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Four Wheeled Humanoid Second-Order
Cascade Control of Holonomic
Trajectories

A. A. Torres-Martínez, E. A. Martínez-García, R. Lavrenov, and E. Magid

Abstract This work develops model-based second-order cascade motion controller
of a holonomic humanoid-like wheeled robot. The locomotion structure is com-
prised of four mecanum wheels radially arranged. The model is given as a function
of all wheels contribution addingmaneuverability to upper limbs. High-order deriva-
tives are synchronized through numeric derivations and integration, obtained online
for consistent performance of inner loops feedback. The controller deploys refer-
ence inputs vectors, both global and local to each cascade loop. In this approach,
the controller decreases errors in position, velocity and acceleration simultaneously
through Newton-based recursive numerical approximations. A main advantage of
this approach is the robustness obtained by three recursive feedback cascades: dis-
tance, velocity and acceleration. Observers are modeled by combining multi-sensor
inputs. The controller showed relative complexity, effectiveness, and robustness.
The proposed approach demonstrated good performance, re-routing flexibility and
maneuverability through numerical simulations.
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1 Introduction

Wheeled mobile robots are widely used in a number of applications. The perfor-
mance of a wheeled robot is considerably good in particular on flat and structured
floors. For instance, they are faster, more efficient in reaching positions and usually
more effective in terms of mechanical energy requirements than walking bipeds.
In numerous robotic applications, particularly in cluttered environments, omnidirec-
tional rolling locomotion capabilities result suitable to easily change the robot’s body
posture to basically move towards any direction without explicit yaw control. Nowa-
days, deployment of omnidirectional wheels as a means for locomotion in mobile
robotics is highly demanding in a number or applications due to their ability to move
in any direction and particularly driving in plain structured confined spaces [1, 2]. The
use of omniwheels, unlike conventional wheels have fewer kinematic constraints and
allow the robot to move in a wide range of mobility. Adding, holonomy, considerable
maneuverability. In modern times, the cases of omniwheel-based holonomic robots
developed for different applications are considerable numerous and relevant. For
instance, the use of personal assistant robots as walking-helper tool, demonstrated
capability to provide guidance and dynamic support for impaired walking people [3].
There are also other types of human-robot assistants in cases where mobile robots are
purposed to perform interaction socially assistive [4]. In healthcare, robotic systems
have been designed with mecanum wheels for providing omnidirectional motion to
wheelchairs [5]. Although, manipulators onboard mobile platforms are not relatively
newapproaches, howevermobilemanipulatorswith omnidirectional locomotion pro-
vides interesting advantages. Mecanum-wheeled platforms have been performed as
holonomic vehicular manipulators moving in industrial working spaces [6]. Park
et al. [7] presented a controller for velocity tracking and vibration reduction of a
cart-pole inverted pendulum like-model of omnidirectional assistive mobile robot.
The robot adopted mecanum wheel rolling with suspension for keeping consistent
contact mecanum wheel and ground while transporting heavy goods placed on high
locations.

Moreover, instrumented omnidirectional platforms with visually guided servo-
ing devices have been reported [8]. Furthermore, holonomic robotic platforms have
been exploited as robotized sporting and training technology to provide assistance
and training in racquet sports [9]. A traditional robotic application is exploiting
advantages of omniwheel-basedmobile robots being deployed as domestic assistants
in household environments [10]. An advantageous application of mecanum-wheels
used as an omni-directional mobile robot in industrial fields has been critical. For
instance, autonomous material indoor transportation [11] as well as robotic plat-
forms of four omnidirectional wheels working in warehouses [12]. The work [13]
performed collaborative manipulation bymultirobot displacing payloads transported
to desired locations in planar obstacle-clustered scenarios maneuvering through nar-
row pathways for which advocated the use ofMecanum-Wheeled Robots positioning
without body-orientation change. The work [14] developed modular reconfiguration
by deploying a group of vehicles to perform different mission tasks. Recofnigura-
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tion was done at the level of motion planning deploying four-wheel-drive Mecanum
vehiclemobile robots. A critical deployment of omniwheel robotics is in a gaining
popularity field for omnidirectional humanoids, that is in nursing and rehabilitation
[15].

A variety of demands on the use of robots differs considerably on how to deploy
them. For instance, in the industry with robots working on-site with highly accurate
robotic arms, or mobile platforms moving heavy loads and assisting humans workers
in close proximity [16].

This chapter presents the trajectory tracking model of a humanoid robot at the
stage of kinematic modeling and simulation. This work approaches a model of two
upper limbs of three joints fixed on a trunk that is placed on aMecanumwheeled plat-
form with four asynchronous rolling drives. This research’s main contribution is the
development of a three-cascade kinematic trajectory tracking controller. Each cas-
cade is comprised of a different order derivative deduced from the robot’s kinematic
model. Different observers to complement the control are developed considering a
deterministic approach and based on wheels-encoder and an inertial measurement
unit. The omniwheels physical arrangement is radially equidistant and tangential
rotated with respect to (w.r.t.) the center of reference. This work shows numeri-
cal simulation results that allow validating and understanding proposed models and
ideas, as well as to refine them before converting them into feasible and operational
physical systems.

This chapter organizes the sections as follows. Section2 briefly discusses similar
works. Section3 deduces motion equations of the robot’s arms and its four-wheel
four-drive omnidirecional rolling platform. Section4 defines the sensing model and
observers used as online feedback elements. Section5 describes the three-cascade
controller. Finally, Sect. 7 provides conclusion of the work.

2 Related Work

The study of position errors and calibrationmethods for robot locomotionwith omni-
directional wheels has demonstrated to be relevant [17]. The work [18] developed a
reference-based control for a mecanum-wheels omnidirectional robot platform, rely-
ing on the robot’s kinematic model and generate trajectories and optimal constrained
navigation. The cost function quantified differences between the robot’s path predic-
tion and using a family of parameterized reference trajectories. [19] demonstrated
control of a time-varying proportional integral derivative model for trajectory track-
ing of a mecanum-wheeled robot. It used linearization of a nonlinear kinematic error
model and controller’s parametric coefficients adjusted by trial-and-error.

Omniwheel-based robotmotion is effected by systematic perturbations differently
as in conventional wheeled robots. Identifying the sources of pose errors are critical
to develop methods for kinematic errors reduction of omni-directional robotic sys-
tem [20]. The work [21] evaluated a method to correct systematic odometry errors of
a humanoid-like three-wheeled omnidirectional mobile robot. Correction was made
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by iteratively adjusting effective values with respect to robot’s kinematic parame-
ters, matching referenced positions by estimation. The correct functionality of a four
Mecanumwheels robotwas approached by theDijkstra’s algorithmand tested in [22].
The work [23], proposed an odometry-based kinematic parameters error calibration
deploying least squares linear regression for a mobile robot with three omniwheels.
Similarly, [24] presented a calibration system to reduce pose errors based on the
kinematic formulation of a three-wheeled omnidirectional robot, considering sys-
tematic and non-systematic errors compensation. Another three-omniwheel robot
was reported in [27], where motion calibration is obtained by optimizing the effec-
tive kinematic parameters and the inverse Jacobian elements are minimized through
a cost function during path tracking. Previous cited works reported different solu-
tions to calibrate odometric position errors in omni-wheel-basedmobile robots. Such
works highlight two main approaches, by numerical estimations and by modeling
deterministic metrical errors. A main difference with respect to the present context
is the focus on tracking control of local Cartesian points within a global trajectory,
unlike encoders usage, other pose measurement methods are considered, for instance
data fusion of online heterogeneous inertial measurements.

The research [25] reported a radially arranged omnidirectional four-wheeled robot
controlled by three proportional-integral-derivative controllers (PID). The PIDs con-
trolled speed, heading, and position during trajectory tracking and using odometry
to measure the robot’s posture. The research [26] developed a theoretical kinematic
basis for accurate motion control of combined mobility configurations based on
coefficients for speeds compensation mainly caused by wheels slippage in a four
mecanum wheels industrial robot. The work [28] reported a controller based on
observer and a high order sliding mode for a multirobot system of three-wheeled
omnidirectional platforms. Previous cited works reported motion control approaches
of omniwheel robotic platforms that tackled either slippage problems or motion inac-
curacies to improve the robot’s posture. As a difference with the present work, it
assumes that pose observation is already adequate but rather focusing on robustly
controlling the robot’s path motion along a linear trajectory segment by triple kine-
matics control of high-order derivatives, simultaneously.

The research reported in [29] introduced a general model for analysis of symmet-
rical multi-wheel omnidirectional robot. Inclusion of constrained trajectory planning
optimization was implemented for free collision navigation. The reported work in
[30] introduced a kinematic model for trajectory tracking control of a radially ori-
ented four-wheel omnidirectional robot using odometry as feedback.

The work [31] presented a four Mecanum wheels omnidirectional mobile robot
for motion planning tasks implementing fault-tolerance on wheels with a fuzzy con-
troller. The work conducted by [32] proposed a neural control algorithm to determine
neural network weights adaptation with parametric disturbances as an intelligent
control for path motion by a four mecanum wheels mobile robot. Fault tolerant nav-
igation control on a four mecanum-wheel structure was developed by [33], using
adaptive control second order dynamics and parametric uncertainty. A controller for
an omni-wheeled industrial manipulator was presented by [34], it adaptively com-
bined a fuzzywavelet neural network, a slidingmode and a fractional-order criterion.
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Finally, a path-following control using extended Kalman filtering for sensor fusion
was introduced in [35].

Some of previous cited works reported approaches using soft-computing tech-
niques combined with traditional control methods for tracking, either for recovery
of disturbances and fault tolerances in tracking motion control. As a difference, in
the present research a model-based recursive control is proposed with the particular-
ity of implementing inner multi-cascades combining multiple higher-order inputs.
Numerical errors are reducedwith respect to a referencemodel by successive approx-
imations as convergence laws. The focus presented in this research differs frommost
the cited related work, fundamentally in the class of control’s structure and the kind
of observers models. For instance, while a traditional PID controller might combine
three different order derivatives as a summation of terms into an algebraic expres-
sion, the proposed approach exploits each derivative inside another of lower order
and faster sampling as different recursive control cycles.

3 Robot Motion Model

This section describes the essential design parts of the proposed robotic structure
at the level of simulation model. Additionally, both kinematic models, the onboard
manipulators and the four mecanum wheels and the omnidirectional locomotive
structure are illustrated.

Figure1a depicts the humanoid CAD concept of the proposed robotic platform.
Figure1b shows a basic figure created in C/C++ language as a resource for numerical
simulations, which deploy the Object Dynamic Engine (ODE) libraries to create
simulated animations.

(a) CAD structure. (b) Simulation model.

Fig. 1 Mecanum four-wheeled humanoid structure. a a CAD mo del. b a simulation model from
the physics engine ODE
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Fig. 2 Onboard arms basic mechanism. Joints and links kinematic parameters (above). Side of the
elbow mechanism (middle). Side of the wrist mechanism and shoulder gray-color gear (below)

The four mecanum wheels are located symmetric radially arranged and equidis-
tant beneath the chassis structure. Each wheel is independently driven both rotary
directions. This work provides the emphasis on the omnidirectional locomotion con-
troller, since motion over the plane ground has impacts on the manipulators position,
adding robot’s translation and orientation is given in models separately along the
manuscript. Figure2 illustrates a basic conceptual design purposed to help describ-
ing joints’ functional form. The limbs purpose in this manuscript is to illustrate
general interaction in general scenarios with manipulable objects.

Therefore, the onboard arms may be modeled for multiple degrees of freedom.
However, in this manuscript the manipulators have been established symmetrically
planar with three rotary joints: shoulder (θ0), elbow (θ2) and wrist (θ2), all turning
in pitch (see Fig. 2). Additionally, the robot’s orientation is assumed to be the arms’
yaw motion (θt ). The onboard arm’s side view is shown in Fig. 2(below), where the
gray-color gear is the actuating device ϕ0 that rotates a shoulder. The arm’s joint φl1
describes angular displacements for link l1. Figure2(middle) shows an antagonistic
arm’s side view where the orange-color joint mechanism for θ1 (elbow) is depicted.
The mechanism device for θ1 has asynchronous motion from θ0 and θ2. Additionally,
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Fig. 2(middle) shows yellow-color gearing system to depict how the wrist motoin
is obtained and transmitted from the actuating gear ϕ2 towards ϕ5. The wrist rotary
angle is the joint θ2 that rotates the gripper’s elevation angle.

Hence, without lose of generality, the Cartesian position is a system of equations
that are established for now in two-dimension, z = 0,

.
z = 0 and

..
z = 0. Let z be the

depth dimension no treated in this section. Subsequently, a thirdCartesian component
may be stated when the robot’s yaw is defined as it impacts the arms pose, given in
the next sections.

From the depiction of Fig. 2(above), the following arms position xa, yA expres-
sions are deduced to describe the motion in sagittal plane (pitch),

xa = l1 · cos(θ0) + l2 · cos(θ0 + θ1) + l3 · cos(θ0 + θ1 + θ2), (1)

and
ya = l1 · sin(θ0) + l2 · sin(θ0 + θ1) + l3 · sin(θ0 + θ1 + θ2). (2)

where the functional forms of actuating joints are described in the following
Definition 1,

Definition 1 (Joints functional forms) Assuming gears angles and teeth numbers by
ϕi and n j , respectively, let ϕ0 be the actuating joint,

θ0 = ϕ0. (3)

Let ϕ6 be an actuating gear that transmits rotation to gear ϕ6 ≡ θ1 for link l2,

ϕ8 =
(
n6n7
n7n8

)
· ϕ6 = n6

n8
· ϕ6, (4)

Therefore, θ1
.= ϕ8. Let ϕ1 transmit motion to ϕ5 ≡ θ2 for l3 rotation by

ϕ5 =
(
n1n2n3n4
n2n3n4n5

)
· ϕ1 = n1

n5
· ϕ1, (5)

therefore θ2
.= ϕ5.

Previous statements conduct to the following Proposition 1.

Proposition 1 (Arm’s kinematic law) The kinematic control including the gears
mechanical advantages n6/n8 and n1/n5, reaches the reference angular positions
θ0,1,2, while varying joints angles ϕ0,8,5 by

(
xat+1 − xat
yat+1 − yat

)
=

(
−l1c0 − n6

n8
(l1c0 + l2c01) − n1

n5
(l1c0 + l2c01 + l3c012)

l1s0
n6
n8

(l1s0 + l2s01)
n1
n5

(l1s0 + l2s01 + l3s012)

)⎛
⎝θ0 − ϕ0

θ1 − ϕ8
θ2 − ϕ5

⎞
⎠
(6)
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Fig. 3 Onboard arms local Cartesian motion simulation for an arbitrary trajectory

Hence, the law (6) is satisfied when limϕi→θi (x, y)t+1 − (x, y)t = 0. Being x, y a
Cartesian position, and (θi − ϕi ) an instantaneous joints error.

It follows that validating previous kinematic expressions (1) and (2), Fig. 3 shows a
numerical simulation for Cartesian position along an arbitrary trajectory.

Moreover, from the system of nonlinear equations modeling position (1) and (2)
and hereafter assuming that joints θ j (ϕk) are functions in terms of gears rotations.
Thus, first-order derivative w.r.t. time is algebraically deduced and Cartesian veloc-
ities are described by

(
ẋa
ẏa

)
= l1

(−s0
c0

)
θ̇0 + l2

(−s01
c01

) 1∑
i=0

θ̇i + l3

(−s012
c012

) 2∑
i=1

θ̇i . (7)

It follows the second-order derivative which describe the arms Cartesian accelera-
tions, where the serial links’ Jacobian is assumed a non stationary matrix Jt ∈ R

2×3,
such that (

ẍa
ÿa

)
= Jt ·

⎛
⎝θ̈0

θ̈1
θ̈2

⎞
⎠ + J̇t ·

⎛
⎝θ̇0

θ̇1

θ̇2

⎞
⎠ (8)

The ultimate purpose of this section is to merely establish kinematic models as
a basis for the following sections. However, the essential focus of this research is
the locomotive control of the mobile holonomic structure. At this point, the two-
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Fig. 4 4W4D holonomic kinematics. Mecanum wheels location without twist (left). Wheels posi-
tions and twisted ± π

2 w.r.t. its center (right)

dimension manipulators can therefore exploit the native holonomic mobility such as
position and rotation as to provide three-dimension spatial manipulator’s trajectories.
Additionally, omnidirectional mobility as a complement to the arms, allows arms’
degrees of freedom complexity reduction.

Let us establish the following mobility kinematic constraints depicted in Fig. 4.
Therefore, without loss of generality let us state the following Proposition 2,

Proposition 2 (Holonomic motion model) Let ut be the robot state vector in its
Cartesian form with components (x, y) orientation, such that ut ∈ R

2, u = (x, y)�.
Hence, the forward kinematics is

.
u = rK · .

Φ, (9)

where,K is a stationary kinematic control matrix containing geometrical parameters
and r is the wheels radius. Let Φ t = (φ1, φ2, φ3, φ4)

� be the four wheels angular
velocity vector. Likewise, the backward kinematics where the constraints matrix is a
non square system

Φ̇ = 1

r
· K+ · u̇ = 1

r
· K�(K · K�)−1 · .

u. (10)

Therefore, according to geometry of Fig. 4 and the general models of previous Propo-
sition 2, the following algebraic deduction arises, Cartesian speeds

.
x and

.
y in holo-

nomic motion are obtained from wheels tangential velocities Vk expressed as,
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.
x = V1 · cos

(
α1 − π

2

)
+ V2 · cos

(
α2 − π

2

)
+ V3 · cos

(
α3 − π

2

)
+ V4 · cos

(
α4 − π

2

)
,

(11)
as well as

.
y = V1 · sin

(
α1 − π

2

)
+ V2 · sin

(
α2 − π

2

)
+ V3 · sin

(
α3 − π

2

)
+ V4 · sin

(
α4 − π

2

)
.

(12)

Moreover, let Vk be the wheels tangential velocities described in terms of the
angular speeds

.

φk , such that the following equality is stated,

Vk = r · .

φk (13)

From where, the stationary non square kinematic control matrix K is provided by
Definition 2,

Definition 2 (4W4D holonomic kinematic matrix) Each wheel with angle αk w.r.t.
the robot’s geometric center, thus

K =
(
cos(α1 − π

2 ) cos(α2 − π
2 ) cos(α3 − π

2 ) cos(α4 − π
2 )

sin(α1 − π
2 ) sin(α2 − π

2 ) sin(α3 − π
2 ) sin(α4 − π

2 )

)
. (14)

It follows that the speed holonomic model in as a function of wheels angular
speeds and matrix K is

( .
x
.
y

)
= r · K ·

⎛
⎜⎜⎜⎝

.

φ1
.

φ2
.

φ3
.

φ4

⎞
⎟⎟⎟⎠ . (15)

Similarly, from previous model higher-order derivatives are deduced for subse-
quent treatment for the sake of controller cascades building. Thus, the second-order
kinematic model is

( ..
x
..
y

)
= r ·

(
cos(α1 − π

2 ) cos(α2 − π
2 ) cos(α3 − π

2 ) cos(α4 − π
2 )

sin(α1 − π
2 ) sin(α2 − π

2 ) sin(α3 − π
2 ) sin(α4 − π

2 )

)
·

⎛
⎜⎜⎜⎝

..

φ1
..

φ2
..

φ3
..

φ4

⎞
⎟⎟⎟⎠ .

(16)
Likewise, a third-order derivative is provided by model



Four Wheeled Humanoid Second-Order … 471

(a) First order derivative performance.

(b) Second order derivative performance.

Fig. 5 General higher order derivatives for 4W4Dholonomicmodel.Velocity (above).Acceleration
(below)
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(...
x
...
y

)
= r ·

(
cos(α1 − π

2 ) cos(α2 − π
2 ) cos(α3 − π

2 ) cos(α4 − π
2 )

sin(α1 − π
2 ) sin(α2 − π

2 ) sin(α3 − π
2 ) sin(α4 − π

2 )

)
·

⎛
⎜⎜⎜⎝

...

φ1
...

φ2
...

φ3
...

φ4

⎞
⎟⎟⎟⎠ .

(17)
The fact that matrix K is stationary keeps simplistic the linear derivative expressions.
For this type of four-wheel holonomic platforms, their kinematic models produce
the following behavior curves shown in Fig. 5.

4 Observer Models

This section establishes the main sensing models that are assumed deterministic and
in the cascade controller as elements of feedback for observing the robot’s model
state. It is worth saying that perturbation models and noisy sensor measurements and
calibration methods are out of the scope of this manuscript’s interest.

Thus, let us assume a pulse shaft encoder fixed for each wheel. Hence, let φ̂εk be
a measurement of the angular position of the kth-wheel,

φ̂εkt
(η) = 2π

R
ηt , (18)

where ηt is the instantaneous number of pulses detected while wheel is rotating.
Let R be defined as the encoder angular resolution. Furthermore, the angular veloc-
ity encoder-based observation is given by the backward high-precision first-order
derivative,

ˆ̇φε(η, t) = 3φ̂t − 4φ̂t−1 + φ̂t−2

(tk − tk−1)(tk−1 − tk−2)
, (19)

with three previous measurements of angle θ̂ε and time tk . Hence, the kth wheel’s
tangential velocity is obtained by

υk = πr

RΔt
(3ηt − 4ηt−1 + ηt−2) , (20)

where r is the wheel’s radius and considering varying time loops, let Δt
.= (tk −

tk−1)(tk−1 − tk−2). Without loss of generality, let us substitute previous statements
in Proposition 3 to describe Cartesian speeds observation, such that

Proposition 3 (Encoder-based velocity observer) For simplicity, let us define the
constants βk

.= αk − π
2 as constant angles for wheels orientation. Therefore, the

encoder-based velocity observers ˆ̇x, ˆ̇y are modeled by
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ˆ̇xk =
4∑

k=1

υk sin(βk) (21)

and

ˆ̇yk =
4∑

k=1

υk cos(βk). (22)

Moreover, the four wheels tangential speeds contribute to exert yaw motion w.r.t.
the center of the robot. Thus, since by using encoders the wheels linear displacements
can be inferred, then an encoder-based yaw observation θ̂ε is possible,

θ̂ε = πr

2L

4∑
k=1

ηk, (23)

where L is the robot’s distance between any wheel and its center of rotation. Thus,
the robot’s angular velocity observer based only on the encoders measurements is

ˆ̇θε = πr

4RLΔt

4∑
k=1

(
3ηkt − 4ηkt−1 + ηkt−2

)
. (24)

In addition, in order to decrease time-based derivative order of gyroscope’s raw
measurements θ̇g , let us integrate sequence of raw measurements according to the
Newton-Cotes integration approach as Definition 3,

Definition 3 (Online sensor data integration)The robot’s yawobservation is inferred
by time integration of raw angular velocity measurements, such that

θ̂g =
∫ tN

t0

ˆ̇θgdt = tN − t0
2N

(
ˆ̇θg0 + 2

N−1∑
k=1

ˆ̇θgk + ˆ̇θgN
)

, (25)

with N available measurements in time segment tN − t0,

Furthermore, for the robot’s yaw motion let us assume a fusion of encoders and
inertial measurements about angle θι (inclinometer [rad]) and angular velocity ωg

(gyroscope [rad/s]), such that a complete robot’s yaw rate observer is provided by
Proposition 4.

Proposition 4 (Yaw deterministic observers) The robot’s angular velocity is an
averaged model of three sensing models, encoder θ̂ε, inclinometer θ̂ι and gyroscope
θ̂g such that

θ̂t = 1

3
θ̂ε + 1

3
θ̂ι + 1

3

∫ t2

t1

ˆ̇θgdt, (26)
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where θ̂ε is substituted by (23). It follows that its first-order derivative,

ω̂t = 1

3
ˆ̇θε + 1

3

d θ̂ι

dt
+ 1

3
ˆ̇θg, (27)

where ˆ̇θε is substituted by (24).

5 Omnidirectional Cascade Controller

The relevant topic of this manuscript is a second-order cascade controller. It implies
three nested control cycles. The highest frequency is the acceleration loop within the
velocity cycle, andboth in turn inside the loop for position, being the latter the slowest.
The global cycle of position uses global references, while the rest of the inner cycles
work on predictions as local references. The proposed cascade controller considers
three feedback simultaneously and reduces the errors by recursive calculations and
successive approximations with different sampling frequencies.

By stating the equation provided in Proposition 2 in the form of differential equa-
tion

du
dt

= r · K · dΦ

dt
(28)

and solving according to the following expression, where both differentials dt are
reduced, and by integratingw.r.t. time establishing the limits in both sides of equation:

∫ u2

u1

dudt = r · K
∫ Φ2

Φ1

dΦdt, (29)

resulting in the following equality:

u2 − u1 = r · K · (Φ2 − Φ1). (30)

Therefore, considering the Moore-Penrose approach to obtain the pseudoinverse
of the non square stationary kinematic matrix K and by solving and algebraically
arranging using continuous-time notation, for and expression in terms of a recursive
backward solution,

Φ t+1 = Φ t + 1

r
· KT (K · KT )−1 · (ure f − ût ), (31)

where, the prediction vector ut+1 is re-formulated as the global reference ure f or
the goal the robot is desirable to reach. Likewise, for the forward kinematic solution
ut+1 is

ut+1 = ut + r · K · (Φ t+1 − Φ̂ t ). (32)
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Fig. 6 A global cascade recursive simulation for Cartesian position

Therefore, the first global controller cascade is formed by means of the pair of
recursive expressions (31) and (32). Proposition 5 highlights the global cascade by.

Proposition 5 (Feedback position cascade)Given the inverse kinematic motionwith
observation in the workspace ût

Φ t+1 = Φ t + 1

r
· KT (K · KT )−1 · (ure f − ût ), (33)

and direct kinematic motion with observation in the control variables space Φ̂ t ,

ut+1 = ut + r · K · (Φ t+1 − Φ̂ t ). (34)

Proposition 5 is validated through numerical simulations that are shown in Fig. 6 the
automatic Cartesian segments and feedback position errors decreasing.

Without loss of generality and following the same approach as Proposition 5,
let us represent a second controller cascade to control velocity. Thus, the following
equation expresses the second-order derivative kinematic expression given in (16)
as a differential equation,

du̇
dt

= r · K · d
.

Φ

dt
(35)

and solving definite integrals,
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Fig. 7 Numerical simulation for second cascade inner recursive in terms of velocities

∫ .
u2

.
u1

d
.
udt = r · K

∫ .

Φ2

.

Φ1

d
.

Φdt, (36)

and similarly obtaining the following first-order equality,

.
u2 − .

u1 = r · K · (
.

Φ2 − .

Φ1). (37)

It follows the Proposition 6 establishing the second cascade controlling the first-order
derivatives.

Proposition 6 (Feedback velocity cascade) The backwards kinematic recursive
function with in-loop velocity observers and prediction u̇t+1 used as local reference
u̇re f is given by

Φ̇ t+1 = Φ̇ t + 1

r
· KT · (K · KT )−1 · (u̇re f − ˆ̇ut ), (38)

likewise the forward speeds kinematic model,

u̇t+1 = u̇t + r · K · (Φ̇ t+1 − ˆ̇Φ t ). (39)

Proposition 6 is validated by simulation Fig. 7.
Similarly, the third-order model from Eq. (17),



Four Wheeled Humanoid Second-Order … 477

...
u = K · ...

Φ (40)

and stated as a differential equation,

d
..
u
dt

= r · K · d
..

Φ

dt
, (41)

which is solved by definite integral in both sides of equality

∫ ..
u2

..
u1

d
..
udt = r · K

∫ ..

Φ2

..

Φ1

d
..

Φdt, (42)

thus, a consistent second-order derivative (acceleration) equality is obtained,

..
u2 − ..

u1 = r · K · (
..

Φ2 − ..

Φ1). (43)

Therefore, the following Proposition 7 is provided and notation rearranged for a third
recursive inner control loop in terms of accelerations.

Proposition 7 (Feedback acceleration cascade) The backwards kinematic recursive
function with in-loop acceleration observers and prediction Φ̈ t+1 used as local ref-
erence üre f is given by

Φ̈ t+1 = Φ̈ t + 1

r
· KT · (K · KT )−1 · (üre f − ˆ̈ut ). (44)

Additionally, the forward acceleration kinematic model is

..
ut+1 = ..

ut + r · K · (
..

Φ t+1 − .̂.

Φ t ), (45)

Proposition 7 is validated through numerical simulation of Fig. 8 showing an arbitrary
performance.

At this point is worth highlighting a general convergence criteria for recursive
control loops. The cycles end up by satisfying feedback error numerical precision
εu,Φ , such that.

Definition 4 (Convergence criteria) When the feedback error numerically meets a
local general reference according to the limit

lim
ΔΦ→0

(
Φre f − Φ̂

)
= 0,

where the feedback error is eΦ = (Φre f − Φ̂) that numerically will nearly approach
zero. Thus, given the criterion eΦ < εΦ is a



478 A. A. Torres-Martínez et al.

Fig. 8 Numerical simulation for third cascade inner recursive in terms of accelerations

Fig. 9 Second-order cascade controller block diagram

∥∥∥∥∥
Φre f − Φ̂ t

Φre f

∥∥∥∥∥ < ε. (46)

Although, previous Definition 4 was described as a criterion for Φ, it has general
applicability being subjected to condition any other control variable in process.

Therefore, given Propositions 5, 6 and 7, which establish the different recursive
control loops for each order of derivative involved, Fig. 9 shows cascades coupling
forming the controller.

Therefore, Fig. 9 is summarized in Table1 depicting only the coupling order of
solutions provided in Propositions 5–7.

Essentially, the coupling element between steps 1 and 2 of Table1 is a first order
derivative of wheels angular velocities w.r.t. time. Likewise, the following list briefly
describes the observers or sensingmodels interconnecting every step in the controller
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Table 1 Cascade-coupled recursive controllers

Steps Equation

1 Φ t+1 = Φ t + 1
r · KT

(
K · KT

)−1 · (ure f − ût )

2
.
ut+1 = .

ut + r · K · ( .

Φ t+1 − .̂

Φ t )

3
..

Φ t+1 = ..

Φ t + 1
r · KT (K · KT )−1 · (

..
ut+1 − .̂.

ut )

4
..
ut+1 = ..

ut + r · K · ( ..

Φ t+1 − .̂.

Φ t )

5
.

Φ t+1 = .

Φ t + 1
r · KT (K · KT )−1 · (

.
ut+1 − .̂

ut )

6 ut+1 = ut + r · K · (Φ t+1 − Φ̂ t )

cascades. Basically, it is about variational operations with fundamentals in numerical
derivation and integration to transform sensor data into consistent physical units.

1. Feedback from step 1 to step 2:

Φ̇ t+1 = d

dt
Φ t+1 = 3Φ̂ t − 4Φ̂ t−1 + Φ̂ t−2

Δt
,

2. Feedback from step 2 to step 3:

üt+1 = d

dt

.
ut+1 = 3

.̂
ut − 4

.̂
ut−1 + .̂

ut−2

Δt
,

3. Feedback from step 4 to step 5:

u̇t+1 =
∫ t

t0

..
ut+1dt = tn − t0

2 · nt · (
.̂.
u0 + 2

n−1∑
i=1

.̂.
ui + .̂.

uk),

4. Feedback from step 5 to step 6:

Φ t+1 =
∫ t

t0

.

Φ t+1dt = tn − t0
2 · nt · (

.̂

Φ0 + 2
n−1∑
i=1

.̂

Φ i + .̂

Φk),

Additionally, the following listing Algorithm 1 is the controller in pseudocode
notation.
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Data: ε, K, ure f , ut , ût ,
.
ut ,

.̂
ut ,

..
ut ,

.̂.
ut , Φ t , Φ̂ t ,

.̂

Φ t ,
..

Φ t ,
.̂.

Φ t
ure f = (xi , yi )T ;
while (ure f − ut ) < εu do

Φ t+1 = Φ t + 1
r · KT (K · KT )−1 · (ure f − ût );

d
dt Φ t+1 = 3Φ̂ t−4Φ̂ t−1+Φ̂ t−2

Δt ;

while (
.

Φ t+1 − ˆ̇Φ t ) < εΦ̇ do
.
ut+1 = .

ut + r · K · (
.

Φ t+1 − .̂

Φ t );

d
dt

.
ut+1 = 3

.̂
ut−4

.̂
ut−1+ .̂

ut−2
Δt ;

while (üt+1 − ˆ̈ut ) < εü do
..

Φ t+1 = ..

Φ t + 1
r · KT · (K · KT )−1 · (

..
ut+1 − .̂.

ut );
..
ut+1 = ..

ut + r · K · (
..

Φ t+1 − .̂.

Φ t );∫ b
a

..
ut+1dt = b−a

2·n · ( .̂.
u0 + 2 · ∑ jn−1

j=1
.̂.
uk j + .̂.

ukn );

end
.

Φ t+1 = .

Φ t + 1
r · KT · (K · KT )−1 · (

.
ut+1 − .̂

ut );∫ b
a

.

Φ t+1dt = b−a
2·n · ( .̂

Φ0 + 2 · ∑ jn−1
j=1

.̂

Φk j + .̂

Φkn );

end
ut+1 = ut + r · K · (Φ t+1 − Φ̂ t );

end
Algorithm 1: Second-order three cascade controller pseudocode

The following Figures of Sect. 6 show the numerical simulation results under
a controlled scheme. The robot navigate to different Cartesian positions and within
trajectory segments the cascade controller is capable to control position, then controls
the velocity exerted within such segment of distance, and similarly the acceleration
is controlled within a small such velocity-window that is being controlled.

6 Results Analysis and Discussion

The three cascade controllers required couplings between them through numerical
derivations and integrations overtime. In this case, backwards high precision deriva-
tives and Newton-Cotes integration were used. Although, the traditional PID also
deploys three derivative orders, the use of them is by far different in their imple-
mentation. The proposed cascade model worked considerably stable, reliable and
numerically precise.

A main fundamental in the proposed method is that three loops are nested. The
slowest loop establishes a current metric error distance toward a global vector ref-
erence. Then, the second and third nested control loops establish local reference
velocity and acceleration, both corresponding to the actual incremental distance. The
three loops are conditioned to recursively reduce errors up to a numerical precision
value by means of successive approximations.
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Fig. 10 Controlled Cartesian position along a trajectory compounded of four global points

For instance, Fig. 10 shows a nonlinear Cartesian trajectory comprised of four
main linear local segments with different slopes each.

The first cascade loop basically controls the local displacements in between cou-
ples of global points. Figure 11 shows four peaks that represent the frontier of each
global point reached. The controller locally starts metric displacement after getting
each goal point, and approaches the next one by means of successive approximations
producing nonlinear rates of motion.

The second inner looped cascade controls the robot’s Cartesian velocities w.r.t.
time as shown in Fig. 12. At each goal reached the first-order derivative shows
local minimal or maximal with magnitudes depending on the speeds due to the loop
reference values (local predictions as references). where the last Trajectory’s point
reached is the global control’s reference. In this case, the velocity references are
local values to be fitted, or also known as the predicted values for the next local
loop calculation at t + 1, such as u̇t+1 or Φ̇ t+1. As the velocity control loop is inside
the metric displacement loop, the velocity is controlled by a set of loops, only for
a segment of velocity, the one that is being calculated in the current displacement’s
loop.

The third inner control loop that manages the second-order derivative produces
the results shown in Fig. 13. This control loop is the fastest iterative process, which
exerts the higher sampling frequency. In this case, the acceleration references are
local values to be fitted, or the predicted values for the next local loop calculation,
such as üt+1 or Φ̈ t+1. As the acceleration control loop is inside the velocity loop, the
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Fig. 11 Controlled displacement performance

Fig. 12 Controlled linear velocity
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Fig. 13 Controlled acceleration

acceleration is controlled by a set of loops, only for a segment of velocity, the one
that is being calculated in the current velocity’s loop.

Finally, the observers that provided feedback were stated as a couple of single
expression representing a feasible model of sensor fusion (summarized by Proposi-
tion 4). The robot’s angularmotion (angle and yawvelocity) combinedwheelsmotion
and inertial movements into a compounded observer model. The in-loop transition
between numerical derivatives worked highly reliably. The multiple inner control
cascades approach resulted numerically accurate, working online considerably fast.
Although, this type of cascade controller has the advantage that input, reference and
state vectors and matrices can easily be augmented without any alteration to the
algorithm, but if compared with PID controller in terms of speed, the latter is faster
due to less computational complexity.

7 Conclusions

The natural kinematic constraints of a genuinely omnidirectional platform always
produce straight paths. It is an advantage because it facilitates its displacement.
In strictly necessary situations, to generate deliberately curved or even discontinu-
ous displacements, an omnidirectional platform traverses it through linearization of
infinitesimal segments.
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The proposed cascade control model was derived directly from the physics of the
robotic mechanism. In such an approach, the kinematic model was obtained as an
independent cascade and established as a proportional control type with a constant
gain represented by the robot’s geometric parameters. The gain or convergence factor
resulted in a non-square stationary matrix (MIMO). Unlike a PID controller, the
inverse analytic solution was formulated to obtain a system of linear differential
equations. In its solution, definite integration produced a recursive controller, which
converged to a solution by successive approximations of the feedback error.

The strategy proposed in this work focuses on connecting all the higher order
derivatives of the system in nested forms (cascades), unlike a PID controller which is
described as a linear summation of all derivative orders. Likewise, a cascade approach
does not need gain adjustment.

The lowest order derivative was organized in the outer cascade. Being the loop
with the slowest control cycle frequency and containing the global control references
(desired positions). Further, the intermediate cascade is a derivative with the next
higher order, and is governed by a local speed reference. That is, this cascade controls
the speed during the displacement segment that has projected the cycle of the external
cascade. Finally, the acceleration cascade cycle is the fastest loop and controls the
portions of acceleration during a small interval of displacement along the trajectory
towards the next Cartesian goal.

The proposed research evidenced a good performance, showing controlled limits
of disturbances due to the three controllers acting over a same portion of motion.
The controller was robust and the precision error ε allowed to adjust the accuracy of
the robot goal closeness.
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