. Appl. Sci. 2024, 14,

5845. https://doi.org/10.3390/

app14135845

Received: 29 May 2024

Revised: 26 June 2024

Accepted: 2 July 2024

Published: 4 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Data-Centric Solutions for Addressing Big Data Veracity with
Class Imbalance, High Dimensionality, and Class Overlapping
Armando Bolívar 1 , Vicente García 2 , Roberto Alejo 3 , Rogelio Florencia-Juárez 2

and J. Salvador Sánchez 4,*

1 Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Av. del Charro 450 NTE.,
Ciudad Juárez 32310, Chihuahua, Mexico; al198665@alumnos.uacj.mx

2 División Multidisciplinaria en Ciudad Universitaria, Universidad Autónoma de Ciudad Juárez,
Av. José de Jesús Delgado 18100, Ciudad Juárez 32579, Chihuahua, Mexico; vicente.jimenez@uacj.mx (V.G.);
rogelio.florencia@uacj.mx (R.F.-J.)

3 Division of Postgraduate Studies and Research, Tecnológico Nacional de México, Instituto Tecnológico
de Toluca, Av. Tecnológico s/n, Colonia Agrícola Bellavista, Metepec 52149, Estado de México, Mexico;
ralejoe@toluca.tecnm.mx

4 Institute of New Imaging Technologies, Department of Computer Languages and Systems,
Universitat Jaume I, Av. de Vicent Sos Baynat s/n, 12071 Castelló de la Plana, Spain

* Correspondence: sanchez@uji.es

Abstract: An innovative strategy for organizations to obtain value from their large datasets, allowing
them to guide future strategic actions and improve their initiatives, is the use of machine learning
algorithms. This has led to a growing and rapid application of various machine learning algorithms
with a predominant focus on building and improving the performance of these models. However,
this data-centric approach ignores the fact that data quality is crucial for building robust and accurate
models. Several dataset issues, such as class imbalance, high dimensionality, and class overlapping,
affect data quality, introducing bias to machine learning models. Therefore, adopting a data-centric
approach is essential to constructing better datasets and producing effective models. Besides data
issues, Big Data imposes new challenges, such as the scalability of algorithms. This paper proposes
a scalable hybrid approach to jointly addressing class imbalance, high dimensionality, and class
overlapping in Big Data domains. The proposal is based on well-known data-level solutions whose
main operation is calculating the nearest neighbor using the Euclidean distance as a similarity metric.
However, these strategies may lose their effectiveness on datasets with high dimensionality. Hence,
the data quality is achieved by combining a data transformation approach using fractional norms
and SMOTE to obtain a balanced and reduced dataset. Experiments carried out on nine two-class
imbalanced and high-dimensional large datasets showed that our scalable methodology implemented
in Spark outperforms the traditional approach.

Keywords: big data; class imbalance; high dimensionality; fractional norms; dissimilarity representation

1. Introduction

Technological advances have enabled the private and public sectors to generate and
collect vast amounts of data from various sources. Social media interactions, transactional
data, geospatial information, biometric identifiers, and governmental databases are exam-
ples of where these data originate from. According to the 11th edition of ‘Data Never Sleeps’
241 M emails were sent every minute in 2023 [1]. Consequently, the volume of raw data
may reach zettabytes (ZB) in a variety of formats, such as text, audio, image, and video.

The velocity at which data are generated, processed, and analyzed adds another
dimension to this data explosion. The International Data Corporation (IDC) and Seagate
estimate that by 2025, approximately 163 ZB of data will have been generated, indicating
that the volume may have grown tenfold in the last eight years [2]. Therefore, data can be

Appl. Sci. 2024, 14, 5845. https://doi.org/10.3390/app14135845 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14135845
https://doi.org/10.3390/app14135845
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6264-2987
https://orcid.org/0000-0003-2820-2918
https://orcid.org/0000-0002-7580-3305
https://orcid.org/0000-0002-5208-6577
https://orcid.org/0000-0003-1053-4658
https://doi.org/10.3390/app14135845
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14135845?type=check_update&version=1

Appl. Sci. 2024, 14, 5845 2 of 15

characterized by their volume, variety, and velocity, which is also called the three Vs [3],
which define the phenomenon known as Big Data [4].

Analyzing Big Data represents a significant opportunity for companies, governments,
and society to extract meaningful insights. This process can help us to gain a competitive
edge, enhance decision-making, and drive innovation [3,5,6]. Therefore, Big Data can also
be described by its value in obtaining benefits and insights from the analyzed raw data,
adding a fourth V-characteristic. In this sense, machine learning and artificial communities
have identified a niche opportunity to develop techniques that can discover hidden patterns
and predict future values or trends from large amounts of complex data from sectors such
as healthcare, cybersecurity, finance, marketing, manufacturing, and smart grids [7–11].

In 2021, Andrew Ng stated that much of the effort in deploying machine learning
models has been focused on optimizing or creating new algorithms [12]. This model-centric
approach ignores the importance of data quality in achieving the most effective machine
learning systems [13]. The veracity of data has been recognized as a critical property for
obtaining reliable and actionable insights from large datasets. This fifth V-characteristic
deals with ensuring the trustworthiness of captured data, where low data veracity caused
by a number of issues, such as data redundancy, inconsistency, and noise, may cause
machine learning models to yield inaccurate predictions, biased results, and reduced model
performance. As a response to addressing data veracity rather than solely concentrating on
the algorithms themselves, it has been proposed that the development and application of
machine learning models should be with a data-centric approach, aiming to improve the
models’ performance using high-quality data obtained from data preprocessing techniques
that address several data issues.

One of the data inconsistencies leading to inaccurate behavior in classification models
is the significant difference in sample sizes per class in the training dataset. This type of bias,
where the classes are not equally distributed, is well-known as the class imbalance problem,
which causes trained algorithms to favor the predominant class in their predictions [14,15].
This issue becomes severe when minority classes are of major interest, which means the cost
of incorrectly labeling an example of an underrepresented class is very high [16]. Therefore,
the data preprocessing step is paramount for transforming raw Big Data through data
cleaning, extraction, and transformation, resulting in reduced and cleaned data, also known
as smart data [7,9,17].

Solutions to the class imbalance problem can be categorized into two large groups called
algorithm-level and data-level approaches. Algorithm-level methods modify existing algo-
rithms to learn from imbalanced datasets. In contrast, data-level solutions focus on balancing
the training dataset by either reducing (under-sampling) or increasing (oversampling) the
sample sizes of different classes. Although data imbalance has traditionally been seen as the
main cause of the poor performance of the classifiers, several studies have shown that other
data irregularities, such as class overlap [18] and high dimensionality [19], can also exacerbate
the problem, introducing a unique set of challenges. Consequently, a third research line has
emerged, combining the strengths of both data-level and algorithm-level techniques.

The class imbalance problem has attracted much attention for many years, lead-
ing to the development of numerous solutions addressing biased learning. Data-level
solutions have been the most exploited of the three research lines because the propos-
als can be applied to various problems across different domains. For example, in 2002,
Chawla et al. [20] introduced an oversampling technique called the Synthetic Minority
Oversampling Technique (SMOTE) to balance datasets by generating synthetic examples
of the minority class through interpolation between selected minority instances and its
nearest neighbors. By 2019, Kovács [21] had documented approximately 85 variants of
SMOTE. In the case of under-sampling techniques for selecting instances of the majority
class to be removed, the community has adopted the strategy to filter those examples
that can be considered noisy, redundant, or borderline. The simplest method to identify
these data types is to analyze the local distribution of the data by computing the k-nearest
neighbors [22].

Appl. Sci. 2024, 14, 5845 3 of 15

Although the class imbalance problem has been effectively addressed in standard
scenarios, Big Data introduces additional challenges where some conventional assumptions
no longer hold, making traditional data preprocessing methods infeasible [7]. Therefore,
data-level solutions must consider the specialized infrastructure to process large datasets
in parallel or distributed systems such as Apache Spark and new programming paradigms
like Scala [23]. However, it is possible to find strategies in the literature that have been
adapted to be scalable solutions. For example, Basgall et al. [23] proposed SMOTE-Big
Data (SMOTE-BD), an implementation in Apache Spark. This oversampling technique is
based on an innovative distributed k-nearest neighbor model named kNN-IS that enhances
the runtime efficiency of the nearest neighbor search [24].

In Big Data environments, similar to standard problems, data-level solutions are based
on the nearest neighbor rule, typically employing metrics such as the Euclidean distance to
assess the similarity between one example and another. However, computing distances
between data samples in high-dimensional datasets can make them appear nearly identical,
thereby complicating the differentiation between samples [25,26]. A dataset with a large
number of features relative to the number of samples can lead to the phenomenon known as
the curse of dimensionality. In high-dimensional spaces, the volume of the space increases
exponentially with the number of dimensions, leading to data sparsity. Therefore, the
Euclidean distance loses its discriminatory power, impacting the effectiveness of learning
algorithms because distances between instances become less informative [27]. In this paper,
we hypothesize that the use of fractional norms, norm-p, can alleviate the effect of the high
dimensionality in a well-known data-level solution. In particular, we employ a dissimilarity
approach to mapping the dataset into a lower dimensionality, in which the dimensions are
defined by vectors measuring pairwise dissimilarities between two examples, commonly
given by the Euclidean distance [28,29].

We note that data-centric solutions for class imbalance in Big Data scenarios have been
less explored. Additionally, some approaches address data issues in an isolated manner.
Therefore, we propose a scalable hybrid approach that combines renowned data-level
solutions based on distance metrics. Initially, the dissimilarity approach maps the original
feature space representation into a low-dimensional dissimilarity space using a fractional
norm. In this transformed space, represented by dissimilarity vectors, we then apply
SMOTE to achieve class balance.

We conducted a comprehensive experimental study on nine imbalanced Big Data
datasets with high dimensionality to evaluate the proposal’s performance. The datasets
were adapted to two-class problems, comprising 24,832 features and 21,025 instances. The
decision tree employed was taken from Spark’s MLib toolkit. The proposal was compared
against the application of SMOTE in the original space and in scenarios without any
balancing technique. A nonparametric statistical test was used in our analysis to determine
whether our proposal statistically outperformed the other methods. In summary, the
contributions of this paper are as follows:

• We address the problem of class imbalance in the presence of high dimensionality and
class overlap.

• We explore the suitability of fractional norms as an alternative to the problem of
Euclidean distance in high-dimensional datasets.

• We employ a dissimilarity-based representation to mitigate high dimensionality and
class overlap issues.

• We implemented a hybrid approach in Spark.

The rest of the paper is organized as follows. Section 2 describes the methods and
techniques used in this work. Section 3 presents the experimental setup. Section 4 discusses
the results. Finally, Section 5 remarks on the main findings and outlines further research.

2. Methods

This section offers a general introduction to fractional norms, SMOTE-DB, and dissim-
ilarity representation.

Appl. Sci. 2024, 14, 5845 4 of 15

2.1. Fractional Norms

The use of Euclidean distance faces significant limitations in high-dimensional spaces.
High dimensionality relates to the similarity space’s separability, geometry, topology, and
density. It refers to a high number of input variables in the dataset. As the dimensionality
of data increases, the data size grows proportionally, leading to data dispersion that com-
plicates the data analysis [30]. This phenomenon is known as the curse of dimensionality.

Distance concentration and hubness are two phenomena that occur in high-dimensional
datasets and have a direct negative impact on the nearest neighbor calculation. On the one
hand, distance concentration is the characteristic present in high-dimensional spaces where
all points seem to be almost the same distance from other points in that space [31]. This
makes using distance metrics to discriminate between similar examples ineffective. Mean-
while, hubness is described by Tomasev et al. [32] as the tendency for specific instances to
appear frequently in the list of nearest neighbors of other instances.

Aggarwal et al. [33] discuss how distances based on the norm-p, with fractional
coefficients, i.e., Minkowski distance metric, can help mitigate distance concentration in
high dimensionality. Formally, the Minkowski distance for x and y is defined as

d(x, y) :=
(n

∑
i=1
|xi − yi|p

) 1
p

f or p > 1 (1)

where p for the fractional distances or quasi-distances take values between 0 and 1. Con-
sequently, fractional distances are not formally defined as distance metrics due to the
violation of the triangle inequality [34].

Although it has been demonstrated that fractional distances can mitigate distance
concentration [33], selecting the appropriate p is a complex process [31,34–36].

2.2. Dissimilarity Representation

In machine learning, an instance is traditionally represented mathematically as a
vector x = {x1, x2, x3, . . . , xm}, where each xi is an attribute or feature ∈ Rm that describes
a property of the instance. This feature-based representation is widely adopted; however, it
has been observed that instances with different class labels could have a very similar vector
generating ambiguous regions [18,37]. This phenomenon, known as class overlap, poses a
challenge in distinguishing the best class label between different classes [18].

As a solution to this problem, alternative representations have been proposed that
transform or encode each instance into a new vector. In a fashion such as using kernels,
Pękalska and Duin [28] propose mapping a feature vector into a dissimilarity vector using
the Euclidean metric, computed between a feature vector and a representation set. The
rationale for adopting the dissimilarity representation is that dissimilarity measures should
be minimal for examples of the same class and significant for examples of different classes,
facilitating discrimination between classes [29,38]. Experiments by García et al. [39] on
credit scoring datasets show that dissimilarity representation provides significantly higher
separability between classes than the original feature representation.

In the dissimilarity representation, the attributes are defined through vectors that
quantify the similarity between examples and certain elements or prototypes belonging to a
designated representation set (R). This set R must include examples from all classes and can
be selected using various strategies. For instance, R can be defined as the complete training
set, a subset derived through a heuristic mechanism, randomly selected, or even extracted
from the test dataset [38]. R was randomly formed for the experiments described in this
article, ensuring an equitable representation of examples from each class in the training set.
This straightforward strategy of forming R has proven effective in most problems [38].

The mapping from the original feature space to the dissimilarity space is carried
out by calculating a distance metric between R and each example in the training and test
sets [38]. Thus, the dimensions in the dissimilarity space are represented by distance vectors
that reflect the dissimilarity between R and the examples in the feature space.

In other words, if we define the representation set as

Appl. Sci. 2024, 14, 5845 5 of 15

R = {r1, r2, ..., rk} (2)

and the training set as E, where e symbolizes an example within the training dataset, then
any vector in the dissimilarity space can be denoted as

de = [dp(e, r1), dp(e, r2), ..., dp(e, rk)] (3)

where dp() is the dissimilarity metric. Therefore, the dissimilarity space corresponding to
E is defined through the dissimilarity matrix DE, which encompasses all the dissimilarity
vectors de [38].

Algorithm 1 shows the dissimilarity mapping procedure implemented in Spark. Like-
wise, it includes the modification for calculating the dissimilarity using fractional distances.

Algorithm 1: Dissimilarity Representation in Spark
/* Input and output files are in LIBSVM format. */
/* Train and test data files in the feature space. */
Data: trainDataFile, testDataFile
/* minClassLabel and majClassLabel are the class labels of the minority and majority classes,

respectively. The values are used to filter the classes within the algorithm. */
/* rPerClass is the number of instances selected per class to conform the representation set R

to transform the feature space into the dissimilarity space. An equal number of instances
are selected for each class. */

/* fractionalDistance is the fractional p used to calculate the distance between samples. The
value is in the range of 0 < p < 1. */

Input: minClassLabel, majClassLabel, rPerClass, fractionalDistance
/* dissimilarityTrainFile and dissimilarityTestFile are filenames used to write the dataset

after the dissimilarity transformation. */
Output: dissimilarityTrainFile, dissimilarityTestFile
/* Read train and test data. */

1 trainData← spark.read.libsvm(trainDataFile).repartition();
2 testData← spark.read.libsvm(testDataFile).repartition();
/* Get R samples from each class. */

3 rMinSamples← trainData.filter(label == minClassLabel).orderBy(rand()).limit(rPerClass);
4 rMajSamples← trainData.filter(label == majClassLabel).orderBy(rand()).limit(rPerClass);
/* Join R samples and broadcast rSamples to all nodes. */

5 rSamples← rMinSamples.union(rMajSamples);
6 spark.broadcast(rSamples);
/* Transform feature space into dissimilarity space on train and test data by using the

dissimilarityTransform procedure. */
7 trainDissimData← trainData.map(row => dissimilarityTransform(row, fractionalDistance));
8 testDissimData← testData.map(row => dissimilarityTransform(row, fractionalDistance));
/* Save the transformed data into files. */

9 trainDissimData.write(dissimilarityTrainFile);
10 testDissimData.write(dissimilarityTestFile);
11
12 Procedure dissimilarityTransform(dataSample, fractionalDistance):

/* Initialize dissimSample and classLabel variables. */
13 dissimSample← null;
14 classLabel← dataSample.classLabel;

/* Loop through all elements of rSamples. */
15 for i← 0 to rSamples.size do

/* Initilized sum variable. */
16 sum← 0;

/* Loop through all features of dataSample. */
17 for j← 0 to dataSample.size do

/* Compute the distance between the dataSample and rSample. */
18 sum += scala.math.pow((dataSample[j] - rSamples[i][j]).abs, fractionalDistance);

19 distance← scala.math.pow(sum, 1/fractionalDistance);
/* Add the new sample in the dissimilarity space into dissimSample. */

20 dissimSample.add(distance);

/* Return the class label and the sample data in the dissimilarity space. */
21 return (classLabel,dissimSample)

2.3. Knn-Is and SMOTE in Big Data

The kNN-IS model significantly improves the k-nearest neighbor rule for large datasets
by optimizing various aspects of the computational process within Spark. This model not
only addresses the scalability issues faced with large datasets but also improves the overall
efficiency of the classification process.

It consists of two main steps that allow for it to have a scalable behavior [24]. The map
operation calculates the distances between each test sample and all training samples. Each
node independently computes these distances during this phase, creating a class-distance

Appl. Sci. 2024, 14, 5845 6 of 15

vector for each test sample. This parallel computation is essential for handling large datasets
efficiently, as it allows for the processing load to be distributed across multiple nodes.

The reduce phase then aggregates these class-distance vectors to determine the k-
nearest neighbors for each test sample. This phase involves sorting the class-distance
vectors in ascending order of distance and selecting the k smallest distances to identify the
nearest neighbors. The algorithm efficiently consolidates the results from the distributed
computations by leveraging the reduce function, ensuring that the final k-NN classification
is accurate and scalable for Big Data applications.

In this paper, the original SMOTE-BD code was modified to work with LIBSVM files.
Algorithms 2–4 show the SMOTE-BD and kNN-IS implemented in Spark, where

• Algorithm 2—the main algorithm of SMOTE-BD. This algorithm begins by reading
the files and filtering the data by class. It then identifies the k-nearest neighbors
(kNNs) of the minority class and calculates the amount of synthetic data to generate.
Subsequently, it calls the procedure in Algorithm 3 to create the synthetic data.

• Algorithm 3—Synthetic Data Generation. Based on the identified kNNs, this algorithm
runs on the Spark data partition. For each data point in the partition, it selects a random
nearest neighbor and calls Algorithm 4 to interpolate new data points from the two
minority class points.

• Algorithm 4—Interpolation Process. This algorithm receives two data points and
returns a new synthetic data point based on the distance between the two points,
multiplied by a random value.

Algorithm 2: Adapted SMOTE-BD
/* Input and output files are in LIBSVM format. */
/* trainDataFile is the train data in the dissimilarity space. */
Data: trainDataFile
/* minClassLabel is the minority class label used to filter the minority class data in the

algorithm. */
/* k is the number of nearest neighbors to search in the kNN algorithm. */
/* numIterations is the number of iterations kNN-IS will perform to find the k-nearest

neighbors; default to 1. */
Input: minClassLabel, k, numIterations
/* oversampledTrainDataFile is the filename used to save the oversampled dataset. */
Output: oversampledTrainDataFile

1 Load KNN-IS jar into Spark;
2 trainData← spark.read.libsvm(trainDataFile).repartition();
3 countSamples← trainData.count();
/* Filter minority class samples. */

4 minSamples← trainData.filter(trainData.classLabel == minClassLabel);
5 countMinoirty←minSamples.count();
6 countMajority← countSamples - countMinority;
/* Compute how many artificial samples SMOTE needs to create per real minority class sample. */

7 sRate← (countMajority-countMinority)/countMinority;
/* Using KNN-IS calculate the k-nearest neighbors of the minority class data samples. */

8 neighbours← KNNIS.setup(minSamples,k).calculateNeighbours();
/* Broadcast the neighbors variable to all nodes. */

9 spark.broadcast(neighbours);
/* Initialize synthSamples and tmpSamples variables. */

10 synthSamples← null;
11 tmpSamples← null;
12 for i < numIterations do

/* Create synthetic samples from data partitions. */
13 tmpSamples←minSamples.mapPartitionsWithIndex(synthData(idx, pData, neighbours, sRate, k));
14 if synthamples == null then
15 synthSamples← tmpSamples;

16 else
/* Add new synthetic samples to existing synthetic samples. */

17 synthSamples← synthSamples.union(tmpSamples);

/* Add synthetic data to training data. */
18 outputData← trainData.union(synthSamples);

/* Save the oversampled data set to a file. */
Result: outputData.write(oversampledTrainDataFile)

Appl. Sci. 2024, 14, 5845 7 of 15

Algorithm 3: Procedure to compute the k nearest neighbors for each minority
class sample and synthetic data generation

/* This procedure is executed at the partition data level in Spark. */
/* partitionData is the partition data used to create new data samples. */
/* neighbours is the data neighbors previously calculated and broadcast to all the

nodes. */
/* createionRate is the number of synthetic data samples to be created. */
/* k is the number of nearest neighbors. */
Input: partitionData, neighbours, creationRate, k
/* newSamples are the synthetic data samples created. */
Output: newSamples

1 Procedure synthData(partitionData, neighbours, creationRate, k):
/* Initialize newSamples variable. */

2 newSamples← null;
/* Loop through all data samples of the partition. */

3 forall element of partitionData do
/* Create “creationRate” synthetic samples. */

4 for count← 0 to creationRate do
/* sample1 is the current data sample in the ForAll loop. */

5 sample1← element;
/* sample2 is a random neighbor. */

6 sample2← neighbours[Random.nextInteger(k)];
/* Create a new synthetic sample interpolating sample1 and sample2. */

7 sample← interpolate(sample1, sample2);
/* Add a new synthetic sample to newSamples. */

8 newSamples.add(sample);

/* Return the created synthetic samples. */
9 return newSamples

Algorithm 4: Procedure of Interpolation Process
/* This procedure creates new sample data based on two provided samples. */
/* sample1 and sample2 are existing data samples used to create a new synthetic data

sample. */
Input: sample1, sample2
/* newSample is a new data sample created based on the input samples. */
Output: newSample

1 Procedure interpolate(sample1, sample2):
/* Initialize newSample variable. */

2 newSample← null;
/* Obtain a random number between 0 and 1. */

3 random← Random.nextDouble();
/* Loop over all elements of the data sample. */

4 for i← 0 to sample1.size do
/* Calculate a delta for the new synthetic sample. */

5 delta← (sample1[i] - sample2[i]) × random;
/* Create a new sample by adding a randomly generated delta. */

6 newSample[i]← sample2[i] + delta;
/* Return the new synthetic data. */

7 return newSample

2.4. Proposed Technique

The novel preprocessing technique introduced in this article (see Figure 1) aims
to address four types of concurrent complexities: (i) Big Data, (ii) high dimensionality,
(iii) imbalanced classes, and (iv) class overlapping.

The hybrid technique proposed in this section is structured in two phases: (i) a
transformation from the feature space to a dissimilarity space is performed, utilizing
fractional distances as a measure of similarity (see Algorithm 1), and (ii) the transformed
dataset is balanced using the SMOTE-BD [23], which uses the Euclidean distance. All
experiments were run in the Spark distributed system.

Appl. Sci. 2024, 14, 5845 8 of 15

Figure 1. Proposed technique for preprocessing imbalanced high-dimensional Big Data datasets.

3. Experimental Setup

For the experiments presented in this paper, we created an artificial dataset from an
original dataset that contains 21,025 instances, 24,832 features, and 17 numerically labeled
classes from 0 to 16.

The original dataset, known as the Indian pine scene, was obtained from the Computa-
tional Intelligence Group site [40]. This dataset was collected by NASA’s AVIRIS (Airborne
Visible/Infrared Imaging Spectrometer) sensor, which provides 224 bands and a spectral reso-
lution of 10.0 nm [41]. It consists of one-third of the forest area, and the rest is the cultivation
field or residual natural vegetation indices. Table 1 depicts the ground truth classes and their
corresponding instances for the Indian pine scene.

Although datasets with high dimensionality are available in several repositories, some
have characteristics that fall outside the article’s scope, such as a small number of instances
or sparse data. Inspired by the works of Rendón et al. [42] and Charte et al. [43], which
demonstrated how a neural network can be used for transforming data in order to find
other features, we employed a Multi-layer Perceptron (MLP) model that was trained using
the full dataset. Following the parameter specification in [42], we built the MLP and
extracted from the output of a hidden layer the newly transformed dataset with a high
dimensionality of 24,832 features. Due to the dataset size, it will be available upon request.

Since we are interested in two-class imbalance datasets, we joined several classes
to form the majority class, leaving a single class as the minority class. During this pro-
cess, we omitted classes that constitute less than 0.5% of the dataset (i.e., Alfalfa, Grass-
pasture-mowed, Oats, and Stone-Steel-Towers). This resulted in a total of 9 imbalanced
datasets with several imbalance ratios (IR). Table 2 shows all the characteristics of the
datasets, where the number that appears in the dataset name denotes the class chosen as the
minority class.

All the datasets were partitioned using 70% of instances for training and the rest 30%
for testing. We used the Decision Tree (DT) classifier from the Spark MLlib library. The DT
classifier was chosen with the GINI impurity measure and configured with a maximum
depth of 5 and 32 bins.

The fractional values of p used were 0.25, 0.33, 0.50, 0.66, and 0.75. This choice was
based on considerations from published works. For the dissimilarity representation, the
selected sizes for R included 10, 50, 100, 200, 500, 1000, and 2000 instances. In each selection,

Appl. Sci. 2024, 14, 5845 9 of 15

R was composed, ensuring an equitable representation of examples from both the majority
and minority classes.

Table 1. Number of instances per class and percentage relative to the total samples for the Indian
pine dataset.

Class Numeric Class Instances Percentage

Background 0 10,776 51.25%
Alfalfa 1 46 0.22%
Corn-notill 2 1428 6.79%
Corn-mintill 3 830 3.95%
Corn 4 237 1.13%
Grass-pasture 5 483 2.30%
Grass-trees 6 730 3.47%
Grass-pasture-mowed 7 28 0.13%
Hay-windrowed 8 478 2.27%
Oats 9 20 0.10%
Soybean-notill 10 972 4.62%
Soybean-mintill 11 2455 11.68%
Soybean-clean 12 593 2.82%
Wheat 13 205 0.98%
Woods 14 1265 6.02%
Buildings-Grass-Trees-
Drives 15 386 1.84%

Stone-Steel-Towers 16 93 0.44%

Total: - 21,025 100%

Table 2. Characteristics of the imbalanced Big Data datasets (#Majority: number of instances in the
majority class, #Minority: number of instances in the minority class, IR: imbalance ratio defined as
the number of instances of the majority class divided by the number of instances of the minority class,
Total: Total number of instances in the dataset).

Dataset # Majority # Minority Total IR

NewIndian2 19,410 1428 20,838 13.59
NewIndian3 20,008 830 20,838 24.11
NewIndian5 20,355 483 20,838 42.14
NewIndian6 20,108 730 20,838 27.55
NewIndian8 20,360 478 20,838 42.59
NewIndian10 19,866 972 20,838 20.44
NewIndian12 20,245 593 20,838 34.14
NewIndian14 19,573 1265 20,838 15.47
NewIndian15 20,452 386 20,838 52.98

The Big Data architecture was developed on Google Cloud using the credit grant
obtained from the “Google for Education” program [44]. The Spark 3.1.1 cluster was
configured with one master node equipped with 32 GB of memory and 8 vCPUs, and three
slave nodes, each with 64 GB of memory and 16 vCPUs.

Performance Metrics

The DT classifier is evaluated using a confusion matrix, a square matrix where the
entries (i, j) contain the number of correct and incorrect predictions [45]. Table 3 displays a
2× 2 table for a two-class problem, where the columns represent the classifier’s estimated
output and the rows indicate the actual classes. The elements on the main diagonal
represent the correct number of predictions for the positive and negative classes, while the
other entries represent the errors.

Appl. Sci. 2024, 14, 5845 10 of 15

Table 3. Confusion matrix for a two-class problem.

Positive Prediction Negative Prediction

Actual Positive True Positives (TP) False Negatives (FN)
Actual Negative False Positives (FP) True Negatives (TN)

Typically, the metric employed for the effectiveness of a classifier is the accuracy,
denoted as

Accuracy =
TP + TN

TP + FN + TN + FP
(4)

However, it has been demonstrated that this metric is unsuitable when the dataset is
imbalanced; hence, other alternatives are used [45]. Examples of alternative metrics that
evaluate the effectiveness on each class are

• The True Positive Rate, which represents the proportion of positive examples correctly
classified.

TPR =
TP

TP + FN
(5)

• The True Negative Rate or Recall, which represents the proportion of negative exam-
ples correctly classified.

TNR =
TN

TN + FP
(6)

• The False Negative Rate, which is the proportion of positive examples misclassified.

FNR =
FN

TP + FN
(7)

• The False Positive Rate, which is the proportion of negative examples misclassified.

FPR =
FP

TN + FP
(8)

A metric encompassing individual rates per class is the geometric mean,

G−mean =
√

TPR× TNR, (9)

which maximizes the effectiveness of each class while maintaining balance.
The classifiers can also be evaluated using graphical methods, which allow for the

visualization of their effectiveness [46]. One of the most popular strategies is the ROC
graph (Receiver Operating Characteristic curve). In this two-dimensional space, curves
represent the trade-off between TPR (Y-axis) and FPR (X-axis). A scalar value can be
derived from the ROC space by calculating the area under the curve, known as the AUC
(Area Under the ROC curve). In the literature, there are several ways of computing the
AUC, here, we have adopted the version that captures a single point on the ROC curve,
also called balanced accuracy, computed as [47]

AUC =
TPR + TNR

2
. (10)

4. Results and Discussion

The experiments were conducted to evaluate three strategies for dealing with imbal-
anced and high-dimensional Big Data datasets: (1) SMOTE, (2) dissimilarity with fractional
norms (Ddp), and (3) the joint use of dissimilarity and SMOTE (Ddp + SMOTE). For clarity
and simplicity, in strategies (2) and (3), we only selected the two best results in terms of
AUC and G-mean.

Table 4 presents the experimental results for each strategy used on the nine datasets.
It includes the values of p in the Minkowsky distance metric used in constructing the

Appl. Sci. 2024, 14, 5845 11 of 15

dissimilarity matrix and the resulting dimensionality (number of features) obtained when
applying this mapping. Additionally, the classification results on the original imbalanced
dataset and with SMOTE are provided for comparison purposes.

The experimental results using SMOTE align well with the general conclusions from
numerous studies on standard problems, indicating the effectiveness of dealing with the
class imbalance problem. Despite the high dimensionality of the data, the use of SMOTE
consistently improves both the AUC and G-mean across all cases when compared with
the baseline strategy (without the preprocessing technique). However, this enhancement
comes at the cost of increasing the size of the dataset.

When the imbalanced dataset is transformed into a dissimilarity representation with
fractional norms, the results generally exhibit lower performance than those obtained with
the original dataset. However, it is important to note that the dataset continues presenting
the class imbalance problem in this new representation. Despite this, the decrease in
performance is not always drastic, even though the dimensionality is reduced by 92% and
98% in some cases. Similarly, while it is challenging to recommend a specific value of p, in
most situations, better results are observed when p < 1.

Table 4. Experimental results. The best AUC and G−mean results are highlighted in purple and
grey for each dataset, respectively.

Name Dataset p Features TPR TNR AUC G − mean
Imbalanced

NewIndian2

– 24,832 0.51402 0.97645 0.74524 0.70846
SMOTE 2.00 24,832 0.85047 0.86215 0.85631 0.85629

Ddp
0.50 1000 0.38318 0.97800 0.68059 0.61217
0.33 2000 0.35748 0.98247 0.66997 0.59263

Ddp +SMOTE 1.00 500 0.91121 0.78206 0.84664 0.84417
0.50 2000 0.89252 0.79477 0.84365 0.84223

Imbalanced

NewIndian3

– 24,832 0.45977 0.98814 0.72395 0.67403
SMOTE 2.00 24,832 0.75096 0.93049 0.84073 0.83592

Ddp
0.25 50 0.36398 0.99114 0.67756 0.60063
0.33 2000 0.32184 0.99566 0.65875 0.56608

Ddp +SMOTE 0.25 100 0.93870 0.84378 0.89124 0.88997
0.66 500 0.96169 0.81988 0.89078 0.88796

Imbalanced

NewIndian5

– 24,832 0.61268 0.99672 0.80470 0.78145
SMOTE 2.00 24,832 0.80282 0.95937 0.88109 0.87761

Ddp
0.33 50 0.63380 0.99394 0.81387 0.79370
0.75 500 0.62676 0.99492 0.81084 0.78967

Ddp +SMOTE 0.25 2000 0.90141 0.93381 0.91761 0.91747
0.25 500 0.88732 0.94725 0.91729 0.91680

Imbalanced

NewIndian6

– 24,832 0.57078 0.99121 0.78099 0.75217
SMOTE 2.00 24,832 0.86758 0.96665 0.91711 0.91578

Ddp
0.75 1000 0.58447 0.98722 0.78585 0.75961
0.25 2000 0.57078 0.99121 0.78099 0.75217

Ddp +SMOTE 0.66 1000 0.96804 0.89132 0.92968 0.92889
0.75 2000 0.95434 0.89182 0.92308 0.92255

Imbalanced

NewIndian8

– 24,832 0.92373 0.99461 0.95917 0.95852
SMOTE 2.00 24,832 0.94915 0.99249 0.97082 0.97058

Ddp
0.33 500 0.95763 0.99510 0.97637 0.97619
0.25 500 0.94915 0.99543 0.97229 0.97202

Ddp + SMOTE 1.00 50 1.00000 0.98890 0.99445 0.99444
0.50 500 0.99153 0.99184 0.99168 0.99168

Imbalanced

NewIndian10

– 24,832 0.59375 0.98456 0.78915 0.76458
SMOTE 2.00 24,832 0.86111 0.91658 0.88885 0.88841

Ddp
2.00 100 0.58333 0.97583 0.77958 0.75448
2.00 1000 0.58333 0.97012 0.77673 0.75227

Ddp +SMOTE 2.00 2000 0.93056 0.89225 0.91140 0.91120
0.66 500 0.91319 0.90500 0.90910 0.90909

Appl. Sci. 2024, 14, 5845 12 of 15

Table 4. Cont.

Name Dataset p Features TPR TNR AUC G − mean
Imbalanced

NewIndian12

– 24,832 0.44767 0.99177 0.71972 0.66633
SMOTE 2.00 24,832 0.78488 0.91916 0.85202 0.84937

Ddp

0.33 2000 0.31395 0.99325 0.65360 0.55842
0.33 1000 0.30233 0.99341 0.64787 0.54803

Ddp + SMOTE 0.50 500 0.96512 0.76934 0.86723 0.86169
0.25 1000 0.91279 0.81017 0.86148 0.85995

Imbalanced

NewIndian14

– 24,832 0.54595 0.96886 0.75740 0.72728
SMOTE 2.00 24,832 0.85676 0.91797 0.88736 0.88684

Ddp
0.25 1000 0.36486 0.98434 0.67460 0.59929
0.25 100 0.37027 0.97294 0.67161 0.60021

Ddp + SMOTE 1.00 10 0.97838 0.85160 0.91499 0.91279
2.00 1000 0.96486 0.86266 0.91376 0.91233

Imbalanced

NewIndian15

– 24 ,832 0.06838 0.99445 0.53141 0.26076
SMOTE 2.00 24,832 0.67521 0.84989 0.76255 0.75754

Ddp
0.50 2000 0.02564 0.99853 0.51209 0.16001
0.50 1000 0.02564 0.99788 0.51176 0.15996

Ddp + SMOTE 0.33 2000 0.91453 0.71888 0.81670 0.81082
0.50 10 0.94872 0.68364 0.81618 0.80534

The proposed approach of combining dissimilarity with fractional norms followed by
SMOTE (Ddp+SMOTE) demonstrated the most promising performance in terms of both AUC
and G-mean. Notably, this improvement was achieved while maintaining a lower dimensional-
ity compared to the original datasets. It demonstrates that integrating these techniques with
p < 1 can synergistically enhance the model’s performance on the minority class.

In order to determine whether there are significant differences in the results, we used
a nonparametric statistical test called the Friedman test. Additionally, a post-doc test was
conducted using Bonferrini–Dunn’s method to determine which algorithms perform better,
equally, or worse. Table 5 summarizes the average ranks of each strategy based on the
Friedman test, where the strategy with the best performance obtains the lowest rank, and
the worst-performing approach receives the highest rank [48].

According to the results, Ddp +SMOTE ranked the best overall, with an average rank
of 1.1, indicating that it consistently outperformed the other strategies across the different
datasets. SMOTE was ranked second with an average rank of 2. The imbalanced strategy
ranked third, and finally, Ddp obtained the highest average rank, indicating that it was
the worst-performing strategy. Based on the Iman and Davenport statistic FF, distributed
according to the F distribution with four algorithms and nine datasets, yielding a value
of 31.512, and a computed p-value of 0.000000017243, we reject the null hypothesis at the
significance level of α = 0.05. This indicates that there are significant differences among the
algorithms tested.

Table 5. Average rankings of the algorithms (Friedman) using AUC.

Algorithm Ranking (AUC)

Imbalanced 3.3
SMOTE 2

Ddp 3.6
Ddp +SMOTE 1.1

Further analysis using the Bonferroni–Dunn’s procedure as a post hoc method is
presented in Table 6, showing the p-values obtained over the results of the Friedman test
with α = 0.05, using Ddp +SMOTE as the control algorithm. With a p-value of 0.016667,
we reject the null hypothesis for the following pairs, indicating that the control algorithm
is superior: Ddp +SMOTE vs. Ddp and Ddp +SMOTE vs. Imbalanced. However, there is
no significant difference between Ddp +SMOTE vs. SMOTE, suggesting that they perform
similarly well.

Appl. Sci. 2024, 14, 5845 13 of 15

Table 6. Post hoc comparison with α = 0.05 and Ddp +SMOTE as algorithm control.

i Algorithm z = (R0 − Ri)/SE p

3 Ddp 4.016632 0.000059
2 Imbalanced 3.651484 0.000261
1 SMOTE 1.460593 0.144127

5. Conclusions

The motivation for this study lies in addressing significant challenges encountered in
Big Data analytics, specifically class imbalance, high dimensionality, and class overlapping.
In this paper, we propose a hybrid approach based on several data-level solutions for
addressing the class imbalance problem in Big Data datasets with high dimensionality.
The proposal combines a dissimilarity approach to transform the datasets into a low-
dimensional space using fractional norms and the well-known SMOTE technique. This
strategy can improve the quality of the data by reducing the dimensionality and balancing
the classes. Our results show that the preprocessed dataset achieved better or comparable
AUC and G-mean results compared to those obtained from the original feature space,
despite having significantly fewer dimensions—often less than 10% of the original. This
substantial reduction in dimensionality enhances the efficiency of other preprocessing
techniques and improves overall computational performance and resource utilization. This
study utilized pre-selected fractional distances and a specified number of randomly selected
instances for R. Determining the optimal fractional distance and the appropriate number of
instances for transforming the feature space into the dissimilarity space remains largely
dataset-dependent.

Despite the successful results, this study has several limitations: (i) a comparative
study with other techniques proposed in the literature, (ii) the datasets used in this research
were limited to nine specific datasets, (iii) the number of attributes in the datasets, and (iv)
the use of a single classifier.

Future research should aim to optimize prototype selection for the dissimilarity transfor-
mation further and explore various fractional distances to assess the robustness and adaptability
of the proposed method across a broader range of datasets and classification challenges.

Author Contributions: Conceptualization, A.B., V.G., R.A., and R.F.-J.; methodology, J.S.S.; soft-
ware, A.B.; validation, A.B., V.G., and J.S.S.; formal analysis, A.B., V.G., R.A., and R.F.-J.; investiga-
tion, A.B.; resources, A.B.; data curation, A.B. and R.A.; writing—original draft preparation, A.B.;
writing—review and editing, V.G., R.A., R.F.-J., and J.S.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received Google Cloud credits from the Google for Education program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
second author, V.G., upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Domo, I. Data Never Sleeps 11.0. Available online: https://www.domo.com/learn/infographic/data-never-sleeps-11 (accessed

on 10 May 2024).
2. Reinsel, D.; Gantz, J.; Rydning, J. Data Age 2025: The Evolution of Data to Life-Critical. In Don’t Focus on Big Data; Focus on the

Data That’s Big; Technical Report; SEAGATE: Dublin, Ireland, 2017.
3. Ducange, P.; Fazzolari, M.; Marcelloni, F. An overview of recent distributed algorithms for learning fuzzy models in Big Data

classification. J. Big Data 2020, 7, 19. [CrossRef]
4. Triguero, I.; Galar, M. Large-Scale Data Analytics with Python and Spark; Cambridge University Press: Cambridge, UK, 2024.
5. Anjum, M.; Min, H.; Ahmed, Z. Trivial State Fuzzy Processing for Error Reduction in Healthcare Big Data Analysis towards

Precision Diagnosis. Bioengineering 2024, 11, 539. [CrossRef] [PubMed]

https://www.domo.com/learn/infographic/data-never-sleeps-11
http://doi.org/10.1186/s40537-020-00298-6
http://dx.doi.org/10.3390/bioengineering11060539
http://www.ncbi.nlm.nih.gov/pubmed/38927776

Appl. Sci. 2024, 14, 5845 14 of 15

6. Onyejekwe, E.R.; Sherifi, D.; Ching, H. Perspectives on Big Data and Big Data Analytics in Healthcare. Perspect. Health Inf. Manag.
2024, 21, 43.

7. Zhou, L.; Pan, S.; Wang, J.; Vasilakos, A.V. Machine learning on big data: Opportunities and challenges. Neurocomputing 2017,
237, 350–361. [CrossRef]

8. Gupta, P.; Sharma, A.; Jindal, R. Scalable machine-learning algorithms for big data analytics: A comprehensive review. WIREs
Data Min. Knowl. Discov. 2016, 6, 194–214. [CrossRef]

9. Tosi, D.; Kokaj, R.; Roccetti, M. 15 years of Big Data: A systematic literature review. J. Big Data 2024, 11, 73. [CrossRef]
10. Ali El-Sayed Ali, H.; Alham, M.H.; Ibrahim, D.K. Big data resolving using Apache Spark for load forecasting and demand

response in smart grid: A case study of Low Carbon London Project. J. Big Data 2024, 11, 59. [CrossRef]
11. Ngiam, K.Y.; Khor, I.W. Big data and machine learning algorithms for health-care delivery. Lancet. Oncol. 2019, 20, e262–e273.

[CrossRef] [PubMed]
12. Ng, A. AI Doesn’t Have to Be Too Complicated or Expensive for Your Business. Harvard Business Review, 2021. Available online:

https://hbr.org/2021/07/ai-doesnt-have-to-be-too-complicated-or-expensive-for-your-business (accessed on 2 December 2023).
13. Sambasivan, N.; Kapania, S.; Highfill, H.; Akrong, D.; Paritosh, P.; Aroyo, L.M. “Everyone wants to do the model work, not the

data work”: Data Cascades in High-Stakes AI. In Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, Yokohama, Japan, 8–13 May 2021; Association for Computing Machinery: New York, NY, USA, 2021. [CrossRef]

14. Pagano, T.P.; Loureiro, R.B.; Lisboa, F.V.N.; Peixoto, R.M.; Guimarães, G.A.S.; Cruz, G.O.R.; Araujo, M.M.; Santos, L.L.; Cruz,
M.A.S.; Oliveira, E.L.S.; et al. Bias and Unfairness in Machine Learning Models: A Systematic Review on Datasets, Tools, Fairness
Metrics, and Identification and Mitigation Methods. Big Data Cogn. Comput. 2023, 7, 15. [CrossRef]

15. Kumar, A.; Singh, D.; Shankar Yadav, R. Class overlap handling methods in imbalanced domain: A comprehensive survey.
Multimed. Tools Appl. 2024. [CrossRef]

16. Hasanin, T.; Khoshgoftaar, T.M.; Leevy, J.L.; Bauder, R.A. Investigating class rarity in big data. J. Big Data 2020, 7, 23. [CrossRef]
17. Triguero, I.; García-Gil, D.; Maillo, J.; Luengo, J.; García, S.; Herrera, F. Transforming big data into smart data: An insight on the

use of the k-nearest neighbors algorithm to obtain quality data. WIREs Data Min. Knowl. Discov. 2019, 9, e1289. [CrossRef]
18. Santos, M.S.; Abreu, P.H.; Japkowicz, N.; Fernández, A.; Santos, J. A unifying view of class overlap and imbalance: Key concepts,

multi-view panorama, and open avenues for research. Inf. Fusion 2023, 89, 228–253. [CrossRef]
19. Maldonado, S.; López, J. Dealing with high-dimensional class-imbalanced datasets: Embedded feature selection for SVM

classification. Appl. Soft Comput. 2018, 67, 94–105. [CrossRef]
20. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Int. Res.

2002, 16, 321–357. [CrossRef]
21. Kovács, G. SMOTE-variants: A python implementation of 85 minority oversampling techniques. Neurocomputing 2019,

366, 352–354. [CrossRef]
22. Sisodia, D.; Sisodia, D.S. Data Sampling Strategies for Click Fraud Detection Using Imbalanced User Click Data of Online

Advertising: An Empirical Review. IETE Tech. Rev. 2022, 39, 789–798. [CrossRef]
23. Basgall, M.J.; Hasperué, W.; Naiouf, M.; Fernández, A.; Herrera, F. SMOTE-BD: An Exact and Scalable Oversampling Method for

Imbalanced Classification in Big Data. J. Comput. Sci. Technol. 2018, 18, e23. [CrossRef]
24. Maillo, J.; Ramírez, S.; Triguero, I.; Herrera, F. kNN-IS: An Iterative Spark-based design of the k-Nearest Neighbors classifier for

big data. Knowl.-Based Syst. 2017, 117, 3–15. [CrossRef]
25. Elreedy, D.; Atiya, A.F. A Comprehensive Analysis of Synthetic Minority Oversampling Technique (SMOTE) for handling class

imbalance. Inf. Sci. 2019, 505, 32–64. [CrossRef]
26. Maldonado, S.; López, J.; Vairetti, C. An alternative SMOTE oversampling strategy for high-dimensional datasets. Appl. Soft

Comput. 2019, 76, 380–389. [CrossRef]
27. Maldonado, S.; Vairetti, C.; Fernandez, A.; Herrera, F. FW-SMOTE: A feature-weighted oversampling approach for imbalanced

classification. Pattern Recognit. 2022, 124, 108511. [CrossRef]
28. Pękalska, E.; Duin, R.P. Dissimilarity representations allow for building good classifiers. Pattern Recognit. Lett. 2002, 23, 943–956.

[CrossRef]
29. Costa, Y.M.G.; Bertolini, D.; Britto, A.S.; Cavalcanti, G.D.C.; Oliveira, L.E.S. The dissimilarity approach: A review. Artif. Intell.

Rev. 2020, 53, 2783–2808. [CrossRef]
30. Thudumu, S.; Branch, P.; Jin, J.; Singh, J.J. A comprehensive survey of anomaly detection techniques for high dimensional big

data. J. Big Data 2020, 7, 42. [CrossRef]
31. Flexer, A.; Schnitzer, D. Choosing l-norms in high-dimensional spaces based on hub analysis. Neurocomputing 2015, 169, 281–287.

[CrossRef] [PubMed]
32. Tomasev, N.; Radovanovic, M.; Mladenic, D.; Ivanovic, M. The Role of Hubness in Clustering High-Dimensional Data. IEEE

Trans. Knowl. Data Eng. 2014, 26, 739–751. [CrossRef]
33. Aggarwal, C.C.; Hinneburg, A.; Keim, D.A. On the Surprising Behavior of Distance Metrics in High Dimensional Space. In

Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2001; pp. 420–434. [CrossRef]
34. Mirkes, E.M.; Allohibi, J.; Gorban, A. Fractional Norms and Quasinorms Do Not Help to Overcome the Curse of Dimensionality.

Entropy 2020, 22, 1105. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.neucom.2017.01.026
http://dx.doi.org/10.1002/widm.1194
http://dx.doi.org/10.1186/s40537-024-00914-9
http://dx.doi.org/10.1186/s40537-024-00909-6
http://dx.doi.org/10.1016/S1470-2045(19)30149-4
http://www.ncbi.nlm.nih.gov/pubmed/31044724
https://hbr.org/2021/07/ai-doesnt-have-to-be-too-complicated-or-expensive-for-your-business
http://dx.doi.org/10.1145/3411764.3445518
http://dx.doi.org/10.3390/bdcc7010015
http://dx.doi.org/10.1007/s11042-023-17864-8
http://dx.doi.org/10.1186/s40537-020-00301-0
http://dx.doi.org/10.1002/widm.1289
http://dx.doi.org/10.1016/j.inffus.2022.08.017
http://dx.doi.org/10.1016/j.asoc.2018.02.051
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1016/j.neucom.2019.06.100
http://dx.doi.org/10.1080/02564602.2021.1915892
http://dx.doi.org/10.24215/16666038.18.e23
http://dx.doi.org/10.1016/j.knosys.2016.06.012
http://dx.doi.org/10.1016/j.ins.2019.07.070
http://dx.doi.org/10.1016/j.asoc.2018.12.024
http://dx.doi.org/10.1016/j.patcog.2021.108511
http://dx.doi.org/10.1016/S0167-8655(02)00024-7
http://dx.doi.org/10.1007/s10462-019-09746-z
http://dx.doi.org/10.1186/s40537-020-00320-x
http://dx.doi.org/10.1016/j.neucom.2014.11.084
http://www.ncbi.nlm.nih.gov/pubmed/26640321
http://dx.doi.org/10.1109/TKDE.2013.25
http://dx.doi.org/10.1007/3-540-44503-x_27
http://dx.doi.org/10.3390/e22101105
http://www.ncbi.nlm.nih.gov/pubmed/33286874

Appl. Sci. 2024, 14, 5845 15 of 15

35. Cormode, G.; Indyk, P.; Koudas, N.; Muthukrishnan, S. Fast mining of massive tabular data via approximate distance
computations. In Proceedings of the 18th International Conference on Data Engineering, ICDE-02, San Jose, CA, USA,
26 February–1 March 2002. [CrossRef]

36. Gorban, A.N.; Mirkes, E.M.; Zinovyev, A. Data analysis with arbitrary error measures approximated by piece-wise quadratic
PQSQ functions. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil,
8–13 July 2018. [CrossRef]

37. Duin, R.P.; Pękalska, E. The Dissimilarity Representation for Non-Euclidean Pattern Recognition, a Tutorial; Technical Report; Delf
University of Technology: Delft, The Netherlands, 2011.

38. Duin, R.P.; Pękalska, E. The dissimilarity space: Bridging structural and statistical pattern recognition. Pattern Recognit. Lett.
2012, 33, 826–832. [CrossRef]

39. García, V.; Marqués, A.I.; Sánchez, J.S.; Ochoa-Domínguez, H.J. Dissimilarity-Based Linear Models for Corporate Bankruptcy
Prediction. Comput. Econ. 2019, 53, 1019–1031. [CrossRef]

40. Graña, M.; Veganzons, M.; B, A. Indian Pines Dataset. Available online: https://www.ehu.eus/ccwintco/index.php?title=
Hyperspectral_Remote_Sensing_Scenes#Indian_Pines (accessed on 2 December 2023).

41. NASA. AVIRIS: Airborne Visible - Infrared Imaging Spectrometer. Available online: https://aviris.jpl.nasa.gov/data/index.html
(accessed on 2 December 2023).

42. Rendón, E.; Alejo, R.; Castorena, C.; Isidro-Ortega, F.J.; Granda-Gutiérrez, E.E. Data Sampling Methods to Deal With the Big Data
Multi-Class Imbalance Problem. Appl. Sci. 2020, 10, 1276. [CrossRef]

43. Charte, D.; Charte, F.; Herrera, F. Reducing Data Complexity Using Autoencoders With Class-Informed Loss Functions. Pattern
Anal. Mach. Intell. 2022, 44, 9549–9560. [CrossRef] [PubMed]

44. Google. Programas de educación superior de Google Cloud. Available online: https://cloud.google.com/edu/ (accessed on
7 July 2022).

45. Japkowicz, N. Evaluating Learning Algorithms; Cambridge University Press: Cambridge, UK, 2011. [CrossRef]
46. Prati, R.C.; Batista, G.E.A.P.A.; Monard, M.C. A Survey on Graphical Methods for Classification Predictive Performance

Evaluation. IEEE Trans. Knowl. Data Eng. 2011, 23, 1601–1618. [CrossRef]
47. Branco, P.; Torgo, L.; Ribeiro, R.P. A Survey of Predictive Modeling on Imbalanced Domains. ACM Comput. Surv. 2016, 49, 1–50.

[CrossRef]
48. García, S.; Fernández, A.; Luengo, J.; Herrera, F. Advanced nonparametric tests for multiple comparisons in the design of

experiments in computational intelligence and data mining: Experimental analysis of power. Inf. Sci. 2010, 180, 2044–2064.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/icde.2002.994778
http://dx.doi.org/10.1109/ijcnn.2018.8489568
http://dx.doi.org/10.1016/j.patrec.2011.04.019
http://dx.doi.org/10.1007/s10614-017-9783-4
https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes#Indian_Pines
https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes#Indian_Pines
https://aviris.jpl.nasa.gov/data/index.html
http://dx.doi.org/10.3390/app10041276
http://dx.doi.org/10.1109/TPAMI.2021.3127698
http://www.ncbi.nlm.nih.gov/pubmed/34767504
https://cloud.google.com/edu/
http://dx.doi.org/10.1017/cbo9780511921803.010
http://dx.doi.org/10.1109/TKDE.2011.59
http://dx.doi.org/10.1145/2907070
http://dx.doi.org/10.1016/j.ins.2009.12.010

	Introduction
	Methods
	Fractional Norms
	Dissimilarity Representation
	Knn-Is and SMOTE in Big Data
	Proposed Technique

	Experimental Setup
	Results and Discussion
	Conclusions
	References

