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A B S T R A C T

In this paper we introduce the 𝜑A-differentiability for functions 𝑓 ∶ 𝑈 ⊂ R𝑘 → R𝑛, where 𝑈 is an open set, A
is the linear space R𝑛 endowed with a unital associative commutative algebra product, and 𝜑 ∶ 𝑈 ⊂ R𝑘 → A
is a differentiable function in the usual sense. We call it pre-twisted differentiability. With respect to the
𝜑A-differentiability we introduce: (a) a type Cauchy–Riemann equations, which serve as 𝜑A-differentiability
criteria, (b) a Cauchy-integral theorem, and (c) 𝜑A-differential equations, which can be used to solve linear and
nonlinear ODE systems. It has recently been shown that the 𝜑A-differentiable functions define a complete
solutions for the PDEs of the form 𝐴𝑢𝑥𝑥 + 𝐵𝑢𝑥𝑦 + 𝐶𝑢𝑦𝑦 = 0, which is used in this paper for solving the
corresponding Cauchy problems. Furthermore, solutions of 𝜑A-differential equations define solutions for linear
and nonlinear PDE systems.
Introduction

The differentiability in the sense of Lorch corresponds to the Fréchet
differentiability with respect to algebras. There is also a Gâteaux differ-
entiability with respect to algebras. With respect to this two definitions
of differentiability there have been several works to solve classical
partial differential equations (PDEs for plural and PDE for singular) of
mathematical physics by means of conjugate functions of differentiable
functions, see [1–8], and [9]. Ketchum’s work stands out, which
perhaps has not been understood or has been misinterpreted, because
he works with algebras in a general way, which makes it seem a bit
complicated to construct solutions of PDEs by the method he proposes.
The theory of analytic functions over algebras has been developed since
the end of the 19th century, also see [10–14], and [15].

In this paper the ‘‘Pre-twisted Differentiability’’ is introduced, which
is similar to the differentiability in the sense of Lorch. We say 𝑓 is A-
differentiable if 𝑓 is differentiable in the sense of Lorch with respect to A.
Pre-twisted differentiability depends on a differentiable function in the
usual sense 𝜑 and on an algebra A (see Section 1). Thus, we call it 𝜑A-
differentiability to make explicit the dependence. This differentiability
can be used to make more explicit the method given by Ketchum for
the construction of solutions of classical mathematical physics PDEs;
in [16] algebras have been given for which the conditions (2), (3), and
(4), given in [4] pp. 642 are satisfied, so that their fulfillment is no
longer required. Thus, only the conditions given in (47) of [4] pp. 660
are required to be satisfied, and if we consider 𝑤 = 𝑤(𝑥) affine, only
the second condition of (47) will be required.
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A vector field 𝑓 is said to be algebrizable if 𝑓 is A-differentiable for
an algebra A. The algebrizability of ordinary differential equations has
also been defined, see [17,18], and [19]. The case of algebrizability
of systems of two first order PDEs with two dependent and two inde-
pendent variables is being worked in [20]. In this paper we introduce:
the 𝜑A-differentiability, the generalized Cauchy–Riemann equations for
the 𝜑A-differentiability (𝜑A-CREs), a version of the Cauchy-integral
theorem for the 𝜑A-differentiability, a generalization of the first funda-
mental Theorem of calculus, Taylor expansions, and the 𝜑A-differential
equations. These allow us to consider the algebrizability of a wider class
of ODEs, PDEs, and PDE systems.

We call generalized Cauchy–Riemann equations (A-CREs) to the gen-
eralized Cauchy–Riemann equations for the A-differentiability. These
equations serve as a criteria for the A-differentiability. Therefore, the
A-differentiable functions give a complete solution of the A-CREs. The
use of pre-twisted differentiability very impressively expands the class
of PDE systems that can be solved in this way. The 𝜑A-CREs is a linear
system of 𝑛(𝑘−1) PDEs, see Section 1.5. The 𝜑A-differentiable functions
are solutions of the 𝜑A-CREs, see Theorem 1.1, and Theorem 1.2
gives conditions under which the solutions of the 𝜑A-CREs are 𝜑A-
differentiable functions. Therefore, the set of all the 𝜑A-differentiable
functions is the set of solutions of the 𝜑A-CREs. If 𝑓 ∶ 𝑈 ⊂ R2 → R3,
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𝑓 = (𝑢, 𝑣,𝑤), the 𝜑A-CREs have the form

𝑎111𝑢𝑥 + 𝑎121𝑣𝑥 + 𝑎131𝑤𝑥 + 𝑎112𝑢𝑦 + 𝑎122𝑣𝑦 + 𝑎132𝑤𝑦 = 0
𝑎211𝑢𝑥 + 𝑎221𝑣𝑥 + 𝑎231𝑤𝑥 + 𝑎212𝑢𝑦 + 𝑎222𝑣𝑦 + 𝑎232𝑤𝑦 = 0
𝑎311𝑢𝑥 + 𝑎321𝑣𝑥 + 𝑎331𝑤𝑥 + 𝑎312𝑢𝑦 + 𝑎322𝑣𝑦 + 𝑎332𝑤𝑦 = 0

, (1)

where 𝑎𝑖𝑗𝑘 are functions of (𝑥, 𝑦, 𝑧), 𝑢𝑥 = 𝜕𝑢
𝜕𝑥 and so on. See [7]

and [21] for the generalized Cauchy–Riemann equations for the A-
differentiability.

The conjugate functions of complex analytic functions are harmonic
functions, and in a simply connected domain each harmonic function
is the first conjugate function of a complex analytic function. This well
known result has been generalized in [16]; for each PDE of the form

𝐴𝑢𝑥𝑥 + 𝐵𝑢𝑥𝑦 + 𝐶𝑢𝑦𝑦 = 0, (2)

and for each affine planar vector field 𝜑, an algebra A is given with re-
spect to which the conjugate functions of all 𝜑A-differentiable functions
are solutions for this PDE. By using the generalized Cauchy–Riemann
equations associated with 𝜑A-differentiability it has been shown that
each solution of this PDE is a conjugate function of a 𝜑A-differentiable
function. Also, solutions for 3th and 4th order PDEs are constructed;
among these are the bi-harmonic, bi-wave, and bi-telegraph equations.
In Section 3.1 we consider the Cauchy Problems defined by PDEs of the
form (2) and conditions of the type

𝑢(𝑥, 0) =
∞
∑

𝑘=0
𝑎𝑘𝑥

𝑘, 𝑢𝑦(𝑥, 0) =
∞
∑

𝑘=0
𝑏𝑘𝑥

𝑘. (3)

We show how a Cauchy problem can be solved by using 𝜑A-differen-
tiable functions. For most of the cases the method given can use A-
differentiable functions for solving the Cauchy problem considered.
However, in case (3) of Theorem 3.6 it is necessity the use of 𝜑A-
differentiable functions.

In [4] pp. 659, 660, analytic functions 𝑓 (𝑤) where 𝑤 = 𝑤(𝑥) and
𝑓 is differentiable in the sense of Lorch, are considered. An algebra A
whose analytic functions 𝑓 (𝑤) satisfy the Laplace’s equation is called
harmonic algebra. In [5] pp. 547 it is interpreted for an algebra to be a
harmonic algebra it is required that 𝑒21 + 𝑒22 + 𝑒23 = 0, but this condition
is necessary for the case of 𝑤 = (𝑥, 𝑦, 𝑧) (in our notation 𝜑(𝑥, 𝑦, 𝑧) =
(𝑥, 𝑦, 𝑧)). In papers [22–26], and [9] the same condition is required.
This condition is used in [27] for the construction of solutions for the
three dimensional Laplace’s equation. Given a three dimensional vector
field 𝜑, we say that a three dimensional algebra A is a 𝜑-harmonic
algebra if

𝜑(𝑒1)2 + 𝜑(𝑒2)2 + 𝜑(𝑒3)2 = 0. (4)

For 𝜑-harmonic algebras A the conjugate functions of all the 𝜑A-
differentiable functions are harmonic functions.

On one hand we have that there does not exist any three-dimen-
sional harmonic algebra with unit, see [28]. Secondly, all the harmonic
algebras were found, see [29,30]. For the algebra A defined by R3 with
the product 𝑒23 = 𝑒2, 𝑒33 = 𝑒1, where 𝑒 = 𝑒1 is the unit of A, and 𝜑 given
by

𝑤 = 𝜑(𝑥, 𝑦, 𝑧) = (−𝑥 − 𝑦 + 𝑘1, 𝑥 − 𝑧 + 𝑘2, 𝑦 + 𝑧 + 𝑘3),

one has that 𝑒21 + 𝑒22 + 𝑒23 = 𝑒1 + 𝑒2 + 𝑒3 = (1, 1, 1), and identity (4) is
satisfied. Therefore, 𝑒21 + 𝑒22 + 𝑒23 ≠ 0, and A is a 𝜑-harmonic algebra.

The organization of this paper is the following. In Section 1 we
recall the definition of an algebra which we denote by A, we in-
troduce the 𝜑A-differentiability and give some results related to this
like the 𝜑A-CREs. In Section 2 the Cauchy-integral theorem for the
𝜑A-differentiability is given, the 𝜑A-differential equations and their so-
lutions are introduced, and we show they can be used for solving linear
and nonlinear ODE systems. In Section 3 we use the 𝜑A-differential
functions for solving Cauchy problems for a family of PDEs and we give
examples where 𝜑A-differential functions define solutions for linear
and nonlinear PDE systems. In Section 4 we discuss the results obtained
in this paper. It is explained how by using pre-twisted algebrizability
2

more nonlinear ODE systems can be solved.
1. 𝝋A-Differentiability

1.1. Algebras

We call the R-linear space R𝑛 an algebra; denoted by A if it is
endowed with a bilinear product A × A → A denoted by (𝑢, 𝑣) ↦ 𝑢𝑣,
which is associative and commutative; that is 𝑢(𝑣𝑤) = (𝑢𝑣)𝑤 and 𝑢𝑣 = 𝑣𝑢
for all 𝑢, 𝑣,𝑤 ∈ A; furthermore, there exists a unit 𝑒 ∈ A, which satisfies
𝑒𝑢 = 𝑢 for all 𝑢 ∈ A, see [31].

An element 𝑢 ∈ A is called regular if there exists 𝑢−1 ∈ A called the
inverse of 𝑢 such that 𝑢−1𝑢 = 𝑒. We also use the notation 𝑒∕𝑢 for 𝑢−1,
where 𝑒 is the unit of A. If 𝑢 ∈ A is not regular, then 𝑢 is called singular.
A∗ denotes the set of all the regular elements of A. If 𝑢, 𝑣 ∈ A and 𝑣 is
regular, the quotient 𝑢∕𝑣 means 𝑢𝑣−1.

The A product between the elements of the canonical basis {𝑒1,… ,
𝑒𝑛} of R𝑛 is given by 𝑒𝑖𝑒𝑗 =

∑𝑛
𝑘=1 𝑐𝑖𝑗𝑘𝑒𝑘 where 𝑐𝑖𝑗𝑘 ∈ R for 𝑖, 𝑗, 𝑘 ∈

{1,… , 𝑛} are called structure constants of A. The first fundamental repre-
sentation of A is the injective linear homomorphism 𝑅 ∶ A → 𝑀(𝑛,R)
defined by 𝑅 ∶ 𝑒𝑖 ↦ 𝑅𝑖, where 𝑅𝑖 is the matrix with [𝑅𝑖]𝑗𝑘 = 𝑐𝑖𝑘𝑗 , for
𝑖 = 1,… , 𝑛.

1.2. Definition of 𝜑A-differentiability

We use notation 𝑥 = (𝑥1,… , 𝑥𝑘). The usual differential of a function
𝑓 will be denoted by 𝑑𝑓 .

Let A be the linear space R𝑛 endowed with an algebra product.
Consider two differentiable functions in the usual sense 𝑓, 𝜑 ∶ 𝑈 ⊂
R𝑘 → R𝑛 defined in an open set 𝑈 . We say 𝑓 is 𝜑A-differentiable on 𝑈
if there exists a function 𝑓 ′

𝜑 ∶ 𝑈 ⊂ R𝑘 → R𝑛, that we call 𝜑A-derivative,
such that for all 𝑢 ∈ 𝑈

lim
𝜉→0, 𝜉∈R𝑘

𝑓 (𝑥 + 𝜉) − 𝑓 (𝑥) − 𝑓 ′
𝜑(𝑥)𝑑𝜑𝑥(𝜉)

‖𝜉‖
= 0,

where 𝑓 ′
𝜑(𝑥)𝑑𝜑𝑥(𝜉) denotes the A-product of 𝑓 ′

𝜑(𝑥) and 𝑑𝜑𝑥(𝜉). That is,
𝑓 is 𝜑A-differentiable if 𝑑𝑓𝑥(𝜉) = 𝑓 ′

𝜑(𝑥)𝑑𝜑𝑥(𝜉) for all 𝜉 ∈ R𝑘. In the
same way, high order 𝜑A-derivatives 𝑓 𝑛

𝜑 can be defined by considering
the limits

lim
𝜉→0, 𝜉∈R𝑘

𝑓 (𝑛−1)
𝜑 (𝑥 + 𝜉) − 𝑓 (𝑛−1)

𝜑 (𝑥) − 𝑓 (𝑛)
𝜑 (𝑥)𝑑𝜑𝑥(𝜉)

‖𝜉‖
= 0.

We will also use the notations 𝑑𝑓
𝑑𝜑 for 𝑓 ′

𝜑 and 𝑑2𝑓
𝑑𝜑2 for 𝑓 ′′

𝜑 , and so on.
If 𝑘 = 𝑛 and 𝜑 ∶ R𝑛 → R𝑛 is the identity transformation 𝜑(𝑥) = 𝑥, the

𝜑A-differentiability will be called A-differentiability and the A-derivative
of 𝑓 will be denoted by 𝑓 ′. This last differentiability is known as Lorch
differentiability, see [12]. Differentiability related to commutative and
noncommutative algebras is considered in [10].

1.3. Algebrizability of planar vector fields

The algebrizability of planar vector fields can be see in [19]. A
planar vector field 𝑓 = (𝑢, 𝑣) is algebrizable on an open set 𝛺 ⊂ R2 if
and only if the conjugate functions 𝑢, 𝑣 of 𝑓 satisfy at least one of the
following PDE systems

(a) 𝑢𝑥 + 𝑝2𝑣𝑥 − 𝑣𝑦 = 0, 𝑢𝑦 − 𝑝1𝑣𝑥 = 0,
(b) 𝑢𝑥 + 𝑝1𝑢𝑦 − 𝑣𝑦 = 0, 𝑣𝑥 − 𝑝2𝑢𝑦 = 0, and
(c) 𝑢𝑦 = 0, 𝑣𝑥 = 0.

For case (a) we take A = A2
1(𝑝1, 𝑝2), for (b) A = A2

2(𝑝1, 𝑝2), and for (c)
A = A2

1,2. These systems are called Cauchy–Riemann equations associated
with A (A-CREs), where 𝑝𝑖 ∈ R for 𝑖 = 1,… , 4 are parameters, see [7].
For A2

1(𝑝1, 𝑝2) the product is

⋅ 𝑒1 𝑒2
𝑒1 𝑒1 𝑒2 (5)

𝑒2 𝑒2 𝑝1𝑒1 + 𝑝2𝑒2
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hence the unit is 𝑒 = 𝑒1. The structure constants are

𝑐111 = 1, 𝑐112 = 0, 𝑐121 = 0, 𝑐122 = 1,
𝑐211 = 0, 𝑐212 = 1, 𝑐221 = 𝑝1, 𝑐222 = 𝑝2,

(6)

or equivalently, its first fundamental representation is

𝑅(𝑒1) =
(

1 0
0 1

)

, 𝑅(𝑒2) =
(

0 𝑝1
1 𝑝2

)

. (7)

For A2
2(𝑝1, 𝑝2) the product is

⋅ 𝑒1 𝑒2
𝑒1 𝑝1𝑒1 + 𝑝2𝑒2 𝑒1
𝑒2 𝑒1 𝑒2

(8)

ence the unit is 𝑒 = 𝑒2. The structure constants are

𝑐111 = 𝑝1, 𝑐112 = 𝑝2, 𝑐121 = 1, 𝑐122 = 0,
𝑐211 = 1, 𝑐212 = 0, 𝑐221 = 0, 𝑐222 = 1, (9)

r equivalently, its first fundamental representation is

(𝑒1) =
(

𝑝1 1
𝑝2 0

)

, 𝑅(𝑒2) =
(

1 0
0 1

)

. (10)

or A2
1,2 the product is

⋅ 𝑒1 𝑒2
𝑒1 𝑒1 0
𝑒2 0 𝑒2

(11)

ence the unit is 𝑒 = 𝑒1 + 𝑒2. The structure constants are

𝑐111 = 1, 𝑐112 = 0, 𝑐121 = 0, 𝑐122 = 0,
𝑐211 = 0, 𝑐212 = 0, 𝑐221 = 0, 𝑐222 = 1, (12)

r equivalently, its first fundamental representation is

(𝑒1) =
(

1 0
0 0

)

, 𝑅(𝑒2) =
(

0 0
0 1

)

. (13)

.4. On 𝜑A-differentiability

The 𝜑A-derivative 𝑓 ′
𝜑(𝑥) is unique if 𝑑𝜑𝑥(R𝑘) is not contained in the

ingular set of A. The function 𝜑 ∶ 𝑈 ⊂ R𝑘 → R𝑛 is 𝜑A-differentiable
nd 𝜑′

𝜑(𝑥) = 𝑒 for all 𝑥 ∈ 𝑈 where 𝑒 ∈ A is the unit. Also, the
-combinations (linear) and A-products of 𝜑A-differentiable functions
re 𝜑A-differentiable functions and they satisfy the usual rules of
ifferentiation. In the same way if 𝑓 is 𝜑A-differentiable and has image
n the regular set of A, then the function 𝑒

𝑓𝑛 is 𝜑A-differentiable for
∈ {1, 2,…}, and

(

𝑒
𝑓 𝑛

)′

𝜑
=

−𝑛𝑓 ′
𝜑

𝑓 𝑛+1
. (14)

A 𝜑A-polynomial function 𝑝 ∶ R𝑘 → R𝑛 is defined by

(𝑥) = 𝑐0 + 𝑐1𝜑(𝑥) + 𝑐2(𝜑(𝑥))2 +⋯ + 𝑐𝑚(𝜑(𝑥))𝑚 (15)

here 𝑐0, 𝑐1,… , 𝑐𝑚 ∈ A are constants and the variable 𝑢 represent
he variable in R𝑘. A 𝜑A-rational function is defined by a quotient
f two 𝜑A-polynomial functions. Then, 𝜑A-polynomial functions and
A-rational functions are 𝜑A-differentiable and the usual rules of dif-

erentiation are satisfied for the 𝜑A-derivative.
In general, the rule of chain does not have sense since 𝜑 is 𝜑A-

ifferentiable however the composition 𝜑◦𝜑 only is defined when 𝑘 = 𝑛.
ven in this case the rule of the chain cannot be verified. Suppose that
is a linear isomorphism and that the rule of chain is satisfied. Thus

he Jacobian matrix of 𝜑◦𝜑 satisfies

(𝜑◦𝜑) = 𝑀𝑀 = 𝑅((𝜑◦𝜑)′𝜑)𝑀,

here 𝑀 is the matrix associated with 𝜑 respect to the canonical basis
f R𝑛 and 𝑅 is the first fundamental representation of A. Then

(𝜑◦𝜑)𝑀−1 = 𝑀 ∈ 𝑅(A). (16)
3

herefore, if 𝑀 has determinant det(𝑀) ≠ 0 and 𝑀 ∉ 𝑅(A), the rule of
hain is not valid for the 𝜑A-differentiability. By (16)𝑀 ∈ 𝑅(A).

We have the following first version of the rule of chain.

emma 1.1. If 𝑔 ∶ 𝛺 ⊂ R𝑛 → R𝑛 is A-differentiable with A-derivative
𝑔′, 𝑓 ∶ 𝑈 ⊂ R𝑘 → R𝑛 is 𝜑A-differentiable, and 𝑓 (𝑈 ) ⊂ 𝛺, then
𝑔◦𝑓 ∶ 𝑈 ⊂ R𝑘 → R𝑛 is a 𝜑A-differentiable function with 𝜑A-derivative

(𝑔◦𝑓 )′𝜑 = (𝑔′◦𝑓 )𝑓 ′
𝜑.

Proof. The function 𝑔◦𝑓 is differentiable in the usual sense and

𝑑(𝑔◦𝑓 )𝑥(𝜉) = 𝑑𝑔𝑓 (𝑥)𝑑𝑓𝑥(𝜉) = 𝑔′(𝑓 (𝑥))𝑓 ′
𝜑(𝑥)𝑑𝜑𝑥(𝜉). □

Lemma 1.1 has the following converse: each 𝜑A-differentiable func-
tion 𝑓 can be expressed as 𝑔◦𝜑 where 𝑔 is an A-algebrizable vector field,
as we can see in the following lemma.

Lemma 1.2. If 𝜑 ∶ 𝑈 ⊂ R𝑛 → R𝑛 is a diffeomorphism defined on an open
set 𝑈 and 𝑓 ∶ 𝑈 ⊂ R𝑛 → R𝑛 a is 𝜑A-differentiable on 𝑈 , then there exists
an A-differentiable vector field 𝑔 such that 𝑓 (𝑥) = 𝑔◦𝜑(𝑥) for all 𝑥 ∈ 𝑈 ,
and 𝑔′(𝜑(𝑥)) = 𝑓 ′

𝜑(𝑥).

Proof. Define 𝑔 = 𝑓◦𝜑−1, thus

𝑑𝑔𝜑(𝑥) = 𝑑𝑓𝑥𝑑𝜑
−1
𝜑(𝑥) = 𝑓 ′

𝜑(𝑥)𝑑𝜑𝑥𝑑𝜑
−1
𝜑(𝑥) = 𝑓 ′

𝜑(𝑥).

This means that 𝑔 is A-differentiable at 𝜑(𝑥) and its A-derivative is
𝑔′(𝜑(𝑥)) = 𝑓 ′

𝜑(𝑥). □

We have the following proposition.

Proposition 1.1. Let 𝜑 ∶ 𝑈 ⊂ R𝑛 → R𝑛 be a diffeomorphism defined on
an open set 𝑈 . The following three statements are equivalent

(a) 𝑓 ∶ 𝑈 ⊂ R𝑛 → R𝑛 is 𝜑A-differentiable on 𝑈 .
(b) 𝑔 = 𝑓◦𝜑−1 is A-differentiable.
(c) 𝑓 is differentiable in the usual sense on 𝑈 and 𝐽𝑓𝑥(𝐽𝜑𝑥)−1 ∈ 𝑅(A)

for all 𝑥 ∈ 𝑈 .

Proof. Suppose (a), by Lemma 1.2 we have (b).
Suppose (b), then 𝑔 = 𝑓◦𝜑−1 is A-differentiable. Since 𝜑 is a

diffeomorphism 𝑓 = 𝑔◦𝜑 is differentiable in the usual sense, the rule
of the chain gives 𝑑𝑔𝜑(𝑥) = 𝑑𝑓𝑥◦𝑑𝜑−1

𝜑(𝑥), and 𝐽𝑔𝜑(𝑥) = 𝐽𝑓𝑥𝐽𝜑−1
𝜑(𝑥) ∈ 𝑅(A).

That is, (b) implies (c).
Suppose (c). Since 𝑓 is differentiable in the usual sense 𝐽𝑔𝜑(𝑥) =

𝐽𝑓𝑥𝐽𝜑−1
𝜑(𝑥) ∈ 𝑅(A) implies 𝐽𝑓𝑥 = 𝐽𝑔𝜑(𝑥)𝐽𝜑𝑥. That is, 𝑑𝑓𝑥 = 𝑑𝑔𝜑(𝑥)𝑑𝜑𝑥.

Thus, 𝑓 is 𝜑A-differentiable. □

Corollary 1.1. Let 𝑓 (𝑥, 𝑦) = (𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)) be a vector field for which
there exists a diffeomorphism 𝜙(𝑠, 𝑡) = (𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡)) that is 𝜑 = 𝜙−1 and
suppose that some of the following conditions are satisfied:

(a) There exist constants 𝑝1 and 𝑝2 such that

𝑢𝑥𝑥𝑠 + 𝑢𝑦𝑦𝑠 + 𝑝2(𝑣𝑥𝑥𝑠 + 𝑣𝑦𝑦𝑠) − (𝑣𝑥𝑥𝑡 + 𝑣𝑦𝑦𝑡) = 0,
𝑢𝑥𝑥𝑡 + 𝑢𝑦𝑦𝑡 − 𝑝1(𝑣𝑥𝑥𝑠 + 𝑣𝑦𝑦𝑠) = 0.

(b) There exist constants 𝑝1 and 𝑝2 such that

𝑢𝑥𝑥𝑠 + 𝑢𝑦𝑦𝑠 + 𝑝1(𝑢𝑥𝑥𝑡 + 𝑢𝑦𝑦𝑡) − (𝑣𝑥𝑥𝑡 + 𝑣𝑦𝑦𝑡) = 0,
𝑣𝑥𝑥𝑠 + 𝑣𝑦𝑦𝑠 − 𝑝2(𝑢𝑥𝑥𝑡 + 𝑢𝑦𝑦𝑡) = 0.

(c) 𝑢𝑥𝑥𝑡 + 𝑢𝑦𝑦𝑡 = 0 and 𝑣𝑥𝑥𝑠 + 𝑣𝑦𝑦𝑠 = 0.

In case (a) we take A = A2
1(𝑝1, 𝑝2), in (b) A = A2

2(𝑝1, 𝑝2), and in (c)
A = A2

1,2. Then 𝑓 is 𝜑A-differentiable.

Proof. In the three cases the systems of partial differential equations
are the generalized Cauchy–Riemann equations given in Section 1.3
for 𝑔 = 𝑓◦𝜑−1, then 𝑔 is A-differentiable. Thus, by Proposition 1.1 𝑓

is 𝜑A-differentiable. □
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We also have the following second version of the rule of chain.

Lemma 1.3. If 𝜑 ∶ 𝑈 ⊂ R𝑘 → R𝑛 is differentiable on an open set 𝑈 ,
∶ 𝑉 ⊂ R𝑙 → R𝑘 is differentiable on an open set 𝑉 with 𝑔(𝑉 ) ⊂ 𝑈 ,

nd 𝑓 ∶ 𝑈 ⊂ R𝑘 → R𝑛 is 𝜑A-differentiable on 𝑈 , then ℎ = 𝑓◦𝑔 is
A-differentiable on 𝑉 for 𝜙 = 𝜑◦𝑔, and ℎ′𝜙(𝑥) = 𝑓 ′

𝜑(𝑔(𝑥))

roof. We have

ℎ𝑥 = 𝑑(𝑓◦𝑔)𝑥 = 𝑑𝑓𝑔(𝑥)𝑑𝑔𝑥 = 𝑓 ′
𝜑(𝑔(𝑥))𝑑𝜑𝑔(𝑥)𝑑𝑔𝑥 = 𝑓 ′

𝜑(𝑔(𝑥))𝑑𝜙𝑥.

hus, ℎ′𝜙(𝑥) = 𝑓 ′
𝜑(𝑔(𝑥)). □

.5. Cauchy-Riemann equations for the 𝜑A-differentiability

The canonical basis of R𝑘 and R𝑛 will be denoted by {𝑒1,… , 𝑒𝑘} and
{𝑒1,… , 𝑒𝑛}, respectively, according to the context of the uses it will be
determined if 𝑒𝑖 belongs to R𝑘 or to R𝑛. The directional derivatives of
a function 𝑓 with respect to a direction with respect to 𝑒𝑖 are denoted
by

𝑓𝑥𝑖 = 𝑓1𝑥𝑖𝑒1 +⋯ + 𝑓𝑛𝑥𝑖𝑒𝑛.

The Cauchy–Riemann equations for (𝜑,A) (𝜑A-CREs) is the linear
ystem of 𝑛(𝑘 − 1) PDEs obtained from

𝜑(𝑒𝑗 )𝑓𝑥𝑖 = 𝑑𝜑(𝑒𝑖)𝑓𝑥𝑗 (17)

for 𝑖, 𝑗 ∈ {1,… , 𝑘}. For 𝑖 = 1,… , 𝑘 suppose 𝜑 = (𝜑1,… , 𝜑𝑛), then

𝑑𝜑(𝑒𝑖) = 𝜑𝑥𝑖 =
𝑛
∑

𝑙=1
𝜑𝑙𝑥𝑖𝑒𝑙 . (18)

Since an algebra A is an A-module or a module over A, we have the
following:

(1) If 𝐹 is a solution of
In the following theorem the 𝜑A-CREs are given.

Theorem 1.1. Let 𝑓 = (𝑓1,… , 𝑓𝑛) be an 𝜑A-differentiable function. Thus,
the 𝜑A-CREs are given by
𝑛
∑

𝑚=1

𝑛
∑

𝑙=1
(𝑓𝑚𝑥𝑖𝜑𝑙𝑥𝑗 − 𝑓𝑚𝑥𝑗𝜑𝑙𝑥𝑖 )𝐶𝑙𝑚𝑞 = 0 (19)

for 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 and 𝑞 = 1,… , 𝑛, which is a system of 𝑛(𝑘 − 1) partial
differential equations.

Proof. The equalities (17) and (18) give
𝑛
∑

𝑞=1

( 𝑛
∑

𝑚=1

𝑛
∑

𝑙=1
(𝑓𝑚𝑥𝑖𝜑𝑙𝑥𝑗 − 𝑓𝑚𝑥𝑗𝜑𝑙𝑥𝑖 )𝐶𝑙𝑚𝑞

)

𝑒𝑞 = 0. □

The directional derivatives of 𝜑A-differentiable functions are given
in the following lemma.

Lemma 1.4. If 𝑓 is 𝜑A-differentiable, for each direction 𝑥 ∈ R𝑘 we have

𝑓𝑥 = 𝑓 ′
𝜑(𝑥)𝑑𝜑𝑥. (20)

Proof. The proof is obtained directly from the 𝜑A-differentiability of
𝑓 . □

The 𝜑A-differentiability implies the 𝜑A-CREs, as we see in the
following proposition.

Proposition 1.2. Let 𝑓 ∶ 𝑈 ⊂ R𝑘 → R𝑛 be a differentiable function in
the usual sense on an open set 𝑈 , and 𝑘 ∈ {2,… , 𝑛}. Thus, if 𝑓 is 𝜑A-
differentiable, then 𝑑𝜑(𝑒𝑗 )𝑓𝑥𝑖 = 𝑑𝜑(𝑒𝑖)𝑓𝑥𝑗 . That is, the conjugate functions
4

of 𝑓 satisfy the 𝜑A-CREs.
Proof. By using (20) we have 𝑓𝑥𝑖 = 𝑓 ′
𝜑𝑑𝜑(𝑒𝑖) and 𝑓𝑥𝑗 = 𝑓 ′

𝜑𝑑𝜑(𝑒𝑗 ). Then

𝑑𝜑(𝑒𝑗 )𝑓𝑥𝑖 = 𝑑𝜑(𝑒𝑗 )𝑓 ′
𝜑𝑑𝜑(𝑒𝑖) = 𝑑𝜑(𝑒𝑖)𝑓 ′

𝜑𝑑𝜑(𝑒𝑗 ) = 𝑑𝜑(𝑒𝑖)𝑓𝑥𝑗 . □

We say 𝜑 has an A-regular direction 𝜉 on 𝑈 if 𝜉 ∶ 𝑈 → S1 is a function
𝑥 ↦ 𝜉𝑥 such that 𝑑𝜑𝑥(𝜉𝑥) is a regular element of A for all 𝑥 ∈ 𝑈 , where
S1 ⊂ R𝑘 denotes the unit sphere centered at the origin. If 𝜑 has an
A-regular direction, Proposition 1.2 has a converse, as we can see in
the following theorem.

Theorem 1.2. Let 𝑓 ∶ 𝑈 ⊂ R𝑘 → R𝑛 be a differentiable function in the
usual sense on an open set 𝑈 , and 𝑘 ∈ {2,… , 𝑛}. Suppose that 𝜑 has regular
directions on 𝑈 . Thus, if the conjugate functions of 𝑓 satisfy the 𝜑A-CREs,
then 𝑓 is 𝜑A-differentiable.

Proof. Let 𝜉 be a regular direction of 𝜑 on 𝑈 . Since the conjugate
functions of 𝑓 satisfy the 𝜑A-CREs we have that 𝑑𝜑(𝑒𝑗 )𝑓𝑥𝑖 = 𝑑𝜑(𝑒𝑖)𝑓𝑥𝑗
for 1 ≤ 𝑖, 𝑗 ≤ 𝑘. Thus,

𝑑𝜑(𝑥)𝑓𝑥𝑖 = 𝑓𝑥𝑖

𝑛
∑

𝑗=1
𝑥𝑗𝑑𝜑(𝑒𝑗 ) =

𝑛
∑

𝑗=1
𝑥𝑗𝑑𝜑(𝑒𝑗 )𝑓𝑥𝑖

=
𝑛
∑

𝑗=1
𝑥𝑗𝑑𝜑(𝑒𝑖)𝑓𝑥𝑗 =

𝑛
∑

𝑗=1
𝑥𝑗𝑓𝑥𝑗 𝑑𝜑(𝑒𝑖)

= 𝑑𝑓 (𝑥)𝑑𝜑(𝑒𝑖).

Then, 𝑓𝑥𝑖 =
𝑓𝜉

𝑑𝜑(𝜉)𝑑𝜑(𝑒𝑖). We take 𝑔𝜑 = 𝑓𝜉
𝑑𝜑(𝜉) . By proof of Proposition 1.2

e have 𝑑𝑓 (𝑥) =
∑𝑘

𝑖=1 𝑥𝑖𝑓𝑥𝑖 , and 𝑔𝜑𝑑𝜑(𝑥) =
∑𝑘

𝑖=1 𝑥𝑖𝑔𝜑𝑑𝜑(𝑒𝑖). Under
hese conditions we have that 𝑑𝑓 (𝑥) = 𝑔𝜑𝑑𝜑(𝑥) for all 𝑥 ∈ R𝑘. That
s, 𝑓 is 𝜑A-differentiable and 𝑓 ′

𝜑 = 𝑔𝜑. □

We consider the following example.

xample 1.1. Let 𝜑 ∶ R2 → R2 be given by 𝜑(𝑥, 𝑦) = (𝑦, 𝑥) and A the
omplex field C. The CREs are given by

(𝑒2)(𝑢, 𝑣)𝑥 = 𝜑(𝑒1)(𝑢, 𝑣)𝑦.

hen

1(𝑢𝑥, 𝑣𝑥) = 𝑒2(𝑢𝑦, 𝑣𝑦) = (−𝑣𝑦, 𝑢𝑦),

rom which we obtain the 𝜑A-CREs for the 𝜑A-differentiability

𝑢𝑥 = −𝑣𝑦, 𝑣𝑥 = 𝑢𝑦.

The function 𝑓 (𝑥, 𝑦) = (𝑦2 − 𝑥2, 2𝑥𝑦) satisfies 𝑓 (𝑥, 𝑦) = (𝜑(𝑥, 𝑦))2. In
this case we have 𝑢(𝑥, 𝑦) = 𝑦2 − 𝑥2 and 𝑣(𝑥, 𝑦) = 2𝑥𝑦, and they satisfy
the 𝜑A-CREs.

2. 𝝋A-Differential equations

2.1. The Cauchy-integral theorem for the 𝜑A-differentiability

If 𝑓 ∶ 𝑈 ⊂ R𝑘 → R𝑛 is a 𝜑A-differentiable function defined in an
open set 𝑈 . The 𝜑A-line integral of 𝑓 is defined by

∫𝛾
𝑓𝑑𝜑 = ∫𝛾

𝑓 (𝑣)𝑑𝜑(𝑣′) ∶= ∫

𝑡1

0
𝑓 (𝛾(𝑠))𝑑𝜑(𝛾 ′(𝑠))𝑑𝑠, (21)

where 𝛾 is a differentiable function of 𝑡 with values in 𝑈 , 𝛾(0) = 𝑥0,
𝛾(𝑡1) = 𝑥, 𝑓 (𝛾(𝑠))𝑑𝜑(𝛾 ′(𝑠)) represents the A-product of 𝑓 (𝛾(𝑠)) and
𝑑𝜑𝛾(𝑠)(𝛾 ′(𝑠)), and the right hand of (21) represents the usual line integral
in R𝑛.

A version of the Cauchy-integral theorem for the 𝜑A-line integral is
given in the following theorem, see Corollary 10.11 pg. 49 of [10] for
another version of the Cauchy-integral theorem relative to algebras.

Theorem 2.1. Let 𝜑 ∶ 𝑈 ⊂ R𝑘 → R𝑛 be a 𝐶2-function defined on a
simply-connected open set 𝑈 and 𝑓 ∶ 𝑈 ⊂ R𝑘 → R𝑛 a 𝜑A-differentiable
function. If 𝛾 is a closed differentiable path contained in 𝑈 , then the 𝜑A-line
integral (21) is equal to zero.
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Proof. We will show that 𝑓𝑑𝜑(𝛾 ′) =
∑𝑛

𝑞=1⟨𝐺𝑞 , 𝛾 ′⟩𝑒𝑞 , where the 𝐺𝑞
are n-dimensional conservative vector fields. Remember that 𝑑𝜑(𝑒𝑗 ) =
∑𝑛

𝑙=1 𝜑𝑙𝑥𝑗 𝑒𝑙.
The A-product of 𝑓 and 𝜑(𝛾 ′) is given by

𝑓𝑑𝜑(𝛾 ′) =

( 𝑛
∑

𝑚=1
𝑓𝑚𝑒𝑚

)( 𝑘
∑

𝑗=1
𝛾 ′𝑗𝑑𝜑(𝑒𝑗 )

)

=
𝑛
∑

𝑚=1

𝑘
∑

𝑗=1

𝑛
∑

𝑙=1
𝑓𝑚𝛾

′
𝑗𝜑𝑙𝑥𝑗 𝑒𝑙𝑒𝑚

=
𝑛
∑

𝑞=1

( 𝑛
∑

𝑚=1

𝑘
∑

𝑗=1

𝑛
∑

𝑙=1
𝑓𝑚𝛾

′
𝑗𝜑𝑙𝑥𝑗 𝑐𝑙𝑚𝑞

)

𝑒𝑞

=
𝑛
∑

𝑞=1

(

⟨

𝑘
∑

𝑗=1

( 𝑛
∑

𝑚=1

𝑛
∑

𝑙=1
𝑓𝑚𝜑𝑙𝑥𝑗 𝑐𝑙𝑚𝑞

)

𝑒𝑗 ,
𝑘
∑

𝑗=1
𝛾 ′𝑗𝑒𝑗⟩

)

𝑒𝑞 ,

where ⟨⋅, ⋅⟩ denotes the inner product of the vector field 𝐺𝑞 and 𝛾 ′, and

𝐺𝑞 =
𝑘
∑

𝑗=1

( 𝑛
∑

𝑚=1

𝑛
∑

𝑙=1
𝑓𝑚𝜑𝑙𝑥𝑗 𝑐𝑙𝑚𝑞

)

𝑒𝑗

for 𝑞 = 1,… , 𝑛. By taking the exterior derivative of the dual 1-form
of 𝐹𝑞 , using the 𝜑A-CREs given by (19), and the commutativity of the
second partial derivatives of the conjugate functions of 𝜑, we show that
this 1-form is exact. Therefore, 𝐺𝑞 is a conservative vector field. □

If 𝑈 is a simply connected open set containing 𝑥 and 𝑥0, Theo-
rem 2.1 permit us to define

∫

𝑥

𝑥0
𝑓𝑑𝜑 = ∫𝛾

𝑓𝑑𝜑,

where 𝛾 is a differentiable function of 𝑡 with values in 𝑈 , 𝛾(0) = 𝑥0, and
𝛾(𝑡1) = 𝑥.

Corollary 2.1. Let 𝜑 ∶ 𝑈 ⊂ R𝑘 → R𝑛 be a 𝐶2-function on an open set 𝑈
and 𝑓 ∶ 𝑈 ⊂ R𝑘 → R𝑛 be a 𝜑A-differentiable function. The vector fields

𝐺𝑞 =
𝑘
∑

𝑗=1

( 𝑛
∑

𝑚=1

𝑛
∑

𝑙=1
𝑓𝑚𝜑𝑙𝑥𝑗 𝑐𝑙𝑚𝑞

)

𝑒𝑗

for 𝑞 = 1,… , 𝑛 are conservative, where 𝜑𝑥𝑗 =
∑𝑛

𝑙=1 𝜑𝑙𝑥𝑗 𝑒𝑙.

Example 2.1. Consider the algebra A with product of the elements of
the canonical basis of R3 given by

⋅ 𝑒1 𝑒2 𝑒3
𝑒1 𝑒1 𝑒2 𝑒3
𝑒2 𝑒2 𝑒2 + 𝑒3 𝑒2 + 𝑒3
𝑒3 𝑒3 𝑒2 + 𝑒3 𝑒2 + 𝑒3

. (22)

Let 𝜑(𝑥, 𝑦) = (𝑥, 𝑦, 0). The function 𝑓 (𝑥, 𝑦) = 𝜑(𝑥, 𝑦)−1 is 𝜑A-
differentiable and

𝑓 (𝑥, 𝑦) =
(

1
𝑥
,
−𝑥𝑦 − 𝑦2

𝑥3 + 2𝑥2𝑦
,

𝑦2

𝑥3 + 2𝑥2𝑦

)

.

Thus, the conservative vector fields 𝐺𝑖 for 𝑖 = 1, 2, 3 are given by

𝐺1 = (𝑓1, 0) =
( 1
𝑥
, 0
)

,

𝐺2 = (𝑓2, 𝑓1 + 𝑓2 + 𝑓3) =
(

−𝑥𝑦 − 𝑦2

𝑥3 + 2𝑥2𝑦
,

𝑥 + 𝑦
𝑥2 + 2𝑥𝑦

)

,

𝐺3 = (𝑓3, 𝑓2 + 𝑓3) =
(

𝑦2

𝑥3 + 2𝑥2𝑦
,−

𝑥𝑦
𝑥3 + 2𝑥2𝑦

)

.

If 𝑈 is a simply-connected open set and 𝑓 ∶ 𝑈 ⊂ R𝑘 → R𝑛 is
𝜑A-differentiable on 𝑈 , then the function

𝐹 (𝑥) = ∫

𝑥

𝑥0
𝑓 (𝑣)𝑑𝜑(𝑣′),

or 𝑥0, 𝑥 ∈ 𝑈 is well defined. An 𝜑A-antiderivative of a function 𝑓 ∶ 𝑈 ⊂
𝑘 → R𝑛 is a function 𝐹 ∶ 𝑈 ⊂ R𝑘 → R𝑛 whose 𝜑A-derivative is given

′

5

y 𝐹𝜑 = 𝑓 .
For 𝜑A-polynomial functions the 𝜑A-antiderivative can be calcu-
lated in the usual way. The 𝜑A-line integral of 𝜑A-differentiable func-
tions gives 𝜑A-antiderivatives, as we have in the following corollary
which is a generalization of the fundamental theorem of calculus.

Corollary 2.2. Let 𝜑 ∶ 𝑈 ⊂ R𝑘 → R𝑛 be a 𝐶2-function defined on a
simply-connected open set 𝑈 and 𝑓 ∶ 𝑈 ⊂ R𝑘 → R𝑛 a 𝜑A-differentiable
function. If 𝑥0, 𝑥 ∈ 𝑈 and

𝐹 (𝑥) = ∫

𝑥

𝑥0
𝑓 (𝑣)𝑑𝜑(𝑣′),

then 𝐹 ′
𝜑 = 𝑓 .

Proof. We take the curve 𝛾(𝑡) = 𝑥+ 𝑡𝜉 joining 𝑥 and 𝑥+𝜉, thus 𝛾 ′(𝑡) = 𝜉.
The rest of the proof is a consequence of Theorem 2.1. □

2.2. 𝜑A-Differential equations

Let 𝐹 ∶ 𝛺 ⊂ R𝑛 → R𝑛 be a vector field defined on an open set 𝛺. A
𝜑A-differential equation is
𝑑𝑤
𝑑𝜑

= 𝐹 (𝑤), 𝑤(𝜏0) = 𝑤0, (23)

finding a solution is understand as the problem of finding a 𝜑A-
ifferentiable function 𝑤 ∶ 𝑉𝜏0 ⊂ R𝑘 → R𝑛 defined in a neighborhood
𝜏0 of 𝜏0 such that 𝑑𝑤𝜏 = 𝐹 (𝑤(𝜏))𝑑𝜑𝜏 for all 𝜏 ∈ 𝑉𝜏0 , and satisfying
he initial condition 𝑤(𝜏0) = 𝑤0. Thus, for a 𝜑A-ODE 𝑤′

𝜑 = 𝐹 (𝑤) the
ollowing notation has sense
𝑑𝑤
𝑑𝜑

= 𝐹 (𝑤). (24)

We have the following Existence and Uniqueness Theorem for A-
algebrizable vector fields and 𝜑A-differential equations.

Theorem 2.2. Let 𝜑 ∶ 𝑈 ⊂ R𝑘 → R𝑛 be a 𝐶2-function defined on an open
set 𝑈 and 𝐹 ∶ 𝛺 ⊂ R𝑛 → R𝑛 a A-differentiable vector field defined on an
open set 𝛺 with 𝜑(𝑈 ) ⊂ 𝛺. For every initial condition 𝑤0 ∈ 𝛺 there exists
a unique 𝜑A-differentiable function 𝑤 ∶ 𝑉𝜏0 ⊂ R𝑘 → R𝑛 with 𝑤(𝜏0) = 𝑤0
and satisfying (23), where 𝑉𝜏0 ⊂ 𝑈 is a neighborhood of 𝜏0.

Proof. Define

𝑤𝑛+1(𝜏) = ∫

𝜏

𝜏0
𝐹◦𝑤𝑛(𝑣)𝑑𝜑(𝑣′), 𝑤0(𝑣) = 𝑤0.

he constant function 𝑤0(𝑣) is 𝜑A-differentiable. By Lemma 1.1 and
Corollary 2.2 we have that 𝑤1(𝑣) is 𝜑A-differentiable. Thus, we apply
induction and show that 𝑤𝑛(𝑣) is 𝜑A-differentiable for all 𝑛 ∈ N. The
emaining arguments are similar to the usual Existence and Uniqueness
heorem for ordinary differential equations. □

Let A be an algebra which as linear space is R𝑛, and 𝜑 ∶ 𝑉 ⊂
𝑘 → R𝑛 a differentiable function defined on open set 𝑉 . Consider a

unction 𝐹 ∶ 𝛺 ⊂ R𝑘 × R𝑛 → A defined on an open set 𝛺. We say
is (𝜑A,A)-differentiable if 𝐹 (𝜏,𝑤) is 𝜑A-differentiable as a function

f 𝜏 (with 𝑤 being fixed) and 𝐹 is A-differentiable as a function of 𝑤
with 𝜏 being fixed). We also say 𝐹 is (A,A)-differentiable if 𝐹 (𝜏,𝑤) is
(𝜑A,A)-differentiable for the identity map 𝜑 ∶ A → A.

A non-autonomous 𝜑A-ordinary differential equation (𝜑A-ODE) is
written by
𝑑𝑤
𝑑𝜑

= 𝐹 (𝜏,𝑤), 𝑤(𝜏0) = 𝑤0, (25)

where finding a solution is understood as the problem of finding a 𝜑A-
ifferentiable function 𝑤 ∶ 𝑉𝜏0 ⊂ R𝑘 → R𝑛 defined in a neighborhood

𝑉𝜏0 of 𝜏0 whose 𝜑A-derivative 𝑑𝑤
𝑑𝜑 = 𝑤′

𝜑 satisfies

𝑑𝑤𝜏 = 𝐹 (𝜏,𝑤(𝜏))𝑑𝜑𝜏 . (26)

The corresponding existence and uniqueness of solutions can be stated

for (𝜑A,A)-differentiable functions 𝐹 = 𝐹 (𝜏,𝑤).
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2.3. Solutions for some 𝜑A-differential equations

Consider the ODE
𝑑𝑤
𝑑𝑡

= 𝑓 (𝑡, 𝑤), 𝑓 ∶ 𝑈 ⊂ R × R𝑛 → R𝑛, (27)

efined in the open set 𝑈 . Suppose the existence of a differentiable
unction 𝜑 ∶ 𝐼 ⊂ R → R𝑛 and an algebra structure A on R𝑛 such that

• 𝜑′ has image in the regular set A∗, and
• function (𝑡, 𝑥) ↦ 𝑓 (𝑡, 𝑥)𝜑′−1(𝑡) is (𝜑A,A)-differentiable.

Thus, we say the ODE (27) is (𝜑A,A)-algebrizable and that the 𝜑A-ODE

𝑑𝑤
𝑑𝜑

= 𝑓 (𝑡, 𝑤)𝜑′−1(𝑡) (28)

s the (𝜑A,A)-algebrization of (27).

emma 2.1. Let 𝜑(𝑡) and 𝑓 (𝑡, 𝑥) be differentiable functions in the usual
ense. Suppose that 𝜑′ has image in the regular set A∗ and that function
𝑡, 𝑥) ↦ 𝑓 (𝑡, 𝑥)𝜑′−1(𝑡) is (𝜑A,A)-differentiable. Thus, 𝑤 is solution of (27)
f and only if 𝑤 is solution of (28).

roof. Let 𝑤(𝑡) be a solution of (27). We have 𝑤′ = 𝑑𝑤 and 𝜑′ = 𝑑𝜑.
hus,

𝑤(𝑡) = [𝑓 (𝑡, 𝑤(𝑡))𝜑′−1(𝑡)]𝑑𝜑′(𝑡).

herefore, 𝑤(𝑡) is a solution of (28).
Now, let 𝑤(𝑡) be a solution of (28). Then 𝑤(𝑡) is a 𝜑A-differentiable

unction, and
𝑑𝑤
𝑑𝑡

= 𝑑𝑤 = 𝑑𝑤
𝑑𝜑

𝑑𝜑 = (𝑓 (𝑡, 𝑤)𝜑′−1(𝑡))𝜑′(𝑡) = 𝑓 (𝑡, 𝑥).

Thus, 𝑤(𝑡) is a solution of (27). □

Given an algebra A which has linear space is R𝑛, we say a function
𝐹 ∶ 𝛺 ⊂ R𝑘 × R𝑛 → A is of A-separable variables if 𝐹 (𝜏,𝑤) = 𝐾(𝜏)𝐿(𝑤)
or certain functions 𝐾 ∶ R𝑘 → A and 𝐿 ∶ R𝑛 → A which we call
A-factors of 𝐹 .

The A-line integral is defined by the 𝜑A-line integral when 𝜑 ∶ R𝑛 →
R𝑛 is the identity map. Some 𝜑A-differential equations can be solved,
as we can see in the following results.

Proposition 2.1. Consider an algebra A, a differentiable function in the
usual sense 𝜑, and the 𝜑A-ODE
𝑑𝑤
𝑑𝜑

= 𝐾(𝜏)𝑤, (29)

here 𝐾 is a 𝜑A-differentiable function with 𝜑A-antiderivative 𝐻 . Thus, all
he solutions of (29) are given by

(𝜏) = 𝑐𝑒𝐻(𝜏), (30)

here 𝑐 ∈ A is a constant.

roof. If we take the 𝜑A-derivative of 𝑤(𝜏) given in (30), we obtain
hat 𝑤(𝜏) is a solution for (29).

Let 𝑊 be another solution of (29). Consider 𝜉(𝜏) = 𝑊 𝑒−𝐻(𝜏), then
′
𝜑 = 𝑊 ′

𝜑𝑒
−𝐻(𝜏) +𝑊 (𝑒−𝐻(𝜏))(−𝐾(𝜏)) = (𝑊 ′

𝜑 −𝐾(𝜏)𝑊 )𝑒−𝐻(𝜏) = 0.

hus, 𝜉(𝜏) = 𝑐 is a constant in A, and 𝑊 (𝜏) = 𝑐𝑒𝐻(𝜏). □

In the following corollary we see a application of Proposition 2.1 in
the solution of linear systems.

Corollary 2.3. Let 𝜑 ∶ 𝐼 ⊂ R → R𝑛 be a differentiable function in the
usual sense and A be the linear space R𝑛 endowed with an algebra product.
The system of differential equations
𝑑𝑤 = 𝐾(𝑡)𝜑′(𝑡)𝑤, (31)
6

𝑑𝑡
here 𝐾(𝑡) is a 𝜑A-differentiable function with 𝜑A-antiderivative 𝐻(𝑡), has
olution

(𝑡) = 𝑐𝑒𝐻(𝑡), (32)

here 𝑐 ∈ A is a constant.

roof. The 𝜑A-algebrization of linear system (31) is
𝑑𝑤
𝑑𝜑

= 𝐾(𝑡)𝑤. (33)

hus, by Proposition 2.1 𝑤(𝑡) given in (32) is a solution for (33), and
y Lemma 2.1 𝑤(𝑡) is a solution of the linear system (31). □

xample 2.2. Consider the linear system

𝑑𝑥
𝑑𝑡 = (𝑝1𝑒2𝑡 −

1
2 sin(2𝑡))𝑥 + 𝑝1𝑒𝑡(𝑝2𝑒𝑡 − cos(𝑡) + sin(𝑡))𝑦,

𝑑𝑦
𝑑𝑡 = 𝑒𝑡(𝑝2𝑒𝑡 − cos(𝑡) + sin(𝑡))𝑥 + (𝑝2𝑒𝑡(𝑝2𝑒𝑡 − cos(𝑡) + sin(𝑡)) + 𝑝1𝑒2𝑡

− 1
2 sin(2𝑡))𝑦.

(34)

For 𝜑(𝑡) = (− cos(𝑡), 𝑒𝑡) and A = A2
1(𝑝1, 𝑝2), the non-autonomous

inear system (34) can be written by
𝑑𝑤
𝑑𝑡

= 𝜑(𝑡)𝜑′(𝑡)𝑤.

Thus, by Corollary 2.3 the solution of (34) is

𝑤(𝑡) = (𝑘, 𝑙)𝑒
1
2 𝜑

2(𝑡). (35)

In the following proposition we consider the general case of A-
separable variables.

Proposition 2.2. Consider the 𝜑A-ODE
𝑑𝑤
𝑑𝜑

= 𝑘(𝜏)𝐿(𝑤), (36)

here 𝑘(𝜏)𝐿(𝑤) is a (𝜑A,A)-differentiable function, where 𝐿 has image
ontained in the regular set of A. If 𝑤 is implicitly defined by

∫

𝑤 𝑑𝑣
𝐿(𝑣)

= ∫

𝜏
𝐾(𝑠)𝑑𝜑(𝑠′), (37)

here the left hand of (37) denotes the A-line integral and the right hand
of (37) denotes the 𝜑A-line integral, then 𝑤 is a 𝜑A-differentiable function
of 𝜏 which solves the 𝜑A-differential Eq. (36).

Proof. If 𝑤 is implicitly defined by (37) as a function of 𝜏, then by
applying Lemma 1.1 to the left hand of (37) we calculate
(

∫

𝑤 𝑑𝑣
𝐿(𝑣)

)′

𝜑
=
(

𝑑
𝑑𝑤 ∫

𝑤 𝑑𝑣
𝐿(𝑣)

)

𝑤′
𝜑 =

𝑤′
𝜑

𝐿(𝑤)
.

Since 𝐾(𝜏) is 𝜑A-differentiable, by Corollary 2.2 we have
(

∫

𝜏
𝐾(𝑠)𝑑𝜑(𝑠′)

)′

𝜑
= 𝐾(𝜏).

herefore, 𝑤(𝜏) is a solution of the 𝜑A-differential Eq. (36). □

If 𝐿(𝑤) ≠ 𝑐0 + 𝑐1𝑤 for 𝑐0, 𝑐1 ∈ A in Proposition 2.2, then each 𝜑A-
DE has associated a nonlinear ODE system. In the following Corollary
(𝑤) = 𝑤2.

orollary 2.4. Consider an algebra A, a differentiable function in the usual
ense 𝜑, and the 𝜑A-ODE
𝑑𝑤
𝑑𝜑

= 𝐾(𝜏)𝑤2 (38)

where 𝐾 is a 𝜑A-differentiable function with 𝜑A-antiderivative 𝐻 . Then,
by (37) −𝑤−1 = 𝐻(𝜏) + 𝑐, where 𝑐 ∈ A is a constant. Thus, the solutions
are given by

𝑤(𝜏) = −𝑒 . (39)

𝐻(𝜏) + 𝑐
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The following corollary gives nonlinear ODE systems which can be
solved by solutions of 𝜑A-ODEs.

Corollary 2.5. Let 𝜑 ∶ 𝐼 ⊂ R → R𝑛 be a differentiable function in the
sual sense and A the linear space R𝑛 endowed with an algebra product.
he nonlinear ODE system
𝑑𝑤
𝑑𝑡

= 𝐾(𝑡)𝜑′(𝑡)𝑤2, (40)

here 𝐾(𝑡) is a 𝜑A-differentiable function with 𝜑A-antiderivative 𝐻(𝑡), has
olution

(𝑡) = −𝑒
𝐻(𝑡) + 𝑐

, (41)

where 𝑐 ∈ A is a constant.

Proof. The (𝜑A,A)-algebrization of the nonlinear system (40) is
𝑑𝑤
𝑑𝜑

= 𝐾(𝑡)𝑤2. (42)

Thus, by Corollary 2.4 𝑤(𝑡) given in (41) is a solution for (42), and by
Lemma 2.1 𝑤(𝑡) is a solution for the system (40). □

In the following example we give a family of nonlinear ODE systems
hich are solved by solutions of 𝜑A-ODEs.

xample 2.3. Consider the family of nonlinear ODE systems
𝑑𝑥
𝑑𝑡 = (𝛼𝛼′ + 𝑝1𝛽𝛽′)𝑥2 + 2𝑝1(𝛼′𝛽 + 𝛼𝛽′ + 𝑝2𝛽𝛽′)𝑥𝑦
+𝑝1[(𝛼𝛼′ + 𝑝1𝛽𝛽′) + 𝑝2(𝛼′𝛽 + 𝛼𝛽′ + 𝑝2𝛽𝛽′)]𝑦2,

𝑑𝑦
𝑑𝑡 = (𝛼′𝛽 + 𝛼𝛽′ + 𝑝2𝛽𝛽′)𝑥2 + 2[(𝛼𝛼′ + 𝑝1𝛽𝛽′) + 𝑝2(𝛼′𝛽 + 𝛼𝛽′

+𝑝2𝛽𝛽′)]𝑥𝑦
+[𝑝2(𝛼𝛼′ + 𝑝1𝛽𝛽′) + (𝑝1 + 𝑝22)(𝛼

′𝛽 + 𝛼𝛽′ + 𝑝2𝛽𝛽′)]𝑦2,

(43)

where 𝛼, 𝛽 are differentiable functions of 𝑡, and 𝑝1, 𝑝1 are real parame-
ters. Let A = 𝐴2

1(𝑝1, 𝑝2) and 𝜑(𝑡) = (𝛼(𝑡), 𝛽(𝑡)). Thus, systems (43) can be
written by
𝑑𝑤
𝑑𝑡

= 𝜑(𝑡)𝜑′(𝑡)𝑤2, (44)

nd by Corollary 2.5 their solutions are given by

(𝑡) = −𝑒
𝜑2(𝑡)
2 + 𝑐

. (45)

The solution of a first order ODE has the following version for the
case of 𝜑A-derivative.

Proposition 2.3. Consider the 𝜑A-ODE
𝑑𝑤
𝑑𝜑

+ 𝑃 (𝜏)𝑤 = 𝐺(𝜏), (46)

where 𝑃 and 𝐺 are 𝜑A-differentiable functions. The solution 𝑤(𝜏) is given
by

𝑤(𝜏) = 𝑒− ∫ 𝑃 (𝜏)𝑑𝜑(𝜏′)
(

𝑐 + ∫ 𝐺(𝜏)𝑒∫ 𝑃 (𝜏)𝑑𝜑(𝜏′)𝑑𝜑(𝜏′)
)

, (47)

here 𝑐 ∈ A is a constant.

. On solutions of PDEs by using algebras

.1. Solving a Cauchy problem by using 𝜑(A)-differentiability

In this section the vector field 𝜑 has the form

(𝑥, 𝑦) = (𝑎𝑥 + 𝑏𝑦, 𝑐𝑥 + 𝑑𝑦). (48)

e consider the Cauchy problem given by the PDE (2) and condi-
ions (3). We look for solutions which are components of 𝜑A-differen-
iable functions 𝑤(𝑥, 𝑦) having the form

(𝑥, 𝑦) =
∞
∑

(𝑟𝑘, 𝑠𝑘)𝜑(𝑥, 𝑦)𝑘, (49)
7

𝑘=0
here 𝑟𝑘 and 𝑠𝑘 depend on 𝑎𝑘, 𝑏𝑘, A, and 𝜑.
The following theorem, which is Theorem 4.1 of [16], gives 𝜑

and A = A2
1(𝑝1, 𝑝2) such that the conjugate functions of all the 𝜑A-

ifferentiable functions are solutions of (2).

heorem 3.1. Consider 𝜑 given in (48) such that 𝐴𝑐2 + 𝐵𝑐𝑑 + 𝐶𝑑2 ≠ 0,
nd 𝑝1, 𝑝2 given by

1 = − 𝐴𝑎2 + 𝐵𝑎𝑏 + 𝐶𝑏2

𝐴𝑐2 + 𝐵𝑐𝑑 + 𝐶𝑑2
, 𝑝2 = −

2𝐴𝑎𝑐 + 𝐵(𝑎𝑑 + 𝑏𝑐) + 2𝐶𝑏𝑑
𝐴𝑐2 + 𝐵𝑐𝑑 + 𝐶𝑑2

. (50)

hus, for the algebra A = A2
1(𝑝1, 𝑝2) the conjugate functions of each

(A)-differentiable function are solutions of the PDE (2).

The following theorem, which is similar to Theorem 4.1 of [16],
ives 𝜑 and A = A2

2(𝑝1, 𝑝2) such that the conjugate functions of all the
A-differentiable functions are solutions of (2). In a similar way the

following theorem can be proved.

Theorem 3.2. Consider 𝜑 given in (48) such that 𝐴𝑎2 + 𝐵𝑎𝑏 + 𝐶𝑏2 ≠ 0,
and 𝑝1, 𝑝2 given by

𝑝1 = −
2𝐴𝑎𝑐 + 𝐵(𝑎𝑑 + 𝑏𝑐) + 2𝐶𝑏𝑑

𝐴𝑎2 + 𝐵𝑎𝑏 + 𝐶𝑏2
, 𝑝2 = −𝐴𝑐2 + 𝐵𝑐𝑑 + 𝐶𝑑2

𝐴𝑎2 + 𝐵𝑎𝑏 + 𝐶𝑏2
. (51)

hus, for the algebra A = A2
2(𝑝1, 𝑝2) the conjugate functions of each

(A)-differentiable function are solutions of the PDE (2).

roof. The proof is similar to that of Theorem 4.1 of [16]. □

All the solutions of the PDE (2) given in Theorem 3.1 can be
btained by the conjugate functions of the 𝜑A-differentiable functions
or certain 𝜑 and A = A2

1(𝑝1, 𝑝2), as we see in the following theorem
hich is Theorem 5.1 of [16].

heorem 3.3. Consider a linear vector field 𝜑 given in (48) such that
𝑐2 + 𝐵𝑐𝑑 + 𝐶𝑑2 ≠ 0, 𝑝1, 𝑝2 given by (50), and A = A2

1(𝑝1, 𝑝2).
(1) If 𝑝1(𝑎𝑑 − 𝑏𝑐) ≠ 0 and 𝑢 is a solution of (2), then 𝑢 is the first

onjugate function of a 𝜑A-differentiable function.
(2) If (𝑎𝑑 − 𝑏𝑐) ≠ 0 and 𝑣 is a solution of (2), then 𝑣 is the second

onjugate function of a 𝜑A-differentiable function.

All the solutions of the PDE (2) given in Theorem 3.2 can be
btained by the conjugate functions of the 𝜑A-differentiable for certain

and A = A2
2(𝑝1, 𝑝2), as we see in the following theorem which is

imilar to Theorem 5.1 of [16].

heorem 3.4. Consider a linear vector field 𝜑 given in (48) such that
𝑎2 + 𝐵𝑎𝑏 + 𝐶𝑏2 ≠ 0, 𝑝1, 𝑝2 given by (50), and A = A2

2(𝑝1, 𝑝2).
(1) If 𝑝2(𝑎𝑑 − 𝑏𝑐) ≠ 0 and 𝑣 is a solution of (2), then 𝑣 is the second

onjugate function of a 𝜑A-differentiable function.
(2) If (𝑎𝑑−𝑏𝑐) ≠ 0 and 𝑢 is a solution of (2), then 𝑢 is the first conjugate

unction of a 𝜑A-differentiable function.

roof. The proof is similar to that of Theorem 5.1 of [16]. □

In the following theorem we use the A-differentiability for solving
a Cauchy problem.

Theorem 3.5. For 𝐴𝐵 ≠ 0 and 𝐶 = 0 we set A = A2
2(−𝐵∕𝐴, 0). Suppose

hat conditions (3) satisfy 𝑎𝑘+1 = −𝐵
𝐴

𝑏𝑘
𝑘+1 for 𝑘 ∈ N. Thus, each solution for

the Cauchy problem defined by the PDE (2) and the conditions (3) is given
by the first component of

𝑤(𝑥, 𝑦) =
∞
∑

𝑘=0

(

𝑟𝑘, 𝑠𝑘
)

(𝑥, 𝑦)𝑘, (52)

where (𝑟0, 𝑠0) = (𝑎0, 𝑠0) (𝑠0 can take any value), (𝑟1, 𝑠1) = (𝑏0, 𝑎1 +
𝐵
𝐴 𝑏0),

and

(𝑟𝑘, 𝑠𝑘) =
(

(

−𝐵 )𝑘 𝑎𝑘 ,
(

−𝐵 )𝑘−1 𝑎𝑘
)

, 𝑘 ≥ 2. (53)

𝐴 2 𝐴 2
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Proof. Let A = A2
2(−𝐵∕𝐴, 0) and 𝜑(𝑥, 𝑦) = (𝑥, 𝑦). By Theorem 3.4 each

solution 𝑢 of the PDE (2) is the first component of a A-differentiable
function 𝑤(𝑥, 𝑦) which can be given by (49). By evaluating 𝑤 in (𝑥, 0)
we obtain

𝑤(𝑥, 0) =
∞
∑

𝑘=0

(

𝑟𝑘, 𝑠𝑘
)

(𝑥, 0)𝑘 = (𝑟0, 𝑠0) +
∞
∑

𝑘=1

(

−𝐵
𝐴

)𝑘−1
𝑥𝑘(𝑟𝑘, 𝑠𝑘)(1, 0)

= (𝑟0, 𝑠0) +
∞
∑

𝑘=1

(

−𝐵
𝐴

)𝑘−1
𝑥𝑘

(

−𝐵
𝐴
𝑟𝑘 + 𝑠𝑘, 0

)

.

Then,

𝑢(𝑥, 0) = 𝑟0 +
∞
∑

𝑘=1

(

−𝐵
𝐴

)𝑘−1 (
−𝐵
𝐴
𝑟𝑘 + 𝑠𝑘

)

𝑥𝑘 =
∞
∑

𝑘=0
𝑎𝑘𝑥

𝑘.

We obtain the relations

𝑟0 = 𝑎0, 𝑎𝑘 =
(

−𝐵
𝐴

)𝑘−1 (
−𝐵
𝐴
𝑟𝑘 + 𝑠𝑘

)

, 𝑘 ∈ N. (54)

The partial derivative of 𝑤 with respect to 𝑦 is

𝑤𝑦(𝑥, 𝑦) =
∞
∑

𝑘=1
𝑘
(

𝑟𝑘, 𝑠𝑘
)

(𝑥, 𝑦)𝑘−1.

Now, we evaluate 𝑤𝑦 in (𝑥, 0)

𝑤𝑦(𝑥, 0) =
∞
∑

𝑘=0
(𝑘 + 1)

(

𝑟𝑘+1, 𝑠𝑘+1
)

(𝑥, 0)𝑘

= (𝑟1, 𝑠1) +
∞
∑

𝑘=1
(𝑘 + 1)

(

−𝐵
𝐴

)𝑘−1
𝑥𝑘(𝑟𝑘+1, 𝑠𝑘+1)(1, 0)

= (𝑟1, 𝑠1) +
∞
∑

𝑘=1
(𝑘 + 1)

(

−𝐵
𝐴

)𝑘−1
𝑥𝑘

(

−𝐵
𝐴
𝑟𝑘+1 + 𝑠𝑘+1, 0

)

.

Then,

𝑢𝑦(𝑥, 0) = 𝑟1 +
∞
∑

𝑘=1
(𝑘 + 1)

(

−𝐵
𝐴

)𝑘−1 (
−𝐵
𝐴
𝑟𝑘+1 + 𝑠𝑘+1

)

𝑥𝑘 =
∞
∑

𝑘=0
𝑏𝑘𝑥

𝑘.

We obtain the relations

𝑟1 = 𝑏0, 𝑏𝑘 = (𝑘 + 1)
(

−𝐵
𝐴

)𝑘−1 (
−𝐵
𝐴
𝑟𝑘+1 + 𝑠𝑘+1

)

, 𝑘 ∈ N. (55)

From (54) and (55) we obtain 𝑟1 = 𝑏0, 𝑠1 = 𝑎1 + 𝐵
𝐴 𝑏0, and it is

ecessary that

𝑘+1 = −𝐵
𝐴

𝑏𝑘
𝑘 + 1

, 𝑘 ∈ N.

For the given values 𝑟𝑘, 𝑠𝑘 in (53) for 𝑘 ≥ 2 the relations (54) and
(55) are satisfied. □

In the following theorem we use A-differe-
ntiability and 𝜑A-differentiability for solving Cauchy problems.

Theorem 3.6. The solution of the Cauchy problem defined by the PDE (2)
and the conditions (3) is given by a component of a pre-twisted differentiable
function 𝑤(𝑥, 𝑦) of the form (49) which is given explicitly in following cases:

(1) For 𝐶 ≠ 0, we set 𝜑(𝑥, 𝑦) = (𝑥, 𝑦), and an algebra A = A2
1(𝑝1, 𝑝2)

with parameters 𝑝1 and 𝑝2 given by

𝑝1 = −𝐴
𝐶
, 𝑝2 = −𝐵

𝐶
. (56)

Thus, a solution of (2) is given by the second conjugate function of

𝑤(𝑥, 𝑦) = (𝑟0, 𝑎0) +
∞
∑

𝑘=0

(

𝑏𝑘
𝑘 + 1

+ 𝐵
𝐶
𝑎𝑘+1, 𝑎𝑘

)

𝜑(𝑥, 𝑦)𝑘+1, (57)

where 𝑟0 can take any value.
(2) For 𝐶 ≠ 0, we set 𝜑(𝑥, 𝑦) = (𝑥 + 𝑏𝑦, 𝑑𝑦) such that 𝑑 ≠ 0, and

𝐴 + 𝐵𝑏 + 𝐶𝑏2 ≠ 0, an algebra A = A2
1(𝑝1, 𝑝2) with parameters 𝑝1 and 𝑝2

given by

𝑝 = −𝐴 + 𝐵𝑏 + 𝐶𝑏2 , 𝑝 = −𝐵𝑑 + 2𝐶𝑏𝑑 . (58)
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1 𝐶𝑑2 2 𝐶𝑑2
hus, a solution of (2) is given by the first conjugate function of

(𝑥, 𝑦) = (𝑎0, 𝑠0) +
∞
∑

𝑘=0

(

𝑎𝑘+1,−
𝑏𝑎𝑘+1
𝑝1𝑑

+
𝑏𝑘

𝑝1𝑑(𝑘 + 1)

)

𝜑(𝑥, 𝑦)𝑘+1, (59)

here 𝑠0 can take any value.
(3) For 𝐵 ≠ 0 and |𝐴| + |𝐶| = 0, we set 𝜑(𝑥, 𝑦) = (𝑥 − 𝑦, 𝑥 + 𝑦) and
= A2

1(1, 0). Thus, a solution of (2) is given by the first conjugate function
of

𝑤(𝑥, 𝑦) = (𝑎0, 𝑠0) +
∞
∑

𝑘=0

(

𝑎𝑘+1, 𝑎𝑘+1 +
𝑏𝑘

𝑘 + 1

)

𝜑(𝑥, 𝑦)𝑘+1, (60)

where 𝑠0 can take any value.

Proof. Suppose conditions given in (1). Thus, by Theorem 3.1 the
conjugate functions of each 𝜑(A)-differentiable function are solutions of
the PDE that appears in (2). By (2) of Theorem 3.3 each solution 𝑣(𝑥, 𝑦)
of the PDE in (2) is the second conjugate function of a 𝜑A-differentiable
function 𝑤(𝑥, 𝑦) for A = A2

1(𝑝1, 𝑝2). We suppose 𝑤 having the form (49).
o,

(𝑥, 0) =
∞
∑

𝑘=0
(𝑟𝑘, 𝑠𝑘)(𝑥, 0)𝑘 =

( ∞
∑

𝑘=0
𝑟𝑘𝑥

𝑘,
∞
∑

𝑘=0
𝑠𝑘𝑥

𝑘

)

.

ince (𝑢(𝑥, 0), 𝑣(𝑥, 0)) = 𝑤(𝑥, 0) we have 𝑠𝑘 = 𝑎𝑘 for 𝑘 = 0, 1,…. The
artial derivative of 𝑤 with respect to 𝑦 is

𝑦(𝑥, 𝑦) =
∞
∑

𝑘=1
𝑘(0, 1)(𝑟𝑘, 𝑠𝑘)𝜑(𝑥, 𝑦)𝑘−1

=
∞
∑

𝑘=1
𝑘
(

−𝐴
𝐶
𝑠𝑘, 𝑟𝑘 −

𝐵
𝐶
𝑠𝑘
)

𝜑(𝑥, 𝑦)𝑘−1.

ince 𝑠𝑘 = 𝑎𝑘 and (𝑢𝑦(𝑥, 0), 𝑣𝑦(𝑥, 0)) = 𝑤𝑦(𝑥, 0) we have

𝑣𝑦(𝑥, 0) =
∞
∑

𝑘=0
(𝑘 + 1)

(

−𝐴
𝐶
𝑎𝑘+1, 𝑟𝑘+1 −

𝐵
𝐶
𝑎𝑘+1

)

𝑥𝑘.

Therefore, by the condition given in (2) on the value of the derivative
of the solution with respect to 𝑦 𝑏𝑘 = 𝑘

(

𝑟𝑘 −
𝐵
𝐶 𝑎𝑘

)

for 𝑘 = 0, 1, 2,…. So,

𝑘+1 =
𝑏𝑘

𝑘 + 1
+ 𝐵

𝐶
𝑎𝑘+1. (61)

Suppose conditions given in (2). Thus, by Theorem 3.1 the conju-
ate functions of each 𝜑(A)-differentiable function are solutions of the
DE that appears in (2). By (1) of Theorem 3.3 each solution 𝑢 of the
DE in (2) is the first conjugate function of a 𝜑A-differentiable function
for A = A2

1(𝑝1, 𝑝2). We suppose 𝑤 having the form (49). So,

(𝑥, 0) =
∞
∑

𝑘=0
(𝑟𝑘, 𝑠𝑘)𝜑(𝑥, 0)𝑘 =

( ∞
∑

𝑘=0
𝑟𝑘𝑥

𝑘,
∞
∑

𝑘=0
𝑠𝑘𝑥

𝑘

)

.

ince (𝑢(𝑥, 0), 𝑣(𝑥, 0)) = 𝑤(𝑥, 0) we have 𝑟𝑘 = 𝑎𝑘 for 𝑘 = 0, 1,…. The
artial derivative of 𝑤 with respect to 𝑦 is

𝑦(𝑥, 𝑦) =
∞
∑

𝑘=1
𝑘(𝑏, 𝑑)(𝑟𝑘, 𝑠𝑘)𝜑(𝑥, 𝑦)𝑘−1

=
∞
∑

𝑘=1
[(𝑏𝑘𝑟𝑘 + 𝑝1𝑑𝑘𝑠𝑘, 𝑏𝑘𝑠𝑘 + 𝑑𝑘𝑟𝑘 + 𝑝2𝑑𝑘𝑠𝑘)]𝜑(𝑥, 𝑦)𝑘−1.

ince (𝑢𝑦(𝑥, 0), 𝑣𝑦(𝑥, 0)) = 𝑤𝑦(𝑥, 0) we have

𝑦(𝑥, 0) =
∞
∑

𝑘=0
(𝑘 + 1)(𝑏𝑟𝑘+1 + 𝑝1𝑑𝑠𝑘+1)𝑥𝑘.

herefore, by the condition given in (2) on the value of the derivative
f the solution with respect to 𝑦 𝑏𝑘 = (𝑘 + 1)(𝑏𝑟𝑘+1 + 𝑝1𝑑𝑠𝑘+1) for
= 0, 1, 2,…. So,

𝑘+1 = −
𝑏𝑎𝑘+1 +

𝑏𝑘 . (62)

𝑝1𝑑 𝑝1𝑑(𝑘 + 1)
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Suppose conditions given in (3). So, we can use proof of case (2) to
obtain 𝑟𝑘 = 𝑎𝑘 for 𝑘 = 0, 1,…, and

𝑘+1 =
𝑏𝑘 + (𝑘 + 1)𝑟𝑘+1

𝑘 + 1
= 𝑎𝑘+1 +

𝑏𝑘
𝑘 + 1

. □ (63)

.2. On 𝜑M-differentiability for matrix algebras M

Let M be a commutative matrix algebra in 𝑀𝑛(R) with base 𝛽 =
𝑅1, 𝑅2,… , 𝑅𝑙}. Consider two differentiable functions 𝐹 , 𝜑 ∶ 𝑈 ⊂ R𝑘 →

in the usual sense, where 𝑈 is an open set. We say 𝐹 is a 𝜑M-
ifferentiable function if there exists a function 𝐹 ′

𝜑 ∶ 𝑈 ⊂ R𝑘 → M
uch that the usual differential 𝑑𝑓 satisfies 𝑑𝐹𝑥 = 𝐹 ′

𝜑(𝑥)𝑑𝜑𝑥. That is,
𝐹𝑥(𝑣) = 𝐹 ′

𝜑(𝑥)𝑑𝜑𝑥(𝑣) for all 𝑣 ∈ R𝑘, where 𝐹 ′
𝜑(𝑥)𝑑𝜑𝑥(𝑣) denotes the

roduct of the matrices 𝐹 ′
𝜑(𝑥) and 𝑑𝜑𝑥(𝑣).

For this definition we have 𝜑M-calculus and 𝜑M-differential equa-
tions
𝑑𝑤
𝑑𝜑

= 𝐻(𝜏,𝑤), 𝐻 ∶ 𝑈 ×M → M, (64)

hich are matrix differential equations. If 𝐻(𝜏,𝑤) is (𝜑M,M)-
-differentiable (see Section 2.2) and 𝐻(𝜏,𝑤) = 𝐾(𝜏)𝐿(𝑤), then we have
the results given for 𝜑A-derivatives and 𝜑A-differential equations. For
example,
𝑑𝑤
𝑑𝜑

= 𝑤 (65)

as the unique solution 𝑤(𝜏) = 𝑀𝑒𝜑(𝜏) with 𝑤(𝜏0) = 𝑀𝑒𝜑(𝜏0), where
𝑀 ∈ M is a constant matrix.

3.3. On solutions of PDE systems

3.3.1. On solutions of PDE systems by using 𝜑A-differentiability
Now, we use 𝜑A-differentiability for the construction of solutions

for linear and nonlinear systems of two first order PDEs with two
dependent variables and two independent variables.

Consider a PDE system of the form

𝐵1𝑤𝑥 + 𝐵2𝑤𝑦 = 𝐴𝑤. (66)

In the following theorem we give conditions under which 𝜑A-differen-
tiable functions are used for giving a complete solution for system (66).

Theorem 3.7. Let A be an algebra with first fundamental representation
𝑅 ∶ A → 𝑀2(R) given by 𝑅(𝑒𝑖) = 𝑅𝑖 such that 𝐵1, 𝐵2, 𝐴 ∈ 𝑅(A). Suppose
hat

(𝑥, 𝑦) = (𝑎𝑥 + 𝑏𝑦)𝑅1 + (𝑐𝑥 + 𝑑𝑦)𝑅2 (67)

is such that

𝐵1(𝑎𝑅1 + 𝑐𝑅2) + 𝐵2(𝑏𝑅1 + 𝑑𝑅2) = 𝐴. (68)

Under these conditions function 𝑤𝑝 = 𝑅−1(𝑒𝜙) is a solution for the 𝜙A-ODE
𝑑𝑤∕𝑑𝜙 = 𝑤. Now, consider 𝜑 given by

𝜑(𝑥, 𝑦) = 𝑦𝑅−1(𝐵1) − 𝑥𝑅−1(𝐵2). (69)

Therefore, each solution 𝑤 for (66) is given by

𝑤(𝑥, 𝑦) = 𝑒𝜙(𝑥,𝑦)𝑓 (𝑥, 𝑦), (70)

where 𝑓 (𝑥, 𝑦) is a 𝜑A-differentiable function. Thus, a complete solution for
he linear system (66) is found.

roof. We have that 𝑅(𝑎)𝑏 = 𝑎𝑏 for all 𝑎, 𝑏 ∈ A, see Lemma 4.1 of [21].
Then, PDE system (66) can be written by

𝑏1𝑤𝑥 + 𝑏2𝑤𝑦 = 𝑎𝑤, (71)

here 𝑏𝑖 = 𝑅−1(𝐵𝑖) for 𝑖 = 1, 2, and 𝑎 = 𝑅−1(𝐴). The homogeneous
ystems of (66), (71) coincide and they are equivalent to the set of 𝜑A-

CREs. Thus, the set of 𝜑A-differentiable functions define a complete
solution of this system.
9

Let 𝑤 be a solution of (66). Consider �̃� = 𝑒−𝜙(𝑥,𝑦)𝑤. Then

𝐵1�̃�𝑥 + 𝐵2�̃�𝑦 = −𝐵1𝜙𝑥𝑒
−𝜙𝑤 − 𝐵1𝑒

−𝜙𝑤𝑥 + 𝐵2𝜙𝑦𝑒
−𝜙𝑤 + 𝐵2𝑒

−𝜙𝑤𝑦

= −(𝐵1𝜙𝑥 + 𝐵2𝜙𝑦)𝑒−𝜙𝑤 + (𝐵1𝑤𝑥 + 𝐵2𝑤𝑦)𝑒−𝜙

= −𝐴�̃� + 𝐴�̃� = 0.

Thus, �̃� is a solution of the set of 𝜑A-CREs. Therefore, �̃� is a 𝜑A-
ifferentiable function 𝑓 . Hence, 𝑤 = 𝑒𝜙𝑓 where 𝑓 is a 𝜑A-differentiable

function. □

Consider a nonlinear PDE system of the form

𝐵1𝑤𝑥 + 𝐵2𝑤𝑦 = 𝐴𝑤2. (72)

In the following theorem we use solutions of 𝜑A-ODE for the construc-
tion of solutions for (72).

Theorem 3.8. Let A be an algebra with first fundamental representation
∶ A → 𝑀2(R) given by 𝑅(𝑒𝑖) = 𝑅𝑖 such that 𝐵1, 𝐵2, 𝐴 ∈ 𝑅(A). Suppose

hat

(𝑥, 𝑦) = (𝑎𝑥 + 𝑏𝑦)𝑒1 + (𝑐𝑥 + 𝑑𝑦)𝑒2 (73)

s such that

1(𝑎𝑅1 + 𝑐𝑅2) + 𝐵2(𝑏𝑅1 + 𝑑𝑅2) = −𝐴. (74)

nder these conditions 𝑑𝑤∕𝑑𝜑 = −𝑤2 is a 𝜑A-ODE with solutions given by

(𝑥, 𝑦) = 𝑒
𝜑(𝑥, 𝑦) + 𝑐

(75)

which are solutions for the nonlinear PDE system (72).

Proof. Let 𝑤 be given by (75). Thus,

𝐵1𝑤𝑥 + 𝐵2𝑤𝑦 = 𝐵1(𝑎𝑅1 + 𝑐𝑅2)
−𝑒

(𝜑(𝑥, 𝑦) + 𝑐)2

+𝐵2(𝑏𝑅1 + 𝑑𝑅2)
−𝑒

(𝜑(𝑥, 𝑦) + 𝑐)2

= −[𝐵1(𝑎𝑅1 + 𝑐𝑅2) + 𝐵2(𝑏𝑅1 + 𝑑𝑅2)]𝑤2

= 𝐴𝑤2.

herefore, 𝑤 is a solution for (72). □

3.3.2. On solutions of PDE systems by using 𝜑M-differentiability
In this section we will use columns of exponential function 𝐸 = 𝑒𝜑

for construction solutions of system (66), as it is known for linear
systems with constant coefficients. The method given in this section
is extended in [32].

For a matrix algebra M with base 𝛽 = {𝑅1, 𝑅2} we consider the
equation

𝐵1(𝑥1𝑅1 + 𝑦1𝑅2) + 𝐵2(𝑥2𝑅1 + 𝑦2𝑅2) = 𝐴, (76)

from which we obtain a linear system of four equations, and when this
system has a solution (𝑎, 𝑏, 𝑐, 𝑑), we define 𝜑 by

𝜑(𝑥, 𝑦) = (𝑎𝑥 + 𝑏𝑦)𝑅1 + (𝑐𝑥 + 𝑑𝑦)𝑅2. (77)

If M is a matrix algebra and 𝜑 ∶ R2 → M is a differentiable
function, then the exponential function 𝐸 = 𝑒𝜑 is 𝜑M-differentiable.
In the following theorem we use this function for the construction of
solutions for the PDE system (66).

Proposition 3.1. Let 𝑅1, 𝑅2 ∈ 𝑀2(R) matrices with 𝑅1𝑅2 = 𝑅2𝑅1. If
(𝑎, 𝑏, 𝑐, 𝑑) is a solution of linear system (76) and 𝜑 is defined by (77), then
the columns of the exponential function 𝐸 = 𝑒𝜑 define solutions for system
(66).

Proof. Under the conditions given we have that 𝐵1(𝑎𝑅1+𝑐𝑅2)+𝐵2(𝑏𝑅1+
𝑑𝑅2) = 𝐴. That is, 𝐵1𝜑𝑥 + 𝐵2𝜑𝑦 = 𝐴. If we multiply this equality by 𝑒𝜑

we obtain 𝐵1𝜑𝑥𝑒𝜑 + 𝐵2𝜑𝑦𝑒𝜑 = 𝐴𝑒𝜑. Thus, 𝐵1(𝑒𝜑)𝑥 + 𝐵2(𝑒𝜑)𝑦 = 𝐴𝑒𝜑.
𝜑
Therefore, the columns of 𝑒 are solutions for (66). □



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 173 (2023) 113757E. López-González et al.

m

𝑅

w
o
k
𝐴

𝑤

i
𝜑
l
o
r
(
p
(
s
i
c
p
s
s
w
c
A
L
i
𝜑
m
f
L
w
i
c
d
t
t
p
d
b
𝑑
w
p
d

f
n
f
f
f
t
c

t
s
t
c
g
f
w
s
T

By using Proposition 3.1 solutions for the linear system with con-
stant coefficients

𝑎1
𝜕𝑦
𝜕𝑥

+
𝜕𝑦
𝜕𝑡

= −𝑏1𝑦 + 𝑏1𝑧, (78)

− 𝑎2
𝜕𝑧
𝜕𝑥

+ 𝜕𝑧
𝜕𝑡

= 𝑏2𝑦 − 𝑏2𝑧,

can be constructed, as we see in the following example.

Example 3.1. Consider system (78). Let 𝑅1, 𝑅2, 𝐵1, 𝐵2, 𝐴 be the
atrices 𝑅1 = 𝐼 , 𝐵2 = 𝐼 ,

2 =
(

0 1
−1 0

)

, 𝐵1 =
(

𝑎1 0
0 −𝑎2

)

, 𝐴 =
(

−𝑏1 𝑏1
𝑏2 −𝑏2

)

.

Let M be the algebra spanned by 𝑅1 and 𝑅2. For 𝑎1 + 𝑎2 ≠ 0 we define

𝜑(𝑥, 𝑡) =
(

−𝑏1 + 𝑏2
𝑎1 + 𝑎2

𝑥 +
−𝑎1𝑏2 − 𝑎2𝑏1

𝑎1 + 𝑎2
𝑡
)

𝑅1

+
(

𝑏1 + 𝑏2
𝑎1 + 𝑎2

𝑥 +
−𝑎1𝑏2 + 𝑎2𝑏1

𝑎1 + 𝑎2
𝑡
)

𝑅2.

Thus, 𝐴 = 𝐵1𝜑𝑥 + 𝐵2𝜑𝑡. By Proposition 3.1 the columns of

𝑒𝜑(𝑥,𝑡) =
(

𝑒ℎ1(𝑥,𝑡) cosℎ2(𝑥, 𝑡) 𝑒ℎ1(𝑥,𝑡) sinℎ2(𝑥, 𝑡)
−𝑒ℎ1(𝑥,𝑡) sinℎ2(𝑥, 𝑡) 𝑒ℎ1(𝑥,𝑡) cosℎ2(𝑥, 𝑡)

)

,

where

ℎ1(𝑥, 𝑡) =
−𝑏1 + 𝑏2
𝑎1 + 𝑎2

𝑥 +
−𝑎1𝑏2 − 𝑎2𝑏1

𝑎1 + 𝑎2
𝑡,

ℎ2(𝑥, 𝑡) =
𝑏1 + 𝑏2
𝑎1 + 𝑎2

𝑥 +
−𝑎1𝑏2 + 𝑎2𝑏1

𝑎1 + 𝑎2
𝑡,

are solutions for (78). Therefore,

𝑦(𝑥, 𝑡) = 𝑐1𝑒ℎ1(𝑥,𝑡) cosℎ2(𝑥, 𝑡) + 𝑐2𝑒ℎ1(𝑥,𝑡) sinℎ2(𝑥, 𝑡),
𝑧(𝑥, 𝑡) = −𝑐1𝑒ℎ1(𝑥,𝑡) sinℎ2(𝑥, 𝑡) + 𝑐2𝑒ℎ1(𝑥,𝑡) cosℎ2(𝑥, 𝑡),

for all 𝑐1, 𝑐2 ∈ R, are solutions for (78).

4. Discussion and results

In this paper we introduce the 𝜑A-differentiability (pre-twisted dif-
ferentiability), its generalized Cauchy–Riemann equations, the 𝜑A-line
integral, the Cauchy integral theorem for the 𝜑A-line integral, and the
𝜑A-ODEs. Thus, a type of calculus on algebras and their corresponding
differential equations has been introduced. The 𝜑A-differentiability is
an extension of differentiability in the sense of Lorch [12].

When studying differential equations using pre-twisted calculus
and their corresponding differential equations, the aim is to convert
a differential equation problem into an algebraic problem. That is,
given a differential equation or system of differential equations, one
seeks to associate a system of algebraic equations whose solutions
determine both A and 𝜑 in such a way that a function or a family of
𝜑A-differentiable functions determine solutions, see [16].

If a PDE system is equivalent to a set of generalized Cauchy–
Riemann equations for the A-differentiability (differentiability in the
sense of Lorch), then the A-differentiable functions constitute a com-
plete solution for this system, see [21]. The 𝜑A-differentiability extends
this result in a very impressive way. A criterion for 𝜑A-differentiability
is given in Theorem 1.2. That is, if a given function satisfies a set of gen-
eralized Cauchy–Riemann equations for the 𝜑A-differentiability, then
this function is 𝜑A-differentiable. Therefore, pre-twisted differentiabil-
ity gives us a complete solution for these generalized Cauchy–Riemann
equations.

The ODE system (27) and the 𝜑A-ODE (28) have the same solution
set when 𝜑′ is invertible with respect to the A-product and 𝑓 (𝑡, 𝑥)𝜑′−1 is
(𝜑A,A)-differentiable, see Lemma 2.1. If 𝐾 in (31) is 𝜑A-differentiable,
a non-singular solution 𝑤 of (31) (non-singular solution 𝑤 means that
that the image of 𝑤 is not contained in the singular set of A) is also
a solution of (33). Then, all the A-products {𝑎𝑤 ∶ 𝑎 ∈ A} of 𝑤 and
elements of A are solutions of (33). Thus, they are also solutions of
10
(31). In this way a non-singular solution 𝑤 of (31) could be used for
constructing a fundamental set of solutions of this equation.

Consider the linear system
𝑑𝑤
𝑑𝑡

= 𝐴(𝑡)𝑤, (79)

here 𝐴 ∶ 𝐼 → 𝑀𝑛(R) is a continuous function and 𝐴(𝑡)𝑤 is the product
f the matrix 𝐴(𝑡) by 𝑤, where 𝐼 ⊂ R is an open interval. It is well-
nown that if {𝐴(𝑡) ∶ 𝑡 ∈ 𝐼} is a commutative matrix family, that is,
(𝑡1)𝐴(𝑡2) = 𝐴(𝑡2)𝐴(𝑡1) for all 𝑡1, 𝑡2 ∈ 𝐼 , then for 𝑡0 ∈ 𝐼 we have that

(𝑡) = 𝑒∫
𝑡
𝑡0

𝐴(𝑠)𝑑𝑠𝑐 (80)

s a solution for system (79) with initial condition 𝑤(𝑡0) = 𝑐 ∈ R𝑛. The
A-ODEs defined in this paper could be used to solve linear and non-

inear non-autonomous ODE systems, see Section 2.3. By Lemma 4.1
f [21] 𝑎𝑏 = 𝑅(𝑎)𝑏 for all 𝑎, 𝑏 ∈ A, where 𝑅 if the first fundamental
epresentation of A. Thus, (31) is a linear ODE system of the type
79) for 𝐴(𝑡) = 𝑅(𝐾(𝑡)𝜑′). Example 2.2 suggests considering inverse
roblems for the linear case. That is, given a linear system of the type
79), when there exists an algebra A and a differentiable function 𝜑(𝑡)
uch that 𝐴(𝑡) = 𝑅(𝐾(𝑡)𝜑′) for some 𝜑A-differentiable function 𝐾, as
n Corollary 2.3. When you have an autonomous ODE system and it
an be solved by Lorch differentiability, then it can also be solved by
re-twisted differentiability. The algebrizability (differentiability in the
ense of Lorch) of planar autonomous ODE systems is already reached,
ee [17,19]. Example 2.3 contains a family of nonlinear ODE systems
hich are solved by using 𝜑A-differentiability. This example suggests

onsidering inverse problems for these types of quadratic ODE systems.
n attempt for solving planar non-autonomous ODE systems by using
orch differentiability is made in [17]. This use of Lorch differentiabil-
ty corresponds to pre-twisted differentiability for the particular case
(𝑡) = 𝑡𝑒 where 𝑒 ∈ A is the identity for the product. It is worth
entioning that here we consider differential functions 𝜑. Gâteaux dif-

erentiability is a weaker differentiability than the Lorch one, when the
orch derivative of a function there exists then this derivative coincides
ith the Gâteaux derivative, see [5]. Therefore, Gâteaux differentiabil-

ty considers larger families of differentiable functions than the Lorch
ase, but it does not include the cases that pre-twisted differentiability
oes for 𝜑 non-linear. In all cases of differential equations in which
he Lorch differentiability can be used for the construction of solutions,
he pre-twisted derivative can also be used, since the first one is a
articular case of the second one. A weaker definition of a pre-twisted
ifferentiability can be given, as we will do below. Let 𝑓, 𝜑 ∶ R𝑘 → R𝑛

e functions having all the directional derivatives which we denote by
ℎ𝑓 and 𝑑ℎ𝜑, respectively, then 𝑓 is said to be 𝜑A-Gâteaux differentiable
ith derivative 𝑓 ′

𝜑,𝐺 ∶ R𝑘 → R𝑛 if 𝑑ℎ𝑓 (𝑥) = 𝑓 ′
𝜑,𝐺(𝑥)𝑑ℎ𝜑(𝑥). For the

articular case where 𝜑 ∶ R𝑛 → R𝑛 is the identity the 𝜑A-Gâteaux
ifferentiability coincides with the Gâteaux differentiability.

Pre-twisted differentiability is also used to solve Cauchy problems
or PDEs of the form (2), see Section 3.1. This differentiability is a
atural extension of the complex derivative. Just as the conjugate
unctions of holomorphic functions are solutions of Laplace’s equation;
or each equation of the family of PDEs (2) an algebra A and a linear
unction 𝜑 are found in such a way that the conjugate functions of
he 𝜑A-differentiable functions determine the set of solutions of the
onsidered equation.

In [32] we consider PDE systems of the type (66) and we try
o algebrize them. This could help to build at least one particular
olution of the system. Thus, for some linear PDE systems, knowing
he solutions of the homogeneous system (the homogeneous system
ould be a set of generalized Cauchy–Riemann equations) allows us to
ive a complete solution for the system. We use the matrix exponential
unction 𝐸 = 𝑒𝜑 for the construction of solutions for linear PDE systems
ith constant coefficients of the type (66), see Proposition 3.1. In

pecial cases we obtain a complete solution of this PDE systems, see
heorem 3.7. We show that 𝜑A-differentiable functions can also be
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used for the construction of solutions for quadratic PDE systems, see
Theorem 3.8. We seek to generalize the idea of solving PDE systems
using the columns of the exponential function. In [32] it is given a
definition of algebrizability of (66) by using matrix algebras. We seek
to algebraize other PDE systems by means of algebras, we work on this
in [32].

The family of 2-dimensional algebras for which 𝑒1 is the identity
or the product is the 2-parameters algebras family consisting of the
lgebras A2

1(𝑝1, 𝑝2). Thus, the family of planar quadratic autonomous
DE systems which can be given in the form

𝑑𝑤
𝑑𝑡

= 𝜑′𝑤2 (81)

or 𝜑 linear, is 4-dimensional. Let 𝑝1, 𝑝2,… , 𝑝9 be constants satisfying
he equalities

𝑝7 = 𝑝1𝑝4 + 𝑝2𝑝6 − 𝑝2𝑝3 − 𝑝24,
𝑝8 = 𝑝3𝑝4 − 𝑝2𝑝5,
𝑝9 = 𝑝1𝑝5 + 𝑝3𝑝6 − 𝑝4𝑝5 − 𝑝23.

(82)

Thus, the linear space R3 endowed with the following product

⋅ 𝑒1 𝑒2 𝑒3
𝑒1 𝑒1 𝑒2 𝑒3
𝑒2 𝑒2 𝑝7𝑒1 + 𝑝1𝑒2 + 𝑝2𝑒3 𝑝8𝑒1 + 𝑝3𝑒2 + 𝑝4𝑒3
𝑒3 𝑒3 𝑝8𝑒1 + 𝑝3𝑒2 + 𝑝4𝑒3 𝑝9𝑒1 + 𝑝5𝑒2 + 𝑝6𝑒3

(83)

s an algebra with identity 𝑒 = 𝑒1 which we denote by A3
1(𝑝1,… , 𝑝6).

he family of 3-dimensional algebras for which 𝑒1 is the identity for the
roduct is the 6-parameters algebras family consisting of the algebras
3
1(𝑝1,… , 𝑝6). Thus, this is a 6-parameters algebras family. Then the

family of three quadratic autonomous ODE systems that can be given by
form (81) for 𝜑 linear, for A in this family, is 9-dimensional. In the case
of 4-dimensional algebras with identity 𝑒 = 𝑒1 for the product we think
that there are classes of algebras that depend on up to twelve param-
eters. Therefore, the family of systems of four quadratic autonomous
ODEs that can be given by 𝑑𝑤∕𝑑𝑡 = 𝜑′𝑤2 for 𝜑 linear with respect
to these classes of 12-parameter algebras is 16-dimensional. One can
consider four dimensional autonomous ODE systems and investigate
whether these can be written in the form (81) for 𝜑 linear. For example,
the following

𝑑𝑥1
𝑑𝑡 = 𝑏(𝑥21 − 𝑦21) − (𝑏 + 𝑐)(𝑥1𝑥2 − 𝑦1𝑦2)
𝑑𝑦1
𝑑𝑡 = 2𝑏𝑥1𝑦1 − (𝑏 + 𝑐)(𝑥1𝑦2 + 𝑥2𝑦1)
𝑑𝑥2
𝑑𝑡 = 𝑎(𝑥22 − 𝑦22) − (𝑎 + 𝑐)(𝑥1𝑥2 − 𝑦1𝑦2)
𝑑𝑦2
𝑑𝑡 = 2𝑎𝑥2𝑦2 − (𝑎 + 𝑐)(𝑥1𝑦2 + 𝑥2𝑦1)

. (84)

This family of ODE systems is associated with triangular billiards.

If we consider a quadratic ODE system of the form

𝑑𝑢
𝑑𝑡 = 𝑎1𝑢2 + 𝑎2𝑢𝑣 + 𝑎3𝑣2
𝑑𝑣
𝑑𝑡 = 𝑏1𝑢2 + 𝑏2𝑢𝑣 + 𝑏3𝑣2,

(85)

e can try algebrize it with respect to A = A3
1(𝑝1,… , 𝑝6). So, we

onsider the ODE system

𝑑𝑤
𝑑𝑡

= (𝑎1𝑤2
1 + 𝑎2𝑤1𝑤2 + 𝑎3𝑤

2
2, 𝑏1𝑤

2
1 + 𝑏2𝑤1𝑤2 + 𝑏3𝑤

2
2, 0). (86)

Thus, we would like to write them by

𝑑𝑤 = (ℎ, 𝑘, 𝑙)𝑤2, (87)
11

𝑑𝑡
ith respect to A. Thus,

𝑑𝑤1
𝑑𝑡 = ( − 𝑙𝑝2𝑝23 − ℎ𝑝2𝑝3 − 𝑘𝑝1𝑝2𝑝3 − ℎ𝑝24 − 𝑘𝑝1𝑝24 + 𝑘𝑝21𝑝4

+ℎ𝑝1𝑝4 + 𝑙𝑝1𝑝3𝑝4)𝑤2
1

+ (𝑘𝑝2𝑝3𝑝4 − 𝑘𝑝22𝑝5 − 𝑙𝑝2𝑝4𝑝5 + ℎ𝑝2𝑝6 + 𝑘𝑝1𝑝2𝑝6 + 𝑙𝑝2𝑝3𝑝6)𝑤2
1

+ ( − 2𝑘𝑝2𝑝23 + 2ℎ𝑝3𝑝4 + 2𝑘𝑝1𝑝3𝑝4 − 2ℎ𝑝2𝑝5 − 2𝑙𝑝2𝑝3𝑝5
−2𝑙𝑝24𝑝5)𝑤1𝑤2

+ (2𝑙𝑝1𝑝4𝑝5 − 2𝑘𝑝2𝑝4𝑝5 + 2𝑘𝑝2𝑝3𝑝6 + 2𝑙𝑝3𝑝4𝑝6)𝑤1𝑤2
+ ( − ℎ𝑝23 − 𝑙𝑝2𝑝25 + ℎ𝑝1𝑝5 − 𝑘𝑝2𝑝3𝑝5 − 𝑘𝑝24𝑝5 − ℎ𝑝4𝑝5

+𝑘𝑝1𝑝4𝑝5 + 𝑙𝑝3𝑝4𝑝5)𝑤2
2

+ (𝑙𝑝3𝑝26 − 𝑙𝑝23𝑝6 + ℎ𝑝3𝑝6 + 𝑘𝑝3𝑝4𝑝6 + 𝑙𝑝1𝑝5𝑝6 − 𝑙𝑝4𝑝5𝑝6)𝑤2
2,

𝑑𝑤2
𝑑𝑡 = (𝑘𝑝21 + ℎ𝑝1 + 𝑙𝑝1𝑝3 − 𝑘𝑝24 + 𝑘𝑝1𝑝4 + 𝑙𝑝2𝑝5 + 𝑘𝑝2𝑝6)𝑤2

1
+ (2𝑙𝑝23 + 2ℎ𝑝3 + 2𝑘𝑝1𝑝3 + 4𝑘𝑝3𝑝4 − 2𝑘𝑝2𝑝5 + 2𝑙𝑝4𝑝5)𝑤1𝑤2
+ (−𝑘𝑝23 + ℎ𝑝5 + 2𝑘𝑝1𝑝5 + 𝑙𝑝3𝑝5 − 𝑘𝑝4𝑝5 + 2𝑘𝑝3𝑝6 + 𝑙𝑝5𝑝6)𝑤2

2,
𝑑𝑤3
𝑑𝑡 = (ℎ𝑝2 + 𝑘𝑝1𝑝2 − 𝑙𝑝2𝑝3 − 𝑙𝑝24 + 2𝑙𝑝1𝑝4 + 𝑘𝑝2𝑝4 + 2𝑙𝑝2𝑝6)𝑤2

1
+ (2𝑘𝑝2𝑝3 + 2𝑘𝑝24 + 2ℎ𝑝4 + 4𝑙𝑝3𝑝4 − 2𝑙𝑝2𝑝5 + 2𝑙𝑝4𝑝6)𝑤1𝑤2
+ (−𝑙𝑝23 + 𝑙𝑝1𝑝5 + 𝑘𝑝2𝑝5 + 𝑙𝑝26 + ℎ𝑝6 + 𝑙𝑝3𝑝6 + 𝑘𝑝4𝑝6)𝑤2

2.

(88)

We would like to have (ℎ, 𝑘, 𝑙, 𝑝1,… , 𝑝6) such that systems (86) and
88) coincide. Thus, (ℎ, 𝑘, 𝑙, 𝑝1,… , 𝑝6) must be a solution for the four
rder algebraic system in the variables 𝑥𝑖 for 𝑖 = 1,… , 9

−𝑥3𝑥5𝑥26 − 𝑥1𝑥5𝑥6 − 𝑥2𝑥4𝑥5𝑥6 − 𝑥1𝑥27 − 𝑥2𝑥4𝑥27 + 𝑥2𝑥24𝑥7
+𝑥1𝑥4𝑥7 + 𝑥3𝑥4𝑥6𝑥7
+𝑥2𝑥5𝑥6𝑥7 − 𝑥2𝑥25𝑥8 − 𝑥3𝑥5𝑥7𝑥8 + 𝑥1𝑥5𝑥9 + 𝑥2𝑥4𝑥5𝑥9
+𝑥3𝑥5𝑥6𝑥9 = 𝑎1
−2𝑥2𝑥5𝑥26 + 2𝑥1𝑥6𝑥7 + 2𝑥2𝑥4𝑥6𝑥7 − 2𝑥1𝑥5𝑥8 − 2𝑥3𝑥5𝑥6𝑥8
−2𝑥3𝑥27𝑥8
+2𝑥3𝑥4𝑥7𝑥8 − 2𝑥2𝑥5𝑥7𝑥8 + 2𝑥2𝑥5𝑥6𝑥9
+2𝑥3𝑥6𝑥7𝑥9 = 𝑎2
−𝑥1𝑥26 − 𝑥3𝑥5𝑥28 + 𝑥1𝑥4𝑥8 − 𝑥2𝑥5𝑥6𝑥8 − 𝑥2𝑥27𝑥8 − 𝑥1𝑥7𝑥8
+𝑥2𝑥4𝑥7𝑥8 + 𝑥3𝑥6𝑥7𝑥8
+𝑥3𝑥6𝑥29 − 𝑥3𝑥26𝑥9 + 𝑥1𝑥6𝑥9 + 𝑥2𝑥6𝑥7𝑥9 + 𝑥3𝑥4𝑥8𝑥9
−𝑥3𝑥7𝑥8𝑥9 = 𝑎3
𝑥2𝑥24 + 𝑥1𝑥4 + 𝑥3𝑥4𝑥6 − 𝑥2𝑥27 + 𝑥2𝑥4𝑥7 + 𝑥3𝑥5𝑥8
+𝑥2𝑥5𝑥9 = 𝑏1
2𝑥3𝑥26 + 2𝑥1𝑥6 + 2𝑥2𝑥4𝑥6 + 4𝑥2𝑥6𝑥7 − 2𝑥2𝑥5𝑥8
+2𝑥3𝑥7𝑥8 = 𝑏2
−𝑥2𝑥26 + 𝑥1𝑥8 + 2𝑥2𝑥4𝑥8 + 𝑥3𝑥6𝑥8 − 𝑥2𝑥7𝑥8 + 2𝑥2𝑥6𝑥9
+𝑥3𝑥8𝑥9 = 𝑏3
𝑥1𝑥5 + 𝑥2𝑥4𝑥5 − 𝑥3𝑥5𝑥6 − 𝑥3𝑥27 + 2𝑥3𝑥4𝑥7 + 𝑥2𝑥5𝑥7
+2𝑥3𝑥5𝑥9 = 0
2𝑥2𝑥5𝑥6 + 2𝑥2𝑥27 + 2𝑥1𝑥7 + 4𝑥3𝑥6𝑥7 − 2𝑥3𝑥5𝑥8
+2𝑥3𝑥7𝑥9 = 0
−𝑥3𝑥26 + 𝑥3𝑥4𝑥8 + 𝑥2𝑥5𝑥8 + 𝑥3𝑥29 + 𝑥1𝑥9 + 𝑥3𝑥6𝑥9
+𝑥2𝑥7𝑥9 = 0.

(89)

If (ℎ, 𝑘, 𝑙, 𝑝1,… , 𝑝6) is a solution for the algebraic system (89), we obtain
system (86) and

𝑤(𝑡) = −𝑒
𝜑(𝑡) + 𝐶

, (90)

where 𝜑(𝑡) = 𝑡(ℎ, 𝑘, 𝑙) and 𝐶 = (𝑐1, 𝑐2, 0), is a solution.
If (ℎ, 𝑘, 𝑙, 𝑝1,… , 𝑝6) is a solution for the algebraic system (89) for

(𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3) = (𝑏,−(𝑏 + 𝑐), 0, 0,−(𝑎 + 𝑐), 𝑎),

hen ODE system (88) become
𝑑𝑤1
𝑑𝑡 = 𝑏𝑤2

1 − (𝑏 + 𝑐)𝑤1𝑤2
𝑑𝑤2
𝑑𝑡 = −(𝑎 + 𝑐)𝑤1𝑤2 + 𝑎𝑤2

2.
(91)

If we take this system over the complex field C (𝑤𝑗 = 𝑥𝑗+𝑖𝑦𝑗 for 𝑗 = 1, 2)
it corresponds to the system (84) written in complex variables. Thus, a

solution for ODE system (91) is given by (90).
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