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Abstract: In this paper, the formulation to incorporate the used vibration profile, the stress generated
by the product’s application, mass, and the resonance frequency is given. After that, based on the
vibration output data, the two-parameter Weibull distribution is used to predict the corresponding
reliability indices. In the method, the mentioned stress is incorporated as acceleration response (Ares),
and by using a dynamic stress factor (σdyn). In addition, the Weibull parameters are determined
based on the generated maximum and minimum principal vibration stress values. In the paper we
show the efficiency of the fitted Weibull distribution to predict the reliability indices, by using its
Weibull shape and scale parameters, it is always possible to reproduce the principal vibration stress
values. Additionally, from the numerical application, we show how to use the Weibull analysis to
determine the reliability index for a desired stress or desired cycle value. Finally, we also present the
guidelines to apply the proposed method to any vibration fatigue analysis where the Ares (used to
determine the σ1 and σ2 values), and the σdyn value are both known.

Keywords: fatigue damage; random vibration; Weibull distribution; fatigue reliability analysis

1. Introduction

In the industry, accelerated vibration tests are used to qualify mechanical products
against vibration loads that induce dynamic loads to the product and lead to fatigue
damage, specifically due to resonance and natural frequencies [1,2]. Thus, mechanical
elements and systems must be designed and validated to support vibration environments.
Mechanical components might fail due to yielding, ultimate limit, buckling, and bending [3],
where fatigue is commonly the leading failure mode, and it is mainly generated by random
vibration. The nature of random vibrations is complex, and it can be represented with a
Fourier analysis, where the random motion is presented as a series of sines and cosines
waves that are cycling at their own frequency and amplitude [4]. All the series of frequencies
occurring at the same time in the mechanical component induce structural resonances, and
it is analyzed by using the power spectral density (PSD) [5], which represents the energy in
the time signal at different frequencies and load signal [6]. Since random vibration induces
variable amplitude loadings, from which, it is difficult to determine or predict the fatigue
life [7], then the measuring unit from the PSD is the root mean square (rms). However,
because the PSD represents energy (acceleration), then in the vibration analysis is also
required to know the equivalence of the acceleration response commonly in gravities (g),
to stress units (Psi). For that purpose, we use the dynamic factor [8]. Fortunately, because
the random vibration is a random function of time, then it can be analyzed by using a
probability density function. Consequently, a vibration stress model is required to translate
the stress and stress ranges to the statistical model derived from the stress approach [9].
Within the literature, there are models to quantify fatigue damage and perform fatigue
life prediction, such as simple models, mechanical damage models, statistical models, and
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models that combine mechanical and probabilistic considerations. Here, we employ a
methodology to combine random mechanical vibrations and probabilistic considerations
by using the Weibull distribution. The efficiency of the Weibull distribution is based on its
principle of consistency [10]. Consequently, we are performing the analysis by considering
that, when a force is applied to the area of the component, the stress is transmitted to the
entire body of the material and the probability of onset of rupture is the same at any point
in the body of the material. In the analysis, the shape parameter β is a key value that
represents the fatigue induced by the vibration load and, it is determined by the maximal
σ1 and the minimal σ2 principal applied stresses values. Additionally, the scale parameter
η is dependent on the β value and on the required product’s, reliability R(t). Additionally,
due to random vibration generating variant stress, the steps to determine the reliability
R(t) for variable stress are given in Section 4.4.

The structure of the article is as follows. Section 2 includes the generalities of the
fatigue life and random vibration. In Section 3 the proposed Weibull random vibration
method is formulated. In Section 4, the numerical application is given. Finally, in Section 5
the conclusions are stated.

2. General Random Vibration Background

The principal objective of the reliability testing of a mechanical component or system is
that it will meet its field operation conditions [11], and laboratory testing has an important
role to evaluate product reliability by performing accelerated life testing. In particular, a
mechanical fatigue stress test is performed based on the Basquin equation given as [11].

N f i = A ∗ σ−m
ai (1)

where N f i is the total number of cycles that the component can sustain at a given stress
amplitude level σai and the constant material parameters A and m represent the inter-
cept and the slope of the S–N curve, respectively. Consequently, the mechanical fatigue
life estimation can be performed principally by two main groups, crack nucleation and
stress/strain material element [12]. In this work, stress analysis is selected. The induced
stress is generated by random vibrations. Whereas the behavior of a vibrating system, as is
the structural component subjected to an oscillatory excitation force, is led by Equation (2),
which represents the equation of motion, which relates the internal forces of the system
with the external forces of excitement [13].

m
..
x + c

..
x + kx = F0 (2)

In Equation (2), m, c, and k are the mass, damping, and stiffness of the system, that
represent its inertial, dissipative, and elastic properties, respectively. F0 is the excitation
force applied to the mass. Thereby in mechanical vibrations exist two main types of
vibration testing, the deterministic/swept sine and the random one. However, random
vibration testing represents an application most realistic, due to the variance of the level
of frequencies and amplitude ranges [14]. In random vibration, the fatigue life analysis
is according to the time series approach, and frequency PSD load inputs [15]. Thus, in
the estimation of fatigue life for a random vibration environment, an analysis of the
amplitude distribution and frequency spectrum is usually required [16]. In addition
to that, the mechanical component that will be exposed due to its function to random
vibration loads must have a defined fatigue or reliability requirement. Thus, the design
team establishes a reliability objective based on the fatigue life. Since random vibration is
a random function, there is a certain probability that the movement value will be within
a certain range of values, which is why it is described in statistical terms. In fatigue life
models, the factors involved are load sequence, type of load, overloads, plasticization, and
type of material, among others. Additionally, according to [9], for its analysis, we require a
probabilistic concept or a physical quantity that is related to the probability of occurrence.
Therefore, the measurement of stress, provoked by random vibration lets us determine
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the probabilities of failure. Generally, the Weibull distribution has been used to perform
the probabilistic analysis [17]. Next, the proposed random vibration stress method and its
steps are presented.

3. Proposed Random Vibration—Stress Method
3.1. Random Vibration Stress Analysis

Step 1. Collect input data.
From the applied PSD determine the vibration requirements. Based on Equation (3) [18],

determine the corresponding sample size n to be used in the Weibull analysis.

n =
−1

ln(R(t))
(3)

Step 2. Perform the vibration testing according to the vibration requirements of step 1.
The vibration testing can be performed by using a vibration system, or by simulation.
Step 3. Determine the acceleration response.
Once the vibration testing is completed, the acceleration responses [8] are determined as

Ares =
2π2F2D

G
(4)

where F, is the frequency, D is the displacement and G is the gravity constant.
Step 4. Determine the dynamic factor.
The vibration dynamic factor [3] is calculated as

σdyn =

(
Kme L̂C

I

)
G (5)

where K is the stress concentration factor in the component, C is the distance to the neutral
axis, L̂ is the distance from the fixed point of the component to the point of application of
the mass, G is the gravity constant. I is the moment of inertia and me is the effective mass,
they are given by Equations (6) and (7) [3], respectively.

I =
HB3 − hb3

12
(6)

me ≈ 0.225ρL + m (7)

In Equation (6), from the structural geometry (hollow beam), H and h are the heights,
and B and b are the widths. In Equation (7), ρ is the density of the component’s material, L
is the length, and m is the mass applied to the component.

Step 5. Determine the vibration stress and the maximum σ1 and minimum σ2 principal
components values.

Once the acceleration response from Equation (4) and the dynamic factor from Equation (5)
are known, the vibration stress is calculated by Equation (8) [3].

σvib = Ares ∗ σdyn (8)

From the results obtained, take the maximum σvib value as σ1 and the minimum σvib
value as σ2. The diagram with the steps to determine the vibration stress σvib is shown in
Figure 1.



Appl. Sci. 2023, 13, 4403 4 of 15Appl. Sci. 2023, 13, 4403 4 of 15 
 

 
Figure 1. Diagram overview of the vibration stress calculation. 

Now, let us use the above data to perform the corresponding Weibull analysis, based 
on which the corresponding reliability indices are determined. 

3.2. Weibull Statistics Analysis 
The two-parameter Weibull distribution is used to analyze statistical fatigue behav-

iors [10]. It lets us perform accurate fatigue failure analysis [19]. The probability density 
function 𝑓(𝑡) and cumulative distribution function 𝐹(𝑡) are described by Equations (9) 
and (10), respectively [10]. 𝑓(𝑡) = 𝑒𝑥𝑝 −   (9)

𝐹(𝑡) = 1 −  𝑒𝑥𝑝 −   (10)

where 𝛽  is the shape parameter, 𝜂  is the scale parameter, and t is a random variable 
value that represents the fatigue life. The corresponding reliability function 𝑅(𝑡) [10] is 
given as 𝑅(𝑡) = 𝑒𝑥𝑝 −   (11)

From [20], the Weibull stress 𝛽  and 𝜂  parameters are determined as 𝛽 = . ∗   (12)

𝜂 = 𝑒𝑥𝑝(µ )   (13)

where 𝜇  represents the mean of the Y vector, determined by the median rank approach 
(See Section 3 [20]). Additionally, 𝜇  [20] represents the log mean of the failure time data, 
which here is determined directly from the addressed maximum 𝜎   and minimum 𝜎  
stresses values of Section 3.1 step 5. Thus 𝜇  is determined as 𝜇 = 𝑙𝑛(𝜎 𝜎 )   (14)

Here, we note that the efficiency of the Weibull parameters 𝛽  and 𝜂  only depends 
on the efficiency on which the 𝜎  and 𝜎  values are determined in Section 3.1 step 5. In 
this paper, they are obtained from an electrodynamic shaker acceleration response once 
the mechanical component installed in its application system is submitted to a random 
vibration profile. Once the 𝛽  and 𝜂  values are known, the Weibull stress random anal-
ysis is performed as shown in the next section. 

  

Figure 1. Diagram overview of the vibration stress calculation.

Now, let us use the above data to perform the corresponding Weibull analysis, based
on which the corresponding reliability indices are determined.

3.2. Weibull Statistics Analysis

The two-parameter Weibull distribution is used to analyze statistical fatigue be-
haviors [10]. It lets us perform accurate fatigue failure analysis [19]. The probabil-
ity density function f (t) and cumulative distribution function F(t) are described by
Equations (9) and (10), respectively [10].

f (t) =
β

η

(
t
η

)β−1
exp

{
−
(

t
η

)β
}

(9)

F(t) = 1− exp

{
−
(

t
η

)β
}

(10)

where β is the shape parameter, η is the scale parameter, and t is a random variable value
that represents the fatigue life. The corresponding reliability function R(t) [10] is given as

R(t) = exp

{
−
(

t
η

)β
}

(11)

From [20], the Weibull stress βs and ηs parameters are determined as

βs =
−4µy

0.995 ∗ ln
(

σ1
σ2

) (12)

ηs = exp(µx) (13)

where µy represents the mean of the Y vector, determined by the median rank approach
(See Section 3 [20]). Additionally, µx [20] represents the log mean of the failure time data,
which here is determined directly from the addressed maximum σ1 and minimum σ2
stresses values of Section 3.1 step 5. Thus µx is determined as

µx = ln(σ1σ2)
1
2 (14)

Here, we note that the efficiency of the Weibull parameters βs and ηs only depends
on the efficiency on which the σ1 and σ2 values are determined in Section 3.1 step 5. In
this paper, they are obtained from an electrodynamic shaker acceleration response once
the mechanical component installed in its application system is submitted to a random



Appl. Sci. 2023, 13, 4403 5 of 15

vibration profile. Once the βs and ηs values are known, the Weibull stress random analysis
is performed as shown in the next section.

3.3. Weibull Stress Random Analysis

Due to the statistical nature of random vibration, the addressed σ1 and σ2 values are
also random. Additionally, because their values are the input to determine the parameters
of the associated Weibull distribution, then to determine their random behavior is necessary.

The expected behavior of the σ1 and σ2 parameters is determined by the following steps:
Step 1. By using the required reliability R(t) index in Equation (3), determine the

sample size n value. Because in our case R(t) = 95% [21], then from Equation (3) n ≈ 20.
Step 2. By using the n value from Equation (3) in the median rank approach func-

tion stated by Equation (15) [20], the corresponding cumulated failure percentile F(ti) is
determined as

F(ti) =
i− 0.3
n + 0.4

(15)

Step 3. By using the F(ti) elements in the linearized form of the reliability function
given in Equation (11), determine the corresponding Yi elements as in Equation (16), and
then compute its corresponding arithmetic mean value as in Equation (17) [20].

Yi = LN(−LN(1− ((i− 0.3)/(n + 0.4)))) (16)

µy = ∑ i=1
n Yi

n
(17)

Step 4. By using the µy value and the σ1 and σ2 values in Equation (12), determine
the corresponding Weibull shape βs parameter. Similarly, by using the σ1 and σ2 values in
Equation (14), determine the corresponding µx value, and then by using it in Equation (13),
determine the corresponding Weibull scale ηs parameter. These βs and ηs parameters
represent the Weibull stress family that is used to model the random behavior of the
estimated principal stresses σ1 and σ2 values.

Note 1. Here, notice the random behavior of the σ1 and σ2 values, in the proposed
Weibull analysis, let us use the σ1i values as the minimum required strength that the
component’s material must present, in order to the reliability of the component will be at
least (as minimum) the desired R(t) index stated in step 1.

From the Weibull analysis, by using the βs and ηs parameters, the minimum strength
σ1i values are determined by using the t0i value that corresponds to each Yi element as [20],

t0i = exp{Yi/βs} (18)

Thus, the σ2i value is determined as

σ2i = ηs ∗ t0i (19)

Additionally, the σ1i value is determined as

σ1i = ηs/t0i (20)

Additionally, from Equation (21), by using the known σ1 value, the t01 [20] element
that belongs to the σ1 and σ2 values determined in Section 3.1 step 5, is determined as

t01 = ηs/σ1 (21)

Now, the t01 and the βs values are used to determine the corresponding Y1 [20] value
as follows,

Y1 = ln(t01) ∗ βs (22)
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Finally, the reliability index that corresponds to the Y1 [20] value is determined as

R(t) = exp{−exp{Y1}} (23)

Note 2. Here, observe the R(t) index determined in Equation (23) by using the σ1 value,
according to our proposed method, corresponds to a component with strength equivalent
to the σ1 value. Thus, if we define the material Sy parameter as the actual strength of the
component, then by using this Sy value in Equation (21), and the corresponding YSy value
of Equation (22) in Equation (23), the minimum expected reliability of a component that
presents a strength of Sy, is determined. Please also notice from the proposed Weibull
analysis any desired strength value can be used to determine its corresponding reliability.
Now, a numerical application is presented.

4. Numerical Application

The numerical application is performed by using a cable trough straight section, which
is shown in Figure 2a. The straight section is a structural component that is used in its
field application as a horizontal support for communication cables and it is considered as a
hollow straight beam of uniform section and uniformly distributed load. The amount of
the cable load and the site environmental vibrations are the principal failure mechanism.
The component operational load is 30 Lb. In addition, its relevant data are, length L = 72 in,
width W = 4 in, height H = 4 in, and thickness t = 0.125 in. The component is made of
thermoplastic ABS with a yield strength Sy = 4350 Psi, ultimate strength Sut = 7250 Psi, and
an endurance limit Send = 3625 Psi [22].
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The component has, due to its static functional application, two fixed supports, and a
uniform load, see Figure 2b, and due to the dynamic environmental load, it is submitted to
random vibration stress, see Figure 2c.

Next, the analysis of the stress induced by the random vibration is performed.

4.1. Random Vibration Stress Analysis

To perform the Weibull stress analysis, it is required to have the principal σ1 and σ2
stress values. The stress is obtained as follows.

Step1. Random vibration base input PSD.
In this work, the product is regulated by the industrial standard GR-63. It does require

that the product resist the random vibration profile PSD shown in Table 1 and Figure 3. It
must be applied for 30 s, and it is applied in the three principal axes (x, y, z), respectively.
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Table 1. Random vibration base input profile.

Frequency (Hz) Acceleration (g) Grms

0.3 0.2

7.15

0.6 2.0

2.0 5.0

5.0 5.0

15.0 1.6

50.0 1.6
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The sample size is determined by a reliability requirement of 0.95 and by using
Equation (3).

n =
−1

ln(0.95)
≈ 20

Step 2. The vibration base input PSD is applied to the samples by using a shaker
machine as shown in Figure 4.
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Once the vibration base input is applied to the cable trough straight section samples
by using a shaker machine, the acceleration response is obtained.

Step 3. The vibration and their acceleration responses are shown in Table 2 and
Figure 5. Table 2 is shown the frequencies and their respective accelerations that most affect
the cable trough straight sections by each principal axis.

Step 4. Now, by using Equation (5), the dynamic factor is determined as follows.
The stress concentration factor in the component is, K = 1, since there is no change in

the component’s geometry nor holes, the effective mass is, me = 0.05 lb−sec2

in , the distance
to the neutral axis is, C = 0.0625 in, the distance from the fixed point of the component to
the point of application of the mass is, L̂ = L/2 = 72/2 = 36 in, the constant gravity is,
G = 386 in

sec2 and the moment of the inertia I = 7.90 in4. Now, we substitute those values
in Equation (5), and the result is, σdyn = 5.50 Psi/g. (See Table 3).
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Table 2. Acceleration response.

Frequency (Hz) Ares (g)
Axis x

Ares (g)
Axis y

Ares (g)
Axis z

2.0 18.0 22.0 20.0

8.0 66.0 69.0 68.0

12.0 71.0 73.0 72.0

16.0 62.0 65.0 64.0

26.0 45.0 47.0 46.0

38.0 40.0 41.0 39.0
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Table 3. Vibration stress results.

Frequency (Hz) ∑Ares (g) σdyn (Psi/g)
Equation (5)

Vibration Stress σvib (Psi)
Equation (8)

2.0 60.0

5.50

330.00

8.0 203.0 1116.50

12.0 216.0 1188.00

16.0 191.0 1050.50

26.0 138.0 759.00

38.0 120.0 660.00

Step 5. Thus, by substituting the acceleration response from step 3 and the dynamic
factor from step 4 in Equation (8), the vibration stress σvib induced by the random vibration
is obtained, and it is shown in the fourth column in Table 3. The stress values are obtained
after the cable trough is exposed to the random vibration in the three principal axes (x, y, z).

From the results of Table 3, the principal vibration stress values σ1 = 1188.00 and
σ2 = 330.00 are obtained. With that data now, we can proceed to use the Weibull distribution
with the objective to obtain its reliability and random behavior. Yet, it is required to
determine the shape β and scale η Weibull parameters, respectively.

4.2. Weibull Stress Parameters

By selecting a reliability R(t) = 0.95, from Equation (3) we have, n ≈ 20, then by using
the n value in Equation (16), the Yi elements are obtained, with a mean of µy = −0.544453.
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Thus, from Equation (12), by using the µy, σ1, and σ2 values, the Weibull parameter βs
value is,

βs =
(−4)(−0.5445)

0.995∗ ln
(

1188.00
330.00

) = 1.7087

Following the fitting method represented in Section 4. Equation (48) from [20], the
constant to be used in Equation (12) from which the Weibull parameters reproduce the
observed µ = 759 was determined (see Equation (12)).

In the same way, from Equation (14) the logarithm average value is µx = ln
√

1188.00 ∗ 330.00
= 6.44 , and from Equation (13) the Weibull parameter ηs is ηs = exp{6.44} = 626.13. Finally, the
Weibull stress family is W(1.7087, 626.13 Psi). Now by using the Weibull stress family results, the
strength of random behavior can be determined. Since the Weibull parameters only depend on the
principal stress values provoked by the random vibration σ1 and σ2 values, their random behavior
can be obtained by performing the Weibull analysis in the following steps.

4.3. Weibull Stress Random Analysis

Since the determination of the fatigue is based on the random behavior of the σ2 stress
value, here the random behavior of the σ1 and σ2 are calculated by Equations (19) and (20).
Then, by using the βs and the Yi values in Equation (18), the basic Weibull elements [20] t0i
for each Yi are obtained. Whereas using the ηs and σ1 values in Equation (21), the Weibull
t01 value from the σ1 and σ2 stresses values are reproduced, it is calculated as,

t01 =
626.13
1188

= 0.52705

Additionally, by using the value βs in Equation (22), the Y1 value that belongs to the
t01 value is determined as,

Y1 = ln(0.52705) ∗ 1.7087 = −1.09438

Next, by substituting the Y1 value in the Equation (23), the reliability R(t) that belongs
to the t01 element is,

R(t) = exp{− exp{−1.09438}} = 0.716

The previous results shown in this section are included in Table 4. Here, it is important
to mention that the reliability obtained R(t) = 0.716 does not represent the reliability of the
design component. The minimal reliability of the component is obtained when the Y1 value
that belongs to the Sy value is used in Equation (23). The steps to have the reliability of the
design component when the Sy value is used as σ1 in Equation (21) are, the tSy element that
belongs to the Sy value is, tsy = 626.13

4350 = 0.14394. From Equation (22) the corresponding
Ysy value is, Ysy = ln(0.14394) ∗ 1.7087 = −3.31213. The reliability index for the Ysy value
is calculated by using Equation (23), R(t) = exp{− exp{−3.31213}} = 0.964. Thus, we
conclude that the reliability of the design component is R(t) = 0.964.

The reliability R(t) calculated so far is with the condition provided that the component
is subjected to constant stress, however, the random vibration that induces the stress, is
variant stress. Therefore, for variant stress, the following is stated.
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Table 4. Weibull statistics for vibration stress.

n
Equation (3)

Yi
Equation (22)

µy
Equation (17)

t0i
Equation (18)

R(t0i)
Equation (23)

σ2i
Equation (19)

σ1i
Equation (20)

1 −3.355 −0.168 0.140 0.966 87.902 4459.989
−3.312 −1.938 0.144 0.964 90.124 4350.000
−2.970 −0.149 0.176 0.950 110.090 3561.071

2 −2.442 −0.122 0.240 0.917 149.993 2613.729
3 −1.952 −0.098 0.319 0.868 199.757 1962.581
4 −1.609 −0.080 0.390 0.819 244.211 1605.334
5 −1.340 −0.067 0.457 0.770 285.834 1371.566

−1.094 −0.640 0.527 0.716 330.000 1188.000
6 −1.116 −0.056 0.521 0.721 325.909 1202.913
7 −0.921 −0.046 0.583 0.672 365.252 1073.342
8 −0.747 −0.037 0.646 0.623 404.468 969.274
9 −0.587 −0.029 0.709 0.574 444.068 882.837

10 −0.438 −0.022 0.774 0.525 484.538 809.101
11 −0.297 −0.015 0.841 0.475 526.385 744.778
12 −0.160 −0.008 0.911 0.426 570.190 687.561
13 −0.026 −0.001 0.985 0.377 616.668 635.739

0.000 0.000 1.000 0.368 626.131 626.131
14 0.107 0.005 1.065 0.328 666.766 587.973
15 0.243 0.012 1.153 0.279 721.817 543.130
16 0.384 0.019 1.252 0.230 783.852 500.145
17 0.535 0.027 1.368 0.181 856.261 457.851
18 0.704 0.035 1.510 0.132 945.484 414.645
19 0.910 0.046 1.704 0.083 1066.630 367.550

1.094 0.640 1.897 0.050 1188.000 330.000
20 1.216 0.061 2.037 0.034 1275.318 307.406

Bold: The principal stresses above and below the η parameter, the R(t) index of 95%, and the R(t) index of the
used 4350 psi.

4.4. Material’s Strength for Variant Stress Analysis

In this section the stress–strength analysis is presented due to the component under
analysis being submitted to variant stress. In this case, we have the variant vibration
forces generated by the principal stresses σ1 = 1188 Psi and σ2 = 330 Psi. Thus, because the
stress now is variant, the R(t) index must be determined by performing the correspond-
ing Weibull stress/strength analysis. Since the vibration applied stress and the material
strength to support the applied stress, both are random, then, the component’s reliability
is determined by a distribution that represents the applied stress and a distribution that
represents the strength [23]. Since in this work, the fatigue vibration stress is analyzed
by the Weibull distribution, then, the paired combination Weibull–Weibull approach is
selected [24,25] and performed by the following relation,

R(t) =
η

β
s

η
β
s + ηβ

(24)

where it is required to determine the stress η and the strength ηs scale parameters. Addi-
tionally, the steps to determine the reliability R(t) for the used material resistance average
σM, are next.

Step 1. By using the σ1 and σ2 stresses values in Equation (25), the corresponding
mean is,

µ =
σ1 + σ2

2
(25)

µ =
1188 + 330

2
= 759 Psi



Appl. Sci. 2023, 13, 4403 11 of 15

In addition, from Section 4.2, the corresponding β and η values are, β = 1.7087 and
η = 626.13 Psi.

Step 2. Determine the strength average σM of the used material. In this work, the ABS
polymeric used material has a σM = 3625 Psi.

Step 3. In Equation (26) [20], the σM, µ and η values, the strength ηs scale parameter is,

ηs = η

(
σM
µ

)
(26)

ηs = 626.31
(

3625
759

)
= 2991.269 Psi

Then, from Equation (24) with the value β = 1.7087, the reliability R(t) is,

R(t) =
2991.2691.7087

2991.2691.7087 + 626.131.7087 = 0.935

Thus, the component with a strength of 3625 Psi will have a reliability of R(t) = 0.935,
when it is submitted to variant stress (random vibration).

Now, let us present the steps to determine the cycle to failure (N) that corresponds to
the random cycles to failure behavior.

4.5. Cycle Random Analysis

In this section, the cycle to failure (N) value that corresponds to the stress amplitude
σa is determined. The steps are as follows.

Step 1. By using Equation (27) the cycle to failure (N) value that corresponds to the
stress amplitude σa is determined. Equation (27) according to [11] represents an efficient
option to determine the fatigue life.

N = A× σ−m
a (27)

where the stress amplitude σa is given by Equation (28) [26]. A and m are given by
Equations (29) and (30), respectively.

σa =
σ1 − σ2

2
(28)

A = 0.5× am (29)

m = −1
b

(30)

In Equation (29) a is the fatigue strength coefficient and in Equation (30) b represents
the fatigue strength exponent. They are given by Equations (31) and (32), respectively.

a =
( f Sut)

2

Send
(31)

b = −1
3

log
(

f Sut

Send

)
(32)

The fatigue strength factor f is taken from [26], Sut is the material ultimate stress, and
Send is the material endurance limit.

Now, let us use the data stated in the Section 4 numerical application, starting by
substituting the data into Equations (31) and (32) [27], respectively.

a =
(0.9× 7250)2

3625
= 11, 745
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b = −1
3

log
(

0.9× 7250
3625

)
= −0.085

The a and b values are included in the Equations (29) and (30), respectively.

A = 0.5× 11, 74511.764 = 3.8× 1047

m = − 1
(−0.085)

= 11.764

The amplitude stress σa is given by the application of the component submitted to
random vibration, where σ1 = 1188.00 and σ2 = 330.00.

σa =
1188− 330

2
= 429

Then, the σa, A and m values are included in the Equation (27).

N = 3.8× 1047 × 429−11.764 = 4.058× 1016

This N value corresponds to the cycle to failure N at the stress amplitude σa stated.
Step 2. By using the N value from Equation (27) and the Weibull element t0a value that

corresponds to the stress amplitude σa value in Equation (21) and Table 4, the corresponding
Weibull scale cycle to failure ηt parameter is obtained by Equation (32) [27].

ηt =
N
t0a

(33)

ηt =
4.058× 1016

0.527
= 7.70× 1016

Step 3. The Weibull cycle ηt parameter is employed to determine the corresponding
expected cycle to failure Ni values that belongs to each Yi elements in Equation (16). It is
performed by using Equation (34) [27].

Ni = ηt ∗ t0i (34)

About the Weibull shape parameter, the βs value is used in the Weibull cycle to failure
family since the failure mode (random vibration) remains constant. Hence, the Weibull
cycle to failure family is W (1.7087, 7.700 × 1016). The corresponding expected cycle to
failure values for each one of the Yi elements are determined (see the ninth column in
Table 5).

Finally, as a comparison between the experimental data with the formulation given in
Section 3, the principal results are shown in Table 6. From this table, notice that because
the addressed Weibull parameters completely reproduce the maximum and minimum
vibration stresses, clearly, this Weibull family efficiently lets us predict the reliability indices
as it was performed in Table 5.
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Table 5. Weibull statistics for cycle to failure analysis.

n
Equation (3)

Yi
Equation (22)

µy
Equation (17)

t0i
Equation (18)

R(t0i)
Equation (23)

σ2i
Equation (19)

σ1i
Equation (20)

σamp
Equation (28)

Cycle (Ni)
Equation (34)

1 −3.355 −0.168 0.140 0.966 87.902 4459.989 2186.044 1.081 × 1016

−3.312 −1.938 0.144 0.964 90.124 4350.000 2129.938 1.108 × 1016

−2.970 −0.149 0.176 0.950 110.090 3561.071 1725.490 1.354 × 1016

2 −2.442 −0.122 0.240 0.917 149.993 2613.729 1231.868 1.845 × 1016

3 −1.952 −0.098 0.319 0.868 199.757 1962.581 881.412 2.457 × 1016

4 −1.609 −0.080 0.390 0.819 244.211 1605.334 680.562 3.003 × 1016

5 −1.340 −0.067 0.457 0.770 285.834 1371.566 542.866 3.515 × 1016

−1.094 −0.640 0.527 0.716 330.000 1188.000 429.000 4.058 × 1016

6 −1.116 −0.056 0.521 0.721 325.909 1202.913 438.502 4.008 × 1016

7 −0.921 −0.046 0.583 0.672 365.252 1073.342 354.045 4.492 × 1016

8 −0.747 −0.037 0.646 0.623 404.468 969.274 282.403 4.974 × 1016

9 −0.587 −0.029 0.709 0.574 444.068 882.837 219.384 5.461 × 1016

10 −0.438 −0.022 0.774 0.525 484.538 809.101 162.281 5.959 × 1016

11 −0.297 −0.015 0.841 0.475 526.385 744.778 109.197 6.474 × 1016

12 −0.160 −0.008 0.911 0.426 570.190 687.561 58.686 7.012 × 1016

13 −0.026 −0.001 0.985 0.377 616.668 635.739 9.535 7.584 × 1016

0.000 0.000 1.000 0.368 626.131 626.131 0.000 7.700 × 1016

14 0.107 0.005 1.065 0.328 666.766 587.973 39.397 8.200 × 1016

15 0.243 0.012 1.153 0.279 721.817 543.130 89.344 8.877 × 1016

16 0.384 0.019 1.252 0.230 783.852 500.145 141.853 9.640 × 1016

17 0.535 0.027 1.368 0.181 856.261 457.851 199.205 1.053 × 1017

18 0.704 0.035 1.510 0.132 945.484 414.645 265.419 1.163 × 1017

19 0.910 0.046 1.704 0.083 1066.630 367.550 349.540 1.312 × 1017

1.094 0.640 1.897 0.050 1188.000 330.000 429.000 1.461 × 1017

20 1.216 0.061 2.037 0.034 1275.318 307.406 483.956 1.568 × 1017

Bold: The principal stresses above and below the η parameter, the R(t) index of 95%, and the R(t) index of the
used 4350 psi.

Table 6. Experimental and formulation comparison data.

Vibration
Analysis Experimental Data Formulation Estimated Value

Profile
Applied (PSD) (See Table 1 and Figure 2) - -

Accel Resp (Ares)
(See Table 2 and

Figure 5)

Ares(X) = 71.0 g
Ares(y) = 73.0 g
Ares(z) = 72.0 g

Equation (4)
* Ares(X) = 70.98 g
* Ares(y) = 73.05 g
* Ares(z) = 72.02 g

Dynamic
Factor
(σdyn)

- Equation (5) 5.5 Psi/g

Vibration Stress
(σvib)

(See Table 3)

σ1= 1188 Psi
σ2= 330 Psi

σave= 759 Psi

Equation (20)
Equation (19)
Equation (25)

σ1= 1188 Psi
σ2= 330 Psi

σave= 759 Psi

Weibull
β

Parameter
- Equation (12) 1.7087

Weibull
η

Parameter
- Equation (13) 626.13
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Table 6. Cont.

Vibration
Analysis Experimental Data Formulation Estimated Value

Cycles to
Failure (N) - Equation (34) 1.108 × 1016

Reliability R(t) 0.964 Equation (23) 0.964

* It is shown the acceleration response to the frequency of 12 Hz, which is the one that most affects the cable
trough in the principal axes (x, y, z).

5. Conclusions

1. The method proposed in this paper allowed us to estimate and predict the fatigue life
of cable trough structures based on the stresses fatigue–vibration–Weibull analysis.

2. The proposed method lets us determine the Weibull parameters directly from the
principal vibration stress values obtained after the product’s application, mass, and
resonance frequencies were considered in the analysis.

3. The proposed method by using the Weibull distribution lets us determine the product
reliability indices as shown in Tables 4 and 5.

4. The efficiency of the proposed method depends on the accuracy on which the accel-
eration response and the dynamic factor are determined. This fact is because they
determine the principal vibration stress values on which the Weibull parameters are
determined.

5. We highlight that although it seems to be possible to include in the proposed method,
the component’s material deformation, because it is based on material properties
such as elasticity and ductility, then due to, those material properties affect in the
vibration analysis, the acceleration response and dynamic factor, then to generalize
the proposed method to the deformation more research must be undertaken.
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