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Abstract

Investors make decisions about buying and selling a financial asset based on the informa-
tion available. The traditional approach in deep learning when it comes to predicting the
behaviour of an asset is to take a price history, train a model, and forecast a single price
in the near future. This is called the frequentist perspective. Uncertainty quantification
is an alternative in which the models manage a probability distribution for the predic-
tion. It provides investors with more information than the traditional frequentist form,
so that they can consider the risk of making or not making a certain decision. Thus, we
systematically review the existing literature in the period 2001-2022 on deep learning
uncertainty quantification methods to predict the behaviour of financial assets, such as
currencies, the stock market, cryptocurrencies, among others. The article discusses types
of models, categories of financial assets, prediction characteristics, and types of uncer-
tainty. We found that, generally speaking, the publications focus on price accuracy as
a metric, although other metrics, such as trend accuracy, might be more suitable. Very
few authors analyse both epistemic and aleatory uncertainty, and none analyse in depth
how to unlink them.

Keywords: Deep learning, Time series, Prediction, Uncertainty quantification,
Financial assets

1. Introduction

Deep learning (DL) applications have increasing relevance in almost every field, par-
ticularly finance. Along with this growing interest, it seems that most authors are partic-
ipating in a model race to build the most accurate model, predicting future asset prices
with the smallest error. This competition could make sense in some applications where
the level of volatility, called noise, stays between low and moderate levels. However, the
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financial market presents a very high level of volatility. The amount of noise related
to this type of time series is still so high that researchers are still debating whether or
not the Efficient Market Theory is valid [67]. Instead of looking for a very accurate
prediction, traders look for a reasonable prediction that helps them understand which
way the market will move next, up or down. A successfully predicted trend is much
more helpful in securing an investment than knowing, for example, if the next price will
hit 29.4€instead of 29.5€. In this context, it seems reasonable to ask what is the point
of trying to boost the accuracy of DL models in a scenario where the volatility of the
input data is much higher than the minimum error that can be obtained from the pre-
dictions. Trying to follow that line will lead to an overfit model, inevitably falling into
the bias-variance dilemma. The authors of this review propose an alternative approach
to predicting financial trading series, in which the next price vector falls within a confi-
dence interval. That range can be defined by the degree of certainty of the model and
the amount of noise in the raw input data. Defining that interval means quantifying the
uncertainty of both the data noise and the degree of insight gained by the DL model.

We can distinguish between two types of uncertainties in the prediction with DL
models, called aleatory and epistemic [36, 56]. The total uncertainty in the prediction is
the sum of both uncertainties. The first is related to the intrinsic noise in the data and
is called aleatory uncertainty. Aleatory refers to the randomness inherent in price data,
that is, price fluctuations or volatility confound genuine underlying trends [1]. Noise is
an intrinsic part of financial data and is the main reason why predicting upcoming prices
remains so complex: DL models struggle to recognize the difference between noise and a
real trend. In fact, financial data like stock market prices differs from other time series
in that it is characterized by a very high level of noise. The stochastic component of
financial data misrepresents valuable price information and thus confounds the models.
Unfortunately, financial data always has this stochastic component and it is impossible
to reduce the related uncertainty simply by adding more data [44]. Therefore, the need
to address and quantify this type of uncertainty is clear: traders want to distinguish
between a real trend led by market dynamics and a false trend led by noise, in order to
keep trading profitable. The identification of a random part is the previous and necessary
step to address it. Although aleatory uncertainty cannot be eliminated, noise can and
should be treated as a necessary preliminary step before training DL models. If the data
is not cleaned and filtered to remove noise beforehand and raw data is ingested by the
model, the prediction accuracy is negatively affected. The reason is that the model will
stick to noise patterns instead of valuable real price trends [32].

The second type of uncertainty, the epistemic component, is related to the prediction
model, coming from the sets of hyperparameters not chosen for the prediction. A trained
DL model is defined by several parameters related to its own architecture, that is, the
combination of parameters (W, b) corresponding to the neural network weights and biases,
length and depth, shape (variation of length through depth), the number of iterations
and batches, the optimizer or the regularization term, to name a few. Instead of just
choosing an optimized combination of those parameters, one could think of a model from
a different perspective, considering that not just one but many of those combinations
could form a set of valid models. In this way, we do not have a matrix of weights and
biases, but the model handles a probability distribution corresponding to each of the
weights of the matrix (epistemic uncertainty) [44].

In 1992, Mackay [68] established the foundations of what is now called uncertainty
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quantification (UQ) and applied them to the approximation of functions. He claims that
the Bayesian approach is not consistently better in performance than other methods for
interpolating a noisy data set. However, a second level of inference is generally forgotten,
which is the ability of Bayesian methods to classify alternative models to the best chosen
one.

If we take this concept to finance, it translates into opportunity cost, that is, how much
we are paying for not choosing the alternative to the (supposed) best operation at the
right time. Big financial decisions are not made simply by knowing a single future price
value recommended by a DL model (this is how a frequentist approach is defined [79]).
Risk and opportunity cost [85] must also be considered. We believe the UQ approach is
best suited for real financial scenarios where probability and confidence intervals can be
entered, not just for a forecast point in the future, but for entire identifiable trends.

UQ is defined differently throughout the existing literature. Within the field of fi-
nance, if we continue to delve into the even more specific sub-domain of predicting the
behaviour of financial and marketable assets through DL, it can be defined as the science
of measuring the amount by which a DL model it is uncertain about the benefit that can
be obtained in the future. Ideally, this amount of uncertainty would be measured with a
probability distribution [104], or at least with the time-varying mean and variance [103].
UQ can be applied to a regression problem, that is, predicting future price values [39].
It can also be applied to a classification problem, where the output of a DL model is a
buy/hold/sell signal [71] or the start or end of a trend [98]. It can even be applied to a
ranking type prediction, for example, the prediction of momentum in the future.

The main objective of this survey is to show if the state of the art regarding UQ
in DL applied to financial forecasting can leave unexplored or insufficiently explored
techniques, methods or approaches that could be exploited by researchers in possible
future investigations and to clarify what would be. Some other literature reviews explore
UQ applied to various fields: water resources research [30], flood forecasting [33], climate
modelling [90], cycle cost estimation of aerospace life [92] and others. To the best of our
knowledge, this is the first survey on the subject of UQ applied to financial time series.

Hereafter, the paper is organized as follows. Section 2 describes the existing tech-
niques commonly used to quantify uncertainty and provides the definitions and terms
that will be used in the remainder of the article. Section 3 explains the methodology
used in the review to analyse the existing literature, following the PRISMA approach for
records published between 2001 and 2022 without time period filters. Section 4 compiles
the results, while Section 5 discusses the results and provides potential directions for
future research. Finally, Section 6 presents the main conclusions of this work.

2. Research methodology

PRISMA was used as the main framework to carry out the research. In addition, the
following questions were defined to shed light on the current state of the art in UQ for
forecasting financial assets using DL:

1. What is the state of the art related to research on UQ for DL applied to finance?
What are the main UQ techniques in DL used so far for financial forecasting?
What needs in financial forecasting are not yet covered in UQ for DL?
What technical challenges remain in financial forecasting using UQ in DL?
What approaches could potentially be explored to overcome those challenges?

3
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Figure 1: Number of publications per year related to the general term Quantification of uncertainty.
Source: Web of Science.

2.1. Inclusion and exclusion criteria

UQ in DL is a relatively new domain. As can be seen in Figure 1, it has been
found that from 2010 there is an explosion of publications that deal with the subject
and explicitly mention the exact phrase ”quantification of uncertainty”. While some
articles mentioned UQ before then, they were more sparse. In fact, the first article that
applies UQ methods to a neural network is the work of Mackay [69], in which a Bayesian
regularization is used.

Not all publications found use UQ intentionally, nor do they mention it explicitly.
Even so, made on purpose or not, all the selected articles meet the criteria for the
application of UQ techniques. For example, the most typical unintentional use of UQ
methods is dropout as a regularization technique. The most likely reason why the authors
might want to apply it is to decrease the probability of overfitting, since the technique
causes the neural network to systematically forget data at each backpropagation step.
Applying this method is equivalent to approximating the Bayesian posterior, which is
often not mentioned in most references.

The three parameters considered in the publications that will be added to this work
are described below (all must be met):

1. Financial asset time series prediction and trading: The publication should
base the topic on methods or techniques for predicting the value of trading in-
struments (Forex, stocks, commodities and cryptocurrencies, see Figure 2). The
problem to be solved can be regression, predicting the future value of the asset,
confidence and return intervals or classification, predicting bullish or bearish trends
or buy/sell signals. The condition for being included in this group is that the asset
is negotiable, that is, that the asset can be bought and sold as a financial product
for speculation.

2. Use of DL: The prediction must be made using DL. The classification can be
done, for example, by categorizing a price matrix with a buy signal (go long) or a
sell signal (go short). Regression is used to predict single price data points in the
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Figure 2: Type of financial and banking applications in DL. Based on Huang 2020 [40] and updated
with Investopedia [25].

future, multiple step forward price data points, or price ranges. Figure 3 shows a
taxonomy of the main DL methods used to quantify uncertainty in the forecast of
financial time series.

3. Use of UQ methods: The methods used must fall within the UQ domain. Even
the unintentional use of UQ methods has been considered and added to the survey.
Based on the work of Abdar et al. [3], a list of UQ methods has been adapted as
the main criteria to include an article. These are listed and described in Section 3,
divided by type of techniques.

Some studies, even predicting economic time series, have been rejected because the
data does not correspond to a financial asset. For example, Mishra and Ayyub [76]
use a long short-term memory (LSTM) of Montecarlo (MC) churn to predict the net
state domestic product, which is not noisy enough compared to financial markets to be
included in this survey.

Other studies focused on portfolio management have been excluded because they do
not solve a value prediction problem. Instead, they are working out an asset classification
or a ranking. Sometimes the portfolio management problem can classify the behaviour
of the value curve in the past, but it does not predict the behaviour of the asset value in
the future. An example of this can be seen in the article by Park et al. [82]. However, it
does not mean that the portfolio management is excluded from this survey. In the case
of the paper by Lin and Blum [59], the portfolio management problem includes a time
series prediction with UQ, so it is considered in the study.

Some keywords may cause confusion when meeting the inclusion criteria. For example,
when searching for the terms regularization, stock price prediction, and DL, some studies
were initially included in the selection because they have both in the title or abstract.
However, they were discarded after reading the abstract and realizing that they do not
use UQ techniques. Wu et al. [114] use DL for stock price prediction; however, the
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term regularization is not used as a synonym for dropout in neural networks, but rather
as a way to restrict the decision tree. Similar cases can be found in other articles [91,
117]. In addition, when searching for neural networks Bayesian neural networks in price
prediction, a few other studies related to Bayesian Networks were added. However, those
are not deep neural networks, but just networks, and therefore discarded after screening
[11, 55, 74, 100, 115, 127, 128]. It was necessary to include the broader term network
instead of the exact term neural network because some authors, possibly prompted by
the (not so) obvious use the former to refer to the latter [112].

Other studies, such as the one by Alarab et al. [6], use MC-dropout DL for valid/invalid
classification of Bitcoin transactions and the publication was dropped because it does not
include a regression problem, Bitcoin future value prediction, trend, not a purchase/sale
classification problem. On the other hand, only studies in English have been included.
Therefore, works in other languages have been discarded [52, 60]. Additionally, an article
by Liu and Wang [63] was removed from selected records because the single-point price
prediction was made considering not only past data, but also future data. This publica-
tion was discarded as it is not a price prediction as future data in real world scenarios
will never be available.

Variational autoencoder (VAE) is a widely used method for generating synthetic and
resampling data sets on financial time series. All studies that do not directly use VAE for
the prediction of the next value or trade have been excluded from this survey [15, 21, 97].

2.2. Search strategy

We use Scopus and Google Scholar as the main search engines in the databases.
The search strings were refined until we found the most appropriate records. We chose
Scopus because it is a widely recognized automatic database that shows quality results.
However, the number of records chosen for selection after refinement was only 171, too
low a number for our purposes. That is why we decided to use a more general search
engine such as Google Scholar, in which we could add 251 more records to sift through.
Due to the low initial number of records found, we decided not to narrow the range of
dates. As long as a study met the requirements described in Section 2.1, it was included
without date restriction. In this way, the total time range covered by this review goes
from 2001 to 2022. In total, considering both the database and the search engine, we
found 15,295 raw records. After refinement and removal of duplicates, 422 records were
reviewed, 156 were evaluated, and 69 were added to the study. Google Scholar shows
large numbers for some searches and the search was limited to the first 10 pages displayed
as these are considered the most relevant. Table 1 shows a summary of the number of
records found, sorted by database/search engine.

2.3. Study selection process

The main idea behind this survey is to bring together all the studies that directly rep-
resent or use uncertainty within the architecture of neural networks applied to financial
time series forecasting. With this idea in mind, the search queries have been designed.
A record was chosen for screening only if its title and abstract represent the aim of the
study, being rejected otherwise. The selection process involves extensive reading and
gathering additional information to understand the article. If the work did not meet the
selection criteria, it was rejected. Throughout this process, the selection criteria were
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Table 1: Search queries in two different sources.

Search Query Scopus  Google Scholar

(”Bayesian neural network”) AND (”stock”) OR (”forex”) OR 24 2730
(" foreign exchange”) OR (”cryptocurrency”) OR (”bitcoin”)
OR (”financial”)

(”uncertainty quantification”) AND ("forex”) OR (”foreign ex- 14 45300
change”) OR ("crypto*”) OR (”bitcoin”) OR ("stock”) OR (" fi-
nanc*”) AND ("deep”) OR (”neural network*”)

("dropout”) AND ("neural network”) AND (”stock”) OR 23 37600
(" crypto*”) OR (”financ*”) AND (”prediction”)

("markov chain montecarlo”) OR ("MCMC”) AND (”neural 4 19300
network”) AND (”stock”) OR (”crypto*”) OR (”financ*”) AND
(” prediction”)

("variational inference”) AND (”neural network”) AND 4 8040
("stock”) OR ("crypto*”) OR (”financ*”) AND (”prediction”)

(”Bayesian active learning”) AND (”bitcoin”) OR (”crypto™*”) 0 5

OR (’financ*”) OR ("stock”) OR (”?Forex”) OR (”foreign ex-

change”)

("bayes by backprop”) AND (”bitcoin”) OR ("crypto*”) OR 0 4

(”financ®”) OR (”stock”) OR (”Forex”) OR ("foreign ex-

change”)

(?variational autoencoder*”) AND (”bitcoin”) OR (”crypto*”) 53 208
OR ("financ*”) OR (”stock”) OR ("Forex”) OR (”foreign ex-

change”)

("deep gaussian”) AND (”bitcoin”) OR ("crypto*”) OR (”fi- 1 28
nanc*”) OR (”stock”) OR ("Forex”) OR (”foreign exchange”)

("laplace approximation®*”) AND (”bitcoin”) OR ("crypto*”) 46 49
OR ("financ*”) OR (”stock”) OR (”Forex”) OR (”foreign ex-

change”)

(”deep ensemble®”) OR (’deep Bayesian ensemble*”) OR 16 46
(”Bayesian ensemble*”) OR (”Bayesian deep ensemble*”) AND

("bitcoin”) OR (Ycrypto*”) OR (”financ*”) OR ("stock”) OR

(?Forex”) OR (”foreign exchange”)

refined to ensure that all articles met the objectives set in the study. Figure 4 shows a
summary of the results of the search and selection process.
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Identification of studies via databases

Records identified from: N (“Records removed before screening: 2
Scopus (n=185) Duplicate records removed (n=23)
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Total (n=15295) Total (n=26)
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Reason 2: Bayesian network not Bayesian
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Total studies included in review
(n=69)

Figure 4: Results of the search and selection process, from the number of records identified in the search
to the number of studies included in the survey.

3. Definitions, terminology and techniques

In this section, we will present the main techniques used in the literature for a proba-
bilistic approach to time series forecasting, providing a brief description of each of them
and some definitions. Following the proposal of Gordon Wilson and Izmailov [113], we
will not differentiate between Bayesian and non-Bayesian methods to approximate the
exact posterior distribution, since some of the non-Bayesian methods approximate the
integral even better than the Bayesian ones. Figure 3 has been included to shed light on
the main techniques that can be found in the literature.

3.1. Bayesian neural networks (BNN)

For a financial time series D = {X,Y} = {(z;,;)}) is a training data set with
historical price inputs z; € R and labelled price outputs y; € R. From a frequentist point
of view, a neural network tries to represent future values of a function y = ®y(z), given
that it learned the behaviour of ® in the past. Let f and [ be a nonlinear transformation
(activation function) and a linear transformation, respectively. Then, in the simplest
architecture of a neural network, [; is applied to W; in each hidden layer:

lo =, (1)
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A stochastic neural network is a specific type of artificial neural network (ANN)
in which the activation function is stochastic or the weights are stochastic. Stochastic
means that those values are not single, but a set of values that make up a probability
distribution [126]. A BNN would then be a stochastic neural network trained using
Bayesian inference [49]. Given a traditional ANN, learning is the process of regressing
a set of parameters § = (W, b) from the training data D, where D = (x,y) consists of a
vector of input data values x and their corresponding values y, W is a weight matrix and b
is a bias vector. From the set of parameters 6, the training process consists of optimizing
a cost function, or from a probabilistic point of view, a maximum likelihood estimate,
to achieve é, a set of parameters where W and b are unique and optimal. The above is
the description of a frequentist approach to DL. Viewed from another perspective, the
probabilistic (Bayesian) approach states:

0 ~ p(0) (4)

y=®g(x)+e (5)

where p(6) is the prior probability associated to all possible models § that explain y as
an approximation to the real, but unknown function ®4(z), being € the representation
of random noise added to the previous function.

In summary, the above means that the goal here is not to find an exact set of pa-
rameters 6, but a probability distribution p(6) given that we know D, i.e. the posterior
probability p(6|D). Applying the Bayesian rule and enforcing the independence between
the model parameters and the inputs, it can be affirmed that:

p(aiD) _ p(Dle:m?)p(el) , (6)
Jo p(Dy| Dy, 0")p(6")d0
where p(D,|D,,0) is the likelihood, [, p(Dy|D,, 0" )p(6")d6’ refers to evidence, and p(6)
denotes the prior probability.

Instead of using backpropagation over past data as in ANN, BNN learns the probabil-
ity distribution of the weights by approximating the posterior [49]. However, in practice,
the evidence is computationally expensive and is never calculated analytically. Instead, it
is approximated by methods such as Markov chain Monte Carlo or variational inference
which are described later.

3.2. Montecarlo dropout

Montecarlo dropout consists of randomly disconnecting different pairs of neurons
during backpropagation for training and testing. This prevents overfitting and approxi-
mates the posterior probability described above. In fact, Gal and Ghahramani [23] state
that a neural network with arbitrary depth, without nonlinearities, and with a dropout
approximates Bayesian posterior probability. The objective function that uses the Lo
regularization is defined as:
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MC dropout has the advantage of low computational cost and simplicity; although,
to mention one drawback, this technique needs others to complement it, since by itself
it cannot capture the uncertainty of the data [94].

3.3. Markov chain Montecarlo (MCMC)

MCMC is a set of algorithms for sampling from a probability distribution. The
objective is to approximate the unknown distribution of weights of a neural network
corresponding to the posterior probability p(w). The intuition behind MCMC is that a
different but known distribution f(z) can be built using a stationary Markov chain such
that p(w) can be sampled from f(x), where [Sp, S;] is the burn-in initial sequence of the
Markov chain and [S;41,Sy] is the final stationary sequence of the Markov chain for a
Markov chain of length n. Usually, f(x) is chosen as an easy or convenient distribution,
such as a normal or binomial distribution. If the chosen distribution is normal, then
the MCMC method is called the Metropolis method. In a more general definition, the
sampling distribution can be convenient, different from normal, and the method in this
case is called Metropolis-Hastings [17, 49].

3.4. Variational inference (VI)

MCMC methods are effective if the size of the data sets is moderate, since they do
not scale well. For large data sets, variational inference [9] is preferred. Rather than
sampling from the exact posterior distribution, variational inference uses optimization
to search for the best performance of a family Q of approximate densities, each of which
attempts to minimize the Kullback-Liebler (KL) divergence to the exact posterior

q"(2) = arg min K L(q(2)l[p(z|x))q(z) € Q, (8)

then the posterior is approximated using the best member of the family Q, ¢*(-).
Because Q can be chosen, it should be made as flexible as possible to capture p(z|z)
closely, but not too complex to make optimization difficult. Wainwright and Jordan
[102] state that any method that uses optimization to approximate a probability density
can be called variational inference. If this rule is followed, then some other procedures
become part of the variational inference approach: expectation propagation [75], belief
propagation [121] or Laplace approximation.

3.5. Variational autoencoder

Variational Bayesian (VB), also called neural variational inference, is a way of opti-
mizing an approximation of the posterior probability, which has already been described
as analytically intractable [54]. An autoencoder (AE) is a specific type of DL model
that consists of two components, the encoder and the decoder. Figure 5 shows the basic
scheme of an autoencoder. The goal of the encoder is to map a high-dimensional input
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vector x = {x1, 3, ..., T } into a low-dimensional latent output vector z = {21, 22, ..., 2 }
using a function f such that

z=f(x) =Sp(Wz +b), (9)

where Sy is the activation function. The parameters that define the encoder are a m xn
matrix of weights w and the bias vector b € R™.

The decoder reconstructs the latent vector z back to an output vector ' = {z, x4, ..., 2/, }
using a function g such that

2 = g(2) = Sy(W'z + ), (10)

where S, is the activation function of the decoder. The decoder parameters are defined
by a n x m matrix of weights and a bias vector ¥’ € R™. The training objective of the
autoencoder is to minimize the reconstruction error between = and 2’ [123]. In this way,
a learning representation for a high-dimensional distribution can be converted into a
simpler variational inference problem [29]. Given a sample space defined by a variable x
and a latent sample space given by a latent variable z, then the probability distribution
Py(x) can be written as

mm=/mmmmy (11)

The evidence lower bound is defined as

log po() = By, ., logpe(z]2)] — Drr(gs(2|2)||p(2)), (12)

where g4 (z|x) is the encoder, pg(z|z) is the decoder, ¢ and 6 are their respective param-
eters and Dy, is the Kullback-Liebler divergence.

3.6. Bayesian active learning (BAL)

Active learning methods can be understood as a mechanism to improve the way
models are trained. The active learning algorithm decides which data values are most
relevant, and as a consequence, it can be used when there is a large amount of data to
reduce the computation time for training [95]. If we now recall the Bayesian approach,
we have a large amount of data in a probability distribution that describes the posterior
to model the uncertainty of the weights. However, not all data points within the distri-
bution provide the greatest amount of information. Then we can let the active learning
mechanism decide about which points the model has more uncertainty and choose them.
Then, an oracle (as the standard literature calls it), provides the label to the chosen and
most uncertain data points [24]. In our finance case, since it is a regression problem, the
labels are numbers. Also in a buy/sell approach, the regression becomes a classification
problem where the labels are buy, sell, or hold. As we will see in the following sections,
to the best of our knowledge, there are still no publications that apply Bayesian active
learning to a financial problem as defined in this survey.
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Figure 5: Basic architecture of autoencoders.

3.7. Bayes by backprop (BBB)

The idea behind Bayes by backprop lies again in the approximation of the poste-
rior distribution defined previously in Equation 6 [10]. Once again we make use of KL
divergence of Equation 8, but we experience another intractability given by the integral

qo(w|D)
KLlao(w|D)|p(wlD)] = [ ao(wlD)iog ™ dw, (13)
p(w|D)
which brings us to the evidence lower bound (Equation 12). Taking advantage of Blun-
dell’s first proposition that "under certain conditions, the derivative of an expectation
can be expressed as the expectation of a derivative”, we are generalizing the Gaussian
reparameterization trick [80]. To turn intractability into something treatable, we follow
the steps

sample from € ~ N(0,1) (14)
and set © as

O=w=p+o-€ (15)

where g is the mean and o is the standard deviation of the Gaussian distribution. Finally,
one can calculate the unbiased MC-gradients w.r.t © and o for the expected loss and
optimize the variational parameters according to
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3.8. Deep Gaussian processes (DGP)

The uncertainty in DL can be expressed based on the existence of infinite possible
models that explain an observed data pattern. In defining BNN in Section 3.1, it has been
said that uncertainty can be modelled around a series of neural network weights w via
the prior p(w) to arrive at a definition of the posterior p(y|w). This Bayesian perspective
implies that a restriction is applied on the infinite parameters w that a neural network
can take to explain the observed data, and that leads to Equation 6. Let us consider
another approach to define a Gaussian process [22]. For simplicity, consider a linear
regression

flw) =wTe(z) = f(z) +¢ (18)

where ¢ is white noise and ¢ are basis functions defining f:

o(x) = (p1(x), ... op(2)". (19)

In this simple financial regression with white noise, the observed prices are defined
as a Gaussian distribution:

p(ylw, X, A) = N(pw, \I), (20)
where ¢ is defined as
p1(r1) -+ pi(zp)
p=o@=| : .. i | (21)
¢p(x1) - ¢p(xD)

Instead of defining the prior p(w) = N(0, S) as a Gaussian with mean 0 and covariance
S, let us define a latent function f = ¢w such that

p(f) =N(0,K) (22)

is Gaussian and

K = cov(f) = E[puww’¢"] = ¢S¢" . (23)

Instead of defining the group of base functions ¢, one can choose K = k(-,-) such
that ¢(-) is of infinite dimension. In this case, f can be defined as a Gaussian process

(GP):
f(x) ~ GP(m(x), k(z,x"))Vr, 2/, (24)

where m(z) is the mean of f
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m(z) = E[f(z)] (25)

and k(z,z’) is a kernel function

k(w, ') = B[(f(z) = m(x))(f(2') = m(z))]- (26)
For example, k can be chosen to be defined as follows (Gaussian kernel) to make ¢
infinite-dimensional:

!
_lz—a]|2

k(z,2') =€ 2% . (27)
3.9. Laplace approzimations (LA)

The Laplace approximation uses the first-order Taylor series to fit a Gaussian distri-
bution around the maximum a posteriori as the centre, defined as 0*, to approximate
the posterior distribution.

* 1 *
p(01D) ~ p(8" )exp[5 (6 — 0 )] (28)
3.10. Deep ensembles

There are two types of deep ensembles: one consists of retraining the same DL model
several times with different initial conditions and then taking the average of all these di-
verse behaviours [113]. These are called boosting methods and are adjusted sequentially.
The second type of deep ensembles is called randomization-based because they use some
scheme based on decision trees, for example, random forests. As a result of both ap-
proaches, one has a committee of models that hopefully focuses on different basins of the
true posterior that represent the entire distribution through sampling. As the number
of samples increases, the group of models collapses into a single model [57].

4. Results

4.1. Study categorization

In this section all the studies included in the survey are reported. The order presented
in Table 2 is the same in which the studies were found and therefore included. The records
have been divided into the five categories that have been considered most significant:
model, type of asset, analysis method, prediction space and epistemic/aleatory. The model
category includes the type of DL models used to represent uncertainty. They must fall
into at least one of the categories described in Section 2.1.

The type of asset indicates which category the asset belongs to: stocks, Forex, or
cryptocurrencies. A stock is also called equity and represents a small portion of ownership
in a company. Forex is the abbreviated name for the foreign exchange market, where
investors trade currencies. A similar concept is that of cryptocurrency, with the difference
that it is virtual currencies secured by cryptography and impossible to counterfeit.

The analysis method comprises the subcategories fundamental, technical and senti-
ment. Investors perform fundamental analysis if they only look at economic and financial
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factors to estimate the value of an asset. Examples of fundamental factors are company
balance sheets, gross domestic product, unemployment rate, politics or business man-
agement style. Technical analysis means estimating the future value of an asset solely
by looking at past values or patterns of values. Sentiment analysis focuses on extracting
information from the investor’s will, expressed through text such as news, articles, social
networks and blogs. With Natural Language Processing, sentiment analysis is gaining
popularity and is being used more often in investments. These three analysis methods
can be used alone or in combination.

The prediction space is the shape and characteristics of the output variable of the DL
technique. If the output variable is just a value, then the space is a single-step prediction,
and a multi-step prediction if the output variable is a vector of values. Furthermore, the
prediction space can be positive, negative and neutral if the predictor output considers
a rise, fall or stay in price. An even more interesting space from a UQ perspective are
confidence intervals, associated with the probability that the variable of prediction is
within the predicted range.

The category most associated with the definition of UQ is epistemic/aleatory. The
uncertainty related to the DL model is called epistemic, that is, the variability in the data
associated with the many different configurations that a model could take. You could
choose a DL model with three, four, or ten hidden layers for the same data. Furthermore,
the width of each layer can vary, or even the matrix of weights in a neural network can
take an infinite number of different configurations. All this uncertainty makes the output
variable more or less accurate. Epistemic uncertainty can be adjusted to become smaller
(i.e. by narrowing the price probability distribution) if a better model can be found.
By contrast, aleatory uncertainty is related to the intrinsic volatility of the data and is
irreducible, which means that financial data always comes with noise. And by default,
the noise level in the price of assets is high. This definition of randomness in the data
expresses the concept of a latent price curve that the model can never know about, except
through noise distorting its pure form. Interestingly, the idea of a pure price pattern that
will never be known directly contradicts the Efficient Market theory.

Table 2: Studies included in the survey.

Ref. Model Asset  Analysis  Prediction Uncertainty

[16] BNN CRY T SS EPI

[28]  Bayesian regular- STO T U EPI
ized NN

13 BNN + MCMC STO T MVMS EPI

[48]  Stochastic ANN + CRY T.,S SS EPI
LSTM

[88]  Hybrid model BST STO T,S TR ALE
+ LSTM

[86] NARX BRANN STO T SVMS EPI

[39]  Bayesian LSTM STO T SS ALE

[70)  dropout Bayesian STO T SS EPI
CNN

Continued on next page
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Table 2 — Continued from previous page

Ref. Model Asset  Analysis  Prediction Uncertainty

[101] Levenberg- STO T SS EPI
Marquardt
BRANN

[84] BNN + ARD and STO T ss EPI
BNN + HMC

(7] SVDBNN STO T B/S EPI

[106] SSA-EWSVM- STO T CONF EPI
RNN-GPR DE

[107] VMD-AE-RNN-  STO T CONF EPI
LSTM DE

[72]  Dropout CNN STO T TR EPI

[81] RBF, BNN and FOR T SVMS EPI
ARIMA DE

38) BRANN STO T MVMS EPI

[47] GBNN STO T SVMS EPI

[125] Dropout CNN STO T B/S EPI

35]° BRANN FOR T B/S EPI

[53]  Variational Au- FOR T CONF EPI
toencoders

93] BRANN STO T U EPI

[103] Interval adapted STO T SVMS, CONF  ALE
LSTM AE

[12) MC Dropout MLP STO T SS EPI

8] Dropout MLP STO T ss EPI

[5) BRANN with STO T ss EPI
NARX

[122] BRANN STO T ss EPI

2717 BRANN STO T ss EPI

[09] BRANN STO T sS EPI

[87] BRANN CRY T U EPI

7" CAED-TCN STO T MSMV, CONF  EPI

[73] Backprop BRANN STO T TR EPI

[98] MCMC BRANN STO T TR EPI

[108] VAE STO T ss EPI

[31]  Attention  based STO T TR EPI
VAE-LSTM

377 VAE-GCN-LSTM  STO T SS, TR EPI

[112] MDN STO T ss ALE

[14] MC Dropout STO T, F CONF EPI
LSTM

[96) Noise quantifica- STO T SS ALE
tion MLP

[111] MDN STO T,S CONF ALE
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Table 2 — Continued from previous page

Ref. Model Asset  Analysis  Prediction Uncertainty

[16) LSTM + MC CRY T,S S EPI
Dropout

[61] BRANN via Varia- STO T TR EPI
tional Inference

[118] VAE STO T TR EPI

26] VAE CRY T,S TR EPI

[116] VAE RNN STO T,8S SS ALE

[34] VAE + VI Neural STO T,S SS EPI
Network

[19) BNN CRY T SS EPI

[59) BNN CRY T SVMS EPI

[20]  recurrent BNN STO T MVMS EPI

[119] BNN STO T SS EPI

[50]  Stochastic ANN CRY T,S SS, B/S EPI

[65]  dropout RNN CRY T SS EPI

[83]  dropout ANN STO T SS EPI

[89]  Dropout LSTM STO T SS EPI

[64]  Dropout LSTM STO T SS EPI

[124] Dropout CNN+ CRY T SS EPI
LSTM

[78]  Dropout LSTM STO T SS EPI

[110] Dropout LSTM STO T SS EPI

[42)  Dropout MLP STO S SVMS EPI

[43]  Dropout MLP STO 8 SVMS EPI

[66] NSVM (VI) STO T SS EPI

[18] VAE-LSTM with STO T MSMV ALE
dropout

[58]  dropout VAE-GRU FUT T SS ALE

[4]  VAE-LSTM STO T SVMS ALE

[77] PAE-XNMF STO T SS ALE

[109] Heteroskedastic STO T U EPI
DGP

[104] BPNN, LSTM, STO T CONF EPI
GPR, Lasso, BIL-
STM ensembles

[105] Deep ensembles FUT T SS EPI
LigthGBM

[120] A2C, DDPG, PPO STO T B/S EPI
ensembles

[51] RNN, GRU, LSTM IND T SS EPI
ensembles
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Table 2 — Continued from previous page

Ref. Model Asset  Analysis  Prediction Uncertainty
T: technical analysis S: sentiment analysis F: fundamental analy-
sis CRY: cryptocurrencies STO: Stock market FOR: Forex market
FUT: Futures market IND: indexes market SS: Single step predic-
tion MVMS: Multi-value multi-step ahead prediction SVMS: Sin-
gle value multi-step ahead prediction CONF: Confidence interval
B/S: buy, sell or hold signals TR: up, down or stay trends ALE:
aleatory uncertainty analysis EPI: epistemic uncertainty analysis
U: unspecified

4.1.1. Records focused on aleatory uncertainty

Ray et al. [88] applied MCMC to sample the posterior distribution of forecast prices in
a hybrid LSTM model with Bayesian structural time series (LSTM-BST). The authors
included a sentiment analysis on Twitter and applied a confidence interval that they
averaged to show the most likely value for the next price. Huang et al. [39] implemented
a Bayes-LSTM model, where Bayes optimization was used for the dynamic selection of
the window size. This work can be considered as a particular case of UQ, in which there
is a probability distribution of ways in which the input data can be divided. Thus, the
authors recover the optimal division of the most probable value. One can think of that
model as an ensemble of different models with different prediction capabilities. However,
in this case, the authors only focus on the optimal value and not a confidence interval.
This is an interesting case of aleatory uncertainty analysis, because the historical window
used for the prediction is dynamic and depends on the variance and changing periods of
the highly volatile stock market.

In the work of Wang et al. [103], it is stated that the quantification methods of
uncertainty in DL have some limitations. Instead, an approach that does not require a
prior assumption is proposed, a hybrid loss function is proposed that improves accuracy
and stability, and finally, training is done using backpropagation. As a result, although
the model provides a confidence interval, it does not require probability distributions
and is easier to train. The uncertainty range in this case is derived directly from the
volatility of the data, rather than from the probabilistic variations of the model hy-
perparameters. Wilkins et al. [112] uses mixture density networks (MDN) to explicitly
quantify uncertainty in large and complex data sets. The model is claimed to be superior
in performance to probabilistic backpropagation, MC dropout, and deep ensembles. It
directly addresses aleatory uncertainty by applying softplus to predict the current stan-
dard deviation and a regressor network to predict the mean. Another work by the same
authors [111], infinite mixture density networks (iMDN) and Gaussian networks (GN)
are implemented to predict both the price and the uncertainty of various actions. The
authors state that these methods outperform the reference methods. In a similar way to
the previous paper, the work captures the aleatory uncertainty through the regression of
the mean and the standard deviation using iMDN.

Shen and Song [96] proposed a way to directly quantify noise in data sets in which a
neural network classifies the amount of noise. That amount is then passed as a multiplier
to the loss function to linearly ignore noise-bound data and pay attention to clean data.
The authors claim a 5% increase in annual returns when investing in the stock market.
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The framework proposed in the article by Choudhury et al. [18] implements a regularized
VAE dropout framework to remove noise and a stacked LSTM autoencoder to predict
the next step stock price. Li et al. [58] established a multi-modal VAE approach to
extract high-level deep structures from unsupervised futures price data.

4.1.2. Records focused on epistemic uncertainty

Jay et al. citeJAY-2020 described how to implement a stochastic LSTM in which
activation functions are applied with a stochastic mechanism, instead of the traditional
probabilistic weight matrix approach. This is done because the probabilistic activation
strategy can be interpreted as random changes in features. On the contrary, the authors
state that the probabilistic weights strategy might not be ideal because feature detection
can become noisy as the network evolves and this can cause dependencies to be forgot-
ten. Jang and Lee [46] modelled a cross-validated Bayesian regularized neural network
(BRANN) to predict the next step of Bitcoin, using Blockchain structures as extracted
features. It also includes the quantification of logarithmic volatility, stating that the
predictive performance of BRANN is superior to other reference methods.

To the best of our knowledge, the article by Gengay and Qi [28] is the first work that
explicitly describes the BRANN mechanism and explains its ideas in depth. It is based
on the work of Mackay in 1992 [68] although he called the methodology Bayesian inter-
polation. Gengay and QI applied a BRANN model to the S&P 500 index and compared
the model with other regularization methods, such as early stopping and bagging, and
concluded that bagging presents more accurate results.

Chandra [13] made explicit use of UQ methods to predict the price five steps ahead
with a 95% confidence interval. He implemented Langevin gradients with parallel tem-
pering MCMC and compared the results with a forward NN with Adam’s optimizer and
stochastic gradient descent. In the article by Primasiwi et al. [86], a non-linear autore-
gression with exogenous input (NARX) version of a BRANN was used to predict stock
prices, indicating that the NARX model is more accurate than the multi-layer percep-
tron (MLP). Maeda et al. [70] tested a Bayesian convolutional neural network (CNN)
that uses variational dropout as a method to perform Bayesian inference against other
non-Bayesian CNN and demonstrates better accuracy and higher final capital. Ticknor
[101] combined a BRANN model with a Levenberg-Marquardt algorithm to forecast the
movement of stock prices, although its goal was to reduce the potential for overfitting
and find local minima.

Pires and Marwala [84] also attempted to reduce the overfitting problem (without
uncertainty quantification search) when they implemented a Bayesian neural network to
predict upcoming stock market prices and sample the subsequent one with automatic
relevance determination (ARD) and hybrid Monte Carlo (HMC). However, Maeda et
al. [71] made conscious use of predictive uncertainty when using variational decay as a
Bayesian approximation and optimizing BNN parameters with stochastic gradient varia-
tional Bayesian to make buy/sell decisions. Wang et al. [106] proposed a deep nonlinear
ensemble framework for stock index forecasting and Gaussian regression (GPR) process
to obtain interval forecasting. In a subsequent work [107], the same authors build a
multi-scale ensemble model based on a LSTM neural network again using GPR for the
construction of confidence intervals.

Maeda et al. [72] proposed a Bayesian CNN method to predict short-term stock price
trends using stock order data. They used a CNN to learn the series characteristics of the
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stock order data and a sparse variational dropout technique to enable Bayesian inference
(SVDBNN). Instead of the traditional one-step spatial prediction, they apply a trend
classification approach (ascending/descending classifications). The app has been trading
on the Tokyo Stock Exchange and has proven more efficient and safer investments than
alternatives.

Pandey and Jagadev [81] described a deep ensemble system consisting of a nonlin-
ear parallel combination of several neural networks, each of which predicts the rate of
change. The combination of the three models provides better results than each one sep-
arately. Housein et al. [38] compared the performance of three autoregressive nonlinear
NNs trained using Bayesian regularization, stochastic gradient descent, and Levenberg-
Marquardt training mechanisms. Jang and Lee [47] created a generative Bayesian neural
network to overcome the problem of traditional BNN that does not consistently estimate
price at the extremes of time series due to missing data in those regions. Zhang et al.
[125] explained the implementation of a hybrid model made of a CNN to filter limit
order books, another CNN to capture non-linear price patterns, and an LSTM module
to capture long-term patterns. Variational dropout applies to approximate Bayesian
inference.

Hassanniakalager et al. [35] implemented a BRANN to make buy /sell/hold decisions
based on Forex price data. They discovered that the Bayesian application increases
yields 5% more than other reference techniques. Kim [53] used VAE to obtain noise-free
series from original series to train deep neural networks. In the study, a collaborative
learning approach is taken to design confidence bands from which to extract the mean and
standard deviation. Selvamuthu et al. [93] He disassembled a BRANN and compared
its accuracy with other training mechanisms such as Levenberg-Marquardt and Scale
Conjugate Gradient. BRANN provides the most accurate results. Calvo-Pardo et al.
[12] conducted a literature review on machine learning for empirical finance, presenting
some examples of BRANN models to reduce overfitting.

Back and Keith [8] studied uncertainty estimates given by a Bayesian framework,
represented by Monte Carlo dropout, variational inference, and MCMC. They compare
Bayesian with non-Bayesian methods and conclude that Bayesians generalize better.
Al-Shayea [5] compared Levenberg-Marquart, scaled conjugate gradient, and Bayesian
regularization using NARX in Dow Jones index forecasting, and concluded that the
Levenberg-Marquardt algorithm achieves the best performance. In the article by Hou
and Liu [122], the prediction of the Chinese Bao Gang was analysed using the Bayesian
regularization optimization algorithm. The goal of the Bayesian framework was to reduce
overfitting. The Bayesian framework predicted better than traditional backpropagation
algorithms.

Garg [27] applied a Bayesian neural network for gold price prediction because it
was found to be suitable for time series data and does not depend on any historical
features. However, the frame was not compared to any other model. Garg concluded
by stating that BRANN’s accuracy was very high. Similarly, Sun et al. [99] proposed a
BRNN because it can predict new data to a greater extent, compared to the traditional
backpropagated NN. Also in the work by Priya and Garg [87], the accuracy of a BRANN
model was compared with that of a Levenberg-Marquardt in the prediction of various
cryptocurrencies, showing that BRANN had a lower mean percentage error.

Alghamdi et al. [7] developed the architecture of an encoder-decoder model capable
of receiving exogenous factors with an attention mechanism. To account for uncertainty,
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the model displays the Monte Carlo dropout between each CNN layer. For each stock
price value given as input, the model predicts a thousand one-step forward forecasts.
This makes it possible to generate confidence intervals of 90% and 95%, which represent
the degree of ignorance of the model. Magris et al. MAGRIS-2022 proposed a Bayesian
version of a temporal attention augmented bilinear neural network and compared its per-
formance with non-Bayesian versions. They implement a subsequent dropout approach
via Montecarlo applied to limit order books.

Skabar [98] studied the performance of a MCMC trained through the Metropolis
Hastings algorithm and stated that it has superior performance compared to an MLP,
in addition to reduced overfitting. Wang [108] explored a daily performance prediction
model with variational autoencoders to find minimum variance portfolios. In the same
work you can find a study on the uncertainty related to the time to execute a limit order
in time, as well as the optimal stop, using VAE to make those decisions. Gunduz [31]
used VAE to choose the features that will feed an LSTM price prediction model in Borsa
Istanbul. This model was compared with Support Vector Machines and Light GBM. The
attention-based VAE-LSTM excelled in accuracy compared to the other reference models.

In the work of Hou et al. [37], the authors proposed a VAE discriminant to know the
latent characteristics of lesser dimension among the company’s actions. A later hybrid
GCN-LSTM system modeled graphical interactions between companies, as well as price
fluctuations on the timeline. Such a model outperformed other benchmark models that
predict stock prices. Chauhan et al. [14] followed an investment strategy in which current
prices are related to future fundamentals, rather than current reports. To this end, the
authors implemented uncertainty estimates from both neural heteroscedastic regressions
and a dropout-based heuristic. In Cheuque’s master’s thesis [16], the MC drop in an
LSTM model was used to predict the next Bitcoin price. The author also included
an analysis of Twitter messages as a way to predict the Bitcoin price, comparing the
accuracy of just feeding the model with price data. The conclusion was that sentiment
analysis helps drive prediction beyond time.

Lind et al. [61] used a BNN to perform explicit quantification of uncertainty. VI was
applied to train the BNN, using Bayes from backprop to do the reparameterization trick.
Xu and Cohen [118] studied a hybrid approach where they learned from price signals
and sentiment to predict the next stock price. A VAE was built as a prediction model.
Garg et al. [26] also used a VAE model to test a dataset in which Twitter messages were
related to price movements in the top 12 cryptocurrencies. Xing et al. [116] modelled
the interaction of stock market sentiment with its volatility by means of a VAE-based
recurrent neural network. Haq et al. [34] compared support vector machine (SVM),
linear regression and random forest as models to extract a feature vector of NASDAQ
parameters, and then a VAE model was implemented for next price step prediction.

Coco et al. [19] analysed the performance of a BRANN model to predict the price
of Bitcoin. The predictive distribution was sampled from a mixed distribution. The
predictive performance of BNN is inferior to that achieved by support vector regression
(SVR) + feed forward NN or SVR + LSTM NN. In the work of Lin and Blum [59],
a BRANN framework was implemented to capture future price trends, and as a result,
it was observed that it can increase the dividend yield by 43% compared to the CNN
and MLP frameworks. Dixon [20] created a recursive BNN to predict the values of IBM
stock prices in multiple steps and exponentially smoothed. The posterior distribution was
approximated by variational inference. They demonstrated how 95% confidence intervals
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can be applied to a recurrent network by integrating them into a Bayesian framework.
Yan et al. [119] proposes a framework in which a BRANN model is coupled in a series
circuit with a particle swarm optimization (PSO) algorithm that continues to update the
weight matrix. This framework reduced the MAPE error from 0.85% to 0.77%.

Kalariya et al. [50] proposed a stochastic neural network in which stochasticity was
applied to activation functions instead of the elements of a weight matrix to predict
cryptocurrencies. They discussed some investment strategies like buy and hold, vari-
ous oscillators or Bollinger bands. Stochastic neural networks outperformed traditional
strategies. Livieris et al. [65] explored stock price prediction and claimed that using
an MC dropout-based ANN improves performance because the model explores regions
of weight spaces that traditional training algorithms do not reach. Similarly, Patel et
al. [83] discovered how a dropout regularization approach is demonstrating a positive
consistency delta of 2.11% compared to the same ANN without dropout and stochastic
gradient descent, applied to stock market forecasting.

The approach proposed by Rokhsatyazdi et al. [89] performed better than SARIMA,
ETS and NAIVE in stock market prediction using a dropout regularized LSTM model.
Liu et al. [62] explained how one can use a LSTM model whose hyperparameters are
optimized with PSO and the weights are dropout regularized to predict the next stock
price. A regularized churn hybrid CNN-LSTM model was explored to predict Bitcoin and
Ethereum, showing that it outperforms SVR, LSTM, CNN, MLP, and ARIMA, among
other models. Similarly, the articles by Naik and Mohan[78] and Wang et al. [110] anal-
ysed the performance of defection regularized LSTM models to predict the next stock
market price. Both concluded that the regularized model works better than other refer-
ence methods without regularization. Two papers [42, 43] proposed similar approaches in
which a regularized multilayer dropout perceptron predicts the next stock market price
based on company financial reports, concluding that there is a strong correlation between
abnormal returns and textual information from annual reports. returns.

The focus of Livieris’s work [66] was to reformulate time-based volatility in stochastic
neural networks. The authors call it the neural stochastic volatility model (NSVM),
which consists of a hybrid MLP + recurrent neural network (RNN) scheme in which
the RNN module finds data patterns and the MLP predicts the mean and variance
through variational inference. Abrahami et al. [4] addressed the very high frequency
trading level and created a VAE-LSTM autoencoder to denoise the data and a stacked
LSTM autoencoder to predict the next seven minute tick price of various Actions. In the
article by Montesdeoca et al. [77], the authors took a particular approach when using a
VAE model, so they used a non-negative probabilistic matrix refactoring with exogenous
information to drive the VAE in financial data modelling. Wang et al. [109] used a
deep Gaussian process to sequentially infer predictions from data by estimating states
recursively and updating the model with the feature that more complex and non-linear
dependencies can be learned compared to traditional Gaussian processes.

Wang et al. [104] focused on quantifying the price of crude oil by building confidence
intervals. To do so, a deep set made of a backpropagated NN, LSTM, GPR, and Lasso op-
erator was constructed. [105] [105] [105] was also proposed. In this work, Light GBM was
used to integrate the set into a final price result. The framework showed better accuracy
than other reference models such as MLP, LSTM, and others. Yang et al. [120] imple-
mented another deep set approach that integrates proximal policy optimization (PPO),
actor advantage critic (A2C) and deep deterministic policy gradient (DDPG) agents to
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learn equity trading strategy , which shows that the integrated model outperformed the
individual components. Finally, Kamal et al. [51] predicted the Baltic Dry index with
a deep ensemble made of GRU, LSTM and RNN models, showing that it outperforms
ARIMA, MLP, RNN, LSTM tested separately.

It is not uncommon for the studies listed in Table 2 not to explicitly describe all
the parameters that define the models they used. For example, the number of steps
predicted in the future is not always specified, as in the case of the work by Gencay and
Qi [28]. Possibly, a single-step prediction could have been inferred, but instead, and out
of caution, the "unspecified” key has been added.

Table 3 lists the journals, proceedings, and publishers of each of the records described
in Table 2. In summary, 25 studies were published as proceedings in congresses or
conferences, 42 studies in journals and 2 records as master’s thesis or Ph.D. thesis reports.

Table 3: Studies ordered by publisher, journal or conference paper.

Ref.  Journal / Conference Publisher
[46]  Access IEEE
[28]  Transactions on neural network IEEE
[13]  Plos One Public Library of science
[48]  Access IEEE
[88]  Transactions on computational social IEEE
systems
[86)  Conference ICTS 2019 IEEE
[39]  Conference ICMLC 2018 Association for Computing Ma-
chinery
[70] Conference ITAI-AAT 2019 IEEE
[101] Expert systems with applications Elsevier
[84]  Arxiv Arxiv
[71]  International Journal of Smart Com- IITAI
puting and Artificial Intelligence
[106] Cognitive Computation Springer
[107] Applied soft computing Elsevier
[72]  Conference AISC 2020 Elsevier
[81]  Journal of King Saud University - Com-  Elsevier
puter and Information Sciences
[38]  Neural computing and applications Springer
[47]  Quantitative finance Taylor and Francis Online
[125] Conference Neurips 2018 Arxiv
[35]  Journal of empirical finance Elsevier
[53]  SSRN Elsevier
[93]  Financial Innovation Springer
[103] Neurocomputing Science Direct
[12]  Journal of Risk and financial Manage- MDPI
ment
[8] Plos One Public library of science
[5] Conference WCECS 2017 TAENG

Continued on next page
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Table 3 — Continued from previous page

Ref.  Journal / Conference Publisher
[122] International Journal of Performability —Totem
Engineering
[27]  Conference NCCS 2019 Springer
[99]  Conference ISKE 2012 Springer
[87]  Conference SCI 2018 Springer
[7] Conference IJCNN 2021 IEEEXplore
[73]  Arxiv Arxiv
[98]  Advances in Electrical Engineering and ~ Springer
Computational Science
[108] Academic Commons University of Columbia
[31]  Financial Innovation Springer
[37] IEEE/CAA Journal of Automatica IEEEXplore
Sinica
[112] Arxiv Arxiv
[14]  Conference PMLR 2020 Arxiv
[96)  Conference ICAI 2018 Springer
[111] Conference PMLR 2015 JMLR
[16]  Repository Pontificia Universidad Catélica
de Chile
[61]  Repository Uppsala Universitet

[118] Conference 56th Annual Meeting of the ACL
Association for Computational Linguis-

tics
[26)]  Conference ICMLA 2021 IEEEXplore
[116] Knowledge-based systems Science Direct
[34]  Expert Systems with Applications Science Direct
[19]  Computer science PeerJ
[59]  Conference Spring Simmulation 2020 IEEEXplore
[20)  Technometricss TANDF
[119] International Journal of Production Re- TANDF
search
[50)]  Mathmatics MDPI
[65]  Evolving Systems Springer
[83]  Conference ICDAM Springer
[89]  Conference CEC 2020 IEEEXplore
[64]  Digital Signal Processing Science Direct
[124] Conference BlockSys 2022 Springer
[78]  Conference EANN 2019 Springer
[110] Conference DCABES 2018 IEEEXplore
[42]  Neural Cmputing and Applications Springer
[43]  Neural Cmputing and Applications Springer
[66] 2018 Conference AAAI 2018 Arxiv
[18]  AI Communications IOS Press
[58]  Access IEEEXplore

Continued on next page
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Figure 6: Number of publications per year related to UQ applied to business economics. Source: Web
of Science.

Table 3 — Continued from previous page

Ref.  Journal / Conference Publisher
[4] Conference ICTAI 2019 IEEEXplore
[77]  Conference ISPA 2019 IEEEXplore
[109] Conference PMLR 2016 JMLR

[104] Applied Soft Computing Journal Elsevier
[105] Digital Signal Processing Elsevier
[120] Conference ICONIP 2020 Elsevier

[51]  Applied Sciences MDPI

5. Discussion

In this section, the results related to the research questions formulated in Section 2
are discussed.

What is the state of the art related to the research in UQ for DL applied
to finance?

As can be seen in Figure 6, the number of publications related to UQ applied to
business economics has been growing very significantly since 2010. The peak can be
found in 2019, with 389 publications. Despite this huge increase, the popularity of the
term as applied to economics appears to have declined since then, possibly due to a
migration of research to more popular areas such as medicine, microbiology, or infectious
diseases after the global Covid-19 pandemic. This effect has been seen on the Web of
Science looking for those other topics: the number of investigations in those other areas
has grown considerably since then. In fact, the term UQ), applied to all possible domains,
continues to increase in popularity reaching 2578 publications in 2021 (see Figure 1).

China, the USA and India are the three countries that publish the most papers on
the subject, with 16, 12 and 10 articles, respectively. Figure 7 shows the complete list of
countries and their respective number of publications. On the other hand, there seems
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Figure 7: Number of publications by country.

to be a preference for stock price prediction, as can be seen in Figure 8; this effect may
also be influenced by the specific existence of the keyword stock in search queries.

Furthermore, it can be seen in Table 2 how researchers focus mainly on epistemic
uncertainty (57 records), and only 12 are based on aleatory uncertainty. No records
have been found that explicitly use epistemic and aleatory uncertainty in combination.
As summarized in Figure 9, a large portion of the records (57) look for patterns in
historical data (technical analysis), seven combine a technical and sentiment analysis
approach, three of them only a sentiment analysis and two mix a technical and funda-
mental approach. The authors of this survey did not find any papers that use all three
methodologies, technical, sentiment and fundamental at the same time, and this could
inspire researchers to explore this avenue in the future.

Something that could potentially come as a priori surprise is that most of the articles
focus on a one-step approach (Figure 10), although they use UQ methods to predict, and
can take advantage of interval prediction spatial representations. Authors are already
benefiting from more informationally efficient models, i.e. UQ methods, over frequentists,
and have a distribution of information at hand, rather than a single point. One might
wonder why the authors settle for a mean value instead of using a more robust prediction
space, since they have already computed the space. In other words: why use optimization
methods after finding the uncertainty space? There are possibly many answers to those
questions. First of all, some authors, as we discussed earlier, are not intentionally using
UQ methods, but using UQ as a way to generalize, as in the case of dropout. Another
reason could be that not many authors use confidence intervals in the prediction (only
eight), which restricts the number of records to compare their work. In any case, it
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appears that interval forecasting is hardly explored in financial time series and could be
another potential avenue of investigation for future work.

What are the main UQ techniques in DL used so far for financial predic-
tion?

The main techniques of UQ in DL have been described in Section 3: Bayesian neural
networks and some associated methods to approximate the true posterior, i.e. Monte-
carlo dropout or Markov Chain Montecarlo or variational inference. Also variational
autoencoders, Bayesian active learning, Bayes by backprop, deep Gaussian processes,
Laplace approximation or deep ensembles. We have seen that Bayesian active learning
and Bayes by backprop have not been sufficiently explored and no records of these have
been found, which may be an interesting field for future research.

What needs in financial forecasting are not yet covered in UQ for DL?

The initial hypothesis that triggered the idea of carrying out this work is that finan-
cial investment needs information (the most probable future value) and quantifying the
variance related to that information to minimize risk. If the variance is wide and the
probability distribution is flat, then the most likely future price is not really valuable.
In these situations, an investor should decide to hold trades until the variance is low
and the probability distribution is thinner. A similar situation would be found if the
predictive probability distribution were modal, which is synonymous with having peaks
and valleys. The investor would probably be confused and not know what decision to
make. The authors of this work believe that further research is needed to understand
the implications of the shape of the variance in order to relate the shapes to investment
decisions and profit.

An overwhelming majority of studies focus on the prediction of the single next step (34
out of 69). Although this approach might make sense on a large time scale, such as weeks
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or months, it does not represent actual needs of investment. As stated earlier, financial
time series have a strong component of noise, so predicting a single next point does
not add much value if the delta price is less than the variance, because all it represents
is noise. A more valuable approach would be to predict a trend or even represent a
vector of future values from which to infer a trend. However, only eight articles predict
trends and five work with multi-valued prediction vectors. A better approach would be
to relate buy/sell /hold positions to UQ. Although four studies focus on the buy/sell/hold
approach, none see a clear relationship with UQ. Consequently, we believe that there are
many opportunities to extend the work related to the prediction vector.

A good investor considers all three sources of information available: technical, fun-
damental, and sentiment. This survey has shown how researchers are highly attracted
to technical analysis (57 records relate to purely technical approaches), but not so much
to sentiment or fundamentals (see figure 9). Only two publications use the fundamental
approach, combined with the technical one. Ten records focus on sentiment analysis
combined with a technical approach. Here we find an interesting research opportunity,
combining different UQ methods, one for each of the three approaches. Some questions
remain for this future research, such as what is the optimal weight of each approach in
the final prediction and under what conditions or applied to what assets.

The foreign exchange market is by far the largest investment market, the volume of
which is 700 billion US dollars per day. This is compared and contrasted with smaller
markets such as stocks (200 billion US dollars) or futures (30 billion US dollars) [45].
However, only three records related to the prediction of international currencies have
been found. The Forex market offers some advantages in some areas, such as the amount
of time that the Forex market is open for trading. From the Monday open in Australia to
the Friday close in New York, there are five days of uninterrupted trading 24 hours a day.
That positively impacts the amount of data available. Also, there are no commissions
and transaction costs are low. Due to the size of the market, it is always liquid and
trades are executed instantly [2]. This market is less popular for researchers, but shows
potential for further investigation.

Epistemic uncertainty is related to the lack of knowledge in the model. The studies
found focus on the variability related to the weights of the neural networks, but other
parameters could also be brought to light in the evaluation. A researcher is deciding, as
empirically as possible, the architecture of the network, but that decision is leaving aside
other possible configurations that are part of the epistemic uncertainty. Gengay [28]
considers exactly this aspect when studying different network architecture configurations
and potentially more could be carried out in future studies, possibly varying the length
and width of the neural network, choosing different activation functions, different training
iterations or batches.

One of the most important aspects that the authors of this work have identified is that
all studies are based on a limited amount of data and are trained accordingly, although
real-world and professional settings use up-to-date transmission models throughout their
operation. Real models continually adapt training parameters to new and unseen data,
which certainly has an impact on scaling the training data. Possible research on streaming
data could explore an unsupervised approach to price prediction.

Shen and Song in their article [96] say that ”too many studies focus on model uncer-
tainty, but too few focus on data uncertainty”. The typical study that includes uncer-
tainty in the prediction mixes both types of uncertainty in such a way that they cannot
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be differentiated. Hiillermeier [44] describes this as a necessary discrimination between
a predicted probability score and its related prediction uncertainty. One, for example,
can be very sure that tomorrow it will not rain with a 10% probability, but very unsure
that the probability of rain next week is 50%. This uncertainty comes from a lack of
knowledge, the opposite of the probability confidence interval that comes from noise in
the data. Indeed, future studies may further explore the combination of epistemic and
aleatory uncertainty.

What technical challenges remain in financial forecasting using UQ for
DL?

The technical challenge most mentioned by almost all authors is to achieve valuable
predictions, considering that the data available in financial time series are extremely
noisy, non-stationary, have a poor signal-to-noise ratio, and are especially sensitive to
external and not completely known factors [7, 39, 70, 71, 103, 106, 118]. Magris et
al. [73] considers that the inability of DL methods to cope with uncertainties in finan-
cial applications is a major drawback and major concern in econometrics. Due to this
dynamic behaviour, the authors believe that the point estimate is not optimal for pre-
dicting financial time series. Instead, UQ is a much better approach to trend forecasting,
offering plenty of opportunity to explore further. Wilkins [112] states that some UQ
methods have been proposed in recent years; however, they fail when applied to large
and noisy data sets. Indeed, there is a limit to decrease the total uncertainty, defined
by the aleatory uncertainty. Even if we hypothetically reduce epistemic uncertainty to
zero, there will always be uncertainty intrinsic to the data. Researchers usually try to
extract the function hidden under all the stochasticity, however, it is very common to
find in the literature that the chosen feature space does not capture all the information
that it could from the stochastic data. As a consequence, the prediction of a target, i.e.
price, trend change or buy/sell orders, is not optimal [112].

Furthermore, the true posterior distribution in a Bayesian neural network cannot be
determined analytically (without an unacceptable amount of computing power). In fact,
almost all of the probabilistic methods for UQ prediction mentioned in this paper are
based on approximating the posterior distribution using much less computing power, in
exchange for giving up some accuracy.

What approaches could potentially be explored to overcome those chal-
lenges?

Some of the possible approaches to overcome those challenges have already been
mentioned above, which can be summarized in the following list:

e Increase the efficiency of extracting information from the feature space.

e Explore a more meaningful feature space that includes fundamental, opinion and
technical information in a combined way.

e Develop new methods to represent uncertainty in a richer way.
e Delve into trend forecasting as an alternative to point estimation.

e Consider alternative markets to stocks such as Forex, cryptocurrencies, futures or
derivatives.
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e Explore newer methods for approximating the true posterior distribution.

6. Conclusion

In this survey, a PRISMA approach was followed to review 69 records on UQ for DL
applied to financial forecasting time series. We have analysed the most distinctive aspects
of those studies such as the type of asset, the techniques used, the forecast space, the
method of analysis and the epistemic vs. aleatory approaches. We have seen that there
are potential areas that are not sufficiently explored in the literature, such as combining
fundamental, sentiment and technical analysis, further exploring the application to the
Forex market, and finding a better way to address aleatory uncertainty. As a conclusion
of this survey, we can state that there is a lot of room for future research at UQ for
financial time series forecasting.
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