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Abstract: In this paper, a Weibull probabilistic methodology is proposed with an approach to model
vibration fatigue damage accumulation using two parameters: Weibull distribution and a nonlinear
fatigue damage accumulation model. The damage is cumulated based on the application of a vibration
stress profile and is used to determine both the Weibull β and η parameters, and the corresponding
component reliability R(t). The vibration fatigue damage is analyzed to accumulate the damage as
a stress function for a fatigue life exponent derived with the assistance of the acceleration’s force
response. The steps to determine the Weibull β and η parameters are estimated based only on the
principal vibration stresses σ1 and σ2 that allow the reproduction of the vibration fatigue damage.
The method’s efficiency is based on the probabilistic approach by using the vibration fatigue damage
as the Yi vector that covers the arithmetic mean as well as the β parameter. Finally, the procedure
proposed is applied in a practical case where a mechanical component is used as a support for
telecommunication connections and is submitted to vibration stress. The results show that using the
damage accumulated as the Yi vector to estimate the parameters allows for the analysis of dynamic
and individual applications.
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1. Introduction

Mechanical components and structures subjected to vibration are affected by dynamic
loads, which induce fatigue damage due to the cycling loading application [1,2]. The
generated fatigue damage is primarily related to vibration history loading, geometry, and
material properties [3]. The generated fatigue damage directly determines the component’s
reliability, replacement policy, and warranty costs. Thus, the reliability index characteristic
has an important role that is determined mathematically and is used to describe the fatigue
damage behavior of mechanical components [4]. That description can be performed by us-
ing a probabilistic approach [5]. Then, for mechanical components or systems, according to
their application and data complexity, an accurate method must be selected to determine an
effective level of service life reliability [6]. Now, since data from fatigue damage are affected
by significant scatter, and damage is provoked as a response to random forces, gathering
fatigue damage data is generally a difficult activity [7]. One of the more commonly applied
methods to work with fatigue damage is the Miner’s rule [8,9]. To consider the random na-
ture of the generated damage, here, we use a probabilistic time-dependent approach [7]. In
the fatigue damage accumulation models, the principal factors involved are load sequence,
type of load, overloads, plasticization, and type of material. Consequently, for the damage
accumulation analysis, we require a probabilistic concept, or a physical quantity related to
the probability of occurrence [10]. Thus, the measurement of damage helps us to calculate
the probabilities of failure. Since the accumulation of random vibration fatigue damage
entails increasing deterioration, an increasing hazard function is required, and the most
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recommendable cumulative distribution function (cdf) used to estimate the fatigue damage
is the Weibull cdf [11–13]. In a vibration profile, each row has its own stationary frequency
and amplitude which allow for the performance of a vibration analysis with a statistical
approach. Since it is possible to estimate the stress from the acceleration responses, here,
the Weibull distribution is used. Thus, based on the increasing behavior of the cumulated
damage, in this paper, the increasing random damage behavior is used in the Weibull
cdf to determine the failure percentile that the observed cumulated damage represents in
the used vibration profile. Then, once the damage percentiles are determined based on
their corresponding cycles of the S–N curve, the Weibull scale parameter is determined.
Similarly, the Weibull shape parameter is determined directly from the cumulated response
stress of the used profile (see Equations (9) and (10) and Section 3.2). Thus, in Section 2.3, a
probabilistic methodology to characterize the fatigue damage induced by random vibration
is developed by using the Weibull distribution, which uses a relation of the scale and shape
parameters with the mechanical vibration fatigue damage. The methodology includes prob-
abilistic estimations based on the Weibull scale and shape parameters that are governed by
a new way of analyzing the fatigue damage accumulation presented in Section 2.1. Then,
the vibration analysis is based on the fatigue damage, which is determined directly from
the principal stresses σ1 and σ2; therefore, the methodology is efficient because it uses the
damage as the platform to project and represent its random behavior and consequently
the component’s fatigue life. With the purpose to assess it, the methodology is applied in
Section 3 to a probabilistic failure analysis of a panel support made of cold drawn steel
AISI 1025. The mechanical component is submitted to a random vibration loading pro-
file of 10–55 Hertz with an amplitude of 1.5 mm peak to peak during a 2 h period per
block. The testing was performed by using an electrodynamic vibration system in which
the vibration profile loading was applied 29 times. The component’s physical damage
results are shown in Section 3.1. The purpose of the method proposed lies in the use of the
accumulated fatigue damage Di instead of the median rank operation. This is illustrated by
Equations (12) and (13) which allow the use of the resultant vector Y in the estimation of
Weibull parameters that completely reproduces the principal vibration stress values.

The paper is organized as follows. Section 2 includes the generalities of the vibration
fatigue damage accumulation and the proposed Weibull fatigue damage analysis method.
In Section 3, a numerical application is presented. Section 4 is related to the median rank
method comparison. Finally, in Section 5, the conclusions are given.

2. Fatigue Damage
2.1. Fatigue Damage Accumulation

Fatigue damage can be described as a failure mechanism that is manifested when a ma-
terial tends to fail or break under repeated deflections [14–16]. Thus, a nonlinear model to
accumulate the random vibration fatigue damage has been proposed [17] with the purpose
of evaluating the fatigue damage of different dynamic loads in mechanical components
and structural elements. The acceleration response of the analyzed vibration system is
determined by stress as in Equation (1). The applied vibration cycles are determined by
the rainflow method [18]. From the S–N material’s curve, the corresponding life cycles are
determined by using the Basquin Equation [19] as is in Equation (4).

σ(vib)i = σdynamic×Ares (1)

σdynamic =

(
Kme L̂C

I

)
A (2)

Ares =
2π2F2D2

G
(3)

Ni × σ(vib)b
i = ab (4)
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In Equation (1), σdynamic and Ares are the dynamic load factor and the acceleration
response, respectively. In Equation (2) [20], K is the stress concentration factor in the
mechanical component, me is the effective mass, C is the distance to the neutral axis, L̂ is
the distance from the fixed point of the component to the point of application load, A is
the constant of gravity, and I is the moment of inertia. In Equation (3), F is the frequency
applied by the vibration power spectral density (PSD) and G is the gravity constant. In
Equation (4), Ni is the maximum number of cycles that the material’s component can
sustain at a vibration load with stress amplitude σ(vib)i and the parameters a and b are
constant variables that represent the intercept and the slope of the S–N curve, respectively.

As shown by Equations (1)–(4), because a vibration has a nonlinear behavior [21], the
generated fatigue damage also presents a nonlinear behavior. Consequently, the fatigue
damage is determined by using Equation (5), where the damage is described by a curve
that represents the effect under two-level loading conditions [22], where ni represents the
applied vibration cycles at the stress level σ(vib)i.

D =
2

∑
i=1

D2 =

[
n2

N2, f

]( N2, f
N1, f

)
[

σ(vib)1
σ(vib)2

]

(5)

Now that the random fatigue damage generated by the vibration environment is
determined, a Weibull formulation is presented that let us use the generated damage in the
Weibull Y vector (see Equation (13)) to determine the reliability of the analyzed element.

2.2. Weibull Analysis

A two-parameter Weibull distribution is used to statistically analyze fatigue behav-
iors [23–25]. It allowed us to perform accurate fatigue failure analysis [26,27]. The prob-
ability density function f (t) and cumulative distribution function F(t) are described by
Equations (6) and (7), respectively.

f (t) =
β

η

(
t
η

)β−1
exp

{
−
(

t
η

)β
}

(6)

F(t) = 1− exp

{
−
(

t
η

)β
}

(7)

where, β is the shape parameter, η is the scale parameter, and t is the selected random
variable (damage or fatigue life). The corresponding reliability function R(t) is given as

R(t) = exp

{
−
(

t
η

)β
}

(8)

From [28], the Weibull fatigue damage βD and ηD parameters are determined as

βD =
−4µy

0.995× ln
(

σ1
σ2

) (9)

ηD = exp(µ x) (10)

where µy represents the mean of the Y vector (see Equation (13)) determined by using
Equation (5). µx represents the log-mean of the failure-time data, which is determined
here directly from the addressed maximum σ1 and minimum σ2 stress values of Section 2.1.
Thus, µx is determined as

µx = ln(σ1σ2)
1
2 (11)
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Here, notice that the efficiency of the Weibull parameters βD and ηD only depends on
the accuracy with which the σ1 and σ2 values are determined by Equation (1). In this paper,
they were determined from an electrodynamic shaker acceleration response and by the
method performed in [17], Section 3.1.

2.3. Weibull Fatigue Damage Analysis

The expected behavior of the σ1 and σ2 parameters is determined by the
following steps:

Step 1. By using the fatigue damage accumulation results from the component’s
operation, the times that the vibration profile (PSD) loading were applied to the mechanical
component are taken as n.

Step 2. The accumulation fatigue damage Di determined by Equation (5) in the end
of each one of the n vibration loadings is used by Equation (12) as the corresponding
cumulated failure percentile R(Di), as

R(Di) = 1− Di (12)

Step 3. By using the R(Di) elements in the linearized form of the reliability function
given in Equation (8), the corresponding Yi elements are determined as in Equation (13).
Then, its corresponding arithmetic mean value is computed as in Equation (14).

Yi =LN(−LN(1− Di)) (13)

µy = ∑n
i=1

Yi
n

(14)

Step 4. By plugging the µy value and the σ1 and σ2 values into Equation (9), the
corresponding Weibull shape βD parameter is determined. Similarly, by plugging the σ1
and σ2 values into Equation (11), the corresponding µx value is determined. Then, by using
this corresponding µx value in Equation (10), the corresponding Weibull scale ηD param-
eter is determined. These βD and ηD parameters represent the Weibull fatigue damage
family that is used to model the random behavior of the estimated σ1 and σ2 principal
stress values.

Note 1. Here, notice the random behavior of the σ1 and σ2 values. In the proposed
Weibull analysis, let us use the σ1i values as the minimum required strength that the
component’s material must present in order to ensure that the reliability of the component
will meet at least (as a minimum) the desired R(t) index.

From the Weibull analysis, by using the βD and ηD parameters, the minimum strength
σ1i values are determined by using the t0i value that correspond to each Yi element as

t0i = exp{Y i/βD
}

(15)

Thus, the σ2i value is determined as

σ2i = ηD × t0i (16)

and the σ1i value is determined as

σ1i = ηD/t0i (17)

Additionally, from Equation (18), by using the known σ1 value, the t01 element that
belongs to the σ1 and σ2 values determined in Section 2.1 is determined as

t01 = ηD/σ1 (18)
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Now, the t01 and the βD values are used to determine the corresponding Y1 value
as follows,

Y1 = ln(t01)× βD (19)

Finally, the reliability index that corresponds to the Y1 value is determined as

R(t) = exp{−exp{Y1}} (20)

Note 2. Here, observe that the R(t) index determined in Equation (20) by using the
σ1 value according to our proposed method corresponds to a component with strength
equivalent to the σ1 value. Thus, if we define the material Sy parameter as the actual
strength of the component, then by using this Sy value in Equation (18) and the corre-
sponding YSy value of Equation (19) in Equation (20), the minimum expected reliability
of a component that presents a strength of Sy is determined. Please also notice from the
proposed Weibull analysis that any desired strength value can be used to determine its
corresponding reliability. The diagram with the steps required to determine the probability
of failure F(t) and the reliability R(t) based on the vibration fatigue damage D is shown in
Figure 1.
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Figure 1. Diagram of the Weibull Fatigue Damage Analysis.

Next, a numerical application is presented where the proposed method is applied to a
mechanical component that is submitted to random vibration stress due to its
field application.

3. Numerical Application
3.1. Fatigue Damage Accumulation

The accumulation fatigue damage study case is performed by analyzing a mechanical
support component that is used to install a fiber optic panel into a frame. It is shown in
Figure 2.

The support is made of cold drawn steel AISI 1025, with a modulus of elasticity
E = 200 GPa, Poisson’s ratio
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Table 1. Vibration Stress and Cycles Results. 

Frequency 
(Hz) 

Accel.  
Response (G) 

Dynamic Factor 𝝈𝒅𝒚𝒏𝒂𝒎𝒊𝒄  
Equation (2) 

Vibration Stress  𝝈 ሺ𝒗𝒊𝒃ሻ𝒊 
Equation (1) 

Applied  
Vibration Cy-

cles (𝒏𝒊) 
Total Cycles ሺ𝑵𝒊ሻ 
Equation (4) 

10 0.72 

22.22 

15.99 70,384 1.36 × 1020 
20 2.65 58.86 140,195 3.04 × 1013 
30 5.62 124.84 92,619 4.42 × 109 
40 9.17 203.69 10,807 1.40 × 107 
50 13.72 304.76 2921 1.23 × 105 
55 12.36 274.55 762 4.20 × 105 

Table 2. Vibration Fatigue Damage Accumulation. 

 10 Hz 20 Hz 30 Hz 40 Hz 50 Hz 55 Hz 
Block No. D1 D1+2 D1+2+3 D1+2+3+4 D1+2+3+4+5 D1+2+3+4+5+6 

1 (2 h) 5.18 × 10−16 5.18 × 10−16 5.20 × 10−16 5.73 × 10−16 2.37 × 10−2 2.00 × 10−2 
2 (2 h) 2.00 × 10−2 2.42 × 10−2 2.42 × 10−2 2.42 × 10−2 4.84 × 10−2 5.00 × 10−2 
3 (2 h) 5.00 × 10−2 4.91 × 10−2 4.93 × 10−2 5.01 × 10−2 7.38 × 10−2 7.00 × 10−2 
4 (2 h) 7.00 × 10−2 7.49 × 10−2 7.51 × 10−2 7.63 × 10−2 1.00 × 10−1 1.00 × 10−1 
5 (2 h) 1.00 × 10−1 1.01 × 10−1 1.02 × 10−1 1.03 × 10−1 1.27 × 10−1 1.30 × 10−1 

= 0.29, yield strength Sy = 430 MPa, ultimate tensile strength
Sut = 510 MPa, endurance limit Se = 255 MPa, density ρ = 7.9 g/cm3, length L = 51 mm,
width W = 200 mm, and a wall thickness t = 3 mm. During its function, the component
supports a static load of 80 N. It is submitted to an operating random vibration with an
input PSD consisting of frequencies ranging from 10 to 55 Hz at an amplitude of 1.5 mm
peak to peak for a period of 2 h. The testing is carried out physically by using a vibration
system, and the results are as follows. By using Equations (1) and (2), the dynamic factor
σdynamic and the vibration stresses σ(vib)i, are calculated, respectively. The acceleration
responses Aresi are obtained from the vibration system but can also be determined by using
Equation (3). Then, the vibration cycles applied ni are determined by the rainflow method
and the total cycles Ni are determined by using Equation (4). Finally, the fatigue damage
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accumulation is obtained by Equation (5). Table 1 shows the vibration stress and cycle
results and Table 2 shows the vibration fatigue damage accumulation results, where the
failure is presented when D = 1 [29].
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Figure 2. Mechanical support.

Table 1. Vibration Stress and Cycles Results.

Frequency
(Hz)

Accel.
Response (G)

Dynamic Factor
σdynamic

Equation (2)

Vibration Stress
σ(vib)i

Equation (1)

Applied
Vibration Cycles (ni)

Total Cycles
(Ni)

Equation (4)

10 0.72

22.22

15.99 70,384 1.36 × 1020

20 2.65 58.86 140,195 3.04 × 1013

30 5.62 124.84 92,619 4.42 × 109

40 9.17 203.69 10,807 1.40 × 107

50 13.72 304.76 2921 1.23 × 105

55 12.36 274.55 762 4.20 × 105

Figure 3 shows the mechanical support areas where the fatigue damage accumulated
was presented. The analysis and estimation of the damage were determined from the
acceleration responses that were the base to calculate the principal vibration stresses, σ1
and σ2, that are employed in the Weibull probabilistic analysis.
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Table 2. Vibration Fatigue Damage Accumulation.

10 Hz 20 Hz 30 Hz 40 Hz 50 Hz 55 Hz

Block No. D1 D1+2 D1+2+3 D1+2+3+4 D1+2+3+4+5 D1+2+3+4+5+6

1 (2 h) 5.18 × 10−16 5.18 × 10−16 5.20 × 10−16 5.73 × 10−16 2.37 × 10−2 2.00 × 10−2

2 (2 h) 2.00 × 10−2 2.42 × 10−2 2.42 × 10−2 2.42 × 10−2 4.84 × 10−2 5.00 × 10−2

3 (2 h) 5.00 × 10−2 4.91 × 10−2 4.93 × 10−2 5.01 × 10−2 7.38 × 10−2 7.00 × 10−2

4 (2 h) 7.00 × 10−2 7.49 × 10−2 7.51 × 10−2 7.63 × 10−2 1.00 × 10−1 1.00 × 10−1

5 (2 h) 1.00 × 10−1 1.01 × 10−1 1.02 × 10−1 1.03 × 10−1 1.27 × 10−1 1.30 × 10−1

6 (2 h) 1.30 × 10−1 1.29 × 10−1 1.29 × 10−1 1.31 × 10−1 1.55 × 10−1 1.60 × 10−1

7 (2 h) 1.60 × 10−1 1.56 × 10−1 1.57 × 10−1 1.59 × 10−1 1.83 × 10−1 1.90 × 10−1

8 (2 h) 1.90 × 10−1 1.85 × 10−1 1.86 × 10−1 1.89 × 10−1 2.12 × 10−1 2.10 × 10−1

9 (2 h) 2.10 × 10−1 2.14 × 10−1 2.15 × 10−1 2.18 × 10−1 2.42 × 10−1 2.40 × 10−1

10 (2 h) 2.40 × 10−1 2.45 × 10−1 2.45 × 10−1 2.49 × 10−1 2.73 × 10−1 2.80 × 10−1

11 (2 h) 2.80 × 10−1 2.76 × 10−1 2.76 × 10−1 2.81 × 10−1 3.04 × 10−1 3.10 × 10−1

12 (2 h) 3.10 × 10−1 3.07 × 10−1 3.08 × 10−1 3.13 × 10−1 3.37 × 10−1 3.40 × 10−1

13 (2 h) 3.40 × 10−1 3.40 × 10−1 3.41 × 10−1 3.46 × 10−1 3.70 × 10−1 3.70 × 10−1

14 (2 h) 3.70 × 10−1 3.73 × 10−1 3.74 × 10−1 3.80 × 10−1 4.03 × 10−1 4.10 × 10−1

15 (2 h) 4.10 × 10−1 4.07 × 10−1 4.08 × 10−1 4.14 × 10−1 4.38 × 10−1 4.40 × 10−1

16 (2 h) 4.40 × 10−1 4.42 × 10−1 4.43 × 10−1 4.50 × 10−1 4.73 × 10−1 4.80 × 10−1

17 (2 h) 4.80 × 10−1 4.77 × 10−1 4.79 × 10−1 4.86 × 10−1 5.10 × 10−1 5.10 × 10−1

18 (2 h) 5.10 × 10−1 5.14 × 10−1 5.15 × 10−1 5.23 × 10−1 5.47 × 10−1 5.50 × 10−1

19 (2 h) 5.50 × 10−1 5.51 × 10−1 5.53 × 10−1 5.61 × 10−1 5.85 × 10−1 5.90 × 10−1

20 (2 h) 5.90 × 10−1 5.89 × 10−1 5.91 × 10−1 6.00 × 10−1 6.24 × 10−1 6.30 × 10−1

21 (2 h) 6.30 × 10−1 6.29 × 10−1 6.30 × 10−1 6.40 × 10−1 6.63 × 10−1 6.70 × 10−1

22 (2 h) 6.70 × 10−1 6.68 × 10−1 6.70 × 10−1 6.80 × 10−1 7.04 × 10−1 7.10 × 10−1

23 (2 h) 7.10 × 10−1 7.09 × 10−1 7.11 × 10−1 7.22 × 10−1 7.45 × 10−1 7.50 × 10−1

24 (2 h) 7.50 × 10−1 7.51 × 10−1 7.53 × 10−1 7.64 × 10−1 7.88 × 10−1 7.90 × 10−1

25 (2 h) 7.90 × 10−1 7.94 × 10−1 7.96 × 10−1 8.08 × 10−1 8.31 × 10−1 8.40 × 10−1

26 (2 h) 8.40 × 10−1 8.37 × 10−1 8.40 × 10−1 8.52 × 10−1 8.76 × 10−1 8.80 × 10−1

27 (2 h) 8.80 × 10−1 8.82 × 10−1 8.85 × 10−1 8.97 × 10−1 9.21 × 10−1 9.30 × 10−1

28 (2 h) 9.30 × 10−1 9.28 × 10−1 9.30 × 10−1 9.44 × 10−1 9.67 × 10−1 9.70 × 10−1

29 (2 h) 9.70 × 10−1 9.74 × 10−1 9.77 × 10−1 9.91 × 10−1 1.01 × 100 1.02 × 100

Now, in the following section, the probabilistic approach is applied to the vibration
fatigue damage results obtained in Table 2.

3.2. Weibull Fatigue Damage Analysis

Here, it is remarked that if a different sample with the same features was submitted to
the same vibration damage accumulation experiment, due to random behavior, the results
would be different. For the damage data given in Table 2, where 29 blocks were tested, the
probabilistic analysis is as follows. For this purpose, the vector Y that includes the fatigue
damage as described by Equation (13) is used, instead of using the median rank approach,
to determine the Weibull parameters as follows [30,31].

By selecting the fatigue damage accumulated Di value of each individual block of
Table 2, and using it in Equation (13), the n = 29 Yi elements are determined. Thus, from
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Equation (14), the mean is, µy = −0.6672. Next, from the results of Table 1, the principal
vibration stress values σ1 = 304.76 MPa and σ2 = 15.99 MPa are obtained. With these data,
we can proceed to use the Weibull distribution in order to obtain its failure probability,
reliability, and random behavior. From Equation (9), the Weibull shape parameter βD
value is

βD =
(−4)(−0.6672)

0.995× ln
(

304.76
15.99

) = 0.9102

and from Equation (11), the logarithm average value is µx = ln
√

304.76× 15.99 = 4.2457.
Thus, from Equation (10), the Weibull parameter ηD is ηD = exp{4.2457} = 69.8077.
Consequently, the Weibull damage family is W(0.9102, 69.8077 MPa). This Weibull family
completely represents the observed principal vibration stresses σ1 and σ2 values.

Now, by using the Weibull family results, the random behavior strength can be
determined. Since the Weibull parameters only depend on the principal stress values
caused by the random vibration σ1 and σ2 values, the random behavior can be obtained by
performing the Weibull analysis using the following steps.

Since the determination of the fatigue damage is based on the random behavior of the σ2
stress value, here, the random behavior of σ1 and σ2 is determined by Equations (16) and (17).
Then, by using the βD and the Yi values in Equation (15), the basic Weibull elements [28]
t0i for each Yi are obtained. Whereas by using the ηD and σ1 values in Equation (18),
the Weibull t01 value from the σ1 and σ2 stress values are reproduced. This value is
calculated as

t01 =
69.8077
304.76

= 0.2291

and, by using the βD value in Equation (19), the Y1 value that belongs to the t01 value is
determined as

Y1 = ln(0.2291)× 0.9102 = −1.3414

Next, by substituting the Y1 value in Equation (20), the reliability R(t) that belongs to
the t01 element is

R(t) = exp{−exp{−1.3414}} = 0.7699

The previous results shown in this section are included in Table 3.
Here, is important to mention that the reliability obtained R(t) = 0.7699 corresponds

to a designed component or structure with minimal strength of Sy = σ1 = 304.76 MPa. In re-
lation to the mechanical support, it has a Sy = 430 MPa, then, its reliability is R(t) = 0.8260,
which is determined as follows. The minimal reliability of the component is obtained when
the Y1 value that belongs to the Sy value is used in Equation (20). The steps to determine the
reliability of the design component when the Sy value is used as σ1 in Equation (18) are, the
tSy element that belongs to the Sy value is tsy = 69.8077

430 = 0.1623. From Equation (19), the
corresponding Ysy value is Ysy = ln(0.1623)× 0.9102 = −1.6548. The reliability index for
the Ysy value is calculated by using Equation (20), R(t) = exp {−exp{−1.6548}} = 0.8260.
Thus, we conclude that the reliability of the design component is R(t) = 0.8260. Addition-
ally, regarding the material’s component or structure, it is noticed about that the higher the
strength Sy value, the higher the reliability R(t) will be [28].

Now, as a comparison for the probabilistic cumulative density, the Weibull distribution
is used, but in this case, by using the median rank method to estimate the vector Y, which
is the base to determine the reliability and the probability of failure.
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Table 3. Weibull vibration fatigue damage statistics analysis for the numerical application data.

ni
Damage (Di)
Equation (5)

R (Di)
Equation (12)

Yi
Equation (13)

µy
Equation (14)

R(t)
Equation (20)

toi
Equation (15)

σ2i
Equation (16)

σ1i
Equation (17)

F(t)
Equation (7)

1 0.0242 0.9758 −3.7106 −0.1280 0.9758 0.0170 1.1843 4114.9115 0.0242

2 0.0491 0.9509 −2.9881 −0.1030 0.9509 0.0375 2.6192 1860.5420 0.0491

0.0500 0.9500 −2.9702 −0.1024 0.9500 0.0383 2.6712 1824.3190 0.0500

3 0.0749 0.9251 −2.5535 −0.0881 0.9251 0.0605 4.2219 1154.2363 0.0749

4 0.1013 0.8987 −2.2366 −0.0771 0.8987 0.0857 5.9806 814.8266 0.1013

5 0.1285 0.8715 −1.9838 −0.0684 0.8715 0.1131 7.8951 617.2292 0.1285

0.1740 0.8260 −1.6548 −1.8180 0.8260 0.1623 11.3328 430.0000 0.1740

6 0.1564 0.8436 −1.7713 −0.0611 0.8436 0.1428 9.9713 488.7123 0.1564

7 0.1851 0.8149 −1.5863 −0.0547 0.8149 0.1750 12.2184 398.8335 0.1851

8 0.2145 0.7855 −1.4212 −0.0490 0.7855 0.2098 14.6488 332.6637 0.2145

0.2301 0.7699 −1.3414 −1.4738 0.7699 0.2291 15.9900 304.7600 0.2301

9 0.2446 0.7554 −1.2709 −0.0438 0.7554 0.2475 17.2778 282.0444 0.2446

10 0.2756 0.7244 −1.1321 −0.0390 0.7244 0.2883 20.1243 242.1505 0.2756

11 0.3072 0.6928 −1.0023 −0.0346 0.6928 0.3325 23.2107 209.9507 0.3072

12 0.3397 0.6603 −0.8794 −0.0303 0.6603 0.3805 26.5641 183.4471 0.3397

13 0.3729 0.6271 −0.7621 −0.0263 0.6271 0.4329 30.2170 161.2704 0.3729

14 0.4069 0.5931 −0.6492 −0.0224 0.5931 0.4900 34.2089 142.4515 0.4069

15 0.4418 0.5582 −0.5396 −0.0186 0.5582 0.5528 38.5881 126.2854 0.4418

16 0.4774 0.5226 −0.4323 −0.0149 0.5226 0.6219 43.4144 112.2465 0.4774

17 0.5139 0.4861 −0.3266 −0.0113 0.4861 0.6985 48.7630 99.9346 0.5139

18 0.5513 0.4487 −0.2215 −0.0076 0.4487 0.7840 54.7301 89.0389 0.5513

19 0.5895 0.4105 −0.1162 −0.0040 0.4105 0.8802 61.4414 79.3132 0.5895

20 0.6285 0.3715 −0.0097 −0.0003 0.3715 0.9894 69.0649 70.5585 0.6285

0.6321 0.3679 0.0000 0.0000 0.3679 1.0000 69.8065 69.8065 0.6321

21 0.6685 0.3315 0.0990 0.0034 0.3315 1.1150 77.8327 62.6101 0.6685

22 0.7094 0.2906 0.2116 0.0073 0.2906 1.2617 88.0781 55.3272 0.7094

23 0.7511 0.2489 0.3299 0.0114 0.2489 1.4368 100.3032 48.5838 0.7511

24 0.7938 0.2062 0.4569 0.0158 0.2062 1.6519 115.3161 42.2588 0.7938

25 0.8375 0.1625 0.5972 0.0206 0.1625 1.9273 134.5426 36.2199 0.8375

26 0.8821 0.1179 0.7599 0.0262 0.1179 2.3045 160.8711 30.2920 0.8821

27 0.9277 0.0723 0.9659 0.0333 0.0723 2.8898 201.7269 24.1570 0.9277

28 0.9743 0.0257 1.2979 0.0448 0.0257 4.1616 290.5145 16.7741 0.9743

0.9782 0.0218 1.3414 1.4738 0.0218 4.3657 304.7600 15.9900 0.9782

29 0.9900 0.0100 1.5272 0.0527 0.0100 5.3540 373.7498 13.0384 0.9900

β = 0.9102 η = 69.8065 µy = −0.6672 σ1 = 304.7600 σ2 = 15.9900

BOLD: The principal vibration stresses above and below the η parameter, the R(t) index of 95%, and the R(t) index
of the Sy 430 MPa.

4. Median Rank Approach

In this section, the median rank method [30] is applied to the data given in Section 3.
By using this method, the corresponding cumulated failure percentile F(ti) that previously
was determined by Equation (12) is now determined as

F(ti) =
i− 0.3
n + 0.4

(21)

Then, by using the F(ti) elements in the linearized form of the reliability function
given in Equation (8), the corresponding Yi elements are determined as in Equation (22),

Yi = LN(−LN(1− ((i− 0.3)/(n + 0.4)))) (22)
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By selecting the fatigue damage accumulated Di value of each one block of Table 2 and
using it in Equation (22), the n = 29 Yi elements are determined. Thus, from Equation (14),
the mean is, µy = −0.5525. Next, from the results of Table 1, the principal vibration stress
values σ1 = 304.76 MPa and σ2 = 15.99 MPa are obtained. With these data, we can now
proceed to use the Weibull distribution in order to obtain its failure probability, reliability,
and random behavior. From Equation (9), the Weibull shape parameter βD value is

βD =
(−4)(−0.5525)

0.995× ln
(

304.76
15.99

) = 0.7538

Since the principal vibration stress values σ1 = 304.76 MPa and σ2 = 15.99 MPa are
maintained, the Weibull parameter value ηD = 69.8077 remains.

Next, the remaining steps followed in Section 3 are applied and the results are included
in Table 4.

Table 4. Weibull vibration fatigue damage statistics analysis by using median rank method.

ni
Yi

Equation (21)
µy

Equation (14)
R(t)

Equation (20)
toi

Equation (15)
σ2i

Equation (16)
σ1i

Equation (17)
F(t)

Equation (7)

1 −3.7256 −0.1285 0.9762 0.0071 0.4981 9783.4030 0.0238

−2.9702 −0.1024 0.9500 0.0194 1.3570 3591.0886 0.0500

2 −2.8207 −0.0973 0.9422 0.0237 1.6546 2945.1760 0.0578

3 −2.3400 −0.0807 0.9082 0.0449 3.1311 1556.3556 0.0918

4 −2.0062 −0.0692 0.8741 0.0698 4.8755 999.5045 0.1259

5 −1.7476 −0.0603 0.8401 0.0984 6.8706 709.2668 0.1599

6 −1.5347 −0.0529 0.8061 0.1305 9.1130 534.7438 0.1939

−1.3704 −1.8180 0.7757 0.1623 11.3328 430.0000 0.2243

7 −1.3524 −0.0466 0.7721 0.1663 11.6070 419.8408 0.2279

8 −1.1918 −0.0411 0.7381 0.2058 14.3630 339.2823 0.2619

−1.1109 −1.4738 0.7194 0.2291 15.9900 304.7500 0.2806

9 −1.0474 −0.0361 0.7041 0.2492 17.3959 280.1293 0.2959

10 −0.9154 −0.0316 0.6701 0.2969 20.7257 235.1238 0.3299

11 −0.7930 −0.0273 0.6361 0.3492 24.3773 199.9034 0.3639

12 −0.6784 −0.0234 0.6020 0.4066 28.3815 171.7005 0.3980

13 −0.5699 −0.0197 0.5680 0.4695 32.7756 148.6811 0.4320

14 −0.4663 −0.0161 0.5340 0.5387 37.6055 129.5852 0.4660

15 −0.3665 −0.0126 0.5000 0.6149 42.9271 113.5207 0.5000

16 −0.2697 −0.0093 0.4660 0.6992 48.8095 99.8395 0.5340

17 −0.1751 −0.0060 0.4320 0.7927 55.3389 88.0595 0.5680

18 −0.0819 −0.0028 0.3980 0.8971 62.6241 77.8153 0.6020

0.0000 0.0000 0.3679 1.0000 69.8065 69.8065 0.6321

19 0.0107 0.0004 0.3639 1.0143 70.8051 68.8243 0.6361

20 0.1033 0.0036 0.3299 1.1469 80.0653 60.8642 0.6701

21 0.1969 0.0068 0.2959 1.2986 90.6512 53.7567 0.7041

22 0.2925 0.0101 0.2619 1.4741 102.9040 47.3559 0.7381

23 0.3913 0.0135 0.2279 1.6805 117.3143 41.5390 0.7721

24 0.4950 0.0171 0.1939 1.9285 134.6219 36.1985 0.8061
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Table 4. Cont.

ni
Yi

Equation (21)
µy

Equation (14)
R(t)

Equation (20)
toi

Equation (15)
σ2i

Equation (16)
σ1i

Equation (17)
F(t)

Equation (7)

25 0.6062 0.0209 0.1599 2.2349 156.0158 31.2347 0.8401

26 0.7288 0.0251 0.1259 2.6298 183.5827 26.5445 0.8741

27 0.8703 0.0300 0.0918 3.1730 221.4969 22.0008 0.9082

28 1.0474 0.0361 0.0578 4.0133 280.1599 17.3940 0.9422

1.1109 1.4738 0.0480 4.3656 304.7500 15.9900 0.9520

29 1.3185 0.0455 0.0238 5.7498 401.3795 12.1409 0.9762

BOLD: The principal vibration stresses above and below the η parameter, the R(t) index of 95%, and the R(t) index
of the Sy 430 MPa.

A comparison of the principal results between both the proposed method and the
median rank method by following the formulation given in Section 2 is shown in Table 5.

Table 5. The proposed method and median rank method comparison results.

Feature Proposed Method Median Rank Method

Weibull Shape Parameter
Equation (9) β = 0.9102 β = 0.7538

Weibull Scale Parameter
Equation (10) η = 69.8077 η = 69.8077

Principal Stresses,
Equations (17) and (16)
σ1 = 304.7600 MPa
σ2 = 15.9900 MPa
Material strength,
Sy = 430 MPa

R(t) = 0.8260 R(t) = 0.7757

R(t) = 0.95
Equation (8)

σ1 = 1824.3190 MPa
σ2 = 2.6712 MPa

σ1 = 3591.0886 MPa
σ2 = 1.3570 MPa

In Table 5, notice that although we are using the same σ1 = 304.76, σ2 = 15.99 and
Sy values in both methods, the component’s reliability R(t) is different. This difference
occurs because in both methods, the Weibull β parameter shape have different values.
This is because the arithmetic mean of both methods is different. Thus, because in the
proposed method the addressed damage completely represents the analyzed component,
we conclude that the real reliability is the one given by the proposed method. Notic that
because the damage is random, the proposed method is dynamic, and its efficiency depends
only on the accuracy with which σ1 and σ2 are determined. Finally, observe from the last
row of Table 5 that if R(t) = 0.95 is required, then from the proposed method, the maximum
allowed stress is σ1 = 1824.3190 MPa. At the same time, using the median rank method, it
is σ1 = 3591.0886 MPa, implying that by using the median rank approach, we can predict
that the component will become overstressed, lowering its life.

5. Discussion

The paper presents an alternative to fit a probabilistic vibration fatigue analysis
based on the use of the damage accumulated for two parameters provided by the Weibull
distribution model. The main contribution of the proposed method is the probabilistic
approach that the Weibull distribution function has in the mechanical industrial field. A
considerable number of industrial standards and guidelines employ the Weibull model for
their fatigue analysis; thus, reliability engineers are especially familiar with this model.
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This paper presents a probabilistic aspect that involves fatigue experiments and the
proper use of vibration fatigue damage during the investigation and design of mechanical
components. The use of vibration fatigue damage as the cumulative failure percentile in
the process allows the transfer to obtain an estimation of the reliability and a prediction of
failure, in spite of the significant variability involved in the vibration fatigue.

Regarding the results obtained for the probabilistic prediction of reliability and cu-
mulated failure, based on the principal vibration stress values σ1 = 304.76 and σ2 = 15.99,
the proposed method predicts a reliability of R(t) = 0.826 and a cumulative failure of
F(t) = 0.174. Here, it is important to notice that if we use the standard median rank ap-
proach, then R(t) = 0.776 and F(t) = 0.224. By their comparison, we have an R(t) variation
of 5%. Moreover, it can be observed that because the used cumulated damage depends,
among other factors, on the vibration load distribution applied, the material’s strength, and
the geometry of the tested mechanical component, then because each analysis is different,
the proposed method is completely dynamic, and can be used in any application where
the accumulated damage can be measured. Here, we highlight that the only restriction to
use the cumulated damage is that the failure must be defined when the damage is equal
to one. Therefore, among other applications, the proposed model can be used in the auto-
motive and telecommunications industries, where mechanical supports are used to hold
electrical and electronic devices that are subjected to environmental vibration due to their
field application.

6. Conclusions

1. A probabilistic alternative of the Weibull distribution to vibration fatigue analysis is
developed, which allows it to define reliability and probability of failure.

2. Contrary to other models that use the median rank method as the cumulated failure
percentile, the proposed methodology considers the accumulated fatigue damage for
a platform in which the component’s probabilistic life, the probability of failure, and
the reliability index are estimated.

3. A methodology is developed based on the model presented to permit a probabilistic
approach to vibration fatigue damage accumulation which allows the probabilistic
failure and reliability estimation for mechanical components and structures subjected
to variable amplitude loading, specifically random vibration.

4. The model and methodology included in this work are applied to mechanical compo-
nents used in the telecommunication industry to assist in real and practical structural
fatigue analysis.

5. An application case is selected to illustrate the proposed Weibull model and its pa-
rameter estimation methodology based on the cumulated vibration damage included
in this paper.
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