

SYNTHESIS BY RAPID SOLIDIFICATION AND SPARKPLASMA SINTERING OF SINGLE-PHASE DYNI $_5$

<u>Rubén Uziel Pérez Batalla</u>¹, José Luis Sánchez Llamazares¹, César Fidel Sánchez-Valdés² ¹Instituto Potosino de Investigación Científica y Tecnológica A.C., Nanociencias y materiales, Mexico. ²Universidad Autónoma de Ciudad Juárez, Multidisciplinario, Mexico.

Theoretical and experimental studies show that the binary compounds RNi₅, with R = Tb, Dy, Ho, and Er, are attractive magnetic materials for magnetic refrigerationin the temperature range of H₂ liquefaction. For such a purpose, highsaturation magnetization values and moderate-to-low values of specific heat aretwo of their favorable characteristics. Furthermore, their anisotropic magnetization behavior could produce a high-rotating magnetocaloric effect. Inthis work, we report the synthesis and characterization of partially textured melt-spunribbons obtained by ultrafast solidification using the melt-spinning techniqueand their consolidation into high-density sintered bodies by applying the sparkplasma sintering (SPS) technique. Particular attention was paid to replicating the partial anisotropic magnetization properties of the melt-spun ribbons in the sintered sample. The melt-spun ribbons were synthesized at a linear copperwheel speed of 20 ms⁻¹ from a solid ingot obtained by arc melting(both processes were carried out under a high-purity Ar atmosphere). The densification process was performed in about 6.7 minutes. The elemental chemical composition and hexagonal crystal structure of the CaCu₅ type of DyNi₅determined by EDS analysis and X-ray diffraction were reproduced in thesintered sample, which had a relative density of 95.5%. The magnetizationmeasurements also show that the magnetic and anisotropic properties of theribbons were reproduced in the sintered sample. The Curie temperature (T_c) of the DyNi₅ phase was ~ 11.8 K, while at 2 K and 5 T the saturation magnetization M_s between the pressing direction (M_s = 100 $Am^{2}kg^{-1}$) and the perpendicular plane (M_{s} = 67 $Am^{2}kg^{-1}$) showed a difference of 23 $Am^{2}kg^{-1}$. For a magnetic field variation of 2 and 5 T, the maximum values of magneticentropy change $|\Delta S_M|^{max}$ along the pressing direction were 10 and 16 Jkg⁻¹K⁻¹, respectively. Furthermore, a rotational magnetic entropy change |^{max} of 3.2 Jkg⁻¹K⁻¹ was determined between the pressing and perpendicular directions.

Keywords: DyNi5 intermetallic compound, melt-spun ribbons, conventional and rotational magnetocaloric effect

Acknowledgment:

Work supported by SEP-CONACyT, Mexico (research grantA1-S-37066) and Laboratorio Nacional de Nanociencias y Nanotecnologia (LINAN,IPICyT). R.U.P.B. would like to thank Conacyt for supporting his doctoralstudies at IPICyT.

Presenting author's email: ruben.perez@ipicyt.edu.mx