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Abstract Similarity and distance measures play important roles in fuzzy environments, helping to

quantify the degree of similarity or concepts that may not have clear limits. They are used in various

fields, including fuzzy logic, fuzzy clustering, and fuzzy decision-making. The cubic Fermatean

fuzzy set (CFFS), which is a type of fuzzy set (FS), is highly favoured as an extension for expressing

uncertainty through degrees of membership gð Þ and non-membership tð Þ. This article introduces

novel measures for cosine similarity and distance in CFFSs. These measures are designed to

improve the accuracy and efficiency of similarity and distance calculations in CFFSs. Also, a novel

method is introduced for developing alternate similarity measures for CFFSs utilizing the proposed

similarity measures that adhere to the similarity measures axiom. In addition, the connection

between similarity and distance measures is utilized to construct a cosine distance metric for CFFSs.

This newly suggested cosine similarity measure can not only provide solutions to decision-making

problems from a geometric perspective but also from an algebraic point of view. To conclude, a case

study is presented to showcase the practicality and effectiveness of the proposed approach, followed

by a comparison of the outcomes of the suggested technique with some existing methodologies. This

analysis helps to validate the proposed method and demonstrates its potential for outperforming

other available approaches in terms of efficiency and accuracy.
� 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

Multi-criteria decision-making (MCDM) is a decision-making
process that considers multiple criteria simultaneously to reach

a preferred alternative among several options. MCDM is used
in various fields such as engineering, management, economics,
environmental sciences, and social sciences. The main advan-

tage of MCDM is that it enables decision-makers to take into
account multiple factors and criteria that may have different
weights and importance in the decision-making process. This
allows for a more comprehensive evaluation of the options,

leading to better-informed decisions. In certain practical sce-
narios, decision-makers are unable to provide precise numeri-
cal values for their ratings of the alternatives. To fill this gap

Zedah introduced fuzzy sets [1] which provide a powerful
and flexible framework for modelling uncertainty and impreci-
sion in various fields. Their ability to represent degrees of

membership and their extensions, including fuzzy numbers
and fuzzy logic, make them valuable tools for solving complex
problems that involve uncertainty and imprecision. Atanassov

[2] extended the idea of Zedah’s fuzzy sets and proposed intu-
itionistic fuzzy sets (IFS). Several researchers have employed
IFS in various fields such as decision-making [3], pattern
recognition [4], control systems [5], and image processing

[6,7]. To tackle uncertainty in decision-making, Yager [8]
introduced the concept of Pythagorean fuzzy sets (PFSs). PFSs
provide a framework for representing fuzzy sets that incorpo-

rate both membership degrees and non-membership degrees,
allowing for a more comprehensive assessment of alternatives.
Pythagorean Fuzzy Sets (PFSs) have been applied in diverse

areas, such as MCDM [9], image processing for pattern recog-
nition and segmentation [10], intelligent design for controlling
complex and uncertain systems [11], classification and cluster-

ing for data mining [12,13], and managing data that are uncer-
tain or imprecise [14,15]. Table 1 provides explanations for the
abbreviations used in this article.
Table 1 List of abberviations.

Abbreviations Explanations Abbreviations Explanations

MCDM Multi-criteria

decision-

making

PFS Pythagorean

fuzzy set

CFFS Cubic

Fermatean

fuzzy set

FS Fuzzy set

CPFS Cubic

Pythagorean

fuzzy set

FFS Fermatean

fuzzy set

CIFS Cubic

intuitionistic

fuzzy set

IVFFS Interval-valued

Fermatean

fuzzy set

IVPFS Interval-valued

Pythagorean

fuzzy set

CS Cubic set

IVIFS Interval-valued

intuitionistic

fuzzy set

CFFN Cubic

Fermatean

fuzzy number

IFS Intuitionistic

fuzzy set

CIFN Cubic

intuitionistic

fuzzy number
The available literature indicates that the primary emphasis
of previous research has been on the FSs, interval FSs (IVFSs),
IFSs, PFSs, and the practical applications of these concepts.

Subsequently, Jun et al. [16] combined interval-valued fuzzy
numbers and fuzzy numbers, proposed the notion of cubic sets
(CSs) and established logical operations for these sets. Under

this set, Khan et al. [17] proposed cubic aggregation operators,
while Mahmood et al. [18] introduced the concept of cubic
hesitant fuzzy sets and related aggregation operators to solve

decision-making problems. Garg and Kaur [19] proposed
cubic IFSs (CIFSs) by integrating interval-valued IFSs
(IVIFSs). Kaur and Garg [20] proposed Bonferroni mean
and weighted Bonferroni mean averaging operators between

cubic intuitionistic fuzzy numbers. Chinnadurai and colleagues
[21] introduced the concept of complex cubic intuitionistic
fuzzy sets (CCIFS), which are a combination of complex cubic

membership values and complex cubic non-membership val-
ues, and defined several related operations for these sets. Amin
et al. [22] proposed generalized cubic PFSs (CPFSs) and their

operational laws. Rahim et al. [23] presented Bonferroni mean
aggregation operators and their application in MCDM
problems.

The application of the theory of cubic intuitionistic fuzzy

numbers is limited to cases where the condition gU þ tU^1
holds. Similarly, Pythagorean fuzzy numbers can only be uti-

lized when the condition gUð Þ2 þ tUð Þ2^1 is met. However,
in certain real-world situations, these conditions may not be
satisfied, thereby posing a challenge to decision-makers. For

instance, when a decision-maker rates an alternative as (0.8,
0.7), it cannot be accommodated by either intuitionistic fuzzy
sets (IFS) or Pythagorean fuzzy sets (PFS). To address this

gap, Rong et al. [24] proposed Fermatean fuzzy sets such that

gUð Þ3 þ tUð Þ3^1, provide a solution by relaxing the limitations
of IFS and PFS. This new fuzzy set theory allows decision-

makers to handle complex and uncertain information that falls
outside the boundaries of the traditional fuzzy sets. Fermatean
fuzzy sets have attracted the attention of many scholars, who

have been actively involved in their development and applica-
tion in different fields. As a result, various operational laws
and aggregation operators have been proposed to better repre-
sent complex and uncertain information see [25,26]. Table 2

contains the list of notations utilized in this article.

1.1. Overview of similarity and distance measures

Almost every methodological approach mostly depend on the
idea of similarity. For example, the study of homothetic trans-
formation and symmetry along with related disciplines like

trigonometry and geometric approaches are used to evaluate
similarities. Further, Similarity measures are generalized to
the fuzzy environment, which is applied to business, health,

and climatology domains. Unsurprisingly, similarity has been
essential in psychological sciences and interpretations. For
example, many investigations require participants to make
direct or indirect judgements regarding the similarity of two

objects. Several experimental processes are used in these stud-
ies. In the field of data science, similarity measures are
employed to evaluate the extent of similarity between different

data samples. The goal is to determine the level of relatedness
between these samples. On the contrary, dissimilarity measures
are utilized to assess the degree of difference or uniqueness



Table 2 List of notations.

gU The upper limit of the membership function F Fermatean fuzzy set A� Negative ideals

tU The upper limit of the non-membership function A Cubic Fermatean fuzzy set Aþ Positive ideals

g member membership function Sc Score function x Wight vector

t non-membership function Ac Accuracy function fCS Similarity measure

G Any non-empty finite set p Fermatean fuzzy index H Criteria
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between data objects. Both of these measures are frequently
utilized in clustering, a method for grouping data samples that

are similar to each other into one cluster. It’s important to note
that the concept of similarity is subjective and can vary
depending on the context and purpose of the analysis. For

instance, when evaluating the similarity of various vegetables,
factors such as taste, size, and colour can be taken into consid-
eration to determine how similar they are to each other.

In fuzzy set theory, the concept of similarity measures is of
utmost importance. It is widely used in various domains such
as pattern recognition, medical diagnostics, and others. Several
similarity measures have been extensively studied in the con-

text of FSs, IFSs, and PFSs. These measures play a critical role
in determining the level of similarity between different ele-
ments, which is essential in many real-world applications.

For example, Liao et al. [27] conducted a study and developed
various distance and similarity measures for hesitant fuzzy lin-
guistic term sets. In their research, they explored different

methods to determine the similarity and distance between hesi-
tant fuzzy linguistic terms, to improve the accuracy and effi-
ciency of pattern recognition and other related tasks.

Xuecheng [28] systematically presented the axiom definitions
of entropy, distance measure, and similarity measure of fuzzy
sets, and explained the fundamental connections between these
measures. Xu and Shen [29] introduced the similarity measures

of Fermatean fuzzy sets. The paper defined both the regular
and weighted similarity measures for Fermatean fuzzy sets
on both discrete and continuous universes. Wei and Wei [30]

introduced ten distinct similarity measures between PFSs that
utilize the cosine function. The measures take into considera-
tion the membership, non-membership, and hesitation degree

within PFSs. Ye [31] introduced cosine similarity and weighted
cosine similarity measures between IFSs, based on the cosine
similarity measure for FSs. Zeng and Li [32] presented the con-
cepts of entropy and similarity measure for interval-valued FSs

and extensively examined their relationship. Zhou et al. [33]
introduced a new similarity measure combining the cosine sim-
ilarity measure for intuitionistic fuzzy sets and a generalized

ordered weighted averaging operator. Additional discussion
on the application of various similarity measures defined in dif-
ferent environments can be found in sources [34–37].

Based on the analysis presented earlier, there hasn’t been
any research that has specifically looked into cosine similarity
and distance in the cubic Fermatean fuzzy environment.

Although the CIFS and CPFS are both included in this envi-
ronment, the CPFSs are better equipped to handle greater
levels of vagueness and uncertainty. To adequately manage
the intricate uncertainties involved in decision-making and

human cognition, it’s important to define the similarty and dis-
tance measures in CFFS context.
1.2. Motivation and originality

Similarity measures and distance measures play a significant
role in evaluating and comparing cubic Fermatean fuzzy num-

bers (CFFNs). However, the selection of appropriate similarity
or distance measures primarily depends on the specific prob-
lem being addressed and the context. Currently, there is a lack
of research in the literature for comparing two CFFNs. Never-

theless, the flexible nature of CFFNs motivated researchers to
propose a novel cosine similarity and the distance measure for
CFFNs in this study. The proposed measures are developed

based on the cosine similarity measure and the Euclidean dis-
tance measure, respectively. The cosine similarity measure is
used to evaluate the degree of similarity between two CFFNs.

Similarly, the Euclidean distance measure is utilized to mea-
sure the distance between two CFFNs. An in-depth analysis
is conducted to examine the characteristics of the proposed
cosine similarity and distance measures. By utilizing these mea-

sures, a novel multi-criteria decision-making approach is intro-
duced by integrating them with the Technique for Order
Performance by Similarity to Ideal Solution (TOPSIS)

method.
The article is organized as follows. In Section 2, the neces-

sary background information for the study is provided. In Sec-

tion 3, two new cosine similarity measures, cosine similarity
and weighted cosine similarity, are introduced and their prop-
erties are discussed. Section 4 focuses on the MCDM algo-

rithm using cosine similarities and the TOPSIS method. In
the fifth section, the application of the cosine similarities in
the field of infectious diseases is presented and a medical
decision-making model is introduced to demonstrate the ease

of use and effectiveness of the developed cosine similarities
in real-life decision-making problems. The results of the case
study illustrate that the CFFS framework-based cosine similar-

ities can effectively handle decision-making problems with
multiple objectives.

2. Preliminaries

The following section will provide the essential background
information that will be utilized in the study.

2.1. Fermatean fuzzy sets

Definition 1. [38] Given a non-empty, finite set G, a Fermatean

fuzzy set (FFS) associated with an element g 2 G is defined as
the follows:

F ¼ g; gF gð Þ; tF gð Þh i g 2 Gjf g ð1Þ
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where gF gð Þ represent the membership degree (MD) and
tF gð Þ represent the non-membership degree (NMD) of an ele-
ment g 2 G, such that 0^gF gð Þ; tF gð Þ^1 satisfying the condi-

tion g3F gð Þ þ t3F gð Þ^1 for every element g 2 G. For the sake of

simplicity gF gð Þ; tF gð Þð Þ is referred to as a FFN, which can be

represented as b ¼ gb; tb
� �

, satisfying the condition g3b þ t3b^1.

The indeterminacy degree of g to F is defined as:

pF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gF gð Þð Þ3 þ tF gð Þð Þ3

q
ð2Þ

Definition 2. [38] Let b ¼ gb; tb
� �

be a FFN, then the score

function over G is defined as:

Sc bð Þ ¼ gb
� �3 � tb

� �3 ð3Þ
where �1 � Sc bð Þ � 1. The accuracy function of b is

defined as:

Ac bð Þ ¼ gb
� �3 þ tb

� �3 ð4Þ

0 � Ac bð Þ � 1

Let b1 and b2 be two FFNs, then the following relationships
hold:

1. If Sc b1ð Þ � Sc b2ð Þ then b1 � b2,
2. If Sc b1ð Þ � Sc b2ð Þ then b1 � b2,
3. If Sc b1ð Þ ¼ Sc b2ð Þ then

i. If Ac b1ð Þ ¼ Ac b2ð Þ then b1 ¼ b2,
ii. If Ac b1ð Þ � Ac b2ð Þ then b1 � b2,
iii. If Ac b1ð Þ � Ac b2ð Þ then b1 � b2.

2.2. Cubic sets

Jun et al. [16] presented the idea of cubic sets (CSs). In this sec-

tion, some basic definitions related to CSs are discussed in
detail.

Definition 3. [16] Let G be a universal set. A cubic set (CS) over

an element g 2 G is defined as:

C ¼ g; eAC gð Þ; lC gð Þ g 2 Gj
n o

ð5Þ

where eAC gð Þ ¼ gLC gð Þ; gUC gð Þ� �
is an IVFS and lC gð Þ is a FS

in set G such that 0^gLC gð Þ^gUC gð Þ^1 and 0^lC gð Þ^1.

Definition 4. [16] A cubic set C ¼ eAC gð Þ; lC gð Þ
� �

is said to be

an internal cubic set if lC gð Þ 2 gLC gð Þ; gUC gð Þ� �
.

Definition 5. [16] A cubic set C ¼ eAC gð Þ; lC gð Þ
� �

is said to be

an external cubic set if lC gð Þ R gLC gð Þ; gUC gð Þ� �
.

2.3. Cubic FFSs and their existing operations

Definition 5. A cubic Fermatean fuzzy set (CFFS) over an
element g that belongs to a non-empty and finite set G is
described as follows:
A ¼ g;B gð Þ;w gð Þ g 2 Gjf g ð6Þ
where B gð Þ ¼ g; gLA gð Þ; gUA gð Þ� �

; tLA gð Þ; tUA gð Þ� �	 
� �
repre-

sents interval-valued Fermatean fuzzy set while
w xð Þ ¼ g; gA gð Þ; tA gð Þf g represents FFS for all g 2 G such that

0^gLA gð Þ^tUA gð Þ^1, 0^tLA gð Þ^tUA gð Þ^1 and

0^ gUA gð Þ� �3 þ tUA gð Þ� �3^1. Also, 0^gA gð Þ; tA gð Þ^1 and

0^ gA gð Þð Þ3 þ tA gð Þð Þ3^1. To keep it simple, the pair

a ¼ A;wð Þ, where A ¼ gLA; g
U
A

� �
; tLA; t

U
A

� �	 

and w ¼ gA; tAh i

and called as cubic Fermatean fuzzy number (CFFN). The
conditions for CFFN can be summarized as follows:

1. gLA, g
U
A 2 0; 1½ �, tLA, tUA 2 0; 1½ �, and gA; tA 2 0; 1½ �.

2. 0^ gUA
� �3 þ tUA

� �3^1 and gAð Þ2 þ tAð Þ2^1.

Definition 6. Let a ¼ gLA; g
U
A

� �
; tLA; t

U
A

� �	 

; gA; tAh i� �

,

ai ¼ gLAi
; gUAi

h i
; tLAi

; tUAi

h iD E
; gAi

; tAi

	 
� �
i ¼ 1; 2ð ) be the col-

lections of cubic Fermatean fuzzy numbers (CFFNs), and
x � 0 be a real number then

1. a1 � a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Q2

i¼1 1� gLAi

� �3� �
3

r
;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�Q2
i¼1 1� gUAi

� �p� �
3

q
264

375;*0B@
Q2

i¼1t
L
Ai
;Q2

i t
U
Ai

" #
i;

Q2
i¼1gAi

;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Q2

i¼1 1� tAið Þ3
� �

3

r* +
Þ;

2. a1 � a2 ¼
Q2

i¼1g
L
Ai
;Q2

i¼1g
U
Ai

" #
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Q2

i¼1 1� tLAi

� �3� �
3

r
;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�Q2
i¼1 1� tUAi

� �3� �
3

r
2664

3775
* +

;

0BB@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Q2

i¼1 1� gAi

� �3� �
3

r
;Q2

i¼1tAi

* +
Þ;

3. xa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� gLAi

� �3� �x
3

r
;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1� gUAi

� �3� �x
3

r
2664

3775; tLAi

� �x
;

tUAi

� �x" #* +
;

0BB@
gxAi

;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� t3Ai

� �x3

q* +
Þ;

4. ax ¼ gLAi

� �x
;

gUAi

� �x" #
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� tLAi

� �3� �x
3

r
;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1� tUAi

� �3� �x
3

r
2664

3775
* +

;

0BB@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� g3Ai

� �x3

q
;

txAi

* +
Þ.

Definition 7. [39] Let a ¼ gLA; g
U
A

� �
; tLA; t

U
A

� �	 

; gA; tAh i� �

be a

CFFN, then the score function under R-order is defined as:

Sc að Þ ¼ gLA
� �3 þ gUA

� �3 � tLA
� �3 � tUA

� �3
2

þ tAð Þ3 � gAð Þ3 ð7Þ
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and for P-order the score function is defined as:

Sc að Þ ¼ gLA
� �3 þ gUA

� �3 � tLA
� �3 � tUA

� �3
2

þ gAð Þ3 � tAð Þ3 ð8Þ

�1 � Sc að Þ � 1

Definition 8. [39] Let a ¼ gLA; g
U
A

� �
; tLA; t

U
A

� �	 

; gA; tAh i� �

be a

CFFN, then the accuracy function under R-order (P-order) is
defined as:

Ac að Þ ¼ gLA
� �3 þ gUA

� �3 þ tLA
� �3 þ tUA

� �3
2

þ gAð Þ3 þ tAð Þ3 ð9Þ
3. Innovative techniques and measures for operating cubic FFNs

Definition 9. For a family of CFFSs ai; i 2 Cf g, then

1. (P-union):
SP

i2Cai ¼
maxi2C gLAi

� �
;

maxi2C gUAi

� �
 �
;

mini2C tLAi

� �
;

mini2C tUAi

� �
 �� �
;

�
maxi2CgAi

;
mini2CtAi

� �
Þ;

2. (P-intersection):TR
i2Cai ¼

mini2C gLAi

� �
;

mini2C gUAi

� �
 �
;

maxi2C tLAi

� �
;

maxi2C tUAi

� �
 �� �
;

�
mini2CgAi

;
maxi2CtAi

� �
Þ;

3. (R-union):
SR

i2Cai ¼
maxi2C gLAi

� �
;

maxi2C gUAi

� �
 �
;

mini2C tLAi

� �
;

mini2C tUAi

� �
 �� �
;

�
mini2CgAi

;
maxi2CtAi

� �
Þ;

4. (R-intersection):SP
i2Cai ¼

maxi2C gLAi

� �
;

maxi2C gUAi

� �
 �
;

mini2C tLAi

� �
;

mini2C tUAi

� �
 �� �
;

�
mini2CgAi

;
maxi2CtAi

� �
Þ.

Definition 10. Let ai ¼ gLAi
; gUAi

h i
; tLAi

; tUAi

h iD E
; gAi

; tAi

	 
� �
i ¼ 1; 2ð ) be the collections of CFFNs. Then

pAi
gð Þ ¼ pLAi

gð Þ; pUAi
gð Þ

h i
; pAi

gð Þ
� �

is said to be cubic Fer-

matean fuzzy index of an element g 2 G.

Where

pL
Ai

gð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� #U

Ai

� �3
� wU

Ai

� �33

r
ð10Þ

pU
Ai

gð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� #L

Ai

� �3
� wL

Ai

� �33

r
ð11Þ

pAi
gð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� #Ai

ð Þ3 � wAi

� �3l

q
ð12Þ
Example 1. Let a ¼ 0:5; 0:6½ �; 0:4; 0:5½ �h i; 0:6; 0:7h ið Þ be a

CFFN Then

pL
A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:6ð Þ3 � 0:5ð Þ33

q
¼ 0:8702

pU
Ai

gð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:5ð Þ3 � 0:4ð Þ33

q
¼ 0:9326

pAi
gð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:6ð Þ3 � 0:7ð Þ33

q
¼ 0:7612
3.1. Cosine similarity measure between CFFNs

The cosine similarity ( fCS) measure is determined by taking the
inner product of two vectors and dividing the result by the pro-

duct of the lengths of these vectors. This is a well-established

method for calculating fCS.
Definition 11. Let G be a non-empty finite set. For any two

CFFNs # ¼ gL#i
; gU#i

h i
; tL#i

; tU#i

h iD E
; g#i

; t#i

	 
� �
and

d ¼ gLdi ; g
U
di

h i
; tLdi ; t

U
di

h iD E
; gdi ; tdi
	 
� �

the fCS between # and d

is defined as:

CCFF a;bð Þ ¼ 1

n

Xn
i¼1

AL
i þ AU

i þ BL
i þ BU

i þ CL
i þ CU

i þ Ai þ Bi þ Ciffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ai þ bi þ ci þ di

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieai þ ebi þ eci þ edi

3

q
0B@

1CA
ð13Þ

Where AL
i ¼ gL#i

� �3
gLdi

� �3
, AU

i ¼ gU#i

� �3
gUdi

� �3
, BL

i ¼ tL#i

� �3
tLdi

� �3
, BU

i ¼ tU#i

� �3
tUdi

� �3
, CL

i ¼ pL
#i

� �3
pL
di

� �3
, CL

i ¼ pL
#i

� �3
pL
di

� �3
, CU

i ¼ pU
#i

� �3
pU
di

� �3
, Ai ¼ g#i

� �3
gdi
� �3

, Bi ¼ t#ið Þ3 tdið Þ3,

Ci ¼ p#ið Þ3 pdið Þ3, ai ¼ gL#i

� �3
þ gU#i

� �3
, bi ¼ tL#i

� �3
þ tU#i

� �3
,

ci ¼ pL
#i

� �3
þ pU

#i

� �3
, di ¼ g#i

� �3 þ t#ið Þ3 þ p#ið Þ3, eai ¼

gLdi

� �3
þ gUdi

� �3
, ebi ¼ tLdi

� �3
þ tUdi

� �3
, eci ¼ pL

di

� �3
þ pU

di

� �3
,

and edi ¼ gdi
� �3 þ tdið Þ3 þ pdið Þ3.

Theorem 1. Let ai ¼ gLai ; g
U
ai

h i
; tLai ; t

U
ai

h iD E
; gai ; tai
	 
� �

i ¼ 1; 2; 3ð ) be any three CFFNs. Properties of the fCS are:

1. CCFF a1; a2ð Þ ¼ 1 if and only if a1 ¼ a2.
2. CCFF a1; a2ð Þ ¼ CCFF a2; a1ð Þ.
3. 0^CCFF a2; a1ð Þ^2.

Proof. simple to demonstrate.

Definition 12. Let # ¼ gL#i
; gU#i

h i
; tL#i

; tU#i

h iD E
; g#i

; t#i

	 
� �
and

d ¼ gLdi ; g
U
di

h i
; tLdi ; t

U
di

h iD E
; gdi ; tdi
	 
� �

be any two CFFNs, and

take the weight vector xi. The weighted cosine similarity

( gWCS) measure is defined as:
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Cx
CFF a; bð Þ ¼ 1

n

Xn
i¼1

xi

AL
i þ AU

i þ BL
i þ BU

i þ CL
i þ CU

i þ Ai þ Bi þ Ciffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ai þ bi þ ci þ di

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieai þ ebi þ eci þ edi

3

q
0B@

1CA ð14Þ

where AL
i ¼ gL#i

� �3
gLdi

� �3
, AU

i ¼ gU#i

� �3
gUdi

� �3
, BL

i ¼ tL#i

� �3
tLdi

� �3
, BU

i ¼ tU#i

� �3
tUdi

� �3
, CL

i ¼ pL
#i

� �3
pL
di

� �3
, CL

i ¼ pL
#i

� �3
pL
di

� �3
, CU

i ¼ pU
#i

� �3
pU
di

� �3
, Ai ¼ g#i

� �3
gdi
� �3

, Bi ¼ t#ið Þ3 tdið Þ3,

Ci ¼ p#ið Þ3 pdið Þ3, ai ¼ gL#i

� �3
þ gU#i

� �3
, bi ¼ tL#i

� �3
þ tU#i

� �3
,

ci ¼ pL
#i

� �3
þ pU

#i

� �3
, di ¼ g#i

� �3 þ t#ið Þ3 þ p#ið Þ3, eai ¼

gLdi

� �3
þ gUdi

� �3
, ebi ¼ tLdi

� �3
þ tUdi

� �3
, eci ¼ pL

di

� �3
þ pU

di

� �3
,

and edi ¼ gdi
� �3 þ tdið Þ3 þ pdið Þ3. The weight vector must com-

ply with the following conditions:

1. 0^xi^1 for all i 2 N.

2.
Pn

i¼1xi ¼ 1.
Theorem 2. Choose any two CFFNs a and b. then, the gWCS
measure Cx

CFF a; bð Þ complies with the following criteria:
1. Cx
CFF a; bð Þ ¼ 1 if and only if a ¼ b.

2. Cx
CFF a; bð Þ ¼ Cx

CFF b; að Þ.
3. 0^Cx

CFF a; bð Þ^2.

where 0^xi^1 for all i 2 N, and
Pn

i¼1xi ¼ 1.

Proof. simple to demonstrate.

3.2. Euclidean distance measure between CFFNs

Definition 13. Let # ¼ gL#i
; gU#i

h i
; tL#i

; tU#i

h iD E
; g#i

; t#i

	 
� �
and

d ¼ gLdi ; g
U
di

h i
; tLdi ; t

U
di

h iD E
; gdi ; tdi
	 
� �

be any two CFFNs. The

Euclidean distance between # and d can be defined as follow:

DCFF #; dð Þ ¼ 1

6n

Xn
i¼1

gL#i

� �3
� gLdi

� �3���� ����2 þ gU#i

� �3
� gUdi

� �3���� ����2
þ tL#i

� �3
� tLdi

� �3���� ����2 þ tU#i

� �3
� tUdi

� �3���� ����2
þ g#i
� �3 � gdi

� �3��� ���2 þ t#ið Þ3 � tdið Þ3�� ��2þ
þ pL

#i

� �3
� pL

di

� �3���� ����2 þ pU
#i

� �3

� pU
di

� �3
���� ����2

þ p#ið Þ3 � pdið Þ3�� ��2

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA

1
2

ð15Þ

The weighted Euclidean distance between # and d is defined

as:

Dx
CFF #; dð Þ ¼ 1

6n

Xn
i¼1

xi

gL#i

� �3
� gLdi

� �3���� ����2 þ gU#i

� �3
� gUdi

� �3���� ����2
þ tL#i

� �3

� tLdi

� �3���� ����2 þ tU#i

� �3
� tUdi

� �3���� ����2
þ g#i
� �3 � gdi

� �3��� ���2 þ t#ið Þ3 � tdið Þ3�� ��2þ
þ pL

#i

� �3
� pL

di

� �3���� ����2 þ pU
#i

� �3

� pU
di

� �3���� ����2
þ p#ið Þ3 � pdið Þ3�� ��2

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA

1
2

ð16Þ

where 0^xi^1 for all i 2 N, and
Pn

i¼1xi ¼ 1.
Theorem 3. For any two CFFNs # and d, the weighted

Euclidean distance measure Dx
CFF #; dð Þ complies with the

following criteria:

1. Dx
CFF #; dð Þ ¼ 1 if and only if # ¼ d.

2. Dx
CFF #; dð Þ ¼ Dx

CFF d; #ð Þ.
3. 0^Dx

CFF #; dð Þ^2.

where 0^xi^1 for all i 2 N, and
Pn

i¼1xi ¼ 1.

Proof. Easy to prove.

3.3. New similarity measures

Definition 14. Let # ¼ gL#i
; gU#i

h i
; tL#i

; tU#i

h iD E
; g#i

; t#i

	 
� �
and

d ¼ gLdi ; g
U
di

h i
; tLdi ; t

U
di

h iD E
; gdi ; tdi
	 
� �

be any two CFFNs. Then

a new similarity measure SCFF #; dð Þ between # and d can be
defined as follow:

SCFF #; dð Þ ¼ CCFF #; dð Þ þ 1�DCFF #; dð Þ
6

ð17Þ

where CCFF a; bð Þ ¼ 1
n

Pn
i¼1

AL
i þAU

i
þBL

i
þBU

i
þCL

i þCU
i
þAiþBiþCiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aiþbiþciþdi
3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieaiþebiþeciþedi3

p !
such that AL

i ¼ gL#i

� �3
gLdi

� �3
, AU

i ¼ gU#i

� �3
gUdi

� �3
,

BL
i ¼ tL#i

� �3
tLdi

� �3
, BU

i ¼ tU#i

� �3
tUdi

� �3
, CL

i ¼ pL
#i

� �3
pL
di

� �3
,

CL
i ¼ pL

#i

� �3
pL
di

� �3
, CU

i ¼ pU
#i

� �3
pU
di

� �3
, Ai ¼ g#i

� �3
gdi
� �3

,

Bi ¼ t#ið Þ3 tdið Þ3, Ci ¼ p#ið Þ3 pdið Þ3, ai ¼ gL#i

� �3
þ gU#i

� �3
, bi ¼

tL#i

� �3
þ tU#i

� �3
, ci ¼ pL

#i

� �3
þ pU

#i

� �3
, di ¼ g#i

� �3 þ t#ið Þ3þ

p#ið Þ3, eai ¼ gLdi

� �3
þ gUdi

� �3
, ebi ¼ tLdi

� �3
þ tUdi

� �3
,

eci ¼ pL
di

� �3
þ pU

di

� �3
, and edi ¼ gdi

� �3 þ tdið Þ3 þ pdið Þ3.
And

DCFF #; dð Þ ¼ 1

6n

Xn
i¼1

gL#i

� �3
� gLdi

� �3���� ����2 þ gU#i

� �3

� gUdi

� �3���� ����2
þ tL#i

� �3
� tLdi

� �3���� ����2 þ tU#i

� �3
� tUdi

� �3���� ����2
þ g#i
� �3 � gdi

� �3��� ���2 þ t#ið Þ3 � tdið Þ3�� ��2þ
þ pL

#i

� �3
� pL

di

� �3���� ����2 þ pU
#i

� �3
� pU

di

� �3���� ����2
þ p#ið Þ3 � pdið Þ3�� ��2

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA

1
2

Definition 12. Let # ¼ gL#i
; gU#i

h i
; tL#i

; tU#i

h iD E
; g#i

; t#i

	 
� �
and

d ¼ gLdi ; g
U
di

h i
; tLdi ; t

U
di

h iD E
; gdi ; tdi
	 
� �

be any two CFFNs. Then

a new weighted similarity measure Sx
CFF #; dð Þ between # and d

can be defined as follow:

Sx
CFF #; dð Þ ¼ Cx

CFF #; dð Þ þ 1�Dx
CFF #; dð Þ

6
ð18Þ
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where Cx
CFF a; bð Þ ¼ 1

n

Pn
i¼1xi

AL
i þAU

i
þBL

i
þBU

i
þCL

i þCU
i
þAiþBiþCiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aiþbiþciþdi
3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieaiþebiþeciþedi3

p !
such that AL

i ¼ gL#i

� �3
gLdi

� �3
, AU

i ¼ gU#i

� �3
gUdi

� �3
, BL

i ¼ tL#i

� �3
tLdi

� �3
, BU

i ¼ tU#i

� �3
tUdi

� �3
, CL

i ¼ pL
#i

� �3
pL
di

� �3
, CL

i ¼ pL
#i

� �3
pL
di

� �3
, CU

i ¼ pU
#i

� �3
pU
di

� �3
, Ai ¼ g#i

� �3
gdi
� �3

, Bi ¼ t#ið Þ3 tdið Þ3,

Ci ¼ p#ið Þ3 pdið Þ3, ai ¼ gL#i

� �3
þ gU#i

� �3
, bi ¼ tL#i

� �3
þ tU#i

� �3
,

ci ¼ pL
#i

� �3
þ pU

#i

� �3
, di ¼ g#i

� �3 þ t#ið Þ3 þ p#ið Þ3, eai ¼

gLdi

� �3
þ gUdi

� �3
, ebi ¼ tLdi

� �3
þ tUdi

� �3
, eci ¼ pL

di

� �3
þ pU

di

� �3
,

and edi ¼ gdi
� �3 þ tdið Þ3 þ pdið Þ3

Dx
CFF #; dð Þ ¼ 1

6n

Xn
i¼1

xi

gL#i

� �3

� gLdi

� �3���� ����2 þ gU#i

� �3
� gUdi

� �3
���� ����2

þ tL#i

� �3
� tLdi

� �3���� ����2 þ tU#i

� �3
� tUdi

� �3���� ����2
þ g#i
� �3 � gdi

� �3��� ���2 þ t#ið Þ3 � tdið Þ3�� ��2þ
þ pL

#i

� �3

� pL
di

� �3���� ����2 þ pU
#i

� �3
� pU

di

� �3���� ����2
þ p#ið Þ3 � pdið Þ3�� ��2

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA

1
2

The weight vector must comply with the following

conditions:

1. 0^xi^1 for all i 2 N.

2.
Pn

i¼1xi ¼ 1.

Theorem 4. For any two CFFNs # and d, the weighted
Euclidean distance measure Dx

CFF #; dð Þ complies with the

following criteria:

1. Sx
CFF #; dð Þ ¼ 1 if and only if # ¼ d.

2. Sx
CFF #; dð Þ ¼ Sx

CFF d; #ð Þ.
3. 0^Sx

CFF #; dð Þ^2.

Proof. Easy to prove.

3.4. TOPSIS approach to MCDM with CFFSs

This section aims to construct a TOPSIS method for MCDM
using the concepts of the CFFS.

Given that the alternatives s ¼ s1; s2; 	 	 	 ; smf g are being

evaluated by experts based on the criteria r ¼ r1; r2; 	 	 	 ; rnf g,
which are expressed in terms of Fuzzy CFFSs

Aij ¼ gLAij
; gUAij

h i
; tLAij

; tUAij

h iD E
; gAij

; tAij

D E� �
such that 0^gLAij

,

gUAij
, tLAij

, tUAij
, gAij

, tAij
^1, gUAij

� �3
þ tUAij

� �3
^1 and

gAij

� �3
þ tAij

� �3^1.

Consider the weight vector x of criteria, subject to the fol-

lowing constraints.

1. 0^xi^1 for all i 2 N.

2.
Pn

i¼1xi ¼ 1.
Then the cubic Fermatean fuzzy decision matrix

Z ¼ Aij

� �
m
n

¼ gLAij
; gUAij

h i
; tLAij

; tUAij

h iD E
; gAij

; tAij

D E� �
m
n

can

be represented as:

Z ¼

A11 A12 	 	 	 A1n

A21

..

.

A22

..

.
	 	 	
. .
.

A2n

..

.

Am1 Am2 	 	 	 Amn

0BBBB@
1CCCCA ð19Þ

where sij i ¼ 1; 2; 	 	 	 ;m; j ¼ 1; 2; 	 	 	 ; nð Þ are CFFNs.

The proposed algorithm based on the suggested similarity

measures is constructed as follows:
Step 1. In decision-making, criteria are used to evaluate and

compare alternatives. There are two types of criteria: benefit

criteria and cost criteria. Benefit criteria refer to the positive
aspects of the alternatives being evaluated. They measure the
advantages or benefits of each alternative and are often used
to determine the best solution for a particular problem. For

instance, when deciding on purchasing a car, benefit criteria
may include factors such as comfort, fuel efficiency, and relia-
bility. Cost criteria, on the other hand, refer to the negative

aspects of the expenses associated with each alternative. These
criteria measure the disadvantages or costs of each alternative
and are important in making an informed decision as they can

impact the overall feasibility of a solution. For example, in the
same car purchase decision, cost criteria may include factors
such as the purchase price, maintenance costs, and insurance

costs.

Initially, the decision matrix Z ¼ Aij

� �
m
n

¼ gLAij
; gUAij

h i
;

D�
tLAij

; tUAij

h i
i; gAij

; tAij

D E
Þm
n will be normalized. The following

negation operator will be utilized for normalization.

bZ ¼
gLAij

; gUAij

h i
; tLAij

; tUAij

h iD E
; gAij

; tAij

D E� �
forbenefit � typecriteria

tLAij
; tUAij

h i
; gLAij

; gUAij

h iD E
; tAij

; gAij

D E� �
forcost � typecriteria

8><>: ð20Þ

The operator is defined as follows: If the criterion being
evaluated is of the benefit type, no action is required. If the cri-

terion is of the cost type, it will be transformed into a benefit-
type criterion.

Step 2. The positive sþ and negative s� ideal solutions
will be determined using the score and accuracy functions.

These ideal solutions represent the best and worst possible
outcomes, respectively, and will be used to evaluate the alter-

natives being considered. Where sþ ¼ sþ1 ; s
þ
2 ; 	 	 	 ; sþ2f g, A� ¼

s�1 ; s
�
2 ; 	 	 	 ; s�2

� �
. For j ¼ 1; 2; 	 	 	 ; n we have

sþj ¼ max Sc s1j
� �

;Sc s2j
� �

; 	 	 	 ;Sc snj
� �g�

and

s�j ¼ min Sc s1j
� �

;Sc s2j
� �

; 	 	 	 ;Sc snj
� �g�

If all of the score values are equal, the accuracy values must
be used for comparison purposes. This is because accuracy val-
ues provide an additional basis for comparison when score val-

ues are identical.
Step 3. To calculate the separation for each alternative

between the derived positive ideal solution sþ and negative
ideal solution s� using the proposed distance measure Dx

CFF.

The separation is computed as follows:



Table 3 Closeness index and Ranking of alternatives.

Closeness index ri Results Ranking

r1 0:4511 2

r2 0:4152 1

r3 0:4783 3

r4 0:5217 5

r5 0:4669 4
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Dx
CFF si; s

þð Þ ¼
Xn
j¼1

xiD
x
CFF sij; s

þ� � ð21Þ

Dx
CFF si;A

�ð Þ ¼
Xn
j¼1

xiD
x
CFF sij; s

�� � ð22Þ

Based on these separation measures, the closeness index ri

associated with alternative si will be calculated as follows:

ri ¼ Dx
CFF si; s

þð Þ
Dx

CFF si; sþð Þ þDx
CFF si; s�ð Þ ð23Þ

Step 4. To determine the relative measures of the alterna-
tives, we will evaluate their ri values. The ri value is a measure
of the suitability of each alternative for our purpose. The smal-

ler the ri value, the better the alternative is considered to be.
With this in mind, we will select the alternative si with the
smallest di value as the optimal choice, as it is deemed to offer
the most satisfactory outcome based on the criteria established

by the ri value.

3.5. Application

Numerous diseases exist, and each disease presents its own dis-
tinct set of symptoms. The process of medical diagnosis relies
heavily on analyzing the symptoms exhibited by a patient to

identify the specific disease they are experiencing. The patient’s
symptoms can be viewed collectively as a symptom set, and the
diseases that match these symptoms form a diagnostic set. By

examining the relationship between a patient’s symptom set
and possible diagnostic sets, medical professionals can effec-
tively diagnose and treat a wide range of illnesses. However,
it is important to note that the complexity of certain diseases

may require additional tests or evaluations beyond just analyz-
ing the patient’s symptoms.

Let R be the set of symptom R ¼{r1(Temperature),

r2(Headache), r3(Stompach pain), r4(Cough), r5(Chestpain)}
and the diagnostic set be S ¼{s1(Viral fever), s2(Malaria),
s3(Typhoid), s4(Stompach problem), s5(Chest problem)}. The

symptoms exhibited by a patient can be expressed using the
CFFSs in the following manner.

P(Patiment)

¼
r1; 0:5; 0:6½ �; 0:2; 0:4½ �h i; 0:6; 0:3h ið Þ; r2; 0:4; 0:5½ �; 0:3; 0:5½ �h i; 0:2; 0:6h ið Þ;
r3; 0:3; 0:4½ �; 0:6; 0:7½ �h i; 0:5; 0:6h ið Þ; r1; 0:7; 0:8½ �; 0:5; 0:6½ �h i; 0:4; 0:5h ið Þ;

r4; 0:4; 0:5½ �; 0:6; 0:7½ �h i; 0:6; 0:4h ið Þ

8<:
9=;:

The CFFSs can be used to describe the symptoms of each

disease si (where i ranges from 1 to 5) in the following manner.
s1(Viral fever)

¼
s1; 0:3; 0:4½ �; 0:6; 0:7½ �h i; 0:2; 0:5h ið Þ; s2; 0:5; 0:6½ �; 0:4; 0:6½ �h i; 0:6; 0:5h ið Þ;
s3; 0:5; 0:6½ �; 0:3; 0:5½ �h i; 0:4; 0:3h ið Þ; s4; 0:4; 0:5½ �; 0:6; 0:7½ �h i; 0:3; 0:4h ið Þ;

s5; 0:5; 0:6½ �; 0:4; 0:5½ �h i; 0:8; 0:1h ið Þ

8<:
9=;;

s2(Malaria)

¼
s1; 0:5; 0:6½ �; 0:3; 0:4½ �h i; 0:6; 0:1h ið Þ; s2; 0:3; 0:4½ �; 0:5; 0:6½ �h i; 0:5; 0:4h ið Þ;
s3; 0:6; 0:7½ �; 0:5; 0:6½ �h i; 0:4; 0:2h ið Þ; s4; 0:5; 0:6½ �; 0:6; 0:7½ �h i; 0:7; 0:3h ið Þ;

s5; 0:5; 0:6½ �; 0:2; 0:3½ �h i; 0:8; 0:2h ið Þ

8<:
9=;

,

s3(Typhoid)

¼
s1; 0:2; 0:3½ �; 0:6; 0:7½ �h i; 0:4; 0:6h ið Þ; s2; 0:3; 0:4½ �; 0:5; 0:6½ �h i; 0:5; 0:4h ið Þ;
s3; 0:6; 0:7½ �; 0:4; 0:5½ �h i; 0:3; 0:2h ið Þ; s4; 0:5; 0:6½ �; 0:3; 0:4½ �h i; 0:6; 0:3h ið Þ;

s5; 0:4; 0:6½ �; 0:4; 0:5½ �h i; 0:7; 0:4h ið Þ

8<:
9=;

,

s4(Stompach problem)

¼
s1; 0:5;0:6½ �; 0:6;0:7½ �h i; 0:4;0:6h ið Þ; s2; 0:5;0:6½ �; 0:2;0:3½ �h i; 0:5;0:3h ið Þ;
s3; 0:4;0:5½ �; 0:5;0:6½ �h i; 0:2;0:7h ið Þ; s4; 0:6;0:7½ �; 0:1;0:3½ �h i; 0:5;0:7h ið Þ;

s5; 0:4;0:5½ �; 0:6;0:7½ �h i; 0:3;0:8h ið Þ

8<:
9=;;

s5(Chest problem)

¼
s1; 0:3; 0:6½ �; 0:4; 0:5½ �h i; 0:5; 0:7h ið Þ; s2; 0:3; 0:4½ �; 0:6; 0:7½ �h i; 0:7; 0:6h ið Þ;
s3; 0:5; 0:7½ �; 0:3; 0:5½ �h i; 0:6; 0:8h ið Þ; s4; 0:2; 0:5½ �; 0:4; 0:5½ �h i; 0:3; 0:2h ið Þ;

s5; 0:6; 0:7½ �; 0:4; 0:5½ �h i; 0:5; 0:4h ið Þ

8<:
9=;

The entropy measure is utilized in determining the weights
of criteria through the following method:

Ej ¼ 1ffiffiffi
2

p � 1
� �

m

Xm
i¼1

1þ g2ij � t2ij

� �
ð24Þ

where 1ffiffi
2

p �1ð Þm is a constant for ensuring that 0^Ej^1

j ¼ 1; 2; 	 	 	mð Þ. Determine the attribute weights xj using

Equation (25).

xj ¼ 1� Ej

n�Pn
j¼1Ej

ð25Þ

The weighted vector for criteria Hi i ¼ 1; 2; 3; 4; 5ð Þ is
0:2407; 0:2130; 0:1543; 0:1859; 0:2061ð Þ obtained through the
utilization of Equations (24) and (25).

The score values of each rating value can be determined
through the use of equation (5), which can then be used to cal-
culate the negative s� and positive ideal sþ solutions.

sþ ¼
0:5; 0:6½ �; 0:4; 0:5½ �h i; 0:8; 0:1h ið Þ; 0:5; 0:6½ �; 0:2; 0:3½ �h i; 0:8; 0:2h ið Þ;
0:6; 0:7½ �; 0:4; 0:5½ �h i; 0:3; 0:2h ið Þ; 0:6; 0:7½ �; 0:1; 0:3½ �h i; 0:5; 0:7h ið Þ;

0:6; 0:7½ �; 0:4; 0:5½ �h i; 0:5; 0:4h ið Þ

8><>:
9>=>;

s� ¼
0:3; 0:4½ �; 0:6; 0:7½ �h i; 0:2; 0:5h ið Þ; 0:3; 0:4½ �; 0:5; 0:6½ �h i; 0:5; 0:4h ið Þ;
0:2; 0:3½ �; 0:6; 0:7½ �h i; 0:4; 0:6h ið Þ; 0:4; 0:5½ �; 0:6; 0:7½ �h i; 0:3; 0:8h ið Þ;

0:3; 0:4½ �; 0:6; 0:7½ �h i; 0:7; 0:6h ið Þ

8><>:
9>=>;

We utilize Equation (23) to calculate the difference between

positive ideal and negative ideal solutions for each alternative.
This method involves the application of the closeness index ri

to all values of si, to measure the separation of each alternative
between the positive ideal and negative ideal solutions. The

results and ranking orders are summarized in Table 3.
The results in Table 3 indicate that s2 has the highest rank-

ing among s1, s3, s4, and s5 based on the weighted similarity

measures. The comparison between the new and existing
weighted similarity measures shows that the similarity measure
between P and s2 is the lowest, leading to the diagnosis of

malaria in the patient.
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3.6. Comparative study

To facilitate a comparison between the proposed similarity
measures and the existing ones, let us begin by briefly review-
ing all the similarity measures that were evaluated by Jeevaraj

[40], and Mishra [41].

3.6.1. Comparison with similarity measure by Jeevaraj [40]

Assuming Q1 and Q2 are two interval-valued intuitionistic

fuzzy numbers, their similarity measure can be expressed as:

S Q1;Q2ð Þ ¼ 1�D Q1;Q2ð Þ ð26Þ

D Q1;Q2ð Þ ¼ 3

4
Sc Q1ð Þ � Sc Q1ð Þj j

The use of similarity measures for interval-valued intuition-

istic fuzzy sets stated in Equation (24), is not suitable for han-
dling the rating values provided by the decision-makers listed

in Table 2. This is because the condition gU þ tU^1, which
is required for the applicability of the similarity measures, is
not satisfied. This limitation may hinder the accuracy of the
results obtained from decision-making processes that involve

the use of interval-valued intuitionistic fuzzy sets. Therefore,
alternative methods or adjustments to the similarity measures
may need to be considered to effectively handle such rating

values. Further research may be necessary to explore and
develop these alternatives.

3.6.2. Comparison with similarity measures by Mishra et al.
[41]

Let # ¼ gL#i ; g
U
#i

h i
; tL#i ; t

U
#i

h iD E� �
and d ¼ gLdi ; g

U
di

h i
;

D�
tLdi ; t

U
di

h i
iÞ be any two IVPFNs. Then similarity measure

SIVPF #; dð Þ between # and d can be defined as follow:
SIVPF #; dð Þ ¼ 1�

1� exp 1
4n

Pn
i¼1

gL#i

� �2
� gLdi

� �2���� ����þ gU#i

� �2
� gUdi

� �3���� ����þ tL#i

� �2
� tLdi

� �3���� ����þ
tU#i

� �2
� tUdi

� �2���� ����2 þ pL
#i

� �3
� pL

di

� �3���� ����þ pU
#i

� �3
� pU

di

� �3���� ����

0BBB@
1CCCA

0BBB@
1CCCA

1� exp �1ð Þ

ð27Þ
To compare the proposed approach to the current similar-
ity measure defined in Equation (25), we assume that the Fer-

matean fuzzy judgments of Cubic Fermatean Fuzzy are equal

to zero i.e., gLd ; g
U
d

� �
; tLd ; t

U
d

� �	 

; 0; 0h i� �

.

Table 4 Closeness index of alternatives.

closeness index ri Results Ranking

r1 0:9016 2

r2 0:8886 1

r3 0:9221 3

r3 0:9443 5

r3 0:9316 4
By using Equation (25), the relative closeness index ri of
alternatives Ai i ¼ 1; 2; 3ð Þ is summarized in Table 4.

Table 4 shows that the proposed approach aligns with the

best alternative, which confirms the approach’s stability com-
pared to state-of-the-art methods. The proposed decision-
making method, which operates in a cubic Fermatean fuzzy

set environment, offers more comprehensive evaluation infor-
mation on alternatives than existing approaches that rely on
interval-valued Pythagorean sets (IVPFS) or interval-valued

Fermatean fuzzy sets (IVFFS). The proposed cosine similarity
measures consider both interval-valued Fermatean fuzzy and
Fermatean fuzzy sets simultaneously, while the existing simi-
larity measures include either IVPFS or IVFFS information

only. Consequently, the approaches based on IVPFSs or
IVFFS may not capture all the relevant information about
the alternatives, which could potentially affect the decision

outcomes.

3.7. Advantages of the proposed approach

1. The key feature of CFFS systems is that the sum of cubes of

the membership and non-membership values of any given
object can be less than or equal to 1. This characteristic
enables CFFSs to cover a larger number of elements com-

pared to that CPFS and CIFS systems. Hence, the CFFS
model represents a valuable and practical expansion of
CIFSs and CPFSs, providing experts with greater auton-

omy in expressing their opinions regarding the degree of
membership.

2. The proposed decision-making method under the CFFS

environment is a more comprehensive approach compared
to the existing methods that rely on either interval-valued
FFSs (IVFFSs) or FFSs. This is because it takes into con-
sideration both IVFFSs and FFSs to provide a more com-
prehensive evaluation of the alternatives. On the other
hand, the existing methods that only consider either
IVFFSs or FFSs may lack important information, such
as interval-valued Fermatean fuzzy numbers or Fermatean

fuzzy numbers, about the alternatives, which could poten-
tially impact the accuracy of the decision results.

3. The process of selecting the best alternative from a set of

alternatives in a MCDM problem is hindered when the
uncertain data is forced to conform to the limited forms
of CIFNs and CPFNs. This can result in the degradation

of the data. To overcome this limitation, a more generalized
model is necessary to provide reliable solutions in these crit-
ical situations. CFFSs provide more accurate and precise
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results in addressing practical MCDM problems that

involve cubic Fermatean fuzzy information, as they serve
as a more effective extension of CIFSs and CPFSs.

4. The study that is being discussed does not limit its examina-

tion to only cosine similarity measures. It has also taken
into account the use of Euclidean distance measures. By
considering both measures, the study provides a compre-
hensive examination of the MCDM problem, incorporating

both a geometric and an algebraic perspective. This allows
for a more in-depth and nuanced understanding of the
problem being investigated.

4. Conclusion

This research endeavours to address a Multi-Criteria Decision
Making (MCDM) issue. In this MCDM problem, the authors
consider two measures: The Cosine Similarity measure and the

Cosine Distance between CFFSs. The CFFS values are used to
define the cosine similarity measure and Euclidean Distance
Measure. Furthermore, the fundamental characteristics of

these measures are thoroughly analyzed and examined. Conse-
quently, the authors have established novel Similarity Mea-
sures between the CFFSs based on the proposed Cosine
Similarity Measure and Euclidean Distance Measure. These

SMs not only fulfil the criteria for a similarity measure, but
they also address the associated decision-making problems
from both a geometric and algebraic perspective. The efficacy,

impact, and adaptability of this method have been demon-
strated through its application in a medical case study. In
the future, we aim to broaden the range of applications of

our proposed approach to encompass various fields [42 –44].
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