THE CFD ANALYSIS OF THE EFFECT OF INTERNAL PEAK ANGLE AND MASS-FLOW RATES ON THE THERMAL PERFORMANCE OF SOLAR AIR HEATER WITH TRIANGLE CROSS-SECTION

by

Walid BEN AMARA^a, Yashar ARYANFAR^b, Hasan KOTEN^{c*}, Abdallah BOUABIDI^{a,d}, Mouldi CHRIGUI^a, and Jorge Luis Garcia ALCARAZ^e

 ^a Mechanical Modelling, Energy and Material (M2EM), National School of Engineering of Gabes (ENIG), University of Gabes, Gabes, Tunisia
^b Department of Electric Engineering and Computation, Autonomous University of Ciudad Juarez, Juarez, Chihuahua, Mexico
^c Mechanical Engineering Department, Istanbul Medeniyet University, Istanbul, Turkey
^d Higher Institute of Industrial Systems of Gabes (ISSIG), University of Gabes, Gabes, Tunisia
^e Department of Industrial Engineering and Manufacturing, Autonomous University of Ciudad Juarez, Juarez, Chihuahua, Mexico

> Original scientific paper https://doi.org/10.2298/TSCI220918046A

A new design of solar air heater with triangle cross-section is numerically studied. The thermal performance of solar air heater is studied at various mass-flow rates, inlet air temperatures, and solar irradiation intensities. The CFD model is developed using the software ANSYS FLUENT to study the fluid-flow and heat transfer in the solar air heater. The 3-D discretization is applied to study the thermal performance of solar collector with triangle cross-section. Mesh independence is performed in order to choose the adequate mesh. The discrete ordinate radiation model and the RNG k- ε turbulence model are used to study the radiative heat transfer and the turbulent flow inside the solar air heater. Particularly, effects of different internal peak angles (145°,126°, 100°, 80°, and 67.5°) under different solar irradiation intensities (from 620-1081 W/m^2) are studied to improve the thermal performance of the solar air heater. The results show a good agreement between the numerical model and the experimental data with an average error of 6%. The maximum outlet air temperature of the solar air heater reached 72 °C for the geometries with 12 and 16 channels (internal peak angles of 80° and 67.5°, respectively) under mass-flow rate of 0.0264 kg/s. The thermal performances of the solar air heater with 16 and 12 channels are 24.2% higher than standard geometry, respectively for solar irradiation intensity of 1081 W/m². The configuration with internal peak angle of 80° and 12 channels is selected as the optimal with a thermal efficiency of 79%, a low pressure drops compared to geometry with 16 channels and lower costs.

Key words: solar air heater, CFD, heat transfer, simulation, thermal efficiency

Introduction

In recent years, the development of thermal systems based on renewable energies has been booming and has been the subject of many works and achievements [1-3]. The particular case of solar collectors continues to develop, improve and become an important part of our dai-

^{*}Corresponding author, e-mail: hasan.koten@medeniyet.edu.tr