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Policy Points:

� Child lead poisoning is associated with socioeconomic inequity and per-
petuates health inequality.

� Methods for testing and detection of child lead poisoning are ill suited
to the current demographics and characteristics of the problem.

� A three-pronged revision of current testing approaches is suggested.
� Employing the suggested revisions can immediately increase our na-
tional capacity for equitable, inclusive testing and detection.

Abstract: Child lead poisoning, the longest-standing child public health epi-
demic in US history, is associated with socioeconomic inequity and perpetu-
ates health inequality. Removing lead from children’s environments (“primary
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2 C. Sobin et al.

prevention”) is and must remain the definitive solution for ending child lead
poisoning. Until that goal can be realized, protecting children’s health necessar-
ily depends on the adequacy of our methods for testing and detection. Current
methods for testing and detection, however, are no longer suited to the demo-
graphics and magnitude of the problem. We discuss the potential deployment
and feasibility of a three-pronged revision of current practices including: 1) ac-
ceptance of capillary samples for final determination of lead poisoning, with
electronic documentation of “clean” collection methods submitted by workers
who complete simple Centers for Disease Control and Prevention–endorsed on-
line training and certification for capillary sample collection; 2) new guidance
specifying the analysis of capillary samples by inductively coupled plasma mass
spectrometry or graphite furnace atomic absorption spectrometry with docu-
mented limit of detection ≤0.2 μg/dL; and 3) adaptive “census tract–specific”
universal testing and monitoring guidance for children from birth to 10 years
of age. These testing modifications can bring child blood lead level (BLL) test-
ing into homes and communities, immediately increasing our national capacity
for inclusive and equitable detection and monitoring of dangerous lower-range
BLLs in US children.

Keywords: child lead poisoning, social justice, social-structural inequity, child
health disparity.

Introduction

Lead poisoning in US children, the longest-standing child public health
epidemic in US history,1 is driven by social, economic, and racial dis-
parities. Although all children are vulnerable, lead poisoning is found
overwhelmingly amongminority children living in lower income neigh-
borhoods with old, unrenovated housing, and/or situated near major lead
hazard sources that contaminate the local air, water, and soil.1-5 Caused
largely by social structural inequities, the irreversible effects of child-
hood lead poisoning perpetuate life-long health disparities, representing
yet another manifestation of systemic racism.6

The definitive solution for protecting children from lead exposure is
removing lead from children’s environments. This has not been achieved,
however, for many complex reasons,1 and lead remains ubiquitous in
our modern environments,7-10 a testimony to the impact of unregu-
lated industry on the health of our nation.11 A recent study determined
that approximately half of the current US population has been exposed
to dangerous levels of lead in early childhood.12 Another study using
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Improving Equitability and Inclusion for Testing and Detection of Lead Poisoning in U.S. Children 3

National Health and Nutrition Examination Survey (NHANES) data
and census tract–reported factors associated with increased risk of child
lead exposure estimated that at least 1.2 million US children were an-
nually exposed to environmental lead, yielding blood lead levels (BLLs)
>10 μg/dL (the “action threshold” until January 2012).13 In another
set of reports by Reuters using aggregated national data, in over 3,000
US cities, the rates of lead poisoning among tested children (in 2018,
BLL ≥ 5.0 μg/dL) were found to be double those reported during the
height of the Flint, Michigan, child lead exposure crisis; in an estimated
1,100 US cities, the rates were at least three times higher.14,15 A reanal-
ysis of data is needed to determine the numbers of tested children with
BLLs greater than or equal to the current benchmark of 3.5 μg/dL (de-
termined in October 2021), but it is undoubtedly higher. These rates
are unacceptable by any standard.

Lead is a remarkably potent neurotoxin, and there is now broad accep-
tance that no level of lead exposure is “safe” for children. An abundance of
evidence has shown that chronic exposure to environmental lead yielding
child BLLs as low as 2.0 μg/dL16 (US National Toxicology Program,17

201218) disrupts cognitive and motor functions during childhood and
adolescence,19-29 damages the brain and peripheral organs,25,30-35 and in-
creases the risk of later cardiovascular disease, obesity, and mortality.2,3

The annual economic burden of child lead exposure has been estimated
to be $5.9 million in long-term medical care costs and an estimated
$50.9 billion in lost economic productivity.39

Finally, solving the problem of lead poisoning in US children will
require solutions for how we approach primary prevention and sec-
ondary prevention. With regard to primary prevention, new, feasible,
and broadly effective approaches are needed for identifying and remov-
ing lead hazard sources from children’s environments before exposure
occurs. With regard to secondary prevention, major gaps in how we
currently test for and detect child lead poisoning must be addressed.
In a study that modeled the numbers of lead-exposed children likely
“missed” for testing each year (based on NHANES child BLL data
from 1999 to 2010), it was estimated that, each year, at least 500,000,
and possibly more than 2 million, highest-risk children are never even
tested.13,15 Another recent study that analyzed geocoded birth certificate
data and BLL results from 2011 to 2018 in North Carolina showed that
30% of highest-risk children were never tested.40 National estimates are
similar, with 35% of a Medicaid cohort never receiving a first test, and
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4 C. Sobin et al.

50% of children never receiving critical follow-up monitoring.41 It is
critical to note that inclusive, equitable, and accurate child BLL testing
simultaneously provides valid and reliable surveillance data for a given
point in time, which is essential for demonstrating funding needs for
primary prevention goals.

This paper addresses the major gaps in secondary prevention, that is
testing for and detection of child lead poisoning. We consider alterna-
tive testing strategies that can increase our national capacity for inclusive
and equitable child BLL testing and that yield accurate, precise results
for dangerous lower-range child BLLs. We briefly summarize histori-
cal details that shaped the current testing practices, discuss how cur-
rent approaches may inadvertently miss testing hundreds of thousands
of high-risk children each year, and suggest how revised practices can
be deployed to substantially improve our case detection success among
high-risk children with dangerous lower-range BLLs. We also consider
the material, analytic, and time costs of the alternative strategies sug-
gested.

Some Historical Details Relevant to
Current Clinical Practices for Child
BLL Testing

Our interpretation of child BLLs has changed dramatically over the past
70 years. In the 1960s, clinical action was recommended for child BLLs
>60 μg/dL. Advances in assay technology during the 1950s and 1960s
allowed for increasingly precise estimates of heavy metals in aqueous
media,42 and the harm to children of exposure to lead yielding BLLs
well below 60μg/dL became apparent. Landmark studies of workers and
children living near the Asarco Smelter in El Paso, Texas, were the first
to quantify “silent effects” on cognitive and motor function in children
with BLLs <30μg/dL,43-46 and in 1979, the “clinical benchmark” for
lead poisoning was lowered to 25 μg/dL. Studies accumulated showing
damaging effects associated with lower and lower levels of lead exposure,
prompting gradual benchmark changes, first to 10 μg/dL (1991), then
to 5 μg/dL (2012), and, most recently, to 3.5 μg/dL (2021).47

Since at least 1990, the Centers for Disease Control and Prevention
(CDC) has repeatedly warned that no level of lead exposure should be
considered “safe” for children because no lower value could be identified
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at which toxic effects did not occur. Meanwhile, statistically based and
biologically arbitrary “reference values” or “action thresholds” were de-
fined to guide child intervention. Over the years, loss of the distinction
between “toxicity” and “reference value” complicated understanding of
the problem. For decades in many states, levels below a given benchmark
were neither reported nor monitored, leaving us without meaningful es-
timates of the numbers of children affected.

The current approaches for testing and identifying children with
lead poisoning were largely defined in 1988, when the benchmark for
intervention was 25 μg/dL. Enactment of the Lead Contamination
Control Act formally authorized local and state agencies to create
state-based, CDC-funded child lead poisoning prevention programs
(CLPPPs).48 Today, in many states, CLPPP funding, although grossly
underresourced, continues to be the backbone of child lead poisoning
prevention efforts. Every state provides information online that includes
different combinations of topics for parents on, for example, common
child lead hazard sources, the risks to children’s health of lead exposure,
expected timepoints and frequencies for child lead testing, how chil-
dren are identified for testing, and tiered interventions for managing
different levels of lead exposure.

Summary of Current Child BLL Testing
Practices

“Universal testing,” first instituted in 1991,49 aimed to reach the largest
numbers of children possible. Youngest children were targeted for test-
ing because studies of higher-range BLLs4 suggested that blood lead con-
centrations increased between approximately 6 and 12 months of age,
then decreased after 3 years of age, which is attributable to a combi-
nation of hand-to-mouth behavior and crawling, which exposed chil-
dren to lead-contaminated household dust and soil residue. Studies have
yet to be conducted that examine whether these trends are similar for
exposures yielding dangerous lower-range BLLs. Today, states diverge
broadly in guidelines and expectations for child lead testing. No state
requires, monitors, and enforces child BLL testing on a child-by-child
basis. As of 2017, ten states recommended “universal” testing at 12 and
24 months of age; in two of these states, guidance included children
up to 6 years of age, depending on their lead testing history.50 In the
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6 C. Sobin et al.

remaining 40 states, a “targeted testing” approach is used that relies on
parent completion of “personal risk questionnaires.” These query factors
known to be associated with child lead poisoning, for example, peeling
paint in the home and age of residence. The answers are used to de-
termine whether a child should be referred for testing. If the parents’
answers to one or more items is “yes,” and, in some states, “don’t know,”
a blood test using a venous sample (drawn from the child’s arm vein) is
required to determine lead poisoning.

In some cases, a child may be first “screened” using a point-of-care
device to analyze a finger-stick blood sample (recalls of these devices
will be discussed below). If the initial screen is considered negative for
lead exposure, further testing is not expected but may be conducted.
If the point-of-care device screen is considered positive for lead expo-
sure, a BLL test of a venous sample is required for “final determina-
tion” of lead exposure. In past years, the inappropriate use of the point-
care-devices to analyze venous samples resulted in an unknown number
of false-positive results, prompting a US Food and Drug Administra-
ton (FDA) safety warning51 against this practice. Venous samples are
expected to be sent to a laboratory for analysis by one of several possi-
ble assay methods (e.g., graphite furnace atomic absorption spectroscopy
[GFAAS], atomic absorption spectroscopy, inductively coupled plasma
optical emission spectrometry, inductively coupled plasma mass spec-
trometry [ICPMS]); however, guidance regarding an acceptable limit of
detection (LOD) for the child blood lead assay is not provided. Labora-
tory results are typically returned within 2-4 weeks.

As of 2020, in 43 states,52 medical health care workers and medical
facilities are required to report all child BLL results to state agencies
for surveillance purposes. In the remaining states, reporting is based on
a state-defined benchmark. States differ broadly regarding which child
BLLs trigger which level of intervention. A BLL of 3.5 μg/dL triggers
home testing in three states; in all other states, parent education is pro-
vided for lower-range exposures and home testing begins only on detec-
tion of a BLL of ≥10 μg/dL; a few states include the provision of early
intervention services for lead-exposed children. In some states, two ve-
nous sample tests within 3 months yielding a child BLL of ≥15 μg/dL,
or one venous sample test yielding a child BLL ≥20 μg/dL, are required
before any action is taken to identify and remove possible home lead
hazard sources.
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Improving Equitability and Inclusion for Testing and Detection of Lead Poisoning in U.S. Children 7

Reorienting Clinical Practice to
Promote Equitability, Inclusion, and
Accuracy in Child BLL Testing

Three aspects of current testing practices may be directly contributing
to gaps in child BLL testing and can be amended as discussed below and
summarized in Table 1.

1. Accept results based on capillary sample blood draws for deter-
mination of lead poisoning with “clean” collectionmethods elec-
tronically documented by certified BLL sample collectors

All states currently require a venous sample blood test as a “final de-
termination” of child lead poisoning, and this may be the single biggest
barrier to equitable, inclusive child testing. The challenge of getting
children at risk for lead exposure into child clinics and doctors’ offices—
of explicit concern to the CDC in 199753—remains a concern today. Ve-
nous sample blood collection is uncomfortable and frightening to chil-
dren and to some parents, decreasing the likelihood of compliance. The
discomfort during the procedure is dependent on the skill of the phle-
botomist. In many underserved areas, particularly rural areas, pediatric
phlebotomists can be scarce or nonexistent. Because phlebotomists are
required for venous sample blood draws, they are costly.

More broadly speaking, research has shown that compliance with
pediatric preventive services are significantly associated with socio-
economic factors.54 Regardless of insurance issues, parents may be work-
ing one or more jobs, making visits to doctor’s offices not only expensive
but also difficult if not impossible to navigate. Immigration concerns of
parents and/or relatives can discourage parents from seeking services or
guidance from anyone they may perceive as an authority figure. In many
states, depending on whether parents are insured or their type of insur-
ance, parents may be expected to pay some or all of the cost for a venous
sample BLL test (e.g., $70-$120 per child). Medical expenses have be-
come the number one reason for new family bankruptcies in the United
States,55 and for good reason; insured and uninsured parents alike fear
adding medical expenses to their monthly budgets.

The original 1991 CDC guidance for child BLL testing described
venous sample blood tests as the “preferred” method for confirming
child lead exposure.53 Note, however, that this guidance also stated that
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10 C. Sobin et al.

capillary blood samples were a “reasonable option” if specific methods
to maximally reduce the chances of lead contamination from the surface
of the skin were strictly followed.53 Over time, the venous sample blood
test became the standard for definitive confirmation because of concerns
that capillary samples (e.g., finger stick) were too vulnerable to contam-
ination and could result in false-positive results.

Without question, if capillary samples were approved for the deter-
mination of lead poisoning, strict and enforceable guidelines for hand-
cleaning would have to be instituted, particularly given the current child
BLL reference value of 3.5μg/dL. This is not an insurmountable obsta-
cle. To ensure “clean” capillary samples, a standard hand-cleaning pro-
tocol could be defined that uses proven methods for removing lead from
the surface of the skin. Hand-cleaning methods have proven efficacy and
are simple and inexpensive to carry out. Rigorous studies conducted by
researchers at the CDC/National Institute for Occupational Safety and
Health showed the high efficacy of using two consecutive isostearami-
dopropyl morpholine lactate/citric acid wipes (marketed as LeadOffTM,
Hygenall Corporation, Huntsville, AL) with a clear water rinse for clean-
ing lead from the surface of the skin (lead retrieval from skin surface >

99%).56

Confirming adherence to a defined cleaning protocol is, of course, crit-
ical. There are many low-cost, technology-assisted approaches that could
be used. For example, CDC-sponsored certification for the collection of
capillary samples could be required for all sample collection workers.
The training could include documentation of minimum education ex-
pectations and completion of a short test. The protocol for the capil-
lary draw itself could require two certified capillary collection workers,
one who executes the stepwise hand-cleaning procedure and one who
observes and documents the procedure on an electronic form. For each
child, the observer would record the completion of each required step in
“real time” using an official data- and time-stamped CDC-issued form
with simple checkboxes. Both workers could be required to sign each
form. Providing the form virtually through a secure CDC-sponsored
website for use on a laptop or tablet with immediate upload of infor-
mation and signatures could be the basis for a national registry database
of child blood sample collection. Information from the date- and time-
stamped electronic collection forms can be readily used to evaluate pos-
itive child BLL test results.
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Improving Equitability and Inclusion for Testing and Detection of Lead Poisoning in U.S. Children 11

Capillary sample collection is considered by the FDA to be a “nonin-
vasive” procedure with practically nomedical risk other thanmomentary
discomfort on the fingertip for some children. Finger-stick blood sam-
ples are now widely used among adults for in-home testing of, for exam-
ple, blood sugar and coagulation, andmany children recognize and easily
cooperate with the procedure. Child-specific lancets ensure the greatest
comfort, and many children may not even feel the stick; small vibrat-
ing gadgets are effective in distracting worried children while blocking
perception of the finger stick (Pain Care Labs BuzzyTM, Atlanta, GA).

Using certified capillary sample collectors trained in deployment and
electronic reporting of hand-cleaning methods that ensure uncontami-
nated capillary samples would be far more cost-effective, feasible, and
child and parent friendly than requiring venous sample blood collec-
tion by pediatric phlebotomists. It would also allow child BLL test-
ing to be conducted in community locations that children and fam-
ilies know, trust, and frequent. In our research studies, for example,
we formed strong and lasting alliances for child BLL testing with lo-
cal public elementary schools.27,57 Ideal locations would likely vary
depending on the characteristics and needs of the community. These
might include public schools, Head Start centers, Special Supplemental
Nutrition Program for Women, Infants, and Children locations, YM-
CAs/YWCAs, libraries, churches, synagogues, mosques, and/or repur-
posed COVID-19 vaccination sites. Capillary samples could also be col-
lected by mother/infant/child intervention specialists who have already
established relationships during the provision of other support services.
Given the magnitude and demographics of the current child lead expo-
sure problem in the United States, future success in reducing child lead
poisoning in the United States will likely require the use of capillary
samples for determination of exposure.

2. Provide guidance for the analysis of capillary samples by ICPMS
or GFAAS with documented LOD <0.2 μg/dL.

For a given range of lead concentrations, the assay method used for
estimating BLL from whole blood samples determines the precision and
accuracy of the result and, thus, its practical value for surveillance and
monitoring. The median child BLL in the United States has decreased
overall in recent decades, and the current problem of child lead poisoning
largely concerns values in the dangerous lower range (e.g., <10 μg/dL)
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12 C. Sobin et al.

and requiring assay methods with high precision and accuracy. Because
no level of lead exposure is “safe” for children, precise and accurate detec-
tion of BLLs below the current statistically determined reference value
(3.5 μg/dL) is critical for long-term surveillance and prediction and for
ensuring meaningful integration of national-level data.

When the 1991 CDC guidance was issued, relatively few feasible
assay methods were available. That situation has changed substantially
in the intervening 31 years. Most assay technologies have improved,58,59

but the LOD can vary depending on calibration parameters.58,60 With
recent technological advances, both ICPMS and GFAAS provide the
lowest elemental detection limits for lead.61,62 Since its introduction in
1980,63 ICPMS has become a “gold-standard” method for precisely and
accurately estimating lowest level elements in aqueous solutions such
as human blood,58,60,64,65 and its LOD can be assumed to be low (e.g.,
well below 0.2 μg/dL). For GFAAS, an LOD ≤0.2 is readily achievable
with using a Zeeman effect background correction (spectral splitting by
magnetic field).61,66 Importantly, both methods require no more than
50 μL of “clean” whole blood capillary samples, which can be collected
via child-sized finger-stick lancets, or arm-stick (Tasso, Inc., Seattle,
WA) methods.

There are many options for ensuring the feasibility of this new guid-
ance. For example, a nationwide network of CDC-approved ICPMS-
or GFAAS-equipped laboratories, with annually documented LODs of
≤0.2μg/dL, could be established. Federal contracts could lower the cost
per sample, and state “buy-in” costs for testing could be automatically
deducted from state-level CLPPP grants. (Not all states currently have
CLPPP funding, and this benefit could meaningfully incentivize states
who do so.) Samples would be accepted for analysis only if the requisite
electronic child sample documentation form (including verification of
hand-cleaning protocol) had been uploaded by the trained and certified
sample collectors. Anonymized child BLL results, including the child’s
sex, age, race/ethnicity, and census tract, could be uploaded into a na-
tional registry database, providing new capacity to geographically map
“hot spots” in real time and monitor child BLLs across time. These re-
sults would be used to determine “census tract–specific” expectations for
child BLL testing described below.

It is important to briefly address the limitations of point-of-care de-
vices for child BLL screening. The numbers of doctors’ offices that con-
tinue to use point-of-care devices is not known. The BLL estimates from
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Improving Equitability and Inclusion for Testing and Detection of Lead Poisoning in U.S. Children 13

these devices have been repeatedly shown to be of questionable reliabil-
ity at levels below 10 μg/dL.18,67-69 Given the current reference value
of 3.5 μg/dL, these devices are no longer appropriate for managing the
current problem68,70 and could seriously undermine meaningful child
surveillance and monitoring.

3. Provide adaptive “census tract–specific” universal testing guid-
ance for children 0-10 years.

Once a hallmark of CLPPPs nationwide,49 universal child testing for
lead exposure is no longer recommended in 72% (36/50) of US states.52

Instead, the CDC recommends that state and local health authorities de-
velop their own targeted screening and intervention guidelines based on
local risk factors and available resources. Most states use a targeted refer-
ral system for determining which children should be tested. Referrals for
child lead testing can come from a variety of sources; in most cases, the
process relies on parent responses to a “personal risk” questionnaire, ad-
ministered in a clinic, doctor’s office, well-child health care visit, or other
public health service center. Thus, at the core of screening, compliance is
the willingness and intention of medical providers. Barriers to screening
can include the number of well-child screenings required in one office
visit and/or lack of knowledge among providers regarding both the cur-
rent state recommendations and the dangers associated with chronic lead
exposure. When providers pursue child BLL screening via the targeted
referral approach, the form used queries of child and home characteristics
that are known risk factors for child lead exposure, and the items vary
somewhat by state. A “yes,” and, in some states, “don’t know,” response
will trigger a referral for child BLL testing. The forms are designed to be
“parent friendly” and “parent appropriate” and are available in different
languages specific to the community. Nonetheless, the unreliability of
self-report has been extensively studied and described.71 With regard to
parents of children at risk of lead exposure, any of the following could
impact whether a parent would be willing and/or able to provide ac-
curate information regarding child lead exposure risk factors: whether
the form was completed without assistance, leaving the interpretation
of questions and/or answers up to the parent; whether a trained and sen-
sitive worker is available to check and confirm answers as needed; how
many other forms were completed at the same time; whether the parent
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14 C. Sobin et al.

was comfortable requesting a form written in their language of choice;
and whether “I don’t know” responses were provided as an option.

It is also important to consider the potential implications of the ques-
tions for parents, particularly those querying conditions of the living en-
vironment. Parents who face economic challenges can have many prac-
tical reasons for feeling that they need to carefully manage how medical
authority figures perceive the home they provide for their children. Any
of the following factors can also directly impact how parents respond
to home environment questions: whether the parent was previously un-
domiciled, whether the parent has faced child custody issues, whether
the parent receives or has had challenges obtaining public assistance,
whether the parent lives in public housing, and the extent to which the
parent perceives any of the questions on the form as a reflection of the
quality of home environment they provide for their children.

The extent to which the current “personal risk” referral system misses
detection of lead-exposed children would be difficult to estimate, but
a return to some form of “universal” child BLL testing guidance for
all states would simply remove issues related to the current referral ap-
proach.

Because the current problem appears to cluster largely in underserved
neighborhoods, strategic use of baseline testing to define adaptive “cen-
sus tract–specific” guidelines for child BLL testing could ensure that re-
sources are targeted to the highest-needs areas. For example, two rounds
of comprehensive child BLL testing conducted over one 6-month inter-
val could quickly reveal which census tracts require ongoing surveillance
by twice-per-year BLL monitoring and which appear to be relatively low
risk, with follow-up testing every 3 years, for example.

Another issue that is not managed by current clinical practices con-
cerns ages of risk. In many states, BLL testing is recommended only
for infants and toddlers up to 3 years of age. Even in states that have
maintained “virtual universal testing,” testing recommendations stop at
5 or 6 years of age. Although smaller children have higher risk of ex-
posure through hand-to-mouth behavior and more readily absorb lead
because of their small body size, this does not mean that older children
are not also at risk. Studies from at least the past 15 years, including
children older than 6 years of age, have quantified their vulnerabil-
ity to the neurotoxic effects of lead exposure and that the severity of
these are mediated by common genetic variants.27,72-76 These findings
are corroborated by research investigating neurodevelopment during the
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Improving Equitability and Inclusion for Testing and Detection of Lead Poisoning in U.S. Children 15

“forgotten years” (e.g., 6-12 years of age) when the brain continues to
undergo critical periods of growth and change.77-79 Because recommen-
dations for BLL testing and reporting have been limited to the youngest
children, data are largely not available regarding how many school-age
children might also be chronically exposed to lead. Including school-age
children in adaptive “census tract–specific” universal testing is critical
for understanding the scope of the current problem and for increasing
knowledge on the effects of lead exposure in these middle school years.
To ensure feasibility, for the initial deployment, ages included could be
from birth to 10 years of age and expanded to preadolescence for com-
munities over time with demonstrated higher risk.

The recommended frequency of BLL testing is also important to con-
sider. In most states, if children are tested, they are tested once or twice
before 2 or 3 years of age. Some states repeat testing once or twice before
the age of 5 or 6 years depending on whether earlier tests were provided.
A few states recommend annual testing for highest-risk children up to
5 or 6 years of age. In the vast majority of states, one or two negative
blood lead level tests conducted during infancy or toddlerhood are used
to rule out child lead exposure.

A blood test provides the best available approximation of circulating
lead, but it is an imperfect surrogate marker. The physiology of lead
absorption in infants, toddlers, and children, and thus the amount of
lead available for detection in a blood sample at a given point in time,
is influenced by complex interacting physiological and environmental
factors that fluctuate.80

The amount of circulating lead available to be detected is necessar-
ily dependent on the timing of absorption from children’s lungs81-84

and/or gut85-88 and the ratio of lead deposited in organs,89,90 both
of which involve the interaction of dynamic mechanisms influenced
by individual developmental differences, developmental stage, and
genetics.91-93 These processes are in turn influenced by varying envi-
ronmental factors, including, for example, the route of exposure (in-
halation vs. ingestion),94,95 type of lead hazard source and frequency
of exposure,83 and socioeconomic factors that result in, for exam-
ple, empty stomachs,96,97 low calcium stores,98 and other nutritional
deficits that can increase lead absorption and decrease the body’s ca-
pacity to excrete toxins, depending on the age of the child.25,99,100 The
amount of lead available for detection in blood is also dependent on its
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16 C. Sobin et al.

half-life—estimated to be 28-35 days for single exposures, but it is a far
more difficult calculation for children chronically exposed to lead.101-103

In recent longitudinal studies of 193 children 6 months to 16 years of
age residing in neighborhoods previously designated “high risk” for lead
exposure, BLLs within individuals varied significantly over a 24-month
period, and with repeated testing, age was not a significant predictor of
BLL.104

Unless a lead hazard source is available to a child to ingest or inhale
in some highly consistent way, all other things being equal, child BLLs
would be expected to fluctuate over time rather than stay the same, par-
ticularly those from exposures to multiple lower-level sources. Fluctu-
ating child BLLs, however, cannot be assumed to represent fluctuating
risk to the developing brain and other organs. The instability of BLLs
can guide recommendations for child testing at least twice per year for
children living in census tracts determined to be at “high risk” of lead
exposure.

Feasibility: Material, Analytic, and
Time Costs for Capillary Sample
Collection with ICPMS

The following estimated costs are based on our experiences over the past
15 years using the above-described methods in six elementary schools
and two local churches for the collection of over 1,000 child finger-
stick capillary blood samples, collected using documented “clean” meth-
ods and analyzed by ICPMS. We began our studies in 2007 by using
LeadCare devices until we realized their limitations for reliably detect-
ing dangerous lower-range child BLLs,68 at which point we used only
ICPMS analysis of finger-stick capillary samples collected following a
strict and documented hand-cleaning protocol using a collector/observer
protocol similar to that described above.

The total material costs of BLL assays, including materials, supplies,
and ICPMS analyses, were between $36 and $42 per child sample.
Based on conversations with other laboratories, the estimated cost of
GFAAS would be comparable or less. With a team of as few as two
specially trained workers—one worker to complete document hand-
cleaning, complete protocol tracking forms, and organize paperwork,
and one worker to collect samples—in public elementary school settings,
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Improving Equitability and Inclusion for Testing and Detection of Lead Poisoning in U.S. Children 17

we were able to complete capillary sample collection for 50-60 children
during a regular school day (10 children at a time called en masse from
each of six 40-min Physical Education periods), yielding 250-300 sam-
ples in one 5-day week. For an elementary school of approximately 500
children, all children in the school could be tested in one 2-week period.
Special testing times (usually early morning) were designated for sam-
ple collection from infants and toddlers. Repeat testing was conducted
at 4- to 6-month intervals. For a given elementary school, for example,
biannual testing could be scheduled for one 2-week period in the fall
and spring terms. Importantly, a “universal” biannual testing approach
ensures that, for children with identified lead poisoning, follow-upmon-
itoring following intervention becomes routine. When BLLs are moni-
tored over time, geographically mapping105 (e.g., via ArcGIS) is valu-
able for determining exposure “hot spots” and also for identifying areas
in which no children have BLLs >1 μg/dL, for example. With bian-
nual testing, patterns of exposure can be examined within 2 months of
sample collection, and decisions can be made regarding how the test-
ing strategy should be modified to best manage different BLL result
outcomes.

Conclusion

Although removing lead from our children’s environments must remain
our central goal (primary prevention), lead continues to be ubiquitous
in the United States. Once exposed, there are no interventions that can
reverse the potentially devastating effects of lead exposure, particularly
those associated with dangerous lower-range BLLs.106 As this child pub-
lic health epidemic continues, we are dependent on accurate and precise
detection of lead poisoning to limit its short- and longer-term effects.
Current clinical approaches for identifying children with lead poison-
ing are ill-suited to the magnitude and demographics of the problem
and, each year, inadvertently “miss” testing for hundreds of thousands
of children. Attention and resources must focus on substantially improv-
ing our national capacity to provide inclusive, equitable, and precise BLL
testing for all children, particularly those at highest risk of exposure to
lead, yielding dangerous lower-range BLLs. Revising federal guidance
to accept capillary blood samples collected with verified “clean” sam-
pling methods analyzed by ICPMS or GFAAS with a minimum LOD of
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18 C. Sobin et al.

<0.2μg/dL for determination of child lead exposure with the frequency
of repeated monitoring for children 0-10 years of age determined accord-
ing to adaptive “census tract–specific” schedules would remove current
systemic barriers to testing for highest-risk children and dramatically
increase our national capacity for inclusive and equitable detection and
monitoring of lead poisoning in US children.
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