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b División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Madero, 89440 Ciudad Madero, Tamaulipas, 
Mexico 
c Facultad de Contaduría y Administración, Universidad Autónoma de Coahuila, 27000 Torreón, Coahuila, Mexico 
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A B S T R A C T   

Despite the vast research on many-objective optimisation problems, the presence of many objective functions is 
still a challenge worthy of further study. A way to treat this kind of problem is to incorporate the preferences of 
the decision maker (DM) into the optimisation process. In this paper, we introduce an interactive ant colony 
optimisation combined with an ordinal classification method in which classes are described by characteristic 
profiles. Through several interactions, the DM is supposed to identify some representative solutions of the classes 
‘satisfactory’ and ‘dissatisfactory,’ which are used to initialise an ordinal classifier that increases the selective 
pressure by discriminating in favour of the ‘satisfactory’ class. This method can work with any either asymmetric 
or symmetric binary preference relation, a feature that confers a very wide generality. As another advantage, the 
interaction with the DM has minimal cognitive demands, which is an advisable feature for any approach based on 
interaction. Although the preference model is quite general, the proposal was tested using an eclectic model 
which combines compensatory preferences, veto conditions, and interval numbers to handle imprecise values; 
those preferences are aggregated in an asymmetric preference relation. Our approach performs particularly well 
in 10-objective problems according to the standards in the state-of-the-art literature. Numerical results and tests 
for statistical significance on the DTLZ and WFG test suites support this claim.   

1. Introduction 

Most real-world optimisation problems involve considering simul
taneously multiple objective functions. The conflicting character of 
these functions makes it impossible to obtain a single solution that op
timises all the objectives. In multi-objective optimisation, a crucial step 
in solving a Multi-Objective Problem (MOP) is to identify a set of con
flicting solutions in which improving one objective worsens the per
formance of others. This set of solutions in the objective space is known 
as the Pareto front or frontier (Zitzler & Thiele, 1998). Multi-Objective 
Evolutionary Algorithms (MOEAs) have been widely applied to solve 
MOPs. They have proven their ability to solve complex problems with 
two or three objectives (Okola et al., 2023). However, these MOEAs have 

shown that the quality of the solutions deteriorates severely when 
addressing problems that include more than three conflicting objectives 
(Bechikh et al., 2017; Bezerra et al., 2018). ‘Many-objective Optimisa
tion Problems’ (MaOPs) is the term used to refer to this type of MOPs. 

To deal with the challenges of MaOPs, Many-Objective Evolutionary 
Algorithms (MaOEAs) have been developed as a natural extension of 
MOEAs (Wang et al., 2023). Several survey papers have proposed cat
egories to organise the works on MaOEAs (Von Lücken et al., 2019). 
Coello Coello et al. (2020) described the three main types commonly 
adopted to affront some of the challenges for solving MaOPs:  

(i) approaches based on improving convergence; that is, they try to 
increase the selection pressure of Pareto-based MOEAs (e.g., 
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Xiang et al., 2017; Qiu et al., 2021; Zhang et al., 2023; Guo et al., 
2023; Li et al., 2023);  

(ii) decomposition-based approaches, which convert MaOPs into 
several sub-problems (e.g., Ge et al., 2019a; Ge et al., 2019b; Liu 
et al., 2022, Bao et al., 2023); and  

(iii) performance indicator-based approaches, which promote 
convergence or maintain diversity by calculating indicator values 
(Falcón-Cardona & Coello Coello, 2020; Gu, Zhou, Wang, & 
Xiong, 2023; Huang & Wang, 2021; Liu, Wang, Yao, & Peng, 
2023). 

Typically, MaOEAs focus on finding a convergent, representative, 
and well-distributed sample of the Pareto frontier (Gu, Xu, & Li, 2022; 
Zhao et al., 2019). Although such a sample is essential, it is insufficient 
to solve the problem entirely in practice. Since all the Pareto solutions 
are mathematically equivalent, the Decision Maker (DM) must provide 
information about their preferences to choose the most preferred one 
(Fernandez et al., 2011). In the presence of many objectives, the DM 
could hardly accomplish this task without an adequate method from the 
Multi-Criteria Decision Analysis (MCDA). This fact represents a major 
challenge for addressing real-world problems. Preference incorporation 
in MOEAs is a promising way to cope with the difficulties arising from 
the presence of many objectives. 

According to Li et al. (2015), the DM’s preferences have been 
incorporated in MOEAs that are not designed for solving MaOPs. These 
algorithms use preference information to focus the search on the Region 
of Interest (RoI), the subset of the Pareto front most in agreement with 
the DM’s preferences (Adra et al., 2007). The solution finally chosen by 
the DM, called the ‘best compromise,’ is supposed to belong to the RoI 
(Fernandez et al., 2011). 

The ways to incorporate preferences can be distinguished as follows:  

a) According to the stage in which preferences are articulated,  
b) According to the issues which the DMs should address to express 

their preferences. 

Concerning Point a), the DMs can provide their preference infor
mation before (a priori way), after (a posteriori way), or during (inter
active way) the approximation of the Pareto frontier (Hwang and 
Masud, 1979). Most of the multi-objective metaheuristic approaches 
proposed in the literature have considered the participation of the DM 
through a posteriori way; that is, they direct the search toward a repre
sentative (and usually very large) subset of the Pareto front. However, 
this way of preference articulation faces severe difficulties when the 
number of objective functions increases, challenging the cognitive lim
itations of the human mind, as first stated by Miller (1956). In addition 
to these cognitive limitations, the selective pressure of most meta
heuristic algorithms toward the true Pareto frontier is degraded in 
MaOPs. There is fundamental evidence showing that either a priori or 
interactive articulation of preferences reduces the search space and 
helps to find the RoI (Branke & Deb, 2005; Said et al., 2010). Never
theless, the a priori incorporation of preferences has been criticised 
because, at the beginning of the search, the DM has not yet completely 
understood the problem that is faced, nor of the complex interactions 
among the objective functions and the trade-offs they will have to make. 
Therefore, most DMs cannot make a priori direct elicitation of their 
preference model parameters and further relevant information con
cerning their preferences. 

The interactive articulation of preferences can provide significant 
advantages. Interactive methods assume that, initially, the DMs do not 
entirely understand their problem and the complex trade-offs among the 
objective functions in the Pareto frontier. It is commonly accepted that 
interactive methods help DMs ‘learn’ about the problem they face. In 
each interaction step, the DM’s preferences are updated, contributing to 
identifying better solutions. Furthermore, since the DMs are involved in 
the algorithmic search and have systematically accepted new solutions 

as good ones, they feel more comfortable with the results of the inter
active procedure (Cheng et al., 2017; Li et al., 2020; Cruz-Reyes et al., 
2020, Rivera et al., 2021). 

Nevertheless, the progressive articulation of preferences is not free of 
inconveniences. These methods demand more involvement in the DM 
and more cognitive effort. When the DM compares solutions that result 
from different iterations, their judgments should be fully transitive, 
which could be a big concern in real-world problems, especially when 
the number of objectives increases and the cognitive limitations of the 
human mind become relevant. 

Concerning Point b), the most common ways used by DMs to express 
their preferences are:  

- comparison of objective functions (e.g., Branke & Deb, 2005; 
Brockhoff et al., 2013); 

- reference points (e.g., Lahdelma et al., 2005; Qi et al., 2018; Abou
hawwash & Deb, 2021);  

- desirability thresholds (e.g., Wagner & Trautmann, 2010; He et al., 
2021);  

- ranking of solutions (e.g., Cvetkovic & Parmee, 2002; Yuan et al., 
2021; Kadziński & Szczepański, 2022);  

- pairwise comparison of solutions (e.g., Branke et al., 2016; Tomczyk 
and Kadziński, 2020);  

- scoring of solutions (e.g., Saldanha et al., 2019; Li et al., 2019);  
- classification of solutions (e.g., Greco et al., 2010; Cruz-Reyes et al., 

2020; Corrente et al., 2021);  
- characterisation of the preferred region (e.g., Gong et al., 2017); and  
- preference relations that replace Pareto dominance (e.g., Molina 

et al., 2009; Fernandez et al., 2010; Fernández et al., 2022a). 

Most of these ways can be used either a priori or interactively; 
however, they usually require a remarkable cognitive effort from the 
DM, and transitivity in the DM’s preference judgments. This is critical 
when the number of objective functions overcomes a particular 
threshold. 

In this paper, we propose an interactive algorithm based on ACO 
(Ant Colony Optimisation) that incorporates preferences through binary 
classification of solutions. Binary classification in classes such as ‘Good’ 
and ‘No Good’ is less cognitively demanding than, for instance, ranking, 
pairwise comparisons, and solution scoring. No transitive judgments are 
demanded. The cognitive effort required for the DM depends on the 
number of solutions that should be classified. But if they are only a few, 
the effort would also be small. Here, we use a multi-criteria ordinal 
classification method that even works with a single object (solution, 
action) per class. 

The novelties of our approach are the following:  

• It demands minimal cognitive effort from the DM during each 
interaction by using a binary multi-criteria ordinal classification.  

• A many-objective metaheuristic approach that can embed a wide 
range of preference models, ranging from fully compensatory (e.g., 
the normalised weighted sum) to non-compensatory (e.g., out
ranking) relations, opening a vast space to represent preference 
models.  

• An eclectic preference model that can handle partially compensatory 
preferences, veto, and incomparability, which are existing situations 
in real-life decision-making problems.  

• It tolerates imprecision in the parameter values of the preference 
model by using interval numbers, which improve the credibility and 
robustness of a many-objective metaheuristic.  

• It is competitive in addressing continuous MaOPs while preserving 
the benefits of the innovations above. 

As far as we know, our ACO algorithm is the single metaheuristic 
algorithm combining all these features. In this way, our contribution is 
valuable. The rest of this paper is organised as follows. Section 2 reviews 
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the related literature. Section 3 presents the foundations necessary to 
introduce our contribution. Section 4 introduces the proposed ACO, 
describing each step of the algorithm elaborately. Section 5 presents the 
computational experiments that back the advantages of our proposal. 
Lastly, Section 6 discusses some conclusions and directions for future 
research. 

2. Related literature 

This paper deals with combining multi-criteria ordinal classification 
methods and multi-objective metaheuristics. In the scientific literature, 
such a combination is manifested in two directions:  

1) using metaheuristics to infer the parameters of multi-criteria ordinal 
classification methods, and  

2) incorporating preferences to increase selective pressure toward the 
RoI into the metaheuristic search process. 

As examples of Point 1) we can mention the papers by Fernandez 
et al. (2009), Fernandez et al. (2019a), Fernandez et al. (2019b), 
Fernández et al. (2023), Doumpos et al. (2009), Covantes et al. (2016), 
Douissa & Jabeur (2020), Balderas et al. (2022) and Kadziński & 
Szczepański (2022). Nonetheless, bear in mind that the present paper is 
focused on Point 2). 

To our knowledge, only a few studies have combined multi-criteria 
ordinal classification methods and multi-objective metaheuristics, 
mainly oriented to incorporate the DM’s preference information to in
crease selective pressure toward the best compromise in evolutionary 
multi-objective optimisation. Examples of this approach are the 
following studies. 

Greco et al. (2010) considered the combination of the Dominance- 
based Rough Set Approach (DRSA) with Evolutionary Multi-objective 
Optimisation (EMO). DRSA-EMO included the application of decision 
rules in EMO, which are induced by the DM’s preferences; these pref
erences are elicited by asking the DM to sort some solutions according to 
their preferences into two classes: ‘relatively good’ and ‘others.’ The 
obtained rules are used to rank solutions in the current population of 
EMO, impacting the selection and crossover operators. DRSA-EMO is 
proposed as a methodological framework for interactive EMO algo
rithms. A computer implementation of this methodology is called 
DARWIN (Dominance-based rough set Approach to handling Robust 
Winning solutions in INteractive multi-objective optimisation). 

Oliveira et al. (2013) proposed the Evolutionary Algorithm Based on 
an Outranking Relation (EvABOR). This was the first study using a multi- 
criteria ordinal classification method based on outranking, in this case, 
the ELECTRE TRI method. This method assigns a solution to a category 
based on the limits established by the DM for the category. In EvaBOR, 
the DM’s preferences are incorporated in all the genetic operators, e.g., 
in the crossover operator, when two solutions compete to be one of the 
parents, the one that belongs to the best class is chosen. Three distinct 
EvABOR approaches were developed. The main differences between 
these approaches lie in selecting the individuals that go to the next 
generation. EvABOR-I uses the outranking relation only. The other two 
approaches use an interaction between the outranking and the non- 
dominance relations. For the evaluation, five ordinal classes and three 
instances of the reactive power compensation problem with three 
objective functions were considered; EvABOR-III obtained the best 
performance in these conditions. 

Cruz-Reyes et al. (2017) addressed incorporating preferences in an 
MOEA to characterise the RoI through the THESEUS multi-criteria 
classification method, creating a Hybrid Genetic Algorithm for multi- 
criteria classification composed of two phases. First, a metaheuristic 
generates a small set of solutions classified into ordered categories by 
the DM. Consequently, the DM’s preferences are indirectly reflected in 
this set. In the second phase, THESEUS is combined with an evolutionary 
algorithm. The first method is used to classify new solutions. Those 

solutions classified as ‘satisfactory’ are used to create selective pressure 
toward the RoI. 

Cruz-Reyes et al. (2020) introduced a new hybrid evolutionary al
gorithm whose main feature is incorporating the DM’s preferences 
through the THESEUS and ELECTRE-TRI multi-criteria ordinal classifi
cation methods in the early stages of the optimisation process, being 
progressively updated. Seven problems from the DTLZ test suite and 
three instances of the project portfolio optimisation problem, both with 
three and eight objectives, were used to analyse the proposal perfor
mance concerning convergence, objectives increasing, and the used 
classification method. Compared to MOEA/D and MOEA/D-DE, the 
proposed strategy obtained a better convergence toward the RoI and a 
better characterisation of that region. 

Castellanos-Alvarez et al. (2021) proposed a new MOEA called 
NSGA-III-P (Non-dominated Sorting Genetic Algorithm III with Prefer
ences). The distinctive characteristic of NSGA-III-P is a new DM’s pref
erence incorporation method based on the INTERCLASS-nC ordinal 
multi-criteria classification approach to guide the algorithm toward 
the RoI. Besides, the algorithm uses interval numbers to express pref
erences with imprecision. NSGA-III-P showed a better approximation to 
the RoI than the original NSGA-III in solving seven problems from the 
DTLZ test suit with three objectives. 

Corrente et al. (2021) presented a new interactive method for 
evolutionary multi-objective optimisation to incorporate a decision rule 
preference model in the search for the best compromise solution. During 
the search, the DM is requested interactively to classify a small sample of 
solutions from the current population into two classes, namely ‘Good’ 
and ‘Bad.’ The Dominance-based Rough Set approach (DRSA) uses the 
assignment examples to approximate the classes and induces a rule- 
based decision model representing the DM’s preferences. In each gen
eration, the set of solutions is separated into non-dominated fronts; 
within these fronts, the solutions are scored by considering the number 
of rules supporting the assignment to each class. Such score and the non- 
domination rank are used to make selective pressure toward the RoI. In 
XIMEA-DRSA (explainable multi-objective optimisation evolutionary 
approach), the decision rules are presented to explain the impact of the 
DM’s answers. Its effectiveness has been tested on both continuous and 
discrete multi-objective optimisation problems. 

Castellanos et al. (2022) introduced a strategy to enhance two swarm 
intelligence algorithms with the preferences of the DM expressed in 
classes for the INTERCLASS-nC ordinal classifier based on interval out
ranking. This hybridising strategy was tested in two algorithms, i.e., the 
Multi-objective Grey Wolf Optimisation and the Indicator-based Multi- 
objective Ant Colony Optimisation (ACO) for continuous domains; the 
corresponding extended versions were called GWO-InClass and ACO- 
InClass. These algorithms, validated on nine problems in the DTLZ test 
suit with three, five, and ten objective functions, are appropriate when 
many objective functions are considered and can reach the RoI better 
than the original metaheuristics. 

Except for the papers by Greco et al. (2010) and Corrente et al. 
(2021), the other studies have used the relational paradigm—precisely, 
outranking relations—to assign solutions to classes. Outranking 
methods use majority rules and veto thresholds to build an outranking 
relation that is not transitive (cf. Roy, 1991). These relations help model 
non-transitive and non-compensatory preferences, in which lower 
values of some objective functions cannot be compensated by very high 
values of the remaining objectives. This is particularly important to 
handle ordinal and qualitative criteria performance levels. In outranking 
methods, the intensity of opposition in some criteria can produce a veto 
effect, but the intensity of preference does not increase the credibility 
degree of outranking. Hence, outranking methods may not be a good 
model of partially compensatory preferences, in which, to a certain 
extent, relatively poor values of some objectives are compensated by 
improved values of others. 

The functional paradigm is the main alternative to the outranking- 
based relational paradigm. In the functional paradigm, a real value 
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function is defined on the decision set, representing the DM’s prefer
ences. In comparing two actions of the decision set, greater values of the 
preference function mean preference. So, preference relations derived 
from the functional paradigm are transitive, and each pair of actions 
fulfils either strict preference or indifference. The model is fully 
compensatory. Incomparability and veto are prohibited. As a norm for 
the rational behaviour of an ideal DM, the functional paradigm is 
acceptable. However, there is much evidence against its general validity 
for real DMs. Ill-defined preferences, threshold effects, and veto situa
tions produce incomparability and intransitivity in real-life decision- 
making (Roy, 1991; Bouyssou et al., 2006). 

To address those inconveniences, we propose ACO-eMOC: an ACO 
algorithm enriched with an Eclectic Multi-Criteria Ordinal Classification 
model that combines some features of both the functional and relational 
paradigms. This choice was made because Particle Swarm Optimisation 
(PSO) and ACO are the most popular swarm intelligence algorithms. 
Although PSO performs better in most continuous problems, ACO 
clearly outperforms PSO in discrete problems (cf. Selvi and Umarani, 
2010; Wu et al., 2021a). Even in continuous problems, when the number 
of evaluations of the objective function increases, ACO becomes 
competitive with PSO and Differential Evolution (Ezugwu et al., 2020). 
In general, ACO and PSO have shown to be promising techniques for 
addressing realistic problems (Kuo et al., 2023; Wu et al., 2021b; Wu 
et al., 2019). 

The ordinal classification method embedded in ACO-eMOC is based 
on a value function that permits partial compensation, thus allowing, to 
a certain extent, to model the intensity of preference. The approach 
supports veto and incomparability. A strict preference relation is derived 
from the model, which is not necessarily transitive. The imprecision in 
model parameter values is represented by using interval numbers. To 
assign solutions to ordered classes (ordered in the sense of preferences), 
we adapt the general method proposed by Fernández et al. (2022b) 
instantiated with an asymmetric preference relation. Since the non- 
symmetry is the single property this relation should fulfil, we use the 
strict preference relation derived from the eclectic multiple criteria de
cision model, which combines value function with interval numbers and 
veto capacity. Although previous studies used ordinal classification, 
ACO-eMOC is quite comprehensive and is the single many-objective 
metaheuristic incorporating the DM’s preferences through an eclectic 
model that supports both compensatory and non-compensatory features 
simultaneously. 

3. Background 

This section presents: (1) an overview of interval numbers; (2) a 
description of the ordinal classification method by Fernández et al. 
(2022b); and (3) a description of the multiple criteria preference model, 
whose preference relation is used by the ordinal classification method. 

3.1. Interval numbers 

As a subset of the real line ℝ, the interval numbers are an expansion 
of real numbers (cf. Moore, 1979). Some authors have defined them as a 
range of values between two limits. They are a straightforward way to 
model the imprecision derived from inaccurate measurements or the 
variability of the DM’s judgments and beliefs (Balderas et al., 2019; 
Gnansounou, 2017). 

In this article, interval numbers will be denoted by bold italic letters, 

e.g., B =
[
B ,B

]
, where B and B correspond to the lower and upper 

limits. Among several operations that are defined for interval numbers, 
we will only overview the following basic arithmetic operations:  

- A + B =
[
A +B ,A+B

]
,  

- A − B =
[
A − B,A − B

]
,  

- AB =
[
min

{
AB ,A B,AB ,AB

}
,max

{
AB ,A B,AB ,AB

}]
, and  

- A/B =
[
A ,A

][
1/B,1/B

]
, 

where A and B are interval numbers. 
The order relations on interval numbers are defined using the pos

sibility function Poss(B ≥ A). This function is defined by Equation (1) as 
follows (Yao et al., 2011): 

Poss(B ≥ A) =

⎧
⎨

⎩

1 if pBA > 1,
0 if pBA ≤ 0,
pBA otherwise,

(1)  

pBA =
B − A

(
B − B

)
+
(

A − A
)

In the case when A and B are degenerate intervals (i.e., A = A and 
B = B), they are treated as real numbers A and B; consequently, 
Poss(B ≥ A) = 1 if and only if B ≥ A; otherwise, Poss(B ≥ A) = 0. A 
realisation of an interval B is a real number b within B (cf. Fliedner and 
Liesiö, 2016). Balderas et al. (2019) interpreted Poss(B ≥ A) = α as: ‘α is 
the degree of credibility of the following statement: once two realisa
tions are obtained from B and A, the realisation a will be smaller than or 
equal to the realisation b.’ Consequently, the relational operators ≥ and 
> can be extended to compare interval numbers as follows: 

B ≥ A⇒Poss(B ≥ A) ≥ 0.5, (2) 

and 

B>αA⇒Poss(B ≥ A)〉α. (3) 

On the set of interval numbers, the relation ≥ is reflexive and tran
sitive, and >α is asymmetric. The credibility of >α increases with α 
(0.5 < α ≤ 1). Of course, these relations can also compare real numbers 
(degenerate intervals). Balderas et al. (2019) described interval numbers 
and the properties of the possibility function. 

3.2. Classification method 

Fernández et al. (2022b) recently proposed an ordinal classification 
method with far-reaching features. This classifier can work supposing 
any of the two following relations: P (that is asymmetric) and S (that is 
reflexive). In this paper, we focus on the former. 

Suppose that O is a set of potential actions (in our context, feasible 
solutions to a MOP). Let P denote an asymmetric binary preference 
relation defined on a subset of O× O; xP y denotes ‘x is preferred to y.’ 
This method has broad generality because P can be derived from any 
preference model; the single requirement is that P must be asymmetric. 
We present below an adaptation of the method by Fernández et al. 
(2022b) to the case of only two classes. 

Requirements on the set of characteristic profiles 
Suppose a set of two classes: C = {C1,C2}, being C2 preferred to C1. 

Each class Ck is characterised by a reference set Rk, which is composed of 
characteristic profiles (Rk⊂O). The reference sets must fulfil the 
following conditions:  

i. For each profile y ∈ R2, there is no profile x ∈ R1 such that xP y  
ii. For each profile x ∈ R1, there is at least one profile y ∈ R2 such 

that yP x  
iii. For each profile y ∈ R2, there is at least one profile x ∈ R1 such 

that yP x  
iv. There is no pair (x, y) ∈ Rk × Rk such that xP y for k = 1,2  

Definition 1. The relation P between actions and reference sets. 
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a) xP Rk if and only if there is at least one profile y ∈ Rk such that xP y  
b) RkP x if and only if there is at least one profile y ∈ Rk such that yP x  

Definition 2. Descending assignment rule. 

Consider that R1 and R2 fulfil the above-listed requirements 

(numbered i–iv). Consider also a fictitious R0 such that yP R0 for all 
y ∈ O. The class of a new action x can be suggested by the following 
heuristic (called ‘descending rule’):  

1. For k = 2,1,0, determine the first k such that xP Rk  
2. If k = 2, assign x to C2  
3. If k = 0, assign x to C1  
4. If k = 1, select C1 and C2 as possible classes to assign x.  

Definition 3. Ascending assignment rule. 

Consider that R1 and R2 fulfil the requirements i–iv. Consider also a 
fictitious R3 such that R3P y for all y ∈ O. The ascending rule can suggest 
the class of a new action x:  

1. For k = 1,2,3, determine the first k such that RkP x  
2. If k = 1, assign x to C1 

Fig. 1. Structure of the pheromone matrix in ACO-eMOC.  

Fig. 2. Flowchart of ACO-eMOC.  

Table 1 
Parameters for the benchmark problems.  

Test suite Problems m K N 

DTLZ 1 {3, 5, 10} 5 m + k – 1  
2–6 {3, 5, 10} 10 m + k – 1  
7 {3, 5, 10} 20 m + k – 1 

WFG 1–9 3 2(m-1) 24  
1–9 5 2(m-1) 47  
1–9 10 2(m-1) 105  
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Table 2 
Results on the DTLZ test suite.    

COMPARISON WITH RVEA-iGNG COMPARISON WITH FDEA II   
Problems in which ACO-eMOC Indicator Problems in which ACO-eMOC Indicator Problems in which ACO-eMOC Indicator Problems in which ACO-eMOC Indicator 

m p (a) outperforms 
RVEA-iGNG 

(b) is 
outperformed by 
RVEA-iGNG 

(a) outperforms 
RVEA-iGNG 

(b) is 
outperformed by 
RVEA-iGNG 

(a) 
outperforms 
FDEA II 

(b) is 
outperformed by 
FDEA II 

(a) 
outperforms 
FDEA II 

(b) is 
outperformed by 
FDEA II 

3 3 2, 4 1, 3, 6, 7  4 1–3, 6  4 1–3, 5, 6  4, 7 1–3, 5, 6  
5 2, 4, 7 1, 6 4, 5 1, 3, 6 4, 7 1–3, 5, 6 4, 7 1–3, 5, 6 
7 2–5, 7 6 2–5, 7 1, 6 3–5, 7 1, 2, 6 2–4, 7 1, 5, 6 
9 1–5, 7 6 2–5, 7 1, 6 1, 3–5, 7 2, 6 2–4, 7 1, 5, 6 
11 1–5, 7  2–5, 7 1 1, 3–7  2–4, 7 1 

5 3  2, 3, 4, 5, 6 E u c l i d e 
a n  

2–6 C h e b y s 
h e v  

1–6 E u c l i d e 
a n 

7 1–3, 6 C h e b y s 
h e v 5 1 2, 4–6 1, 7 2–6  1–6 7 1, 3, 6 

7 1, 7 2, 4, 5 1, 6, 7 2–5 7 1–5 6, 7 1, 3 
9 1, 3, 5–7 2, 4 1, 3, 6, 7 2 2, 6, 7 1, 4 2, 4–7  
11 1, 3, 5–7 2 1, 3, 6, 7 2 2, 4, 6, 7  2, 4–7  

10 3 5, 7 1, 4, 6 M i n i m u 
m 

3, 5 1, 2, 4, 6 M i n i m u 
m 

4, 5, 7 1, 2, 3, 6 M i n i m u 
m 

4, 5 1–3, 6 M i n i m u 
m 5 5, 7 4, 6 3, 5, 7 1, 2, 4, 6 4, 5, 7 2, 3, 6 4, 5, 7 1–3, 6 

7 2, 3, 5, 7 6 3, 5–7 2, 4 4, 5, 7 2, 3, 6 4–7 1–3 
9 1–7  1, 3, 5–7  1, 3–5, 7 2 1, 3–7  
11 1– 7  1–3, 5–7  1, 3–5, 7  1–7  

3 3 4 1, 3, 6  4, 7 1, 2, 6  4 1–3, 5–7  4, 7 1–3, 5, 6  
5 2, 4 3, 6 2, 4, 5, 7 1, 6 4 1–3, 5–7 4, 7 1–3, 5, 6 
7 1, 2, 4, 5, 7 3, 6 2–5, 7 1 4, 7 2, 3, 5, 6 4, 6, 7 1–3, 5 
9 1–5, 7  2–7 1 1, 4, 6, 7 3 2, 4, 6, 7 1, 3, 5 
11 1–5, 7  2–7  1, 4, 6, 7 3 1, 2, 4, 6, 7 3 

5 3  2–4, 6 E u c l i d e 
a n 

7 2, 3, 5, 6 C h e b y s 
h e v  

1–6 E u c l i d e 
a n 

7 1, 2, 5, 6 C h e b y s 
h e v 5 1, 5 2, 4, 6 1, 7 2, 3, 5  1–6 7 1, 5, 6 

7 1, 5–7 2, 3 1, 3–5, 7 2 7 1, 3, 5, 6 4, 5, 7 1, 6 
9 1, 4–7  1, 3–7 2 1, 2, 4, 7 3, 6 1, 2, 4, 5, 7 6 
11 1, 4–7  1, 3–7  1, 2, 4, 7 3, 6 1, 2, 4, 5, 7 6 

10 3 3, 7 2, 4 A v e r a g 
e 

3, 7 1, 2, 4, 6 A v e r a g 
e 

4, 7 1–3, 5, 6 A v e r a g 
e 

4, 7 1–3, 5, 6 A v e r a g 
e 5 1, 3, 5, 7 2, 4 3, 5, 7 1, 2, 4, 6 4, 7 1–3, 6 4, 7 1–3, 5, 6 

7 1, 3, 5–7 2, 4 1, 3, 5, 7 2, 4, 6 4, 5, 7 1, 2, 6 1, 4, 5, 7 2, 3, 6 
9 1, 3, 5–7 2 1, 3, 5–7 2 4, 5, 7 2 1, 3–7  
11 1, 2, 5–7  1, 3, 5–7  1, 4, 5, 7  1–7   
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3. If k = 3, assign xto C2  
4. If k = 2, select C1 and C2 as possible classes to assign x.  

Definition 4. Conjoint assignment rule. 

Fernández et al. (2022b) argued in favour of the conjoint use of both 
the ascending and descending rules as follows (conjoint rule):  

a) If x is classified into C2 by the descending rule and C1 by the 
ascending rule, take the range C1–C2 as the possible class of x.  

b) If x is suggested for the range C1–C2 by both the descending and 
ascending rules, take the same range of classes as possible assign
ments for x.  

c) If x is suggested for Ck by both the ascending and descending rules, 
take the same class Ck as the class of x. 

3.3. Decision model 

In this subsection, we describe a multiple criteria decision model to 
define the asymmetric preference relation P , whose parameters have 
been extended with intervals to improve credibility and robustness. 

Let x be an action (alternative/object) of a decision problem. In the 
context of a MOP, they are points in the n-dimensional space of the in
dependent variables (there are n independent variables). Here, f(x) = 〈

f1(x), f2(x), f3(x),⋯, fm(x)〉 is the vector objective function of x (there are 
m objective functions). One of the most popular value functions for 
modelling the DM’s preferences about f(x) is the normalised weighted 
sum. Let’s suppose that the objectives are minimising; that is, the pref
erence increases as the values of the objectives decrease; we have 
extended the value function to interval weights as follows: 

U(x) =
∑m

j=1
wj

[
f max
j − fj(x)
f max
j − f min

j

]

, (4) 

Fig. 3. Results of ACO-eMOC on DTLZ1 (m = 3).  

Fig. 4. Results of ACO-eMOC on DTLZ2 (m = 3).  
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where fmax
j = max

x∈O

{
fj(x)

}
, fmin

j = min
x∈O

{
fj(x)

}
, and wj =

[

wj ,wj

]

is the 

interval weight of the jth criterion. Each weight expresses the impor
tance of its related criterion. Unfortunately, imprecisions in setting the 
weights, to a great extent, are unavoidable. An adequate decision sup
port approach should handle imprecisions in the preference parameters. 
In Equation (4), interval numbers are used to model that imprecision. As 
a side benefit, interval numbers make the DM feel more comfortable 
when their preferences are elicited (compared to precise values). By 
extension, the value function U is also an interval number. 

A preference function, as in Equation (4), models fully compensatory 
and transitive preferences. Nevertheless, the model in Equation (4) can 
be extended to handle partially compensatory preferences and veto ef
fects, conferring this model the character ‘eclectic.’ Let P α be the binary 
preference relation defined as follows: 

xP αy ⇔ U(x)>αU(y) ∧ ¬yV x, (5) 

where 

yV x ⇔ ⋁m
j=1fj(x) − fj(y) ≥ vj. (6) 

According to Equation (5), x is preferred to y if and only if x has a 
higher value in function U than y and there is no veto in favour of y. In 
Equation (6), for the veto occurs in favour of y, it is necessary that at 
least one of the differences in the objectives between x and y exceeds vj; 
in this equation, yV x is a binary relation modelling the statement ‘y 
vetoes x,’ and vj is an interval number representing the veto threshold of 
the jth criterion. The presence of veto thresholds becomes P α a relation 
that can be parametrised to have different properties, ranging from fully 
compensatory to non-compensatory. This degree of generalisation is 
possible because partial compensation is allowed within the ranges of 

Fig. 5. Results of ACO-eMOC on DTLZ3 (m = 3).  

Fig. 6. Results of ACO-eMOC on DTLZ4 (m = 3).  
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the veto thresholds; even the veto effect could be deactivated for some 
specific criteria by using vj = vj = ∞. 

The subscript in P α explicitly denotes the dependence of the pref
erence relation on the credibility threshold α. The preference relation 
becomes more certain as α increases; mandatorily, 0.5 < α ≤ 1. P α is 
non-reflexive and asymmetric. In general, P α is not transitive because of 
the veto conditions (Equation (6)). 

Lastly, regarding computational complexity, P α is O(m) because 
Equations (4) and (6) can be programmed using a loop with m iterations. 
Note that P α is the costliest operation of the assignment rules (indeed, in 
our implementation, the number of classes and the number of charac
teristic profiles are constant); therefore, the assignment rules are also 
O(m). 

4. Our proposal: ACO-eMOC 

ACO-eMOC is inspired by some strategies of previous ACO algo
rithms for many-objective optimisation (Castellanos et al., 2022; Rivera 

et al., 2022) and extends them to embed the eclectic ordinal classifier 
presented in Section 3.2. 

In ACO algorithms, the pheromone matrix (commonly denoted by τ) 
is a model of pivotal importance. In ACO-eMOC, the pheromone matrix 
acts as an archive that store the best-so-far solution vectors. Fig. 1 de
picts the structure of the pheromone matrix used in ACO-eMOC. Let’s 
consider the following:  

• κ is the size of the pheromone matrix; it is the number of solutions 
stored in τ.  

• τı =
〈
τı,1, τı,2, τı,3,…, τı,n

〉
is the vector with the values of the decision 

variables in the ı th solution archived in τ. 
• The κ solutions are sorted considering two criteria: the class sug

gested by the conjoint assignment rule and the R2 scores. R2 
(Brockhoff et al., 2012) is an indicator that measures the distribution 
of solutions. Here, we use the R2 version implemented in MOMBI II 
(Hernández Gómez and Coello Coello, 2015). The primary sorting 
criterion is the class in the following order: ‘satisfactory,’ ‘uncertain,’ 

Fig. 7. Results of ACO-eMOC on DTLZ5 (m = 3).  

Fig. 8. Results of ACO-eMOC on DTLZ6 (m = 3).  
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and ‘dissatisfactory.’ A solution is satisfactory if the conjoint rule 
suggests C2, it is dissatisfactory if the conjoint rule suggests C1, and it 
is uncertain if the rule suggests the range C1–C2. The secondary 
criterion is the R2 score; in this regard, the solutions are sorted in 
increasing order to favour more uniformly distributed samples.  

• ωı is the weight associated to τı based on its position. These weights 
are values of a Gaussian function with mean 1.0, argument ı, and 
standard deviation ϛ⋅κ, which is defined as: 

ωı =
e− φ(ı)

ϛ⋅κ
̅̅̅̅̅
2π

√ ,where φ(ı) =
(ı − 1)
2ϛ2κ2 . (7) 

In Equation (7), ϛ is a parameter defining the balance between 
exploration and exploitation. With small values, the weights are 
distributed to favour the best-evaluated solutions exponentially; 
contrarily, with high values, the weights are more linearly distributed 
(0 < ϛ ≤ 1). 

Sorting the pheromone matrix implies the iterated application of:  

(i) the conjoint assignment rule, with the resulting complexity 
O(κm), and 

(ii) the R2 ranking algorithm, with complexity O(κ(logκ + m) ) ac
cording to Hernández Gómez and Coello Coello (2015). 

Integrating (i) and (ii), the computational complexity of the sorting 
method is O(κ(logκ + m) ), where κ is the size of the pheromone matrix 
and m is the number of objectives. 

Ants use the pheromone matrix to construct solutions during each 
iteration. Let xı =

〈
xı,1, xı,2, xı,3,…, xı,n

〉
be the solution associated with 

the ı th ant, where τı,i is the value of the ith decision variable (1 ≤ i ≤ n). 
The ı th ant constructs xı following these steps:  

1. A row of the pheromone matrix is chosen following a roulette wheel- 
based technique. The probability of choosing τı is pı, defined as: 

pı =
ωı

∑κ
ȷ=1ωȷ

, (8) 

where ωı is the weight associated to τı, and κ is the size of the 
pheromone matrix (number of rows).  

2. A Gaussian probability function with mean xı,i is defined for each 
decision variable (1 ≤ i ≤ n), which is used for sampling new values. 
The normal function for the selected xı,i is defined as: 

gi
ı(x) =

e− ϕi(ı)

si
ı

̅̅̅̅̅
2π

√ , where ϕi(ı) =
(
x − xı,i

)2

2
(
si

ı

) , (9) 

where si
ı is the standard deviation of gi

ı(x), which is estimated while 
ants sample solutions in each iteration as follows: 

si
ı = ξ

∑κ

ȷ=1

⃒
⃒xȷ,i − xı,i

⃒
⃒

κ − 1
. (10) 

Equation (10) is the distance from the selected vector xı to the others 
(xȷ) in the pheromone and scaled by ξ in all the dimensions (0 < ξ ≤ 1). 
This parameter acts like the evaporation rate in the classic ACO algo
rithm. With low values, ξ biases the search toward the solution space 
around the top-ranked solutions in the archive. 

3. Each ant assigns the decision variables of a new solution xȷ by sam
pling the probability functions as follows: 

xȷ,i ∼ gi
ı(x)∀i ∈ {1, 2, 3,⋯, n}, (11) 

where n is the number of decision variables, and ı is the row chosen 
from the pheromone archive in Step 1. 

During each iteration, ants construct κ solutions sampling the regions 
near the solutions in the archive, especially the top-ranked solutions. 
This process is repeated until a maximum number of iterations is 
reached (itermax). The computational complexity of constructing solu
tions is determined by Equations (9)–(11), whose complexity function is 
O(κn) during each iteration, where κ is the colony’s size and n is the 
number of independent variables of an action x. 

Additionally, in ACO-eMOC, p interactions are performed 
throughout the optimisation process to update the preferences on the 
vector solutions. In each interaction, the DM is supposed to identify the 
sets of characteristics profiles, R1 and R2. These sets are critical to the 
descending, ascending, and conjoint assignment rules. These rules make 
up an ordinal classifier, which is progressively updated to reflect the 
current DM’s preferences. 

Algorithm 1 presents an algorithm outline for ACO-eMOC. Lines 1 
and 2 initialise the main variables. Here, p is the number of interactions, 
which are distributed throughout the run (an interaction is performed 
every Δi iterations). Next, the pheromone matrix is initialised at random 
within the ranges of the decision variables. Then, the Pareto-efficient 
solutions are kept (Line 3) and normalised (Line 4). Solutions are nor
malised because multiple criteria (objectives) are involved in the 

Fig. 9. Results of ACO-eMOC on DTLZ7 (m = 3).  
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Table 3 
Results on the WFG test suite.    

COMPARISON WITH RVEA-iGNG COMPARISON WITH FDEA II   
Problems in which ACO-eMOC Indicator Problems in which ACO-eMOC Indicator Problems in which ACO-eMOC Indicator Problems in which ACO-eMOC Indicator 

m p (a) outperforms 
RVEA-iGNG 

(b) is 
outperformed by 
RVEA-iGNG 

(a) outperforms 
RVEA-iGNG 

(b) is 
outperformed by 
RVEA-iGNG 

(a) 
outperforms 
FDEA II 

(b) is 
outperformed by 
FDEA II 

(a) 
outperforms 
FDEA II 

(b) is 
outperformed by 
FDEA II 

3 3 3 1, 2, 4–6, 8, 9   1, 2, 4–6, 8, 9  3 1, 2, 4–9   1–6, 8  
5 3, 7 1, 2, 4–6, 8, 9 7 1, 2, 4–6, 8, 9 3 1, 2, 4–6, 8 7 1–6, 8 
7 3, 7, 8 1, 2, 4–6, 9 3, 5, 7, 8 1, 2, 6, 9 3, 7 1, 2, 4–6 3, 5, 7, 9 1, 2, 4, 6 
9 3, 4, 6–9 1, 2 3–9 1, 2 3, 7–9 1, 2, 4, 6 3, 5–7, 9 1, 2, 4 
11 3–9 2 3–9 1 3, 5, 7–9 4 2, 3, 5–9 1, 4 

5 3 3, 9 1, 2, 4–6, 8 E u c l i d e 
a n 

3, 4 1, 2, 5–8 C h e b y s 
h e v 

9 1–7 E u c l i d e 
a n 

8, 9 1, 3, 4–7 C h e b y s 
h e v 5 3, 7–9 1, 2, 4–6 3, 4, 7–9 1, 2, 5, 6 8, 9 1, 2, 4–6 2, 8, 9 1, 4–6 

7 3, 5, 7–9 1, 2, 6 3–9 1 3, 5, 7–9 1, 2, 4, 6 2, 3, 5, 7–9 1, 4 
9 3–9 1, 2 3– 9 1 3, 5–9 1, 2 2, 3, 5–9 1, 4 
11 3–9 1 2–9 1 3, 5–9 1 2, 3, 5–9 1, 4 

10 3 3, 7–9 1, 2, 4–6 M i n i m u 
m 

8, 9 1, 2, 4–7 M i n i m u 
m 

5, 7–9 1–6 M i n i m u 
m 

8, 9 1–7 M i n i m u 
m 5 3, 7–9 1, 2, 4–6 3, 7–9 1, 2, 4–6 3, 7–9 1, 2, 4–6 3, 7–9 1, 2, 4–6 

7 3, 7–9 1, 2, 4–6 3, 7–9 1, 2, 4, 6 3, 7–9 1, 2, 4–6 3, 7–9 1, 2, 4–6 
9 3–9 1, 2 3, 5–9 2 3, 6–9 1, 5, 2 3, 6–9 2, 4 
11 2–9 1 1–9  2, 3, 5–9 1 1–3, 5–9 4 

3 3 3, 7 1, 2, 4–6, 8, 9   1, 2, 4–6, 8, 9  3 1, 2, 4–6, 8, 9   1, 2, 4–6, 8, 9  
5 3, 7 1, 2, 4–6, 8, 9  1, 2, 4–6, 8, 9 3, 7 1, 2, 4–6, 8 3 1, 2, 4–6, 8 
7 3, 7, 8 1, 2, 4–6, 9 3, 8 1, 2, 4–6, 9 3, 7 1, 2, 4–6 3, 7, 9 1, 2, 4–6 
9 3, 7–9 1, 2, 4, 6 3–5, 7–9 1, 2, 6 3, 5, 7–9 1, 2, 4, 6 3, 5, 7–9 1, 6 
11 3, 7–9 2 3–5, 7–9 1, 6 3, 5, 7–9 2, 4 2, 3, 5, 7–9 1, 6 

5 3 3, 7, 9 1, 2, 4–6, 8 E u c l i d e 
a n 

3, 9 1, 2, 5, 6 C h e b y s 
h e v 

8, 9 1–7 E u c l i d e 
a n 

8 1–6 C h e b y s 
h e v 5 3, 7–9 1, 2, 4–6 3, 8, 9 1, 2, 5, 6 8, 9 1–6 8, 9 1, 2, 4–6 

7 3, 7–9 1, 2, 4, 5 3–5, 7–9 1, 2, 6 8, 9 1, 2, 4, 5 3, 7–9 1, 2, 4, 6 
9 3, 5–9 1, 2 3–5, 7–9 1, 2, 6 3, 5–9 1, 2, 4 3, 5, 7–9 1, 2, 4, 6 
11 3, 5–9 2 3–5, 7–9 2 3, 5–9 4 3, 5–9 4 

10 3 3, 7–9 1, 2, 4–6 A v e r a g 
e 

3, 8, 9 1, 2, 4–6 A v e r a g 
e 

3, 7–9 1, 2, 4–6 A v e r a g 
e 

8 1, 2, 4–6 A v e r a g 
e 5 3, 7–9 1, 2, 4–6 3, 7–9 1, 2, 4–6 3, 7–9 1, 2, 4–6 7–9 1, 2, 4–6 

7 3, 7–9 1, 2, 4–6 3, 7–9 1, 2, 4, 6 3, 7–9 1, 2, 4–6 3, 7–9 1, 2, 4, 6 
9 3–9 1, 2 3, 5, 7–9 1, 2, 4 3, 5–9 1, 4 3, 5–9 1 
11 3–9 1, 2 1, 3, 5, 7–9 2 3, 5–9 1, 4 1, 3, 5–9   
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decision-making process and are measured on different scales; normal
isation provides a common scale that allows the ordinal classifier to 
weigh the criteria in function of the preference model alone. 

Afterwards, the pheromone matrix is sorted by class and R2 scores 
(Line 5); note that the classifier has not been initialised with the sets of 
characteristic profiles; consequently, the conjoint rule always returns 

‘uncertain’ as the suggested class, being R2 scores the single criterion of 
sorting. This fact is valid for all iterations before the first interaction with 
the DM. Therefore, ACO-eMOC searches for a representative sample of 
the complete Pareto frontier during the first i − 1 iterations. 

The main iterated process is represented in Lines 6–21. Here, itermax 

is the maximum number of iterations. Lines 7–10 represent an interac

Table 4 
Extended experiments on the WFG1, WFG2 and WFG4 problems.    

COMPARISON WITH RVEA-iGNG COMPARISON WITH FDEA II    
Number of interactions in which ACO-eMOC  Number of interactions in which ACO-eMOC 

m Indicator Problem (a) outperforms RVEA- 
iGNG 

(b) is outperformed by RVEA- 
iGNG 

Problem (a) outperforms FDEA 
II 

(b) is outperformed by FDEA II 

3 Min. Euclidean WFG1 17, 19, 21  WFG1 17, 19, 21   
Avg. Euclidean 15, 17, 19, 21  17, 19, 21   
Min. 
Chebyshev 

19, 21 13, 15, 17 19, 21 13, 15  

Avg. 
Chebyshev   

19, 21 13, 15 

5 Min. Euclidean  19, 21 13, 15  19, 21 13, 15, 17  
Avg. Euclidean 15, 17, 19, 21  15, 17, 19, 21   
Min. 
Chebyshev 

19, 21 13, 15 19, 21 13  

Avg. 
Chebyshev 

17, 19, 21  15, 17, 19, 21  

10 Min. Euclidean  13, 15, 17, 19, 21   17, 19, 21 13  
Avg. Euclidean 13, 15, 17, 19, 21  15, 17, 19, 21   
Min. 
Chebyshev 

13, 15, 17, 19, 21  13, 15, 17, 19, 21   

Avg. 
Chebyshev 

13, 15, 17, 19, 21  13, 15, 17, 19, 21  

3 Min. Euclidean WFG2   WFG4 19, 21 13  
Avg. Euclidean 19, 21 13, 15 19, 21   
Min. 
Chebyshev 

17, 19, 21  19, 21 13  

Avg. 
Chebyshev 

15, 17, 19, 21  17, 19, 21  

5 Min. Euclidean  13, 15, 17, 19, 21   15, 17, 19, 21   
Avg. Euclidean 17, 19, 21 13, 15 19, 21 13, 15  
Min. 
Chebyshev 

13, 15, 17, 19, 21  17, 19, 21   

Avg. 
Chebyshev 

17, 19, 21  19, 21  

10 Min. Euclidean  13, 15, 17, 19, 21   13, 15, 17, 19, 21   
Avg. Euclidean 17, 19, 21  17, 19, 21   
Min. 
Chebyshev 

13, 15, 17, 19, 21  15, 17, 19, 21   

Avg. 
Chebyshev 

13, 15, 17, 19, 21  13, 15, 17, 19, 21   

Fig. 10. Results of ACO-eMOC on WFG1 (m = 3).  
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tion with the DM, which aims to update the sets of characteristic pro
files. These sets are critical to favour a bias toward the ‘satisfactory’ 
class. When these sets are identified, the pheromone matrix is accord
ingly sorted, taking the result of the ordinal classifier as the main cri
terion, which increases the selective pressure toward the RoI.  

Algorithm 1. Ant Colony Optimisation enriched with an Eclectic Multi-criteria 
Ordinal Classifier 

Input: Data of the problem (m, n) and the preference model (v, w, α) 
Output: An approximation of the RoI 

1.initialise ι←1, Δi ←
itermax

p + 1
, i ←Δi , R1 = ∅, R2 = ∅ p is the number of interactions 

2.initialise τ at random 
3. τ←PS(τ) only take the Pareto-efficient solutions 
4.normalise(τ) 
5. sorting(τ) See Fig. 1 
6.while t ≤ itermax do 
7. if round(i ) = ι then Check if an interaction should be performed 
R1 and R2 are the sets of characteristics profiles identified by the DM during the interaction 
8. (R1,R2)←interaction_with_the_DM(τ)

(continued on next column)  

(continued ) 

Algorithm 1. Ant Colony Optimisation enriched with an Eclectic Multi-criteria 
Ordinal Classifier 

9. i ←i + Δi 

10 end if 
11. for each ant xȷ ∈ A do A is the ant colony, which has κ ants 
12. ı←roulette_wheel(τ) See Step 1, Equation (8) 
13. xȷ,i ∼ gi

ı(x)∀i ∈ {1,2, 3,⋯, n} See Steps 2 and 3, Equation (9)–(11) 
14. end for 
15. O←PS(τ ∪ A) only take the Pareto-efficient solutions 
16. normalise(O) 
17. sorting(O) See Fig. 1 
18. τ←∅ 
19. Copy into τ the first κ elements of O 
20.t←t + 1 
21. end while 
22. return ‘satisfactory’ solutions archived in τ  

In Lines 11–14, the ants construct solutions following Steps 1–3 
(Equations (8)–(11)). Lines 16–20 update the control variables. Finally, 

Fig. 11. Results of ACO-eMOC on WFG2 (m = 3).  

Fig. 12. Results of ACO-eMOC on WFG3 (m = 3).  
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the solutions classified as ‘satisfactory’ are returned as an approximation 
to the RoI (Line 22). 

Regarding the complexity of ACO-eMOC, the following remarks on 
the costliest operations should be considered:  

(i) Identifying the Pareto-efficient solutions (Lines 3 and 15) can be 
performed in O

(
κ2m

)
, where κ is the size of both the pheromone 

matrix and the colony (κ = |τ| = |A|) and m is the number of 
objective functions. 

(ii) Normalising the solution vectors (Lines 4 and 16) can be per
formed with an algorithm whose complexity function is O(κm).  

(iii) Sorting the pheromone matrix (Lines 5 and 17) belongs to 
O(κ(logκ + m) ).  

(iv) Constructing solutions (Lines 11–14) belongs to O(κn).

The overall complexity of Algorithm 1 at each iteration is determined 
by linearly integrating Operations (i)–(iv). Therefore, Algorithm 1 be

longs to O(κ(κm + n) ), considering that Operations (i) and (iv) are the 
dominating terms. 

Lastly, Fig. 2 presents the flowchart for Algorithm 1. Here, the main 
processes are represented in a more abstract way to favour the overall 
understanding of ACO-eMOC. 

5. Experimental validation 

In this section, we present the experimental results that evidence the 
advantages of our ACO-eMOC. Section 5.1 describes how we have 
simulated the interaction with the DM, which is necessary for extensive 
experimentation. Section 5.2 describes the conditions of all the experi
ments conducted in this section. Sections 5.3 and 5.4 present the results 
using the DTLZ and WFG test suites. Lastly, Section 5.5 presents an 
overall evaluation of ACO-eMOC on both suites. 

Fig. 13. Results of ACO-eMOC on WFG4 (m = 3).  

Fig. 14. Results of ACO-eMOC on WFG5 (m = 3).  
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5.1. Simulating the interaction with the DM 

There are two directions in which an interaction with the DM could 
enrich the preference model: 

(a) Updating the model parameters w and v, which define the pref
erence relation P α.  

(b) Updating the sets of characteristic profiles R1 and R2, which 
define the notion of what ‘satisfactory’ and ‘dissatisfactory’ so
lutions mean. 

In Case (a), the model parameters could be elicited during the 
interaction, and both direct and indirect elicitation methods could be 
employed. However, this way would increase the cognitive effort 
invested by the DM during each interaction. To avoid this potential 
difficulty in our approach, these parameters are modelled as interval 
numbers, which is a robust way to tolerate uncertainty, coping with 
slight fluctuations in w and v arising from the interaction. The DM is 
supposed to provide these interval parameters with an adequate extent 

only once. 
In Case (b), R1 and R2 can be updated with a low level of cognitive 

demand, which is the most advisable feature of an interactive approach. 
The number of classes is minimum, and the eclectic ordinal classifier can 
work with |R1| = |R2| = 1. Therefore, the DM could only identify one 
characteristic profile per class. So, the DM can certainly perform this 
task in each interaction. In ACO-eMOC, we focus on this type of pro
gressive preference incorporation. Below, we explain how the identifi
cation of R1 and R2 can be simulated. 

Given a set of solutions O, the subset of solutions in the class ‘satis
factory’ should fulfil the following conditions:  

1. They are optimal solutions in the sense of Pareto dominance. Let’s ×
and y two solution vectors, the binary relation ‘x dominates y’ is 
defined as: 

x≼y =
{
(x, y) : fj(x) ≤ fj(y)∀j ∈ {1, 2, 3,⋯,m} ∧ fk(x)〈fk(y)∃k

∈ {1, 2, 3,⋯,m}
}
. (12) 

A vector solution x ∈ O is Pareto optimal (a.k.a. non-dominated) if 

Fig. 15. Results of ACO-eMOC on WFG6 (m = 3).  

Fig. 16. Results of ACO-eMOC on WFG7 (m = 3).  
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no solution dominates x. The Pareto set consists of the optimal solutions, 
expressed as PS(O) = {x ∈ O : yx∀y ∈ O}. The image of the Pareto set is 
termed ‘the Pareto front,’ defined as follows: 

PF(O) = {〈f1(x), f2(x), f3(x),⋯, fm(x)〉 : x ∈ PS(O) }. (13) 

In a broad sense, the non-dominated solutions are preferred to 
dominated ones. This set can be determined without knowing the 
preference model of the particular DM facing the problem. So far, no 
solution is preferred over others; in the next step, the preference model 
will play a key role in identifying the best compromise solution.  

2. The ‘weakness’ of a solution × is the number of solution vectors 
preferred to x; that is, the cardinality of the set: 

W(x,O) = {y ∈ O : yP αx}. (14) 

Any solution x ∈ O with |W(x,O) | = 0 is considered satisfactory. The 
class ‘satisfactory’ is defined as follows: 

C2(O) = {x ∈ PS(O) : W(x,O) = ∅ }, (15)   

and the class ‘dissatisfactory’ is:  

C1(O) = O\C2. (16) 

Then, the DM should identify the most representative solutions for 
each class. To simulate this task, we propose calculating the ‘strength’ of 
a solution. The strength of x is the number of solutions over which x is 
preferred. Expressly, the strength of x is the cardinality of the set: 

S(x,O) = {y ∈ O : xP αy}. (17) 

The sets of characteristic profiles, R2(O) and R1(O), are defined as: 

R2(O) =

{

x ∈ C2(O) : |S(x,O) | = median
y∈C2(O)

{|S(y,O) | }

}

, (18) 

and 

Fig. 17. Results of ACO-eMOC on WFG8 (m = 3).  

Fig. 18. Results of ACO-eMOC on WFG9 (m = 3).  
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R1(O) =

{

x ∈ C1(O) : |S(x,O) | = median
y∈C1(O)

{|S(y,O) | − |W(y,O) | }

}

.

(19) 

R2(O) is limited to contain up to three solutions, and R1(O) up to five 
(that is, R2 ≤ 3 and R1 ≤ 5). If more than three/five solutions fulfil 
Equations (18) and (19), the exceeding solutions with the worst R2 
scores are removed. The R2 score (Brockhoff et al., 2012) is an indicator 
that measures uniformity in the distribution of solutions; here, it favours 
the more equidistantly distributed vectors. This strategy promotes 
representativeness in R1(O) and R2(O). 

The fictitious classes used by the descending and ascending rules 
(respectively, C0 and C3) are modelled by the nadir and ideal points. 
R0(O) contains the nadir point of C1(O), and R3(O) contains the ideal 
point of C2(O). 

5.2. Experimental conditions 

We programmed ACO-eMOC in C under Linux (Ubuntu 18) on an 
Intel Core i7-6700 3.4 GHz with 16 GB of RAM. The parameter values of 
ACO-eMOC are ξ = 0.05 and ϛ = 0.1. This setting was experimentally 
identified as the best combination of ξ ∈ {0.01,0.05,0.1,0.2} and 
ϛ ∈ {0.01,0.05,0.1, 0.2}. 

FDEA II (Qiu et al., 2021) and RVEA-iGNG (Liu et al., 2022) have 
received increasing attention from the scientific community, being 
considered solid cutting-edge algorithms. On the one hand, FDEA II uses 
the fractional dominance relation to retain some solutions with 

promising performance; on the other hand, RVEA-iGNG is a vector- 
based decomposition MaOEA enriched with a learning algorithm 
trained with the solutions generated during the search process. Both 
reference algorithms are highly competitive according to several multi- 
objective indicators. The experimental results showed that FDEA-II and 
RVEA-iGNG have conjointly outperformed a plethora of state-of-the-art 
algorithms, expressly: A-NSGA-III, AdaW, AR-MOEA, DEA-GNG, hpaEA, 
ISDE+, MOEA/D-AWA, MOEA/DD, MOEA/D-SOM, RVEA, RPD-NSGA-II, 
and VaEA (cf. Liu et al., 2022; Qiu et al., 2021). In line with these results, 
it is justified to validate the performance of our ACO-eMOC through a 
comparison with both FDEA-II and RVEA-iGNG simultaneously. 

The parameter setting of the reference algorithm was taken from the 
original sources (Liu et al., 2022; Qiu et al., 2021). All algorithms were 
limited to 50,000 evaluations of the objective functions to promote a fair 
comparison. That is, the population size equals 100 with 500 iterations 
(in our approach, κ = 100 and itermax = 500). 

Furthermore, we have used the DTLZ and WFG test suites to validate 
ACO-eMOC. DTLZ (Deb et al., 2002) and WFG (Huband et al., 2006) 
have become two standard test suites to assess the performance of multi- 
objective metaheuristics. In DTLZ, there are seven unconstrained prob
lems (named DTLZ1–DTLZ7); in WFG, there are nine unconstrained 
problems (named WFG1–WFG9). Together, they offer a broad range of 
geometries in their Pareto fronts. Additionally, these benchmark prob
lems are scalable regarding m (number of objectives) and n (number of 
decision variables). 

Each problem has been tested with three, five, and ten objective 
functions. Consequently, we have 48 ‘input instances.’ Each input 
instance is customised considering the following parameters: n, m, and k 
(number of position-related variables). Table 1 presents the configura
tion of each problem. 

For each input instance, 20 parameter settings representing different 
DMs were randomly generated. In this process, the following conditions 
are fulfilled: α = 0.51,

∑m
j=1wj ≥ 1,

∑m
j=1wj ≤ 1, and 

0.01 ≤ vj ≤ vj ≤ 0.1∀j ∈ {1,2, 3,⋯,m}. Additionally, we ranged p 
(number of interactions with the DM) by considering 3, 5, 7, 9 and 11 
interactions. ACO-eMOC ran 30 times on each input instance with a 
different DM using each value of p. Because RVEA-iGNG and FDEA II do 
not consider any preference model, they only ran 30 times on each input 
instance. 

To validate our proposed ACO-eMOC, we first approximated the RoI 
per test instance and each DM. The A-RoI (Approximated RoI) considers 
the solutions satisfying Equation (20) in a representative sample of 
100,000 Pareto-optimal points. 

A-RoI(O) = argmin
x∈O

{|W(x,O) |, − |S(x,O) | }. (20) 

In Equation (20), O is the sample. Accordingly, the A-RoI is made of 
the solutions with minimum weakness and maximum strength (as pre
sented in Equations (14) and (17)), with lexicographic priority in favour 
of |W(x,O) |. 

We want to highlight that the multi-objective indicators are intended 
to measure convergence, distribution, and extent of an approximation of 
the true Pareto front (e.g., hypervolume, inverted generational distance, 
spacing, and spreading). They are widely accepted because the a poste
riori approaches aim to approximate the complete Pareto frontier. 
Contrastingly, suppose the aim is to approximate a subset of the Pareto 
front (just as in the preference-based algorithms). In that case, these 
indicators become misleading because they do not measure the perfor
mance in terms of the pursued solution set (cf. Li et al., 2018). 

According to Li & Yao (2020), ideal quality indicators do not exist to 
evaluate solution subsets, notably for MOEAs with preferences. They 
suggested paying close attention to the design (or extension) of perfor
mance indicators considering preference incorporation because they 
should suit a wide range of scenarios. Furthermore, the performance 
measurement of an algorithm with preferences requires indicators that 
evaluate how well the algorithm follows the preferences, i.e., if the 

Table 5 
Borda count grouped by indicator.    

Borda scores grouped by indicator 
m Algorithm (a) 

Minimum 
Euclidean 

(b) 
Average 
Euclidean 

(c) 
Minimum 
Chebyshev 

(d) Average 
Chebyshev 

3 RVEA-iGNG  70.0  67.5  65.5  69.0  
FDEA II  58.5  54.5  61.5  58.5  
ACO-eMOC 
with p = 3  

101.0↓  100.5↓  101.5↓  101.0↓  

ACO-eMOC 
with p = 5  

86.0↓  88.5↓  92.0↓  87.5↓  

ACO-eMOC 
with p = 7  

67.0  66.5  54.5↑  63.5  

ACO-eMOC 
with p = 9  

40.0↑  39.5↑  43.5↑  40.0↑  

ACO-eMOC 
with p = 11  

25.5↑  31.0↑  29.5↑  28.5↑ 

5 RVEA-iGNG  67.5  71.0  71.5  72.5  
FDEA II  59.0  54.5  70.0  66.5  
ACO-eMOC 
with p = 3  

101.0↓  100.5↓  101.5↓  100.0↓  

ACO-eMOC 
with p = 5  

88.0↓  87.5↓  82.5↓  85.0↓  

ACO-eMOC 
with p = 7  

66.5  67.5  58.0↑  56.0↑  

ACO-eMOC 
with p = 9  

41.0↑  36.0↑  35.5↑  39.5↑  

ACO-eMOC 
with p = 11  

25.0↑  31.0↑  29.0↑  28.5↑ 

10 RVEA-iGNG  76.0  77.5  73.5  68.5  
FDEA II  71.0  65.0  71.0  73.0  
ACO-eMOC 
with p = 3  

95.0↓  94.0↓  101.0↓  97.0↓  

ACO-eMOC 
with p = 5  

83.0↓  82.0↓  83.5↓  85.0↓  

ACO-eMOC 
with p = 7  

62.5↑  62.5↑  60.0↑  61.5↑  

ACO-eMOC 
with p = 9  

36.5↑  39.0↑  35.5↑  35.5↑  

ACO-eMOC 
with p = 11  

24.0↑  28.0↑  23.5↑  27.5↑ 

↓: the ACO-eMOC’s ranking is worse than both references algorithms 
↑: the ACO-eMOC’s ranking is better than both references algorithms  
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generated solutions reflect the preferences (Afsar et al., 2021). 
In this paper, we have decided to measure the performance through 

indicators based on the distance to the Region of Interest (RoI). The RoI 
just contains the Pareto efficient solutions that best match the DM’s 
preferences. Therefore, the best compromise (the solution finally chosen 
by the DM) is supposed to be a solution belonging to the RoI. 

We calculated the distance to the A-RoI to get a notion of the quality 
of the solutions obtained per run. Let Θ denote the solution set of a run; 
the following distance indicators are considered:  

• Minimum distance: The distance between the closest pair (x, y) ∈
A-RoI(Θ)× A-RoI(O). This metric measures the performance in terms 
of the best solution alone.  

• Average distance: The average distance of all pairs (x, y) ∈
A-RoI(Θ)× A-RoI(O). This metric measures the performance 
regarding the trend of the solutions obtained. 

Additionally, both indicators can be calculated through different 
types of distances. In this paper, we focus on the Euclidean distance and 
the Chebyshev distance. The applicability of these distances depends on 
the preferences of the DM. For example, the Euclidean distance is more 
appropriate for DMs with compensatory preferences; contrastingly, the 
Chebyshev distance would be for non-compensatory preferences. 

Hereon, the adjective ‘significant’ means that a Friedman non- 
parametric test with a Nemenyi Post-hoc analysis (both with a 0.95-con
fidence interval) statistically validated the significance of the results. We 
performed these tests using the platform named STAC: Statistical Tests 
for Algorithms Comparison (Rodríguez-Fdez et al., 2015). 

5.3. Performance on the DTLZ test suite 

Table 2 presents the results of ACO-eMOC compared with RVEA- 
iGNG and FDEA II on the DTLZ test suite. Column 1 indicates the 
number of objective functions, Column 2 shows the number of in
teractions, Columns 3–8 compare ACO-eMOC and RVEA-iGNG, and 
Columns 9–14 provide the comparison against FDEA II. Here, Columns 
3, 6, 9 and 12—identified as Point (a)—list the DTLZ problems in which 
ACO-eMOC significantly outperformed either RVEA-iGNG or FDEA II. 
Columns 4, 7, 10 and 13—identified as Point (b)—list the problems in 
which ACO-eMOC is significantly outperformed by either RVEA-iGNG or 
FDEA II. Lastly, Columns 5, 8, 11 and 14 indicate the distance indicator 
considered. 

After analysing Table 2, we may discuss the following remarks:  

• The performance of ACO-eMOC clearly improves as p increases. The 
number of interactions is decisive; then, the DM should be prepared 
to interact with the algorithm repeatedly.  

• In the instances with the highest dimensionality (m = 10), RVEA- 
iGNG and FDEA II did not outperform ACO-eMOC with p = 11 
regardless of the indicator considered.  

• Considering p ≥ 9 and m = 10, RVEA-iGNG never outperformed 
ACO-eMOC in the minimum distance indicators, and FDEA II never 
outperformed ACO-eMOC in the Chebyshev distance indicators.  

• The results on DTLZ7 are especially encouraging. This problem is 
considered one of the most challenging in this benchmark. It is 
disconnected in both the Pareto set and the Pareto front; also, its 
geometry has mixed convex/concave regions (Huband et al., 2006). 

Lastly, we have plotted the results of some selected runs of ACO- 
eMOC. Figs. 3–9 depict the bias introduced by the ordinal classifier on 
the DTLZ problems with three objective functions. The aim is to 
appreciate the convergence of our approach, which searches for the 
‘satisfactory class,’ the subset of the Pareto set that encloses the most 
preferred solutions, including the best compromise. 

5.4. Performance on the WFG test suite 

Table 3 presents the results of ACO-eMOC compared to RVEA-iGNG 
and FDEA II on the WFG test suite. Its columns should be interpreted 
with the same meaning as Table 2. 

According to these results, the following partial conclusions may be 
drafted:  

• The best performance of ACO-eMOC is reached when m = 10 and p =

11. In these circumstances, ACO-eMOC statistically outperformed 
the reference algorithms in most problems.  

• The performance of our algorithm is especially high in terms of the 
Chebyshev distance. ACO-eMOC with p = 11 and m = 10 consis
tently outperformed RVEA-iGNG in minimum Chebyshev distance, 
and it was never outperformed by FDEA II in average Chebyshev 
distance. Then, we strongly recommend using ACO-eMOC when the 
DM’s preferences are worst case-oriented (which is plausible).  

• WFG1 and WFG2 were the most difficult problems for ACO-eMOC 
compared to RVEA-iGNG. Interestingly, these are the only two 
problems with a non-concave Pareto front. The geometry of WFG1 is 
mixed, and the geometry of WFG2 is convex and disconnected 
(Zapotecas-Martínez et al., 2019). 

• WFG1 and WFG4 were the most challenging problems for our algo
rithm compared to FDEA II. Regarding WFG4, the geometry of the 
Pareto front is concave, separable, and multi-modal. 

Considering the difficulty ACO-eMOC had in addressing WFG1, 
WFG2 and WFG4, we extended the experimentation considering p =

{13,15, 17,19,21}. Table 4 summarises the results. Here, we want to 
emphasise the following remarks: 

• These results are especially encouraging, taking the highest dimen
sionality (m = 10); ACO-eMOC outperformed both reference algo
rithms on a regular basis. Indeed, the best behaviour was observed 
when the Chebyshev indicators were considered.  

• Regardless of the number of objectives (m) and the indicator, ACO- 
eMOC was never outperformed using p ≥ 19. Using p = 19, our 
approach obtained high-quality results on the WFG test suite. We did 
not appreciate any statistical difference using p = 21; consequently, 
p = 19 seems to be an adequate upper bound of the number of in
teractions for this benchmark. 

Again, we have plotted the ACO-eMOC’s results on the 3-objective 
WFG problems. Figs. 10–18 present the satisfactory class obtained by 
our approach and its convergence to the Pareto frontier. We selected the 
runs in which the satisfactory class is most clearly defined. 

5.5. Overall performance 

Table 5 presents a ranking based on the Borda count for RVEA-iGNG, 
FDEA II and the five different settings of ACO-eMOC (arising from the 
different values of p). For each input instance, the algorithms are sorted 
according to the Friedman test and the Nemenyi post-hoc analysis. The 
worst algorithm gets the seventh position, and the best one gets the first 
position; the place is averaged in case of a draw. The cumulative sum of 
such positions over every instance is termed the Borda count. Conse
quently, an overall ranking of the metaheuristics can be suggested 
following the Borda sum. This ranking would describe the average 
performance of the algorithms. 

According to Table 5, ACO-eMOC outperformed the reference algo
rithms—regardless of the number of objectives and the indicator—when 
a suitable number of interactions is reached. Analysing the Borda scores, 
we recommend using nine interactions. This is the lowest number for 
which the ACO-eMOC’s Borda count is better than those of RVEA-iGNG 
and FDEA II. This fact means that ACO-eMOC is likely to obtain higher 
quality solutions (in comparison with the reference algorithms) if the 
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DM is well disposed to interact nine times at least (lower bound). 
In general, the larger the number of objectives, the shorter the Borda 

score of ACO-eMOC. Therefore, the advantages of our approach are 
remarked as m increases; so, ACO-eMOC is especially suitable for MaOPs 
(m ≥ 5). Lastly, the ACO-eMOC’s Borda scores on the Chebyshev in
dicators are regularly better than those on the Euclidean indicators in 
the highest dimensionality (see the rows with p ≥ 9 and m = 10). This 
analysis confirms that our approach is even more favourable for DMs 
with worst case-oriented preferences when many objective functions are 
present. 

6. Conclusions and directions for future research 

In this paper, we presented ACO-eMOC: Ant Colony Optimisation 
with an Eclectic Multi-criteria Ordinal Classifier. ACO-eMOC was 
designed to address continuous and unconstrained many-objective 
problems through interactive preference incorporation. This algorithm 
interactivity skews the search toward the Region of Interest (RoI), the 
region of the Pareto frontier containing the most satisfactory solutions 
according to the DM’s preferences. The selective pressure toward the RoI 
is reached by embedding an ordinal classifier in the pheromone matrix. 

ACO-eMOC is innovative in several ways:  

i. The embedded ordinal classifier is far-reaching: it can model a 
wide range of properties of the functional and relational para
digms, including non-compensatory, partially compensatory, and 
fully compensatory.  

ii. The model parameters are interval numbers; consequently, 
imprecision and hesitation can be tolerated. A many-objective 
metaheuristic with such robustness is a valuable contribution to 
the specialised literature.  

iii. ACO-eMOC interacts with the DM to update the ordinal classifier 
according to their latest preference expression. This interaction is 
based on classifying solutions as ‘satisfactory’ or ‘dissatisfactory.’ 
The binary classification is the least cognitively demanding 
approach. Moreover, the DM only needs to identify the charac
teristic profiles for each class (the most representative solutions 
for the classes ‘satisfactory’ and ‘dissatisfactory’). Such interac
tion in a many-objective metaheuristic is also a contribution of 
this paper.  

iv. The output of ACO-eMOC is a short set of solutions recommended 
under the DM’s preferences. In practice, this feature notably eases 
the decision analysis to choose the only solution to implement. 
From the perspective of prescriptive analytics, ACO-eMOC is a 
more integral approach than the Pareto-based MaOEAs. 

Our proposed ACO-eMOC was validated on the DTLZ and WFG test 
suites. These benchmarks have become a standard to validate many- 
objective optimisation approaches. Results in comparison with RVEA- 
iGNG and FDEA II—evolutionary algorithms with outstanding results 
in the range of a posteriori approaches—support the advantages of our 
algorithm. ACO-eMOC provided higher quality solutions when a suit
able number of interactions was considered, typically nine or more. 

Additionally, the ACO-eMOC’s performance became more remarkable 
as the number of objectives increased. 

In addition, two limitations were observed:  

i. ACO-eMOC is likely unsuitable if the DM cannot or does not want to 
interact at least nine times; in our opinion, this fact would be an 
external threat to our approach.  

ii. A construct limitation is that the experimentation is valid under the 
assumption that the DM is compatible with the eclectic model based 
on a weighted sum function enriched with veto conditions. 

In future research, we will study other properties in the preference 
model, expressly reflexive preference relations. Also, ACO-eMOC could 
be extended by considering different ways to describe the classes in 
ordinal classification (e.g., limiting profiles). Moreover, in practice, 
ACO-eMOC could incorporate a preference elicitation method to infer 
the model parameters (w and v); even these parameters could be 
updated in some selected interactions. Lastly, an extension with inter
acting criteria is also a promising direction for future research. 
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Appendix A. . Table of symbols  

A,B Interval numbers 

Poss(B ≥ A) Possibility function 
α Degree of credibility 
O A set of potential actions (in our context, feasible solutions to a MOP) 
C = {C1,C2 ,⋯,Ck} A set of k classes 
R1 and R2 Sets of characteristic profiles for the ‘satisfactory’ and ‘dissatisfactory’ classes (resp. C2 and C1). 
x An action (alternative/object) of a decision problem 
U(x) Interval value function for x 

(continued on next page) 
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(continued ) 

A,B Interval numbers 

m Number of objective functions 
n Number of decision variables 
f(x) = 〈f1(x), f2(x), f3(x),⋯, fm(x)〉 The vector objective function of x 

wj =

[

wj ,wj

]
The interval weight of the jth criterion 

P α The binary asymmetric preference relation 
yV x A binary relation modelling the statement ‘y vetoes x’ 
vj An interval number representing the veto threshold of the jth criterion 
A The ant colony 
τ The pheromone matrix 
κ The size of the pheromone matrix, which is equivalent to the number of ants (colony) 
ı In Algorithm 1, a row of the pheromone matrix (1 ≤ ı ≤ κ) 
t In Algorithm 1, the current iteration to construct κ solutions by ants (1 ≤ t ≤ itermax) 
τı =

〈
τı,1, τı,2, τı,3 , …, τı,n

〉
The vector with the values of the decision variables in the ı th solution archived in τ 

ωı The weight associated to τı based on its position 
ϛ A parameter defining the balance between exploration and exploitation 
xı A selected solution. xı =

〈
xı,1 , xı,2, xı,3, …, xı,n

〉
where ​ ı is a row of the pheromone matrix and 1 ≤ ı ≤ n 

pı Probability of choosing τı 

gi
ı(x) The Gaussian probability function of decision variable i in solution xı 

si
ı Standard deviation of gi

ı(x)
ξ Evaporation rate 
i Counter variable to indicate when an interaction should be performed  
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Fliedner, T., & Liesiö, J. (2016). Adjustable robustness for multi-attribute project 
portfolio selection. European Journal of Operational Research, 252(3), 931–946. 
https://doi.org/10.1016/j.ejor.2016.01.058 

Ge, H., Zhao, M., Sun, L., Wang, Z., Tan, G., Zhang, Q., et al. (2019). A many-objective 
evolutionary algorithm with two interacting processes: Cascade clustering and 
reference point incremental learning. IEEE Transactions on Evolutionary Computation, 
23(4), 572–586. https://doi.org/10.1109/TEVC.2018.2874465 

Ge, H., Zhao, M., Zhang, K., & Hou, Y. (2019). A two-engine interaction driven many- 
objective evolutionary algorithm with feasibility-aware adaptation. Applied Soft 
Computing, 82, Article 105588. https://doi.org/10.1016/j.asoc.2019.105588 

Gnansounou, E. (2017). Fundamentals of Life Cycle Assessment and Specificity of 
Biorefineries. In: Edgard Gnansounou and Ashok Pandey (Eds), Life-Cycle 
Assessment of Biorefineries. Elsevier, 2017; pp. 41–75. https://doi.org/10.1016/ 
B978-0-444-63585-3.00002-4. 

Gong, D., Sun, F., Sun, J., & Sun, X. (2017). Set-based many-objective optimization 
guided by a preferred region. Neurocomputing, 228, 241–255. https://doi.org/ 
10.1016/j.neucom.2016.09.081 
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