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Adaptive filter with Riemannian 
manifold constraint
Jose Mejia 1, Boris Mederos 2*, Nelly Gordillo 1,3 & Leticia Ortega 1,3

The adaptive filtering theory has been extensively developed, and most of the proposed algorithms 
work under the assumption of Euclidean space. However, in many applications, the data to be 
processed comes from a non-linear manifold. In this article, we propose an alternative adaptive filter 
that works on a manifold, thus generalizing the filtering task to non-Euclidean spaces. To this end, 
we generalized the least-mean-squared algorithm to work on a manifold using an exponential map. 
Our experiments showed that the proposed method outperforms other state-of-the-art algorithms in 
several filtering tasks.

Adaptive filtering has had several successful practical applications and plays an important role in signal process-
ing. The fields in which adaptive filtering has been applied are system identification, channel equalization, biosig-
nal noise cancellation, and acoustic echo cancellation, among others. The frequent use of adaptive filtering is 
necessary because signals are often contaminated by noise and unwanted artifacts, such as acoustic echo, power-
line interference, and a mother’s heartbeat while trying to measure a fetal electrocardiogram. Until recently, 
most methods for adaptive filtering proposed changes to the objective function to optimize filter coefficients 
based on the assumption of Euclidean embedding. However, studies have shown that frequently data in signal 
processing possess latent non-Euclidean structures1, indicating that other spaces for filter design may provide 
more meaningful geometric representations and better signal-processing algorithms. This research expands the 
use of adaptive filtering beyond Euclidean domains by extending the least-mean-squared (LMS) algorithm to 
Riemannian manifolds. To accomplish this, we restrict the filter coefficients to exist within a specific manifold. 
As a result, the proposed optimization algorithm requires that the optimization steps occur on this particular 
structure.

The theory of adaptive filtering has been the subject of significant research, leading to the development of 
numerous algorithms. This paper seeks to extend the scope of adaptive filtering to non-Euclidean domains. Cur-
rently, most algorithms are designed for Euclidean domains and assume Gaussian noise. In practice, there can 
be other types of noise and interference that affect the performance of the algorithms. To address this issue, new 
algorithms have been proposed that modify the cost function by incorporating different schemes. For example, 
some works have proposed changing the error criteria in the optimization of the filter, such as the information 
theoretic criterion of minimum error entropy, which allows for better treatment of complex noise distributions2,3. 
Another concept related to Renyi’s entropy4, mixed correntropy, uses a convex linear combination kernel of two 
Gaussian functions. In this scheme, the maximum mixing correntropy criterion is used as the cost function; the 
result is a flexible and robust filter, that exhibits good performance in some scenarios. Furthermore, techniques 
based on compressive detection (CS) have also been incorporated, giving rise, for example, to zero attraction 
algorithms, in which a penalty is imposed that allows sparsity in the cost function. For example, Wang et al. 
(2018)5 introduced a bias-compensation vector to compensate for the bias resulting from an input with noise. 
For this, an l1-norm penalty is used in the cost function that favors sparsity.

The LMS algorithm was designed to work with filter coefficients varying freely in Rn , however, practical 
scenarios often involve filter coefficients subject to constraints imposed by physical characteristics or other 
influencing factors. As a result, the LMS algorithm is inadequate for determining the filter coefficients when 
they are limited to a specific subset of the Euclidean space Rn . Instead, constrained optimization methods 
are employed6. Some examples of LMS with restrictions arise naturally in various applications such as array 
processing, spectral analysis and blind multiuser detection where the filters coefficients are subject to a set of 
linear equality constraints. To address this, the LMS algorithm with a linear equality constraint was proposed 
in7,8, achieving a better performance, while box constraints were utilized in9,10 where it was further extended 
to bounded norm constraints with l2, l1, l∞ norms. In11,12 an adaptive filter algorithm incorporating quadratic 
equality constraint was introduced. The work of6 introduced two distinct types of constraints, the bounded 
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hypercube in Rn (box-constrains) and the bounded hypersphere which led to the development of a quadratically 
constrained algorithm. The work of13 extends the LMS method to incorporate filter coefficients constrains speci-
fied by general sets of constraints defined by convex functions. Particularly,14 demonstrates that their proposed 
constraint/regularization methods effectively ensure the filter parameters to satisfy the constraints, resulting in 
superior performance compared to the traditional LMS algorithm.

In the literature mentioned earlier, several commonly encountered sets of constraints can be understood as 
Riemannian manifolds. For example, the task of minimizing a general function f : Rn → R over the hyper-
cube in Rn can be reformulated as a minimization problem on a manifold, as stated in15. Likewise, optimizing 
f : Rn → R subject to quadratic inequality constraints corresponds to optimization on the hypersphere, which 
constitutes a Riemannian manifold. Furthermore, the scenario involving linear constraints can be straightfor-
wardly translated into an optimization problem on the linear manifold defined by the set of linear constraints. 
Therefore, in several cases, including the aforementioned ones, the LMS algorithm with constrains can be formu-
lated as an optimization method on a manifold, thereby leveraging the advantages provided by such techniques16.

In this research, we explore the practical benefits of utilizing novel non-Euclidean spaces for filter design. We 
anticipate that the community will further advance this approach theoretically and uncover new applications for 
it. To our knowledge, the only similar work is from Bonnabel et al.17, which in the context of learning problems 
for classification and clustering, proposes a generalization of LMS to the particular case of the manifold of low-
rank positive semidefinite matrices. Their proposed algorithm does not explicitly use the exponential map in the 
optimization process. In contrast, our research focuses on signal processing and expands the LMS algorithm to a 
broader context where the filter coefficients exist on a geodesically complete Riemannian manifold. To perform 
optimization on a manifold, we use the exponential map. Our study demonstrates that the algorithm converges 
in this new context.

The rest of the paper is organized as follows. In the Mathematical Preliminaries section, the main mathemati-
cal concepts from Riemannian geometry and the stochastic gradient descent used in this work are introduced. 
In the Methods section, we review the LMS and normalized least mean square (NLMS) algorithms and their 
geometric interpretations, and then generalize these results to other spaces. We then propose an algorithm for 
adaptive filtering on varieties based on LMS and the exponential map. In the Results section, a comparison of 
the performance of the proposed method against other algorithms for various tasks is presented. Finally, in the 
Conclusions section, a description of the results obtained is presented.

Mathematical preliminaries
This section, presents the fundamentals of Riemannian geometry underlying the optimization theory over mani-
folds. Also, a brief introduction to the stochastic gradient on manifolds is presented. In this work, the manifolds 
M under consideration are submanifolds embedded in the Euclidean space Rn for some n. We start by giving 
some basics definition, which can be found in several books on Riemannian geometry18–21, among others.

Definition 1  (Tangent space) Given x ∈ M , the tangent plane at a point x is defined as:

where I is any open interval containing t = 0.

That is, v ∈ TxM if and only if there exists a smooth curve on M passing through x with velocity v. It can be 
proved that TxM is a lineal space of the same dimension as the manifold M . Next, the concept of disjoint union 
of all the tangent spaces of the manifold is formalized.

Definition 2  (Tangent bundle) The tangent bundle of a manifold M is denoted TM and is defined as:

On the tangent space TxM an inner product �·, ·�x : TxM × TxM → R can be defined, it induces a norm 
�u�x =

√
�u, u�x  . When the metric �·, ·�x varies smoothly, it defines a Riemannian metric.

Definition 3  (Riemannian metric) Given a smooth manifold M , a Riemannian metric is a correspondence 
that associates points x ∈ M to inner products �·, ·�x that varies smoothly with x. In other words, for all smooth 
vector fields X, Y on M the function s : M → R defined as s(x) = �X(x),Y(x)�x is smooth. A manifold with a 
Riemannian metric is called a Riemannian manifold.

In our context, where M is a submanifold embedded in the Euclidean space Rn for some n, we have that �·, ·�x 
is the inner product of Rn.

Given a smooth function f : M → M
′ between two smooth manifolds M and M′ , the differential of f at 

a point x ∈ M is denoted as dfx : TxM → Tf (x)M
′ and defined as dfx(v) = (f ◦ c)′(0) , where v ∈ TxM and 

c : I → M is a curve that satisfies c(0) = x and c′(0) = v . This allow to define the gradient vector field.

Definition 4  (Gradient) Let f : M → R be a smooth function on a Riemannian manifold M . The Riemannian 
gradient of f is the vector field ∇f  on M that satisfies the following identity:

TxM = {c′(0) : c : I → M is smooth and c(0) = x},

TM = {(x, v) : x ∈ M and v ∈ TxM}.

dfx(v) = �v,∇f (x)�x , ∀(x, v) ∈ TM,
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where �·, ·�x is the Riemannian metric on M.

Given a smooth function f : M → R , the gradient ∇f  is uniquely defined. Moreover, the gradient ∇f  can 
be calculated from a smooth extension f̄ : Rn → R of f as

where Projx is the orthogonal projection from Rn to TxM.
Typically, the geodesic curves are defined in terms of the covariant derivative; here we give a definition based 

on the fact that the manifold is embedded in a Euclidean space, see Boumal20.

Definition 5  (Geodesics) On a Riemannian manifold M , a geodesic is a smooth curve c : I → M such that its 
intrinsic acceleration c′′(t) = Projx

(

d2c(t)
dt2

)

= 0, ∀t ∈ I.

Given p ∈ M , consider V ⊂ M open set containing p. Let us define

for some ǫ > 0 . Then, the following Lemma from Do Carmo et al.18[Proposition 2.7, Page 64], holds

Lemma 1  Given p ∈ M , there exist an open set V ⊂ M , p ∈ V  , numbers ǫ > 0 , δ > 0 such that ∀(q, v) ∈ U 
there exists a curve cq,v : (−δ, δ) → M which is the unique geodesic satisfying cq,v(0) = q with velocity c′q,v(0) = v.

This Lemma guarantees the existence of a unique geodesic that passes by p with velocity v satisfying ‖v‖p < ǫ . 
From this, the exponential map Exp : U ⊂ TM → M can be defined as

It is common to consider the restriction of Exp to the tangent plane in the following way, given a point q ∈ M , 
the function Expq : B(0, ǫ) → M is defined as

where B(0, ǫ) = {v ∈ TqM : �v�q < ǫ} is an open ball with radius ǫ as in Lemma 1. Expq(v) can be interpreted 
as a point of M obtained by walking along the geodesic for a time equal to one unit with velocity ‖v‖q.

The value of ǫ can be chosen such that Expq : B(0, ǫ) → M is a diffeomorphism over its image, the supreme 
of the values of ǫ such that Expq is still a diffeomorphism defines the injectivity radius. A formal definition is 
presented below

Definition 6  (Injectivity radius) The injectivity radius of a Riemannian manifold M at x is denoted as inj(x) . It 
is defined as the supremum of values of ǫ > 0 such that the exponential map is a global diffeomorphism from 
B(0, ǫ) ⊂ TxM over its image on M.

The injectivity radius of M , is defined as the minimum value of inj(x) , this is,

Definition 7  (Geodesically complete) A Riemannian manifold M is geodesically complete if the maximal interval 
where the geodesics are defined is R.

Observe that in a geodesically complete Riemannian manifold, the exponential maps are defined in the entire 
tangent plane. Some examples of geodesically completed manifolds are the sphere Sn , the n-dimensional torus 
T
n , and the hyperbolic space Hn−1 . In this work, we will restrict to geodesically complete manifolds.

Now we review the stochastic gradient descent algorithm (SGD) and its Riemannian version. Given a cost 
function

defined as the expected value of the loss function f(z, w) with respect to the variable z, the gradient of C(w) is 
expressed as

where

∇f (x) = Projx(∇ f̄ (x)),

U = {(q, v) ∈ TM : q ∈ V , v ∈ TqM, �v�q < ǫ}

Exp(q, v) = cq,v(1), ∀(q, v) ∈ U .

Expq(v) = Exp(q, v)

inj(M) = min
x∈M

inj(x).

(1)C(w) = Ez[f (z,w)],

(2)∇C(w) = Ez[h(z,w)]

(3)h(z,w) = ∇wf (z,w).
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To avoid the complexity of the function (2) in the minimization of C(w), the SGD algorithm starts from an initial 
value w1 and interactively takes samples zk of the variable z and for each sample calculates a new value of w by 
the following iterative scheme

The convergence of the SGD algorithm have been proved by Bottou in22. This method can be generalized to a 
Riemannian manifold M where the optimization problem is stated as

under this context, the iterative scheme (4) is carried out by means of the exponential map 
wk+1 = expwk

(−ρkh(zk ,wk)) which allows to move over the manifold. The algorithm is summarized below. The 
convergence of the SGD on a Riemannian manifold was first studied proved by23, and subsequently several works 
such as Zhang et al.24, Tripuraneni’s et al.25, among others have demonstrated the convergence of modifications 
of the above algorithm. The next Theorem is due to Bonnabel23 and guarantees convergence on quite general 
conditions on M and f.

Theorem 1  (Bonnabel) Consider the SGD Algorithm 1 on a connected Riemannian manifold M with an injectiv-
ity radius uniformly bounded from below by I > 0 . Assume the sequence of step sizes {ρk}∞k=1 satisfies the standard 
condition.

Suppose that: 

1.	 There exists a compact set K ⊂ M such thatwk ∈ K for all k.
2.	 There exists a constant A > 0 such that ∀w ∈ K and ∀z ∈ Z we have h(z,w) ≤ A , where h(z, w) is the Rie-

mannian gradient of the loss function f(z, w).

Then C(wk) converges a.s. and ∇C(wk) → 0 a.s.

Methods
As shown in Fig. 1, the algorithms for adapting a filter to the desired conditions seek to find the filter coefficients 
w = [w(1),w(2), ...,w(n)]T that minimize the error ek between the filter output and a desired signal dk.

In this work, the implementing of an adaptive algorithm with filter coefficients embedded in a Riemannian 
manifold is proposed. In order to implement gradient descent, the exponential map was used, as in Sun et al. 
(2019)26. Next, we present the insights that led us to this viewpoint.

The least‑mean‑square algorithm.  We start by reviewing the LMS algorithm, which can be seen as an 
application of the SGD to the adaptive filter problem (Fig. 1). The target of the LMS algorithm is to minimize 
the average error

(4)wk+1 = wk − ρkh(zk ,wk).

min
w∈M

C(w),

(5)
∞
∑

k=1

ρ2
k < ∞,

∞
∑

k=1

ρk = ∞.

Figure 1.   Adaptive filter diagram.
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with respect to the filter coefficients w, where x is the input signal and d is the output signal. Moreover, it shall 
be considered that the output signal d is related with x by the equation d = w̃Tx + η for some w̃ ∈ R

n , where η 
is a zero mean random variable with variance σ 2 , which is independent of x. Note that the function (6) has the 
same form as Eq. (1) with loss function f (d, x,w) = 1

2 (d − wTx)2 . Consequently, applying the SGD algorithm 
produces the update of the filter coefficients wk at iteration k as

where ρk > 0 is the step size, xk is the input or reference signal

and ek = dk − wT
k xk is the filter error at iteration k.

An approach to eliminating dependency in the “volume” of the signal, known as NLMS, suggests using the 
update Eq. (9) instead of Eq. (7)

where � · �2 is the Euclidean norm. The NLMS algorithm can be interpreted from a geometric viewpoint as pro-
jecting the current estimate wk on a hyperplane pk+1 to find the next estimate wk+1

27(see Fig. 2a). The hyperplane 
pk+1 is defined as

which corresponds to the plane containing all points w, which make the error equal to zero. This process of 
finding a new plane and projecting onto it is performed at each iteration.

Here, we propose to view the iterative process as a whole, and instead of having a sequence of planes, we now 
have a manifold where each hyperplane is actually a tangent plane at a point on the manifold. Thus, instead of 
projecting into planes, what we need is a geodesic on the manifold in the direction of the error. This is illustrated 
in Fig. 2b, where, for a path from p1 to p2 (continuous line), a point in the path can be outside the manifold, not 
occurring for a geodesic curve (dashed curve).

The proposed LMS implementation is similar to the classic LMS algorithm (Eq. 7). However, we assume that 
the filter coefficients w are constrained to a smooth Riemannian manifold M , which generalize other types of 
restrictions imposed in previous works8–10. Therefore, in this context, the LMS algorithm aims to solve the fol-
lowing optimization problem:

where the Riemannian manifold M embedded in the Euclidean space Rn for some n. which is endowed with a 
Riemannian metric which is the Euclidean inner product inherited from the ambient space Rn.

(6)MSE(w) = Ed,x

[

1

2
(d − wTx)2

]

(7)wk+1 = wk + ρk (dk − wT
k xk)xk ,

(8)xk = [x(k), x(k − 1), . . . , x(k − n+ 1)]T ,

(9)wk+1 = wk + ρkek
xk

||xk||22
,

(10)pk+1 = {w ∈ R
n : dk − wTxk = 0},

(11)min
w∈M

MSE(w),

Figure 2.   (a) The geometric interpretation of the NLMS algorithm involves projecting the present estimate, wk , 
onto a hyperplane pk+1 to obtain the next estimate, wk+1 . (b) When considering a path from point p1 to point 
p2 and employing Euclidean projection, a point on the path may exist outside the manifold, as indicated by the 
solid red line. However, this occurrence is absent when utilizing a geodesic curve, depicted as a dashed red line.
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As in the Euclidean LMS, the signal d satisfies that d = w̃Tx + η , where w̃ ∈ M and η is a random variable 
independent of x with zero means and variance σ 2 . The calculation of the filter output is performed as usually 
as a convolution of the FIR structure wk with the input xk . To minimize MSE(w) (Eq. 6) with w ∈ M , the pro-
posed LMS algorithm starts at an initial point w1 ∈ M and progressively produces a sequence of filter values 
{wk}∞k=1 ⊂ M in the same fashion as the SGD algorithm on manifold 1. Given a wk ∈ M and a sample point 
(dk , xk) , the method computes the negative Euclidean gradient of f (dk , xk ,w) = 1

2 (dk − wTxk)
2 as

and the Riemannian gradient as the projection of Eq. (12) onto the tangent plane Twk
M

Then, the next point wk+1 is obtained by moving ρk > 0 units along the geodesic γwk
(t) = Expwk

(tvk) with 
velocity vk , i.e.,

This algorithm is summarized below

We implemented the proposed algorithm for two manifolds, the hypersphere Sn−1 and the hyperbolic n− 1
-space Hn−1 embedded in Rn . Now, we present the specific expressions of the projection operators and expo-
nential maps.

The hypersphere is defined as Sn−1 = {w ∈ R
n : �w,w� = 1} with Riemannian metric the Euclidean inner 

product inhered from Rn . Given w ∈ S
n−1 , the tangent plane at w is TwS

n−1 = {v ∈ R
n : �v,w� = 0} , the orthog-

onal projection of Rn onto TwS
n−1 is

and the exponential map is

that can be founded in Boumal20.
The hyperbolic space is defined as Hn = {y = (y0, y1, . . . , yn) ∈ R

n+1 : �y, y�Hn = −1, y0 > 0} with Riemann-
ian metric �u, v�Hn = uTJv known as the Minkowski inner product, where J = diag (−1, 1, . . . , 1) . The projection 
onto the tangent plane Twk

H
n is given by

The Riemannian gradient of a smooth function f : Hn → R and the exponential map can be founded in 
Boumal20[Proposition 7.7. Page 175]. Given an extension f̄  of f to Rn+1 the gradient of f can be calculated as

and

respectively.
To prove the convergence of algorithm 2, it is tempting to apply Theorem 1; however, this cannot be applied 

directly since the condition that the gradient Projw(h(x, d,w)) is uniformly bounded for every pair (d, x) is not 
satisfied. However, following the ideas of the proof of Theorem 1 in Bonnabel23 the convergence of the proposed 
method can be proved with quite a general conditions of the random variable x as shown in the following 
Theorem.

(12)h(dk , xk ,wk) = (dk − wTxk)xk

(13)vk = Projwk
(h(dk , xk ,wk)).

(14)wk+1 = Expwk
(ρkvk).

(15)Projw(x) = (I − wwT )x,

(16)Expw(v) = cos(�v�)w + sin(�v�)
v

�v�
.

(17)Projw(x) = x + �x,w�Hnw

(18)Projw(J∇ f̄ (w)),

(19)Expw(v) = cosh(�v�)w + sinh(�v�)
v

�v�
.
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Lemma 2  Let M be a geodesically complete manifold embedded in Rn with Riemannian metric the traditional 
euclidean inner product inhered from Rn . Let MSE : M → R as in Eq.  (6). Assume that M = Ex

[

�x�2xxT
]

 and 
Ex

[

‖x‖2
]

 exist and that M is a strictly positive defined matrix. Consider that the Algorithm 2 is applied to MSE(w) 
with the sequence of step sizes {ρk}∞k=1 satisfying the standard condition (Eq. 5) and also assume that there exists a 
compact subset K ⊂ M such that wk ∈ K for all k. Then MSE(wk) converges a.s. and ∇MSE(wk) → 0 a.s.

Proof 1  A well-known fact is that for any v in a linear space E with inner product, the norm of the orthogonal 
projection ProjV (v) onto a linear subspace V ⊂ E is smaller than the norm of v, this is

Therefore, defining h̃(x, d,w) = Projw(h(x, d,w)) , we obtain

Consequently

Using that d = w̃Tx + η , where w̃ ∈ M , we get

Therefore, by the independence of η and x and that Eη[η] = 0 , then the following inequality holds

Then

where �∗ > 0 is the greatest eigenvalue of Ex
[

‖x‖2xxT
]

 . Since w ∈ K  and K is a compact set, then there exist 
some positive constant C′ > such that �w̃ − w�2 ≤ C′, ∀w ∈ K . This entails that

Since M is geodesically complete, the exponential map Expwk
(tv) is well-defined for all t ∈ R and v ∈ Twk

M , then, 
applying Taylor formula argument the same inequality (5) in23[Page 2219] with wk+1 = Expwk

(−ρkh̃(xk , dk ,wk)) 
is obtained

where ∇MSE(wk) is the Riemannian gradient of MSE(wk) as in the Definition 4 and K > 0 is an upper bound 
of the eigenvalues of Hessian of the MSE function. Taking the expected value to both sides of Eq. (26) with 
respect to the sigma-algebra Fk = {x1, η1, ..., xk−1, ηk−1} and following the same arguments as in the proof of 
Theorem 123, we get

Applying inequality (Eq. 25) to the last term of the previous inequality we obtain

where C′′ = KC′ . The rest of the proof follows exactly the same as in the proof of Theorem 1 in23. Therefore, it is 
concluded that MSE(wk) converges a.s. and ∇MSE(wk) → 0 a.s. 	�  �

We remark that for a compact geodesically complete Riemannian manifold the compact set K in Lemma 2 
can be considered as the whole manifold. The Hyperbolic space Hn is a geodesically complete manifold embed-
ded in the euclidean space Rn+1 but it does not inhered the inner product of Rn+1 as its Riemannian metric, 
therefore, the Lemma 2 can not be applied directly. In Lemma 3, we provide a proof of the convergence of LMS 
algorithm when the filter coefficients are constrained to the Hyperbolic space Hn . We recall that the Hyperbolic 
space is defined as

(20)�ProjV (v)� ≤ �v�.

(21)�h̃(x, d,w)�2w ≤ �h(x, d,w)�2.

(22)�h̃(x, d,w)�2w ≤ �h(x, d,w)�2 = �(d − wTx)x�2 = (d − wTx)2�x�2.

(23)�h(x, d,w)�2 = η2�x�2 + �x�2η(w̃ − w)Tx + �x�2(w̃ − w)TxxT (w̃ − w)

Ed,x

[

�h̃(x, d,w)�2w
]

≤Eη,x

[

η2�x�2 + �x�2η(w̃ − w)Tx + �x�2(w̃ − w)TxxT (w̃ − w)

]

=Eη

[

η2
]

Ex

[

�x�2
]

+ (w̃ − w)TEx

[

�x�2xxT
]

(w̃ − w)

= σ 2
Ex

[

�x�2
]

+ (w̃ − w)TEx

[

�x�2xxT
]

(w̃ − w).

(24)Ed,x

[

�h̃(x, d,w)�2w
]

≤ σ 2Ex
[

�x�2
]

+ �∗�w̃ − w�2

(25)Ed,x

[

�h̃(x, d,w)�2w
]

≤ σ 2Ex
[

�x�2
]

+ �∗C = C′, ∀w ∈ K .

(26)

MSE(wk+1)−MSE(wk) ≤ −ρk

〈

h̃(xk , dk ,wk),∇MSE(wk)

〉

wk

+ ρ2
kK�h̃(xk , dk ,wk), h̃(xk , dk ,wk)�wk

,

(27)E(MSE(wk+1)−MSE(wk)|Fk) ≤ −ρk�∇MSE(wk)�2wk
+ ρ2

kKEdk ,xk

[

�h̃(xk , dk ,wk)�2wk

]

.

(28)E(MSE(wk+1)−MSE(wk)|Fk) ≤ −ρk�∇MSE(wk)�2wk
+ ρ2

kC
′′,

(29)H
n = {y = (y0, y1, y2, . . . , yn) ∈ R

n+1 : �y, y�Hn = −1, y1 > 0},
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and the Minkowski inner product is

where J = diag (−1, 1, ..., 1) . For u = (u0, u1, ..., un) ∈ H
n , the following inequality holds

where ‖u‖ is the euclidean norm. The following Lemma guarantees the convergence of the LMS algorithm on 
the n-dimensional Hyperbolic space

Lemma 3  Let Hn be the n-dimensional Hyperbolic space. Let MSE : Hn → R as in Eq.  (6). Assume that 
M = Ex

[

�x�2xxT
]

 and Ex
[

‖x‖2
]

 exist and that M is a strictly positive defined matrix. Consider that the Algo-
rithm 2 is applied to MSE(w) with the sequence of step sizes {ρk}∞k=1 satisfying the standard condition (5) and also 
assume that there exists a compact subset K ⊂ H

n such that wk ∈ K  for all k. Then MSE(wk) converges a.s. and 
∇MSE(wk) → 0 a.s.

Proof 2  Let us start by proving that given w ∈ H
n , the projection satisfies

with ‖z‖ the euclidean norm.
By Eq. (17) we have z′ = Projw(z) = z + �w, z�Hnw , then

Using the fact that �z, z�Hn ≤ �z�2 (corresponding to inequality (Eq. 31)) we obtain that

Applying 2ab ≤ a2 + b2 and the Cauchy–Schwartz inequality to Eq. (32) we get

Therefore, taking z = h(x, d,w) and z′ = Projw(h(x, d,w)) it is obtained

Using the Eq. (23)

and taking expected value

Then, taking the expected values of Eq. (35) and sustituting Eq. (37) we have

This inequality allows the bound Ed,x
[

�h̃(x, d,w)�2
Hnw

]

≤ C as w ∈ K  . From this upper bound of 
Ed,x

[

�h̃(x, d,w)�2
Hnw

]

 , we can proceed following the steps outlined in Lemma 2 and the Theorem 1 in23.	�
�

Results
In this section, the results of the experiments are presented. The proposed algorithm was implemented using the 
geostats library28. For the comparison methods, the following methods were used: the LMS29, the kernel LMS 
(Kernel)30, the bias compensated zero-attracting normalized least mean square adaptive filter (BCZA) of5, and 
the normalized LMS adaptive filter with a variable regularization factor (NNLMS) of31. In all the experiments, a 
simple grid search to establish the parameters of the algorithms for each task was used. In all cases, the assumed 
manifold had a dimension equal to the filter order. The learning curves averaged over 100 realizations.

(30)�u, v�Hn = uTJv,

(31)�u�2
Hn = �u, u�Hn = u21 + · · · + u2n − u20 ≤ �u�2,

�Projw(z)�2Hn ≤ �z�2(1+ 4�w�2)

�z′, z′�Hn =�z, z�Hn + 2�z,w�2
Hn + �z,w�2

Hn �w,w�Hn

=�z, z�Hn + �z,w�2
Hn .

(32)

�z′, z′�Hn ≤�z�2 + �z,w�2
Hn

=�z�2 + (−z0w0 + z1w1 + · · · + znwn)
2

=�z�2 + (z0w0)
2 − 2(z0w0)(z1w1 + · · · + znwn)+ (z1w1 + · · · + znwn)

2
.

(33)�z′, z′�Hn ≤�z�2 + 2(z0w0)
2 + 2(z1w1 + · · · + znwn)

2

(34)≤�z�2 + 2�z�2�w�2 + 2�z�2�w�2 = �z�2(1+ 4�w�).

(35)�h̃(x, d,w)�2
Hnw ≤ �h(x, d,w)�2(1+ 4�w�2).

(36)�h(x, d,w)�2 = η2�x�2 + �x�2η(w̃ − w)Tx + �x�2(w̃ − w)TxxT (w̃ − w)

(37)Ed,x
[

�h(x, d,w)�2
]

= σ 2Ex
[

�x�2
]

+ (w̃ − w)TEx

[

�x�2xxT
]

(w̃ − w).

(38)Ed,x

[

�h̃(x, d,w)�2
Hnw

]

≤
[

σ 2Ex
[

�x�2
]

+ (w̃ − w)TEx

[

�x�2xxT
]

(w̃ − w)
]

(1+ 4�w�2).
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As a preliminary experiment, we introduce the identification of two systems whose models possess a spherical 
and hyperbolic manifold structure, respectively. The systems are represented using Finite Impulse Response (FIR) 
filters, with their coefficients derived from the corresponding manifold. The size of each filter is six dimensions. 
The signals were generated by convolving with a square wave of random and varying periods. Subsequently, the 
different methods were evaluated, and their respective learning error curves were plotted.

Results for the spherical filter are as follow, the Kernel method achieved a mean squared error (MSE) of 
−20.45 dB, the BCZA method attained −63.18 dB, NNMLS obtained −82.07 dB, LMS reached −79.07 dB, and 
the proposed method achieved −117.57 dB. Figure 3a presents learning curves, demonstrating that the proposed 
filter achieves the lowest error compared to all other methods, leveraging the inherent structure of the synthetic 
example. Figure 3b–f exhibit the performance of each filter across 100 realizations of the data. It is also evident 
from these figures that the proposed method closely tracks the system output. Additionally, it is worth noting 
that all evaluated methods display high variance in the peaks and flat regions.

For the system characterized by a hyperbolic structure, the Kernel method achieved a mean squared error 
(MSE) of −42.41 dB, the BCZA method attained −63.18 dB, NNMLS obtained −86.03 dB, LMS reached −60.22 
dB, and the proposed method achieved −89.50 dB. In Fig. 4a, the learning curves for each method are depicted, 
with the proposed method demonstrating superior performance compared to the others. Figure 4b–f showcase 
the system response alongside the response of each method. Notably, the proposed method exhibits superior 
performance in this case.

The next experiment, the Mackey-Glass chaotic time series was used for prediction. Each data dk was pre-
dicted using xk = [dk−3, dk−4, ..., dk−n−3]T for filter order, n = 11 . In addition, each dk was further contaminated 
with zero mean white Gaussian noise with a 0.001 variance before it was compared with the filter output wT

k xk . 
For this experiment, the proposed filter assumed filter coefficients on a hyperbolic manifold. Figure 5a shows 
the learning curves for each method. Figure 5b is a zoomed-in image of iterations 2500–2580. The proposed 
method achieved less MSE, −126.39 dB on average, followed closely by the NNMLS algorithm, with −123 dB, 
and the LMS with −60.24 dB. However, it can be seen in Fig. 5b that both learning curves were separated by more 
than 10 dB most of the time. Figure 5c–g; illustrate the performance of the different methods to approximate the 
Mackey–Glass series. The displayed outcomes represent an average of 10 trials. Moreover, the confidence interval 
for each point on the curve is computed by utilizing 1.96 standard deviations achieved by the algorithms. It is 
apparent that a most of algorithms display greater variability at the local maxima and minima of the curves in 
the time series. Conversely, the method proposed exhibits reduced variance and more precisely tracks the signal.

In another experiment, the task was interference cancellation. To this end, simulated fetal electrocardio-
gram (fECG) data were used, the signal came from the database of simulated mother’s ECG (mECG) and fECG 
signals32 sampled at a rate of 250 samples per second. Figure 6f shows the fECG mounted on a direct current for 
illustration purposes, and the abdominal ECG signal, which was composed of the mECG and fECG. The signal 
dk consisted of the ECG at the mother’s belly (mECG+fECG), the reference signal consisted of the mECG, and 

Figure 3.   Identification of a system with a spherical manifold structure. Figure (a) displays learning curves for 
the different methods. Figure (b) shows 100 realizations of the system response, along with the response of the 
Kernel filter and 95% confidence intervals. Similarly, Figs. (c–f) illustrate the performance of the BCZA filter, 
NNMLS filter, LMS filter, and Proposed filter, respectively, with their corresponding response and confidence 
intervals in blue shades.
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the fECG was obtained as the error signal. For this experiment, the proposed method assumed that the filter 
coefficients are on a hyperbolic manifold, and the filter order for all the algorithms was 21. Figure 6a–e, shown 
the recovery of the fECG for each method. The right graph shows a zoomed-in image of the response. It can 
be seen that the proposed method had less MSE and recovered fECG with fewer distortions compared to the 
other methods.

For the next experiment, the task at hand was system identification. The data used were from an air heater to 
be installed in a production line. The data were acquired at one sample per second. The input signal was a digital 
signal activating a relay, while the output signal was from a temperature sensor. The proposed filter assumed a 
hypersphere manifold. The size of all filter was three. The resulting learning curves for the different methods are 
presented in Fig. 7a. Once again, the proposed method exhibited superior results, achieving a mean squared error 
(MSE) of −74.34 dB. In comparison, the Kernel filter attained −36.44 dB, the BCZA method reached −31.01 dB, 
NNLMS with −63.81 dB, and the LMS method achieved −37.72 dB. Furthermore, in Fig. 7b–f, the system and 
filter responses for 100 realizations are depicted. It is evident that the proposed method outperforms the others, 
closely following the signal.

Finally, the following experiment aims to assess the method’s sensitivity to the learning rate ρ . To accomplish 
this, a low-pass FIR filter consisting of two coefficients was employed as the system, with an input analogous 
to that of the preceding experiment. The ρ parameter was varied at multiple values: 0.5, 0.1, and 0.05. As seen 
in Fig. 8, the duration of the output’s stabilization transient increases as the parameter decreases, and it is also 
evident that the error diminishes as ρ decreases.

Conclusions
In this work, an adaptive filter algorithm is proposed. Instead of assuming Euclidean embedding we supposed 
that the best filter coefficients were embedded in a manifold. We modified the well-known LMS algorithm, con-
sidering a manifold with a known structure. We proved the effectiveness of the proposed method for interference 
cancellation, prediction, and system identification tasks. The results obtained by all the methods showed that 
the proposed method outperformed all the other methods. The future work should include selecting the right 
manifold type for the task and using a variable regularizer parameter.

Figure 4.   The identification of a system characterized by a hyperbolic manifold structure is presented. Figure 
(a) showcases the learning curves for different methods. Additionally, Fig. (b) presents 100 realizations of the 
system’s response, along with the response of the Kernel filter and corresponding 95% confidence intervals. 
Similarly, Figs. (c–f) depict the performance of the BCZA filter, NNMLS filter, LMS filter, and Proposed filter, 
respectively, along with their response and confidence intervals.
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Figure 5.   Learning curves for the Mackey-Glass chaotic time series: (a) the first 4000 iterations of the series, 
(b) a zoomed-in image of iterations 2500 to 2580 of the methods. Also, 95%-confidence intervals are depicted as 
shadows regions from (c–g), (c) corresponds to the output of kernel method, (d) corresponds to the output of 
BCZA method, (e) corresponds to the output of the NNMLS method, (f) corresponds to the output of the LMS 
method, and (g) corresponds to the output of the proposed method (MF). Note that it is at the local peaks that 
the greatest increase in variance occurs.
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Figure 6.   Interference cancellation problem on a simulated fECG. The first column shows the error signal 
of the filter, and the second column shows a zoom-in of the result for obtained with different methods: (a) 
corresponds to kernel method, (b) corresponds to BCZA method, (c) corresponds to NNMLS method, (d) 
corresponds to LMS method, and (e) corresponds to the proposed method. (f) shows, for reference purposes 
only, the fECG and (fECG + mECG) the signals with a bias of 2.0 bias.
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