
Computers and Electronics in Agriculture 207 (2023) 107737

0

Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

journal homepage: www.elsevier.com/locate/compag

Review

LiDAR applications in precision agriculture for cultivating crops: A review of
recent advances
Gilberto Rivera, Raúl Porras, Rogelio Florencia ∗, J. Patricia Sánchez-Solís
División Multidisciplinaria de Ciudad Universitaria, Universidad Autónoma de Ciudad Juárez, Av. José de Jesús Macías Delgado 18100, Ciudad
Juárez, 32579, Chihuahua, Mexico

A R T I C L E I N F O

Keywords:
Agriculture 5.0
Remote sensing
Light detection and ranging
Point cloud processing
Food sustainability

A B S T R A C T

In recent years, Light Detection and Ranging (LiDAR) technology has been one of the most innovative subjects
in laser scanning, remote sensing, and object detection systems. This technology may be popular because it can
pinpoint structures or zones of interest in millimetre detail. It can also highlight variations and irregularities,
such as surface degradation and vegetation growth. This paper presents a review of the specialised literature
on LiDAR systems applied to precision agriculture; specifically, in cultivating crops. First, some preliminaries
of LiDAR systems according to the mode of transport used, considering terrestrial, mobile, and aerial laser
scanners, are given. Subsequently, a well-organised taxonomy of recent LiDAR applications based on the
activity being performed is presented. Here, the following four categories are considered: (1) crop-related
metric estimation, (2) tree and plant digitisation, (3) vision systems for object detection and navigation, and
(4) planning and decision support. Lastly, we discuss some current trends and research challenges in applying
LiDAR technology to cultivation activities in accordance with the state-of-the-art literature.
1. Introduction

State-of-the-art studies report that current agricultural techniques
will hardly cover the demand for food by 2050 (Tripathi et al., 2019).
This is the reason behind the increasing interest of governments and
researchers worldwide in applying technology to agriculture. The term
most commonly used to describe these trends is Agriculture 5.0. The
objective is that agriculture should benefit from applying big data, the
Internet of Things (IoT), and artificial intelligence (AI). A great variety
of recent studies have examined vision systems, such as RGB cameras,
photogrammetry techniques, stereo cameras, and Light Detection and
Ranging (LiDAR) technology. LiDAR technology was conceptualised in
the mid-1960s, but it was not until the 1970s that the first version of
LiDAR was developed in the USA, Canada, and Australia (Irish and
Lillycrop, 1999). LiDAR is a remote sensing technology that uses a
pulsed laser to measure ranges (variable distances). These pulses are
commonly combined with information recorded by airborne systems
to generate highly accurate 3D models (cf. Wang et al., 2018).

LiDAR systems base their measurements on using the speed of light.
Because light travels at a constant and known speed, LiDAR systems
can calculate – with significant accuracy – the distance between the
collision point and the sensor that emitted the pulse. LiDAR systems
periodically trigger light pulses and build up a map of the environment
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from a series of detected collisions. It should be noted that LiDAR sys-
tems are equipped with more than one laser pulse, which influences the
performance of the system. For example, companies such as Velodyne
and SICK use sensors that are equipped with from 16 to 128 channels.
Other essential performance features include the operating range, the
estimated error, and the scanning frequency. In these sensors, the
coordinates of the light collisions are stored in a file that is commonly
called the ‘point cloud’. These points are represented in a 3D space.

At first, LiDAR systems were little used because they were very
expensive. However, over time, the cost of investment in these systems
has become cheaper and this has allowed LiDAR technology to be used
in many applications. For example, LiDAR technology has been used
to estimate the depths of the seabed using a bathymetric LiDAR sen-
sor (e.g. Janowski et al., 2022; Specht et al., 2022; Wang et al., 2022);
to obtain a perspective of the environment using 360◦ LiDAR sensors in
autonomous vehicles (e.g. Bhat et al., 2021; Chen et al., 2021; Kamble
and Kharche, 2021); to detect areas that are prone to flooding based on
digital elevation models (e.g. Persiano et al., 2021; Blatrix et al., 2022);
to predict landslides by identifying the morphological characteristics of
the surface (e.g. Ilesanmi et al., 2021; Stumvoll et al., 2021; Zhou et al.,
2022); to detect environmental problems based on atmospheric studies
using sensors such as Doppler LiDAR, Raman LiDAR and Differential
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Fig. 1. Timeline of the breakthrough antecedents published from 1994 to 2016.
Absorption LiDAR (e.g. Lin and Liu, 2021; Shemanin et al., 2021;
Gaudet et al., 2022); to establish the shape and magnitude of a surface
in geodesy (e.g. Berrino et al., 2021; Rodriguez Padilla et al., 2021;
Akiyama et al., 2022); to generate cartographic data (e.g. Barragán
et al., 2016; Maderal et al., 2016; Rincón and García, 2019); to help
prevent forest fires by analysing the structure of the vegetation and
the state of the shrub layer in a forest (e.g. Fernández-Álvarez et al.,
2019; Xian et al., 2020); to generate digital models that allow the
automation of many tasks, from soil preparation to crop management
and harvesting in agriculture (e.g. Torres-Sánchez et al., 2015; Tsolakis
et al., 2019; Moreno et al., 2020). In this paper, we are interested in
LiDAR’s application in precision agriculture for cultivating crops.

In the 1990s, several studies started to make incursions into agricul-
ture using LiDAR technology. One of the oldest applications dates back
to 1994, in Europe, where LiDAR was used to monitor vegetation for
the early detection of stress and damage (Cecchi and Pantani, 1994).
During 1997 in the United Kingdom, Walklate et al. (1997) measured
top fruit tree canopies for pesticide applications using a LiDAR system.
In addition, a LiDAR application to quantify 𝑃𝑀10 emissions from
agricultural non-point sources was reported in 1998 (Holmén et al.,
1998).

The 2000s saw the inception of the use of LiDAR systems to obtain
3D tree structures. In 2007, Omasa et al. (2007) proposed a LiDAR
system to monitor changes in the structure of tomato plants. In ad-
dition, Rosell Polo et al. (2009) proposed adding a kind of elevator
on a tractor to simulate a vertical axis in a 2D LiDAR sensor to
estimate the 3D structure of apple trees, pear trees, and grape vines,
using AutoCAD. Another breakthrough that increased the popularity of
LiDAR technology was its use as an object detection system for crop
scouting, where it was used to detect and classify plant species. Weiss
et al. (2010) presented a pioneering algorithm for the detection and
classification of plants using a point cloud that was obtained with a
low-density LiDAR system. Following this pivotal study, the use of AI
techniques with LiDAR systems became more popular in agriculture.

Then, in the 2010s, several LiDAR applications for crop mapping
emerged. Willers et al. (2012) proposed a LiDAR application to create
vigour and elevation maps of cotton plants, which are potentially
helpful for maintenance tasks in this type of crop. Considering that
one of the most widely used indices in viticulture is the Leaf area
index (LAI), Arnó et al. (2013) decided to evaluate the feasibility of a
tractor-mounted LiDAR system to estimate LAI because this index can
provide an indirect method to determine grape yield and quality. In
2014, Hämmerle and Höfle (2014) presented a study to evaluate the
effects of reducing the density of the point cloud in crop surface models.
Similarly, in 2015, Koenig et al. (2015) compared three classification
2

algorithms to predict the total mass of the barley when it will be
harvested. Lastly, Underwood et al. (2016) in 2016 presented a mobile
terrestrial scanning system for almond orchards to map the distribution
of flowers and fruit to make it possible to predict the yield of individual
trees. Fig. 1 depicts the timeline of the breakthrough antecedents that
were referred to above, which were published from 1994 to 2016.

LiDAR technology is now used in a wider range of cultivation-
oriented LiDAR applications; for instance, it has been used to detect
fruits, estimate and monitor tree structures, detect urine patches in
pastures, and prune fruit trees.

In the majority of the cultivation-oriented LiDAR applications, de-
scriptive statistics (mostly percentiles) are used to process the point
clouds (e.g. Yuan et al., 2018). Given the accuracy of LiDAR systems,
using this type of strategy is useful when only one calculation on
the crop is required. Meanwhile, clustering techniques are used for
more elaborate applications; for instance, obtaining the features of
tree canopies (e.g. Wu et al., 2020; Zhou et al., 2020), and detecting
fruits (e.g. Gené-Mola et al., 2020). Voxelisation is another popular
technique in LiDAR applications, where it is used in applications whose
main objective is to create a digital representation of the crop that is as
close as possible to reality (e.g. Lau et al., 2018). Lastly, it is common to
use licensed software that incorporates these techniques for processing
point clouds; among the most popular are CloudCompare (e.g. Hadas
et al., 2019), MatLab (Matrix Laboratory) (e.g. Husin et al., 2020), and
ROS (Robot Operating System) (e.g. Dhami et al., 2020).

This paper contributes by presenting a systematic review of the
state-of-the-art literature on LiDAR systems intended to aid in cultivat-
ing crops. We only considered research studies published in the last
five years – specifically, from 2017 to 2022 (November) – because
this technology is constantly evolving (cf. Walsh, 2022). The studies
are classified into a well-organised taxonomy, which enables us to
identify current trends and discuss the research challenges. This paper
is structured as follows. Section 2 presents some preliminaries con-
cerning terrestrial, mobile, and aerial laser scanners. Section 3 reviews
the literature and classifies the studies according to the activity being
performed. Section 4 discusses some concluding remarks, stressing
current challenges and trends in this field of applications.

2. Background: Terrestrial, mobile, and aerial laser scanners

LiDAR systems in agriculture can be classified into three categories
according to how they are transported while scanning (Wang et al.,
2018). The first one is aerial LiDAR (Airborne Laser Scanner, ALS),
where the LiDAR system is mounted on an unmanned aerial vehicle

(UAV). The second one is terrestrial LiDAR (Terrestrial Laser Scanner,
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Table 1
ALSs applied to automate tasks in precision agriculture.

Task LiDAR sensor Performance

Health monitoring LiDAR VLP-16 (e.g. Dhami et al., 2020) Operating range: 100 m, error: 30 mm, scanning frequency: 5–20 Hz
LiDAR RIEGL VUX-1UAV (e.g. Zhou et al.,
2020)

Operating range: 1.5–1,415 m, error: 5–10 mm, scanning frequency: 1200 Hz

Height monitoring LiDAR VLP-16 (e.g. Liu et al., 2020) Operating range: 100 m, error: 30 mm, scanning frequency: 5–20 Hz
LiDAR LMS511-10100 PRO (e.g. Zhang
et al., 2021)

Operating range: 40 m, statistical error: 6–14 mm, systematic error: 25–50 mm,
scanning frequency: 25–100 Hz

LiDAR RIEGL VUX-1UAV (e.g. Ivushkin
et al., 2019)

Operating range: 1.5–1,415 m, error: 5–10 mm, scanning frequency: 1200 Hz

LiDAR HDL-32 (e.g. Maimaitijiang et al.,
2020)

Operating range: 80–100 m, error: 20 mm, scanning frequency: 5–20 Hz

Inventory estimation LiDAR HDL-32E (e.g. Hadas et al., 2019) Operating range: 80–100 m, error: 20 mm, scanning frequency: 5–20 Hz

LAI estimation LiDAR VLP-16 (e.g. Zhang et al., 2020) Operating range: 100 m, error: 30 mm, scanning frequency: 5–20 Hz
LiDAR HDL-32 (e.g. Maimaitijiang et al.,
2020)

Operating range: 80–100 m, error: 20 mm, scanning frequency: 5–20 Hz

Estimation of soil properties IGI LiteMapper laser system (e.g. Florent
et al., 2019)

Operating range: 250–1900 m, error: 15–20 mm, scanning frequency: 100–1800 kHz

LiDAR Quanergy M8 (e.g. Trepekli and
Friborg, 2021)

Operating range: 100 m, error: 30 mm, scanning frequency: 5–20 Hz

Estimation of pesticides LiDAR RIEGL LMS-Q 1560 (e.g. Wu et al.,
2020)

Operating range: 2,700–5,800 m, error: 20 mm, scanning frequency: 200–800 kHz

Estimating yields LiDAR VLP-16 Puck-Lite (e.g. Sofonia et al.,
2019)

Operating range: 100 m, error: 30 mm, scanning frequency: 5–20 Hz

Detecting trees LiDAR VLP-16 (e.g. Itakura and Hosoi,
2018)

Operating range: 100 m, error: 30 mm, scanning frequency: 5–20 Hz

Applying fertiliser LiDAR VLP-16 (e.g. Shendryk et al., 2020) Operating range: 100 m, error: 30 mm, scanning frequency: 5–20 Hz

Forecasting production LiDAR VLP-16 (e.g. Masjedi et al., 2020) Operating range: 100 m, error: 30 mm, scanning frequency: 5–20 Hz
s

s

TLS), where the LiDAR system uses a stationary stand for scanning
(e.g. a tripod); consequently, multiple scans at different locations are
necessary to obtain a complete point cloud. The last one is mobile
LiDAR (Mobile Laser Scanner, MLS), which is more versatile in terms
of the vehicle on which it can be mounted (e.g. it can be mounted on
a tractor, on a car, on a backpack, or it can be even held by a person
walking).

The bird’s-eye view (BEV) is one of the most popular techniques to
visualise point clouds in ALSs: it simulates a bird’s view when flying.
For example, Itakura and Hosoi (2018) used BEV to count trees with an
ALS. Moreover, this type of LiDAR can also be used to estimate plant
height (e.g. Liu et al., 2020; Zhang et al., 2021) and the properties of
the soil (e.g. Cassidy et al., 2019; Florent et al., 2019), and to monitor
tree health (e.g. Dhami et al., 2020; Zhou et al., 2020). However, a
wider variety of ALS applications can be found in the literature.

Table 1 lists cultivation-oriented tasks that use ALSs. The first col-
umn indicates the task, the second column indicates the LiDAR sensor
that was used to collect the data, and the third column presents the per-
formance of the sensor. Not all suppliers provide the same specifications
in the data sheets. Therefore, we have selected the following relevant
features: operating range, (statistical/systematic) maximum error, and
scanning frequency. According to Table 1, the (Velodyne) VLP-16.1
updated as the ‘Puck’ series) is the most common LiDAR sensor that is
sed as an ALS, followed by (Velodyne) HDL-322 The addressed tasks
nclude:

• Making estimations of tree health, tree height, tree inventory, LAI,
soil properties, and crop yield.

• Tree detection.
• Planning, including forecasting production and applying fertiliser.

On the other hand, TLSs and MLSs have become increasingly pop-
lar because they have a higher spatial resolution, allowing a more
etailed and accurate characterisation of crops compared to ALSs (Wu

1 https://velodynelidar.com/products/puck/
2 https://velodynelidar.com/products/hdl-32e/
3

s

et al., 2019). Table 2 presents a list of the state-of-the-art studies
applied to crop cultivation using TLSs/MLSs (its columns should be
interpreted as in Table 1). Here, the technical specifications of TLSs
and MLSs are put together because they are basically the same sensors,
but with a different support. In Table 2, the scanning speed is provided
when the scanning frequency was unavailable. According to Table 2,
the variety of LiDAR sensors is broader. Although no sensor dominates
this list, the applications of the following LiDAR sensors stand out:
(SICK) LMS400,3 (SICK) LMS111,4 (Hokuyo) UTM-30LX,5 (FARO) Fo-
cus X330,6 (SICK) LMS511,7 and (Velodyne) VLP-16. According to the
state-of-the-art literature, TLSs and MLSs have been applied to a wide
range of activities that are connected to crop cultivation (see Table 2).

LiDAR systems can be used for measuring crop features and the
properties of the soil, digitising orchard plants, detecting objects (e.g.
fruits, plants, and trees), and planning agricultural activities. ALSs have
chiefly been used to monitor activities in orchards because they are
mostly used from a BEV perspective. This may limit their use to only
obtaining information on tree canopies. However, ALSs have been used
as navigation systems for UAVs (Hu et al., 2018), to maximise produc-
tion in sugar cane cultivation (Shendryk et al., 2020), and to detect
and classify domes covering different types of orchards (Tiwari et al.,
2020). The use of LiDAR systems for agricultural activities started with
ALSs, which has led to there being more algorithms to process point
clouds from a BEV perspective. Although the limitations of the BEV
perspective may be mitigated with double return (or even triple return)
LiDAR systems, this implies a significant increase in the acquisition cost
for this type of system.

3 https://www.sick.com/mx/en/detection-and-ranging-solutions/2d-lidar-
ensors/lms4xx/lms400-2000/p/p112350

4 https://www.sick.com/it/en/detection-and-ranging-solutions/2d-lidar-
ensors/lms1xx/lms111-10100/p/p109842

5 https://hokuyo-usa.com/products/lidar-obstacle-detection/utm-30lx
6 https://www.faroandina.com/pdfs/FARO_Focus3D.pdf
7 https://www.sick.com/us/en/detection-and-ranging-solutions/2d-lidar-
ensors/lms5xx/c/g179651

https://velodynelidar.com/products/puck/
https://velodynelidar.com/products/hdl-32e/
https://www.sick.com/mx/en/detection-and-ranging-solutions/2d-lidar-sensors/lms4xx/lms400-2000/p/p112350
https://www.sick.com/mx/en/detection-and-ranging-solutions/2d-lidar-sensors/lms4xx/lms400-2000/p/p112350
https://www.sick.com/it/en/detection-and-ranging-solutions/2d-lidar-sensors/lms1xx/lms111-10100/p/p109842
https://www.sick.com/it/en/detection-and-ranging-solutions/2d-lidar-sensors/lms1xx/lms111-10100/p/p109842
https://hokuyo-usa.com/products/lidar-obstacle-detection/utm-30lx
https://www.faroandina.com/pdfs/FARO_Focus3D.pdf
https://www.sick.com/us/en/detection-and-ranging-solutions/2d-lidar-sensors/lms5xx/c/g179651
https://www.sick.com/us/en/detection-and-ranging-solutions/2d-lidar-sensors/lms5xx/c/g179651
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Table 2
TLSs and MLSs applied to automate tasks in precision agriculture.

Task LiDAR sensor Performance

Estimation of dry
matter

Leica ScanStation P30 (e.g. Wijesingha
et al., 2019)

Operating range: 120 m, error: 3–6 mm, scanning speed: Up to 1,000,000 points per
second

LiDAR LMS400 PRO (e.g. George et al.,
2019)

Operating range: 3 m, statistical error: 3 mm, systematic error: 4 mm, scanning
frequency: 300–500 Hz

Health monitoring LiDAR FARO Focus X330 (e.g. Ziliani et al.,
2018)

Operating range: 30–330 m, error: 2 mm, scanning frequency: 97 Hz

LiDAR Puck (VLP-16) (e.g. Yuan et al.,
2018)

Operating range: 100 m, error: 30 mm, scanning frequency: 5–20 Hz

LiDAR LMS111 (e.g. Vidoni et al., 2017) Operating range: 20 m, statistical error: 12 mm, systematic error: 30 mm, scanning
frequency: 25–50 Hz

Inventory estimation LiDAR LMS111 (e.g. Krus et al., 2020) Operating range: 20 m, statistical error: 12 mm, systematic error: 30 mm, scanning
frequency: 25–50 Hz

LiDAR FARO Focus X330 (e.g. Malambo
et al., 2019)

Operating range: 30–330 m, error: 2 mm, scanning frequency: 97 Hz

Canopy structure
estimation

LiDAR LMS400-2000 (e.g. Wu et al., 2019) Operating range: 3 m, statistical error: 3 mm, systematic error: 4 mm, scanning
frequency: 300–500 Hz

Estimation of
nitrogen levels

LiDAR LMS400 (e.g. Colaço et al., 2021) Operating range: 3 m, statistical error: 3 mm, systematic error: 4 mm, scanning
frequency: 300–500 Hz

Application of
pesticides

LiDAR RIEGL VZ-400 (e.g. Wu et al., 2020) Operating range: 160–600 m, error: 3–5 mm, scanning frequency: 100–300 kHz

LiDAR VLP-16 (e.g. Zhou et al., 2021) Operating range: 100 m, error: 30 mm, scanning frequency: 5–20 Hz

Monitoring plant
growth

LiDAR LMS511 PRO SR (e.g. Sun et al.,
2018)

Operating range: 80 m, statistical error: 6–14 mm, systematic error: 25–50 mm,
scanning frequency: 25–100 Hz

Estimating
production

LiDAR RIEGL LMSZ210ii (e.g. Murray et al.,
2020)

Operating range: 100–400 m, error: 10–15 mm, scanning speed: Up to 10,000 points
per second

Estimating volume LiDAR UTM-30LX-EW (e.g.
Martínez-Casasnovas et al., 2017)

Operating range: 30 m, error: 30–50 mm, scanning frequency: 40 Hz

Estimating yield LiDAR LMS400 PRO (e.g. Ghamkhar et al.,
2019)

Operating range: 3 m, statistical error: 3 mm, systematic error: 4 mm, scanning
frequency: 300–500 Hz

Tree structure
digitisation

LiDAR RIEGL VZ-400 V-Line 3D (e.g. Lau
et al., 2018)

Operating range: 5–1000 m, error: 10–15 mm, scanning frequency: 30–300 kHz

LiDAR LMS111 (e.g. Moreno et al., 2020) Operating range: 20 m, statistical error: 12 mm, systematic error: 30 mm, scanning
frequency: 25–50 Hz

UTM-30LX (e.g. Westling et al., 2018) Operating range: 30 m, error: 30–50 mm, scanning frequency: 40 Hz

Tree foliage
digitisation

LiDAR LMS221 30206 (e.g. Pfeiffer et al.,
2018)

Operating range: 80 m, statistical error: 10 mm, systematic error: 35 mm, scanning
frequency: 75 Hz

LiDAR FARO Focus X330 HDR (e.g. Jin
et al., 2018)

Operating range: 30–330 m, error: 2 mm, scanning frequency: 97 Hz

LiDAR LMS111 (e.g. Berk et al., 2020) Operating range: 20 m, statistical error: 12 mm, systematic error: 30 mm, scanning
frequency: 25–50 Hz

Fruit detection LiDAR Puck (VLP-16) (e.g. Gené-Mola et al.,
2019, 2020)

Operating range: 100 m, error: 30 mm, scanning frequency: 5–20 Hz

LiDAR LMS511 (e.g. Tsoulias et al., 2020) Operating range: 80 m, statistical error: 6–14 mm, systematic error: 25–50 mm,
scanning frequency: 25–100 Hz

Crop navigation LiDAR UTM-30LX (e.g. Velasquez et al.,
2020)

Operating range: 30 m, error: 30–50 mm, scanning frequency: 40 Hz

LiDAR LMS400 (e.g. Nguyen et al., 2021) Operating range: 3 m, statistical error: 3 mm, systematic error: 4 mm, scanning
frequency: 300–500 Hz

Wild plant detection LiDAR UST-10LX (e.g. LeVoir et al., 2020) Operating range: 30 m, error: 40 mm, scanning frequency: 40 Hz

Applying fertiliser LiDAR LMS511 PRO-HD Type 20100 (e.g.
Roten et al., 2017)

Operating range: 80 m, statistical error: 7–9 mm, systematic error: 25–35 mm,
scanning frequency: 25–100 Hz

Pruning UTM-30LX (e.g. Westling et al., 2021) Operating range: 30 m, error: 30–50 mm, scanning frequency: 40 Hz
TLSs and MLSs have increasingly been used for crop maintenance
nd are even an important part of software development to support
ecision making in agriculture. This is a consequence of the versatility
ith which they can be manipulated within the crop. A representative
xample is the development of systems to optimise the use of pesticides
nd fertilisers (as observed in Table 2). However, TLSs are far from
eing satisfactorily applied in routine tasks because of the frequent
elocation of the sensors. Although MLSs mitigate this drawback, they
re still limited by the speed at which they can be operated to obtain
fficient point clouds. For example, Roten et al. (2017) used an MLS to
etect urine patches but the maximum speed at which the vehicle could
ove without affecting the point cloud was 1 km/h. This deficiency
as a major impact on the quality of the data acquisition, as well as on
4

activities that aim to digitise the crop. Although the speed to complete
the task can be improved by increasing the sensor’s performance (num-
ber of channels, scanning speed, scanning frequency, operating range,
and so on), this also increases the acquisition costs. The application of
LiDAR systems to crop cultivation can be made more efficient by using
hybrid systems, such as the one proposed by Pretto et al. (2021). In this
work, the authors used an ALS and an MLS to develop an autonomous
vehicle to detect and prune wild plants in the crop. These applications
could combat the disadvantages that each LiDAR system has separately.

Tables 1 and 2 only provide a technical reference on the LiDAR
sensors that have been used to automate tasks in cultivating crops.
However, Section 3 will discuss the state-of-the-art studies in more
detail, grouping them by kind of application.
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Fig. 2. Taxonomy based on the level of support to perform activities in cultivating crops.
3. Recent LiDAR applications in precision agriculture for cultiva-
tion

In this section, pertinent state-of-the-art studies are described and
classified. The taxonomy is based on the level of support the LiDAR
applications provide to farmers. This taxonomy arose from an analysis
of the features of these studies, which allowed us to observe that
they can be grouped into the following classes: metric estimation,
digitisation, vision, and planning and decision support. Fig. 2 presents
the three levels that this review considers.

The first level is ‘metric estimation’, which contains the studies that
use LiDAR technology to estimate crop features and soil properties.
Here, most LiDAR applications focus on monitoring a variable that is
connected to crop efficiency; for example, in sorghum cultivation, the
plant height is decisive for the farmer because this variable is linked
to the yield. These LiDAR applications also focus only on cleaning
and making an interpretation of the point cloud to deliver useful
information that should make sense to the farmer. Section 3.1 presents
the state-of-the-art literature on ‘metric estimation’.

The second level is related to the creation of abstractions of the real
world. Here, there are two clearly differentiated kinds of application:
digitisation and vision. Section 3.2 reviews the LiDAR applications for
crop digitisation. It is clear that cleaning techniques are also used and
metric estimations must be obtained, such as in the studies presented
in Section 3.1. However, this is not the main focus of these applica-
tions. Indeed, they focus on creating a 3D digital model of the crop
that is as close to reality as possible. For example, in fruit growing,
LiDAR applications focus on improving digitisation techniques to make
accurate representations of the tree structure because this will allow
the farmer to evaluate a priori different characteristics of the tree, such
as the passage of sunlight to the centre of the canopy.

Section 3.3 presents the studies that have used LiDAR technology
as an artificial vision system. The essential point here is to identify
the type of object that is visualised through the point cloud. A clear
example is the detection of apples. This fruit can be detected through
clustering techniques, identifying those groups of points in the cloud
that represent apples. This means that artificial vision applications do
not seek an accurate 3D digital representation but they do aim to
identify patterns in the point cloud that arise when scanning different
objects and identify them for specific purposes.

Lastly, the third level is ‘planning and decision support’. These
studies simultaneously apply strategies from the previous three classifi-
cations (i.e. metric estimation, digitisation, and vision) to develop more
robust solutions to support farmers in making decisions. For example,
to prescribe pruning structures in fruit farming, it is necessary to obtain
a 3D digital model (as close to reality as possible) of the trees, from
which estimations (e.g. the tree height) can be obtained. The branches
of the tree must then be detected to get a hierarchy of branches. Then,
metaheuristic algorithms are used to manipulate the branches in the
tree’s structure and suggest to the farmer which branches need to be
pruned to improve the efficiency of the tree. This is the single level that
entails the search for prescriptions or recommendations. Section 3.4
reviews the studies that have developed software for planning and
5

decision support in agriculture.
3.1. Metric estimation

It is essential to estimate metrics in agriculture to monitor the
state of the crop. Usually, these calculations are related to biomass.
This information gives the farmer an insight into the health of the
crop and then they can project the yield. For example, by knowing
the biomass of sorghum (especially the height of the plant), a farmer
is enabled to recognise when the plant changes from a vegetative to
a reproductive state. Detecting this change is important because the
amount of nutrients needed may be predicted in advance by the farmer.
The proposal of Maimaitijiang et al. (2020) is a clear example of the
importance of making this kind of estimation. The authors used an
ALS to monitor a crop of sorghum at different stages. Their objective
was to provide the farmer with key information about the growth and
productivity of the sorghum. To deliver this information after scanning
the crop with the ALS, they processed the point cloud to estimate the
height and the LAI. Similarly, Li et al. (2022) used an ALS to estimate
the LAI in a field of maize more efficiently in comparison with the
manual method.

Considering the importance of making estimations periodically, Vi-
doni et al. (2017) developed a semi-autonomous vehicle to monitor
vineyards. They equipped this vehicle with two MLSs to scan the
vineyards to assess the volume and shape of the plants. This was
achieved through an algorithm that they developed, which is based on
the Normalised Difference Vegetation Index (NDVI) and thickness of the
branch. The NDVI allows values to be obtained about the properties of
the tree canopy. Another clear example is the application of Sun and
Li (2017) to the cultivation of cotton. These authors used an MLS to
monitor plant growth in different seasons of the year. Similarly, this
same type of LiDAR system has been applied to estimate the biomass
of strawberry plants, which is essential to forecast the growth over
time (Saha et al., 2022). Meanwhile, Palacios-Rodríguez et al. (2022)
used an ALS to measure the biomass of carobs and employed allometric
techniques to estimate the carbon accumulation in this type of crop
in southern Spain. Nevertheless, this classification is not only focused
on measuring the plant biomass but it is also important to estimate
the properties of the soil. For example, Florent et al. (2019) used an
ALS to estimate the soil moisture and prevent water-logging. Another
important feature in soil nutrient management is to know the level of
phosphorus because it could represent a risk to the water quality. With
this objective in mind, Cassidy et al. (2019) used an ALS to analyse this
feature in crops and prevent the risk of high levels of phosphorus in the
soil.

LiDAR technology for agricultural maintenance activities is the
estimation-oriented application that has been most broadly explored
in the scientific literature. For example, it has been applied to several
activities for a wide range of crops, including orchards, with differ-
ent types of soil and climate. For instance, an MLS is an alternative
to conventional techniques to estimate the tree volume of an olive
grove (Martínez-Casasnovas et al., 2017). Also, estimating the char-
acteristics of the canopies of almond trees helps to determine the
areas that need maintenance (Sandonís-Pozo et al., 2022). Measuring

the height of wheat via traditional ways is physically demanding and
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highly sensitive to human error. However, this estimation is important
for this type of crop because it indicates the yield and the weather
resistance (Yuan et al., 2018). Yuan et al. (2018) used an MLS to scan
a wheat field and estimate the heights of the plants. Meanwhile, Ziliani
et al. (2018) and Gao et al. (2022) focused on the heights in a field of
maize. This metric allows determining the general state of the health
of this type of plant. A similar study was conducted by Zhou et al.
(2020), who used an ALS to monitor the growth of maize and analyse
the effects of climate on this plant in the lodging season. It is also
necessary to monitor the growth cycle in sugar cane cultivation to make
yield estimates. Consequently, Sofonia et al. (2019) used an ALS to
monitor the growth of sugar cane in Australia. The purpose was to find
the relationships between height, biomass, and yield. The traditional
technique to estimate the yield and growth rate of grass is inaccurate
and expensive (Ghamkhar et al., 2019). So, as an alternative, Ghamkhar
et al. (2019) proposed using an MLS to do this efficiently. They were the
first, when compared with the traditional technique, to obtain results
that can be put into practice. Dhami et al. (2020) used an ALS to
estimate the height of a soybean plant from a BEV perspective, which is
crucial to understanding the health of the crop. A distinctive feature of
this research is that even individual plants can be obtained in the point
cloud. According to Liu et al. (2020), the use of ALSs for analysing the
height of cotton could become of the utmost importance because it is
essential information to facilitate the mechanised harvesting of cotton.
Similarly, Zhang et al. (2020) used an ALS to calculate the plant height
for canola, pea, chickpea, and camelina.

LiDAR technology has also been used to inventory the trees in
an apple orchard by measuring the dimensions of the canopies from
the BEV (Hadas et al., 2019). Another LiDAR inventory application
was developed by Malambo et al. (2019), where the authors used an
MLS to count sorghum panicles and also obtain information about the
dimensions of the panicles. An interesting challenge is to inventory
cabbages because their size makes it difficult to distinguish them from
the ground in the point cloud. Nevertheless, Krus et al. (2020) used two
MLSs to determine the production inventory of a cabbage field.

One of the advantages of the LiDAR system compared to multi-
spectral imagery for LAI estimation is that the LiDAR system only
requires a single prediction variable (Zhang et al., 2022). The LAI is
an important metric to monitor in agriculture because it allows an
estimate to be made of the photosynthetic capacity of plants and trees.
Moreover, it helps to understand the relationship between biomass and
yield under different climatic conditions. For example, Zhang et al.
(2020) decided to use an ALS to estimate the LAI in a bean field.
Likewise, Pagliai et al. (2022) compared three inputs to understand the
LAI in viticulture. These inputs are mobile applications (iPad), aerial
acquisition, and MLS. The point cloud is obtained in all of them. How-
ever, the first two used Pix4D software to generate the point cloud from
a series of images. What is important to highlight about that research
is that the LiDAR system allowed better automation of the collection of
the point cloud because, when installed on farm tractors, the scanning
could be made during maintenance activities. It also involved fewer
steps to estimate the LAI. Another feature of the LAI is that it helps to
assess water requirements, disease, and the yield of the crop (Kulkarni
and Honda, 2020). Some authors have used LiDAR systems to estimate
the LAI. For example, Yun et al. (2019) developed an algorithm to
process the point cloud from three perspectives (i.e. bottom of the
tree, diagonal to the tree, and BEV) to extract the leaf structure in the
tree canopy. They used these three perspectives to achieve an accuracy
of 90%. Furthermore, the LAI can be used to extract features of the
structure of the canopy for canola plants (Wu et al., 2019). Another
exciting study for LAI estimation is that of Gu et al. (2022), who used
an MLS to estimate LAI during LiDAR movement in apple trees with a
thick canopy.

Similarly, the estimation of Dry Matter (DM) is important in forage
crops because it is related to ruminant nutrition. However, this is a task
6

that requires laborious, destructive, and inaccurate methods. George
et al. (2019) proposed using an MLS to estimate the DM in grassland
in Canterbury. They scanned this crop 8 times before mechanical
defoliation for better results. Another application to DM estimation
can be found in Wijesingha et al. (2019). In that research the authors
scanned the biomass of a grassland with a TLS. They then extracted
the canopy height and used this metric to estimate the DM. Grasslands
constitute a large part of German agriculture, which depends on these
grasslands to cover the feed demand of ruminants and other industrial
services. Consequently, it is necessary to determine the grass yield and
quality in a timely manner. However, this estimation is very challeng-
ing to make with only one sensor because of the heterogeneity of the
grass (Wachendorf et al., 2019). Wachendorf et al. (2019) conducted
a study using a spectral camera and an ALS to perform this task. The
authors concluded that a similar error is still obtained when using the
traditional method, so it is necessary to continue improving this type
of application.

An important factor to be known in fruit growing is the tree struc-
ture. However, information on tree structures is limited. Thus, Murray
et al. (2020) proposed the use of a TLS to scan apple trees and find the
metrics for the tree structure to estimate the yield. An important chal-
lenge demanding more precision is to make estimations concerning the
canopy structure of the trees because this would allow their pesticide
requirements to be estimated. For example, Sultan Mahmud and He
(2020) used an MLS to make estimations of the canopies of apple trees
to calculate the pesticide required to reduce the environmental impact
of the overuse of these chemicals. However, the authors concluded that
an MLS is not yet accurate enough to extract the characteristics of the
canopy. Wu et al. (2020) found that it is better to use an ALS for this
because it allows better extraction of these characteristics from this per-
spective. The authors extracted the volume and the maximum canopy
height of macadamia, avocado, and mango trees. Given the popularity
of LiDAR systems, which is due to their accuracy in measuring the
dimensions of objects, Husin et al. (2020) used this technology to scan
palms to identify their levels of disease (the characteristics of the crown
are related to the health of the palm).

Crop biomass is an important aspect to consider because it is related
to the levels of nitrogen in the crop. Colaço et al. (2021) used an MLS
to calculate the biomass of a wheat grassland. A good water supply is
important for any type of crop. In Minnesota, an ALS was used to detect
the watersheds left by the rivers and to map them so that farmers can
make decisions about the location of their crops (Srinivas et al., 2020).

It is important in agricultural monitoring activities to have an
overview of the behaviour of the crop. In this type of application,
the algorithms are basically focused on cleaning the noise from the
point cloud to make it easier for the farmer to interpret it. In this
regard, surface mapping is important because it helps the user to make
decisions on the whole crop. An example is the application of an ALS
to create surface roughness maps of an agricultural field with crops
and trees so that the farmer can appreciate the overall plant growth
by looking at the map (Trepekli and Friborg, 2021). In particular, the
use of descriptive statistics to filter wheat plants (e.g. Yuan et al., 2018)
by means of height percentiles is predominant. Another essential factor
to monitor in agriculture is the tree belts surrounding crops, as they
reduce the negative environmental impact of agriculture and increase
agricultural productivity (Nowak et al., 2022).

Clustering techniques have also been used to estimate crop charac-
teristics. The RanSaC (Random Sample Consensus) and Euclidean clus-
tering methods have been used to monitor the growth of cotton (Sun
and Li, 2017). Another application in which clustering techniques
have been used, taking into account the crop density, is to estimate
the characteristics of sorghum panicles (Malambo et al., 2019). Other
studies have used voxelisation techniques to calculate the amount
of nitrogen needed by the crop (Christiansen et al., 2017). In this
application, Christiansen et al. (2017) used the Point Cloud Library
(PCL) from ROS to calculate the level of nitrogen as a function of

the plant height chiefly. In addition, Colaço et al. (2021) used ROS to
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Table 3
LiDAR applications for metric estimation in cultivating crops.

Study Metric/index to be estimated Crop Strategy Software Type of
LiDAR

Sultan Mahmud and He
(2020)

Canopy density Apple M-estimator sample
consensus

MatLab MLS

Main findings: • The 3D-based algorithm was more efficient than the 2D-based algorithm for assessing the point density of a tree canopy.
• Alignment during scanning is essential to avoid the error caused during experimentation.

Pending challenges: • In this study, only the indicated canopy points are calculated. However, this number of points does not provide
accurate canopy information.
• It is necessary to establish a relationship between the number of points and the number of leaves in future work.

Husin et al. (2020) Canopy parameters Palms Classification, Linear model,
Otsu’s algorithm

MatLab, SCENE, Paint,
AutoCAD, JMP

TLS

Main findings: • The point cloud generated with TLS provided accurate characteristics of oil palm trees for disease detection.
• The results from the statistical analysis revealed that the number of fronds was the best single parameter for detecting basal stem rot.
• The linear model’s parameter combination consisting of the number of fronds, frond angle, and canopy strata at 200 cm from the
top was the best model compared to other combined parameter models.

Pending challenges: • The LiDAR-based approach seems to be unable to scan a plantation area with a single scan at a significantly lower cost.

Sandonís-Pozo et al.
(2022)

Canopy parameters Almond Clustering, Statistics RStudio MLS

Main findings: • Canopy parameters related to height, width, cross-sectional area and porosity of the canopy along the rows offered a high correlation,
especially with NDVI.
• This methodology could be interesting as an input to building a model approach to simulate crop growth and better estimate yield production.

Pending challenges: • The methodology employed can be applied to other crops with hedgerow cropping patterns.
• The mapping of canopy parameters can be extended to more extensive orchards.

Wijesingha et al. (2019) Canopy surface height Grass SFM, Statistics, Regression Leica Cyclone 3D, Agisoft
PhotoScan Professional, R

TLS

Main findings: • Overall, 3D point cloud models from the Structure From Motion (SFM) UAV models were slightly outperformed by models with point
cloud data from a TLS.
• The results of this study demonstrated that the fresh biomass (FB) and dry biomass (DB) of grassland can be estimated using the canopy
surface height (CSH) derived from the SFM and the point cloud data.
• The accuracy of the prediction in species-poor grasslands is higher than in diverse and heterogeneous canopies.

Pending challenges: • The combination of the CSH and spectral data from UAV-borne imagery should be tried.
• The performance could be improved by using a digital terrain model developed by the SFM on board the UAV, which would act as a
reference layer to derive the CSH.

Vidoni et al. (2017) Canopy thickness Vineyards Interpolation, Early Disease
Algorithm, Statistics

MatLab, LabView, ByeLab MLS

Main findings: • The ByeLab system showed significant outdoor performance, allowing early detection of diseases in vineyards.

Pending challenges: • The efficiency of the measurements under non-ideal terrain and atmospheric conditions should be evaluated.

Wu et al. (2020) Crown parameters Avocado,
macadamia,
mango

CANUPO segmentation CloudCompare, RiSCAN PRO,
ArcGis

ALS and
TLS

Main findings: • The results showed that ALS data could accurately measure parameters of the structure of the crown (area, height, and volume).
• This study provided information to growers and horticultural industries on the capability and accuracy of LiDAR systems.

Pending challenges: • A limitation of this study is that only 7 trees were used for the measurements of the crown structure using TLS.
• Future experiments should be based on larger sample sizes.

Srinivas et al. (2020) Elevations Maize,
soybeans

Revised Universal Soil Loss
Equation, Fixed area
threshold

ArcGIS, ACPF ALS

Main findings: • This study developed a novel decision support framework using three watershed modelling tools to analyse conservation farming practices.
• Results showed that 537 profitable practices, such as grassed waterways, produced an 8.5% reduction in nitrogen.
• River basin planning and implementation decisions can be made more easily, quickly, accurately and cost-effectively.

Pending challenges: • Work needs to be done on how to communicate field-scale maps to landowners.
• Work needs to be done to obtain more specific field data to improve estimates.

Florent et al. (2019) Elevations Crops in
Nyírbátor

Interpolation ArcGis, IBM SPSS ALS

Main findings: • The results demonstrated the benefits and advantages of using LiDAR to prevent possible waterlogging and search for hydrological soil
characteristics.
• The digital elevation model (DEM) and runoff line would improve irrigation planning and water use efficiency.
• The available soil water is lower in the deeper layer.

Pending challenges: • Computational intelligence methods could provide better results than interpolation.

Cassidy et al. (2019) Elevations Grass XXL SAGA GIS ALS

Main findings: • This study indicated that the phosphorus carrying capacity of the soil above the agronomic optimum was 15% of the area of the
individual sub-catchments.
• Catchments can hardly transport hydrologically sensitive areas in soil with phosphorus above the agronomic optimum (1.5%).

Pending challenges: • Less intensive agriculture would be necessary to fulfil water quality requirements; otherwise, less ambitious thresholds should be
considered to fulfil irrigation redistribution.

(continued on next page)
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Table 3 (continued).
Study Metric/index to be estimated Crop Strategy Software Type of

LiDAR

Zhou et al. (2020) Height Maize Interpolation, SFM,
classification

POSPac, RiPROCESS,
LIDAR360 software

ALS

Main findings: • The results demonstrated a higher accuracy of point clouds generated with LiDAR systems than those generated from imagery.
• The UAV-LiDAR data reflected the temporal changes of lodged maize plant height and the plant height restoration ability of different
lodging types.

Pending challenges: • Application in large-scale lodging monitoring is still a difficult problem to solve.

Yuan et al. (2018) Height Wheat Statistics LabVIEW, MatLab R2017a,
Pix4Dmapper

MLS

Main findings: • LiDAR demonstrated better results than an ultrasonic sensor.
• Simply scanning a section of a plot with LiDAR was sufficient to make an accurate estimation of plant height.
• The methodology used is easily adaptable for studies wishing to adopt static measurement.

Pending challenges: • In contrast, ALSs could be a more reliable media for assessing wheat height.

Ivushkin et al. (2019) Height Quinoa Multiple Linear Regression POSPac Mobile Mapping Suite,
RiPROCESS, ArcGIS, IBM SPSS

ALS

Main findings: • It was concluded that using ALS effectively measures plant salt stress by estimating plant height.
• An increased soil salinity significantly affects the height of quinoa plants.
• The use of multiple measurement techniques has great potential for monitoring soil salinity.

Pending challenges: • Experiments with less salinity should be conducted to reach more valuable conclusions.

Liu et al. (2020) Height Cotton Classification, PCA, KD-tree,
random sampling method

MatLab ALS

Main findings: • The coefficient of variation was used to explain the changes in plant height.
• Plant height can be an essential reference for the mechanical operations involving this crop.
• The maximum relative error of the value measured by the UAV-LiDAR detection system was 12.73%, and the corresponding maximum
error was 3.48 cm.

Pending challenges: • This approach could be extended by automatically extracting the point clouds for each cotton plant and importing the generated spatial
differential parameters.

Zhang et al. (2021) Height Canola,
camelina,
chickpea, pea

Statistics MatLab, Pix4Dmapper, QGIS ALS

Main findings: • This study demonstrated the efficiency of using ALS for estimating plant height. They obtained correlation coefficients of 0.74 and 0.91.
• The use of LiDAR for estimating plant height offered better accuracy than photogrammetry.

Pending challenges: • Canopy leaflets affected the generation of the point cloud.
• To increase the accuracy of the estimation, an algorithm to remove outliers should be included.

Gao et al. (2022) Height Maize Seedling detection and fuzzy
C-means clustering algorithm

CloudCompare, Scikit-learn ALS

Main findings: • A point cloud produced by UAV-borne LiDAR can generate a complete and accurate digital terrain model (DTM) of a maize field at a
relatively early stage of growth.
• The DTM can be effectively used for bare ground estimation and estimation of the height of individual maize plants to avoid the
occlusion problem as the maize grows.
• The highest accuracy had an 𝑅2 greater than 0.95, a mean RMSE of 3.63 cm, and a mean MAPE of 1.88%.

Pending challenges: • Future work will attempt to improve the quality of the LiDAR point cloud by optimising route settings to extract the number of leaves,
leaf area index, and other characteristics of maize growth.

Hadas et al. (2019) Height Apple Classification, 𝛼-shape algorithm CloudCompare, MatLab ALS

Main findings: • This paper developed a robust methodology for point cloud processing that combines three algorithms.
• The need for tools to make orchard inventories remotely was addressed with LiDAR technology.
• The precision of crown identification, tree height and crown base height was 0.38, 0.09 and 0.09 metres, respectively.

Pending challenges: • The uncertainty in identifying crown shapes limited the accuracy of the reference data.
• Results with other orchards, species varieties and larger crops should be explored.
• The impact of the density of the point cloud and flight height on accuracy needs to be further investigated.

Dhami et al. (2020) Height Soybeans Clustering, Voxel Filter,
Voting Scheme, RANSAC

OpenCV, ROS, PCL ALS

Main findings: • A methodology for extracting plant heights from 3D LiDAR point clouds is presented, with a specific focus on plot-based phenotyping
environments.
• They presented a toolchain that can be used to create phenotyping farms for using in Gazebo simulations.
• The algorithm estimated plant heights in a field with an RMSE of 6.1 cm.

Pending challenges: • The algorithm should be tested on other types of farms.

Colaço et al. (2021) Height Wheat Clustering, Statistical
Outlier Removal

ROS, CloudCompare, QGIS MLS

Main findings: • This was the first report on the use of LiDAR for commercial mapping of a cereal crop.
• This system outperformed a commercial active multi-spectral optical sensor’s spectral indices and crop height estimation.

Pending challenges: • More studies on crop development and their evaluation in different scenarios and complete automation of the data processing are needed.
• Further research on technologies for large-scale biomass mapping.

(continued on next page)
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Table 3 (continued).
Study Metric/index to be estimatedCrop Strategy Software Type of

LiDAR

Christiansen et al. (2017)Height Wheat Voxelisation ROS, PLC ALS

Main findings: • The study introduced a mapping method for observing crops and estimating their current production, volume, plant height, and
environmental states. These values are connected to nitrogen treatment strategies.

Pending challenges: • Continuous monitoring using ALSs mounted in UAVs is currently impractical because of the low coverage per battery.

Sun and Li (2017) Height Cotton Clustering MatLab MLS

Main findings: • The correlation between projected canopy area and yield was higher than the correlation between canopy height and yield.
• The system used in this research allows the generation of efficient 3D models to measure morphological parameters and analyse growth
dynamics.

Pending challenges: • If the plant structure is complex (i.e. they are in the mature stage), occlusion effects are present.
• Wind is a factor affecting the accuracy of the estimated traits since it might result in blurred point clouds.

Saha et al. (2022) Height Strawberry Voxel-grid, statistical
outlier removal

MatLab, Python,
CloudCompare

MLS

Main findings: • This research provided an approach to estimating plant characteristics and monitoring plant growth.
• This approach was able to extract the volumes of the different horizontal canopy layers, which can generate the volume profile of the
vertical canopy.
• The typical growth pattern of strawberry plants was found in vertical profiles.

Pending challenges: • LiDAR sensors could be mounted on a linear transporter close to the ground, which is a feasible tool for monitoring the growth of
strawberry plants with better results.
• Future work should investigate physiological studies or applications in variable rate management.

Palacios-Rodríguez et al.
(2022)

Height Carob Allometric PHOTOMOD Lite, Global Mapper,
Proc SQL

ALS

Main findings: • This estimation technique for the existence of carbon in carob trees is an alternative to traditional methods because it is a quicker, less
costly and more accurate approach.
• ALS data allowed the generation of high-resolution maps of carbon stocks, which are essential for forestry.

Pending challenges: • The main limitation of this study is related to the quality of the ALS data and its timeliness.

Ziliani et al. (2018) Height Maize SFM, Ground sampling
distances, Regression

ArcGis, Agisoft PhotoScan
Professional, FARO SCENE

TLS

Main findings: • This methodology could reproduce the observed spatial variability of crop height within a maize field at all stages of crop development,
with a correlation of up to 0.99 and RMSE of 0.0164 cm.
• A resolution of 10 cm produced the best-so-far compromise between accuracy and processing time, providing an acceptable accuracy
with a processing time of approximately half a day.

Pending challenges: • Further image collection and processing improvements are needed to reduce the bias in UAV-based SFM retrievals.
• The overall time needs to be further reduced for real-world applications.

Yun et al. (2019) LAI Apple, mango, rubber,
walnut

Cylinder-based approach MatLab ALS and
TLS

Main findings: • An approach for measuring total leaf area in canopies is presented, which allows a quantitative assessment of occlusion metrics for
various attributes.
• When scanning from a single ground position, only 25% to 38% of the leaf surface was recovered.

Pending challenges: • With the help of computer graphics algorithms, this approach could be extended to measurements of tree leaf area.

Gu et al. (2022) LAI Apple BPNN, partial least squares
regression

MatLab MLS

Main findings: • The residual method was used to remove outliers from the data and eliminate the influence of dense branches and leaves in the canopy.
• Comparing the results for 𝑅2 (86.1%) from the obtained models and their ability to predict data revealed that the backpropagation
neural network (BPNN) algorithm was better than the other two algorithms.

Pending challenges: • In subsequent studies, the influence of canopy thickness needs to be considered.

Zhang et al. (2020) LAI Bean Statistics, Cloth Simulation
Filtering, Beer–Lambert’s law

MatLab ALS

Main findings: • It was found that the methods for measuring the perpendicular to the swath perform better.
• Significant results were presented for LAI and height estimates. This allowed the extension of yield modelling.
• Given the similarities in planting with other row crops, this method can easily be applied to crops such as soybeans and sugar beet.

Pending challenges: • Future research should focus on expanding the predictor variables for assessing canopy width and LAI.

Pagliai et al. (2022) LAI Vineyards Statistics Pix4D, MatLab, VitiCanopy,
CloudCompare

MLS

Main findings: • MLSs were installed on farm tractors to collect the point cloud during field operations.
• The tools analysed in this article satisfactorily discriminated (with 𝑅2 = 0.78) between areas with different canopy size characteristics.

Pending challenges: • Although ALSs allowed rapid mapping of large numbers of hectares, they required trained personnel and specific requirements to
comply with national laws.
• The main limitations are related to data processing. It is necessary to work on automating the algorithms in the processing steps.

Zhang et al. (2022) LAI Broadacre crops SfM LAStools, CloudCompare,
Scikit-learn

ALS

Main findings: • This article strongly supported the potential of UAS-based LiDAR and multispectral imagery to estimate LAI of short broadacre crops.
• This article’s results encourage its translation into an eventual operational solution for assessing the structure of the crop.

(continued on next page)
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Table 3 (continued).
Study Metric/index to be estimated Crop Strategy Software Type of

LiDAR

Pending
challenges:

• Furthermore, since snap beans only grow up to 0.3–0.6 m in height, the methods in this study should be extensible to other short
broadacre crops, such as sugar beets, soybeans, and winter wheat.
• It is recommended that future studies evaluate the fusion of LiDAR and multispectral imagery.

Li et al. (2022) LAI Maize ANOVA MatLab, SunScan, Agisoft Metashape
Professional, Metashape

ALS

Main findings: • This methodology allowed automatically measuring the LAI with high resolution and fast intensive mapping.
• Canopy height measured with 3D point clouds has a relatively strong correlation (up to 𝑅2 = 0.89) with the manual measurements.
Thus, this methodology allowed cost-effective and high-resolution mapping.

Pending
challenges:

• The correlation of the LAI estimate was low (𝑅2 = 0.48). Therefore, it was an inaccurate estimate of canopy density and LAI.

• Further research is needed on improved approaches for data collection related to spatial point cloud density.
• Future studies should focus on developing methods with descriptors for further genotype differentiation.

Maimaitijiang
et al. (2020)

LAI/height Sorghum Clustering, Random Forest
Regression, Statistical Outlier
Removal algorithm

Pix4Dmapper, LiDARMill ALS

Main findings: • This paper found that the ALS system performed better than RGB photogrammetry on sorghum. This is due to its higher canopy
penetration capability.
• It maintains its performance regardless of crop size and density.

Pending
challenges:

• Comparing ALS and RGB photogrammetry for other plant traits, such as biomass.

• It would also be essential to test these techniques on monitoring crop growth through deep learning.

Malambo et al.
(2019)

Panicle dimensions Sorghum Clustering, Otsu thresholding FARO SCENE, CloudCompare,
FUSION/LVD

MLS

Main findings: • This study served as a proof of concept for a new approach to panicle characterisation (length, width, and height) in sorghum and
promoted interest in future developments focusing on phenotyping sorghum panicles.
• The overall panicle detection accuracy was 89.3%, with an omission rate of 10.7% and a commission rate of 14.3%.

Pending
challenges:

• It may be impossible to detect panicles within plots due to foliage occlusion. This study could consider denser point clouds, improved
data quality, and the development of more robust methods to reach accurate high-throughput phenotyping.

Trepekli and
Friborg (2021)

Roughness length Potato Morphological,
Classification

Geo-LAS, QGIS, EddyPro ALS

Main findings: • This approach can help to make a more accurate spatial representation of the non-linear relationships between canopy features and
water dynamics.
• The Raupach roughness model is more suitable for simulating time variations.
• All morphometric models showed a standard deviation of less than 4.2 cm, ranging from an underestimation by 1.3 cm to an
overestimation by 1.9 cm.

Pending
challenges:

• Further research is needed to improve morphometric models in vegetated landscapes to consider the surface drag effects of roughness elements.

Zhou et al.
(2021)

Volume Begonia Clustering PCL, VTK MLS

Main findings: • This research proposed a new method based on 3D LiDAR and KD tree to predict crown volume.
• The developed method simplified labour consumption and improved measurement accuracy.

Pending
challenges:

• Future work aims to improve the stability and accuracy of the prediction model.

Krus et al.
(2020)

Volume Cabbages Classification SOPAS Engineering Tool MLS

Main findings: • Segregation between soil and plants was achieved by using weighted sums and without the additional use of other types of sensors.
• An algorithm based on weighted sums had the potential to outperform traditional methods.
• The method used does not rely on external sensor readings, e.g. colours.

Pending
challenges:

• Periodic measurements of a single plant could be used to monitor plant development.

Martínez-
Casasnovas
et al. (2017)

Volume Olive Statistics CloudCompare, JMP12, ArcGis MLS

Main findings: • The tools developed in this study proved to be an excellent solution to quickly and objectively obtain geometric parameters of crop canopies.
• The results demonstrated that MLS is an excellent alternative to current research methods for canopy volume estimation.

Pending
challenges:

• It would be interesting in future work to compare MLS and ALS for this type of activity, as users have to choose the most appropriate
parameters.
• Furthermore, digital maps are also an excellent tool for presenting and analysing the spatial variability of parameters. Further research
is therefore needed.
• Scanning in the presence of wind is not recommended (still, breezes up to 4 km/h do not significantly alter the estimates).

George et al.
(2019)

Yield Grass Regression Gen Start v18 MLS

Main findings: • LiDAR sensors helped to remove a critical bottleneck in perennial ryegrass breeding with a real-time and non-destructive estimation,
which is valuable.
• The results indicated that the estimation of perennial ryegrass yield was satisfactory.

(continued on next page)
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Table 3 (continued).
Study Metric/index to be estimated Crop Strategy Software Type of

LiDAR

Pending challenges: • Seasonal algorithms should be added to correct for the seasonal variation of the dry matter.

Wachendorf et al. (2019) Yield Grass Classification Pix4Dcapture, AgriSoft, QGIS, R ALS

Main findings: • The objective is to provide farmers with cheap, adequate, timely information to support decision-making.
• Thematic crop maps are suggested because they provide low-cost information to support farmers’ decision-making.

Pending challenges: • Grassland characteristics such as animal droppings are difficult to assess or filter. Deep learning methods could offer interesting insights.

Sofonia et al. (2019) Yield Sugarcane Not specified SLAM, Python, Pix4Dmapper,
3DReshaper

ALS

Main findings: • The results show that LiDAR provided more consistent and significant correlations with the data for the biophysical parameters of sugar cane.
• This approach, with some refinements, can be sensitive enough to biophysical parameters to derive predictive models throughout the
growth cycle.

Pending challenges: • The results suggested that predicting biophysical parameters from photogrammetry is challenging, and further research is needed.
• Working closely with farmers to understand their problems will likely improve economic and environmental outcomes.

Murray et al. (2020) Yield Apple DBSCAN algorithm Python TLS

Main findings: • The data generated by a TLS has excellent potential to inform orchard management due to its accuracy in quantifying structural complexity.
• Trees can be classified into management categories based on tree structure assessment with remote sensing techniques.

Pending challenges: • Future research suggests using LiDAR to quantify the impacts of pruning on yield because this activity is essential.

Ghamkhar et al. (2019) Yield Grass Volumetric MatLab MLS

Main findings: • This development offers an accurate, non-destructive and cost-effective estimate for ryegrass.
• Real-time volumetric data capture, modelling and analysis software was developed.
• It is the first LiDAR-based tool that has demonstrated high accuracy in real-time dry matter quantification with 𝑅2 = 0.8.

Pending challenges: • A more detailed study of the effects of the environment, management and genotype on precision is needed.
• Increasing knowledge about this type of LiDAR sensors can lead to novel programmes in agronomy.
extract the characteristics of the biomass of a crop of wheat. MatLab
has become popular in processing point clouds (e.g. Vidoni et al., 2017;
Yuan et al., 2018; Husin et al., 2020). For instance, Otsu’s algorithm
(implemented in MatLab), has been used to assess the level of disease in
palms (Husin et al., 2020). Sultan Mahmud and He (2020) used the M-
estimator Sample Consensus (MSaC) algorithm in MatLab to determine
the amount of pesticide needed in an apple orchard. The TreeQSM
algorithm developed in MatLab is popular for use in quantifying branch
architecture (Lau et al., 2018). Meanwhile, other software tools have
been used to process point clouds, such as CloudCompare (e.g. Wu
et al., 2020; Colaço et al., 2021; Pagliai et al., 2022). Similarly, Sofonia
et al. (2019) used software specific to the LiDAR system that they
acquired.

Table 3 presents the applications of LiDAR technology focused on
metric estimation. It can be seen from this table that most of the
applications have been made to estimate characteristics linked to crop
production (e.g. height and LAI). In cases where the aim is to monitor
the properties of the soil and surface, researchers have opted to use
ALS because this type of LiDAR system allows faster scanning and more
efficient roughness maps can be obtained from a BEV perspective. Note
that plant height and LAI are the features for which most applications
oriented towards estimating metrics have been developed with LiDAR
systems (indeed, both features are strongly connected to crop health).
There is also a great diversity in the types of crops for which appli-
cations for health monitoring have been specialised. Table 3 shows
that ALSs and MLSs have been used to the same extent to estimate the
LAI. However, different software strategies (such as MatLab, statistics,
classification, and clustering) have been used.

We have identified a series of processes that are common to those
applications of LiDAR oriented towards estimating metrics. Fig. 3
presents a chart that generalises the processes followed by the appli-
cations presented in this category. The LiDAR applications to estimate
crop features and soil properties perform the following 5 steps: data
acquisition, preprocessing, plotting, measuring, and interpretation. Pre-
processing is the most challenging step because it entails normalisation,
outlier identification, noise cleaning, and global registration (i.e. the
coherent merging of multiple point clouds). In Fig. 3, ‘plotting’ means
visualising the point cloud that directly resulted from the preprocessing
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step in a 3D space (𝑥, 𝑦, and 𝑧); and ‘measuring’ means calculating
the distances between several identified points; here, software specially
designed for point clouds is used (e.g., CloudCompare).

The advantages of using LiDAR technology for metric estimation
are that it is not limited by environmental conditions, it has a strong
ability to get into the field of crops, and it has significant accuracy
in extracting information on the physical characteristics of the crop.
However, a strategy must be developed for each type of element to be
analysed, or even for each type of crop. Table 3 shows applications that
can cover different types of crop to estimate a common metric. One of
the disadvantages of ALSs is that the UAV’s flight time is short, which
makes it difficult to monitor large areas. Another disadvantage is that
the crop elements must be scanned repeatedly to improve the accuracy
of the point cloud. Lastly, LiDAR systems must work in synergy with
other sensors to gain further insight into the status of the crop.

3.2. Digitisation

The idea of digitising real-world objects in three dimensions has
been gaining in popularity because of photogrammetry (e.g. Dellaert
and Yen-Chen, 2020) and voxelisation techniques (e.g. Lau et al.,
2018). Agriculture can greatly benefit from these techniques to digitise
trees and crops, mainly using LiDAR technology (cf. Hu et al., 2017).
For example, Huang et al. (2022) used a TLS to create a 3D model of
bean seeds to qualify the performance traits of bean seeds.

Several LiDAR applications have been used to improve the graphical
representations of a crop to enable the farmer to more accurately
assess the structure of the plants and trees. For example, Pfeiffer et al.
(2018) developed an algorithm that scans the crop with a medium- or
high-density TLS to create a 3D representation of trees in production
seasons (i.e. with the presence of foliage in the canopy). Bear in mind
that the biomass of the crop is an important criterion for making
decisions about the crop’s health and production. For example, Ao et al.
(2022) used Convolutional Neural Networks (CNNs) and morphological
characteristics to segment the stem and leaves of maize. The authors
tested 40 samples of plants and showed high accuracy (𝐹 -score of
0.99). Jin et al. (2018) used a TLS system to create a 3D model of
maize biomass by making height estimations and also to manipulate
the point cloud to separate the stalk from the leaves, which provided
great accuracy in calculating the LAI of the canopy. Similarly, Lin et al.

(2022) used a TLS to digitise four varieties of maize; this digitisation
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Fig. 3. General design in LiDAR applications for estimating metrics for cultivating crops.
aims to segment plant characteristics. On the other hand, Digumarti
et al. (2018) developed an algorithm to automate the segmentation
and extraction of the tree structure. They validated the efficiency of
this algorithm with beech trees that were scanned with a TLS; in
addition, they entered information about the LAI of these trees. In a
recent study, Berk et al. (2020) applied LiDAR technology to digitise
the foliage of apple trees by separating the leaves from the trunk in
the point cloud. Considering the colour of the leaves, it is possible to
determine the health of the plants in a crop. Therefore, it is important
to digitise this characteristic to provide a more robust 3D model.
Recognising these implications, Wu et al. (2018) used a sequence of
images taken with a camera and a TLS for the digitisation of the colours
of the plants. Hu et al. (2022) proposed a new model called Leaf Area
Delaunay Triangulation (LA-DT) for digitising the area of rapeseed
leaves.

Pruning is one of the most important activities in fruit growing be-
cause the passage of sunlight into the canopy depends on it, which can
affect the efficiency of the crop production. This has led several studies
to focus on the digitisation of crops to evaluate pruning structures. For
example, Moreno et al. (2020) used an MLS to digitise a vineyard and
analyse the impact of pruning on this crop. One of the indicators best
characterising tree pruning is the percentage of light that is projected
onto the ground from the tree canopy. Thus, Westling et al. (2018) used
a TLS to digitise trees, which will enable the farmer to evaluate the
light energy captured by individual avocado trees. You et al. (2021)
used an MLS to create a graph of the structure of a cherry tree. This
is a great first step because it can help to develop tools for automating
the pruning of fruit trees.

The use of TLSs is predominant in this type of application, in which
the aim is to digitise instances of the crop. It is at least plausible that
this is because this type of LiDAR system allows a more detailed level of
the crops to be examined, thus enabling the creation of efficient point
clouds for the representation of the structures in the crop. The voxel-
based technique is most commonly used to create 3D models of trees
and plants. This technique creates a 3D model from small cubes, called
voxels, as a unit of volume. For example, Pfeiffer et al. (2018) used
this technique to digitise and analyse the biomass of cherry trees. In
addition, Westling et al. (2018) used voxelisation to digitise avocado
because they needed to obtain a 3D model of the structure similar to
reality to analyse the sunlight index. In TreeQSM, Lau et al. (2018)
used a technique similar to voxelisation but used cylinders instead of
cubes to create a more representative 3D model of the branches of a
tree, along with their hierarchy. The MatLab environment has been
widely used for the digitisation of crops. For example, Moreno et al.
(2020) used the R2017b algorithm to process the point cloud and to
be able to plot the output of this algorithm in a 3D model with the
CloudCompare software. Likewise, the MatLab environment has been
used to digitise apple trees (Berk et al., 2020). The semantics-guided
skeletonisation technique, which is based on the knowledge You et al.
(2021) acquired about the way in which cherry trees grow vertically,
was used to model topographic constraints and geometric constraints
to graph the structure of these trees.
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A few LiDAR applications to digitise crops have been found so far,
which are shown in Table 4. The dominance of TLSs in this type of
application is remarkable. This is due to the flexibility in manipulating
the scanning positions with this LiDAR system, which allows getting
into the uniqueness of the crops to achieve a more efficient digital rep-
resentations. It can be observed in Table 4 that most of the applications
for digitisation are focused on the tree’s structure and most of them
aim to assess the impacts of pruning in fruit growing (e.g. vineyards,
avocado, and cherry). Furthermore, voxelisation is the most widely
used strategy for digitisation and several studies emphasise the detail
that can be achieved in a digital model using this strategy.

Fig. 4 generalises the processes followed by the applications pre-
sented in this classification. LiDAR digitisation applications perform
the following 5 steps: data acquisition, preprocessing, visualisation,
evaluation, and reconstruction. The most distinctive feature is the
repeated application of the last three steps.

The literature agrees that using LiDAR systems (with the strategies
presented in Table 4) to digitise tree structures allows the creation
of 3D models that bear a close resemblance to reality. Moreover, this
type of application makes the estimation of wood volume in trees more
efficient, which helps to improve the pruning practices in fruit growing.
Furthermore, using LiDAR for foliage digitisation allows information
about the LAI to be extracted. Unfortunately, the quality of the point
cloud to digitise tree foliage is severely affected when wind is present,
even after many iterations of the digitisation processes (i.e. visualisa-
tion, evaluation, and reconstruction). In this challenging situation, the
process of digitising with LiDAR systems is not fully automated.

3.3. Vision

Crop scouting is routinely carried out on a day-to-day basis to
analyse the behaviour, from sowing to harvesting the crop. Depending
on the size of the crop, scouting can be done on foot or on a vehicle.
The basic tasks in scouting are counting trees or plants in the crop,
pruning wild plants, sensing the soil’s characteristics, counting fruit,
and determining the maintenance tasks that will be needed in the crop.

Borowiec and Marmol (2022) used an ALS to detect the edges that
delimit the soil extension of crops in the field, and thus keep track
of the amount of crop grown. The boundaries were detected using
PCA and the Hough transform. It is also important to inventory the
number of trees in a crop because this helps to estimate the production
and the amount of nutrients needed to maintain the crop. Itakura and
Hosoi (2018) used an ALS to count trees from a BEV perspective and
obtained an accuracy of 98% when detecting each tree in the point
cloud. Likewise, Holmgren et al. (2022) compared the efficiency of tree
detection at different heights and concluded that a better resolution
in the point cloud is obtained at a maximum height of 150 m, which
allowed the authors to detect smaller-than-average trees in low vegeta-
tion crops. Wu et al. (2019) compared 5 machine learning algorithms
for classifying canola canopy structures and concluded that Random
Forest is the algorithm with the best accuracy for classifying canola in
the point cloud.
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Table 4
LiDAR applications for digitisation in cultivating crops.

Study Item to be digitised Crop Strategy Software Type of
LiDAR

Wu et al. (2018) Structure Plants RANSAC, Statistical
Outlier Removal, 𝛼-shape

Agisoft TLS

Main findings: • Quality was not only related to LiDAR performance but also the external environment, scanning methods, and the complexity of the
plant structure.
• 𝛼-Shape worked better for plants with large leaves and less shelter between plants.

Pending challenges: • It is necessary to conduct rapeseed field trials to verify the versatility of this method.
• Point cloud generation had the disadvantages of low automation and increased time.
• The integration of multiple technologies for data acquisition would be interesting.

Lau et al. (2018) Structure Eperua,
Ormosia

Voxelisation, TreeQSM RiScan PRO TLS

Main findings: • TreeQSM found and reconstructed 95% of the branches thicker than 30 cm.
• TreeQSM identified the correct branching order in 99% of all cases and reconstructed 87% of branch lengths and 97% of tree volume.

Pending challenges: • This method could reconstruct branches over 40 cm in diameter; below this diameter, its accuracy decreases.
• Future work should optimise plot and sampling design to increase the point cloud density on branches and within the canopy.

Moreno et al. (2020) Structure Vineyards 𝛼-shape algorithm MatLab, LabVIEW, CloudCompare MLS

Main findings: • The number of scans significantly affected the relation of the actual biomass with the estimations.
• LiDAR demonstrated a higher capacity for branch reconstruction than other types of sensors.

Pending challenges: • Work must be done to improve computational processes and point cloud processing.
• The information could be used for automatic pruning systems or site-specific fertilisation.

You et al. (2021) Structure Cherry Skeletonisation, CNN ROS MLS

Main findings: • This article introduced an algorithm that produces a labelled skeleton using topological and geometric priors.
• This labelled skeleton also provided semantic information about the different parts of the tree.

Pending challenges: • This framework could be used during outdoor field tests on an end-to-end robotic tree trimming system.
• It is suggested to increase the generalisation and performance of the algorithm by embedding different methods.

Westling et al. (2018) Structure Avocado Voxelisation, Radiation
absorption model

SLAM TLS

Main findings: • This research presented a solar-geometric model for estimating light interception in avocado trees.
• Compared to ceptometer energy measurements on the canopy floor, the model obtained 𝑅 = 0.854; this suggests that the model is
suitable for decision support systems.

Pending challenges: • Trunk or foliage labelling was done manually; so, future work is needed on algorithms to automate this classification.

Digumarti et al. (2018) Structure Beech Deep Points algorithm SpeedTree, Unreal Engine,
Microsoft’s AirSim

TLS

Main findings: • A method is presented to segment the 3D point cloud of vegetation to create a hybrid model composed of the skeleton of the branches
and the segmented foliage, avoiding parametric models.
• An average classification accuracy of 91% was achieved on simulated data.

Pending challenges: • Thinner branches are still classified as leaves. Strategies to address this problem should continue to be sought.

Ao et al. (2022) Structure Maize Convolutional neural networks,
morphological characteristics

TLS

Main findings: • The method achieved high accuracy in component segmentation (𝐹 -score = 0.8207) and plant segmentation (𝐹 -score = 0.9909).
• The proposed method extracts accurate information for high-throughput phenotyping and provides helpful information for potential
analysis of the relationship between genotypes, environmental conditions and phenotypes.

Pending challenges: • Further, evaluate and improve the proposed method.

Hu et al. (2022) Structure Rapeseed Delaunay triangulation,
linear regression, elevation
filtering method

PCL, Visual Studio 2022 TLS

Main findings: • The experimental results showed that the LA-DT estimation errors of the three groups of field rapeseed were all less than 3%.
• The LA-DT could accurately estimate the total LA of rapeseed in the target field.
• Results showed that appropriately reducing the point cloud density could speed up the running rate and ensure the running accuracy of
the model.

Pending challenges: • This study further verified the accuracy of the model through experiments on individual rapeseed plants.

Lin et al. (2022) Structure Maize DBSCAN algorithm, Radius-NN,
KDTree

CENE, PCL TLS

Main findings: • This method has an average error of only 0.06 rad in direction prediction.
• An individual maize segmentation model was established to process the maize point cloud in the field directly.

Pending challenges: • Three factors restrict the accuracy of the segmentation and stratification models—the rationality of the segmentation, the stratification
method, and the data quality of the target 3D point cloud.
• In the future, the researchers plan to test and update this in larger field crop phenotypic experiments.

Jin et al. (2018) Tree foliage Maize Deep Points algorithm, Median
normalised vector growth

Green Valley International
LiDAR360, FARO Scene

TLS

Main findings: • This study was the first to introduce a LiDAR-based stem and leaf segmentation method.
• This algorithm had satisfactory accuracy for categorising maize with different heights, compactness, number of leaves and densities.
• The method could extract the three-dimensional volume quickly.

(continued on next page)
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Table 4 (continued).
Study Item to be digitised Crop Strategy Software Type of

LiDAR

Pending challenges: • The authors discuss that this method could promote the development of high throughput phenomics.

Berk et al. (2020) Tree foliage Apple Trapezoidal method MatLab MLS

Main findings: • Assessing leaf surface and tree spacing with LiDAR allowed more accurate analysis and targeted spraying management.
• This LiDAR method for canopy volume proved to be the most consistent digital reconstruction method.
• This approach digitally reconstructed the tree canopy of the smaller eight-volume elements.

Pending challenges: • Further research should be conducted to improve the leaf area measurement.
• Variation in tree age, size or variety is not considered.

Huang et al. (2022) Seed Legume RANSAC, PCA, Computational
Geometry Algorithms Library

PCL TLS

Main findings: • This method automatically calculated 34 traits: 11 morphological traits, 11 scale factors, and 12 shape factors.
• The high accuracy of the measurements, the low time cost and the ability to handle batch data processing and automatic measurement
showed that the method has the potential for legume seed phenotyping.

Pending challenges: • The 3D construction method was based on symmetry; so, it had limitations when measuring seeds with irregular geometric shapes.
• Future research should explore an effective segmentation method when seeds overlap and stick together.
• The authors proposed integrating this method into a hand-held scanning system for real-time measurement.
Fig. 4. General design used in LiDAR applications for digitisation in cultivating crops.
Counting the amount of fruit on the trees is directly related to
production and is difficult to do manually. For example, counting the
number of apples that a tree has produced would be a physically
exhausting task because the farmer would have to go tree-by-tree to
inventory the entire crop. Gené-Mola et al. (2020) used an MLS to
detect and count the apples on a tree with an accuracy of 90%. Another
interesting application for apple detection was proposed by Gené-
Mola et al. (2019), whose proposal does not depend on environmental
conditions to perform this task and can separate those apples that are
on a single shoot with an accuracy of 80%. Furthermore, Tsoulias et al.
(2020) used an MLS to count the apples on a tree. The difference is that
they performed the apple detection after the crop had been scanned. A
similar LiDAR application for fruit detection can be found in Tang et al.
(2022), who used an MLS to detect fruit on tea trees and estimate oil
production. An innovative application of ALSs can be found in Tiwari
et al. (2020), who detected and classified the roofs that cover crops to
get a notion of which farms are in operation.

LiDAR technology has been used as a computer vision system to
drive autonomous vehicles artificially. For example, Hu et al. (2018)
used LiDAR as a vision system for a quadcopter to fly through trees.
Normally, in rural areas, it is not possible to have a reliable GPS
signal. Therefore, Malavazi et al. (2018) used LiDAR technology to
map lanes in the crop and aid the navigation of their Oz vehicle.
Vehicle navigation in maize fields often presents a significant challenge
given the density of their biomass. For this reason, Velasquez et al.
(2020) developed a LiDAR-based navigation system for this type of crop
to make it practical for the autonomous vehicle to move among the
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maize plants. LeVoir et al. (2020) used a camera and a low-cost LiDAR
device as a vision system to navigate an autonomous vehicle in a maize
field in low and high population seasons. In contrast, apple harvesting
requires two main tasks to be performed manually: picking and trans-
porting apples. Mao et al. (2022) used an MLS as a vision system for
two vehicles to automate these activities. The VineSLAM algorithm is
another proposal specialising in a single type of crop (Aguiar et al.,
2022). This algorithm uses the point cloud generated by an MLS to
map the environment and locate vehicles in a vineyard. Jiang et al.
(2022) developed a system to navigate a vehicle in a greenhouse. They
used an MLS that generates a point cloud in 3D. However, they merged
this information in 2D because this mapping improved the algorithm’s
efficiency.

Detecting and pruning wild plants in crops is a constantly performed
task because the timely pruning of wild plants will prevent them from
consuming crop nutrients and promoting the formation of crop-disease
pests. An alternative for the detection of wild plants can be found
in Pretto et al. (2021), where the authors used two LiDAR systems
(ALS and TLS) to detect and automate the pruning of wild plants.
LiDAR systems can also be used during crop exploration (i.e. as a
computer vision system for vehicle navigation). This vehicle can make
estimations of the grass in the crop, thus allowing the navigation of the
vehicle (Nguyen et al., 2021). Cruz Ulloa et al. (2021) used a LiDAR
system to automate the application of fertiliser by detecting cabbages.

For applications involving fruit or tree counting, machine learning
algorithms have mostly been used, such as Euclidean clustering (Reiser
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Fig. 5. General design used in LiDAR applications for artificial vision in cultivating crops.
et al., 2018), support vector machines (Gené-Mola et al., 2020), k-
nearest neighbours (Tsoulias et al., 2020), and k-means (Cruz Ulloa
et al., 2021). In contrast to these applications, Itakura and Hosoi (2018)
used voxelisation to detect and count the trees in a crop. Further-
more, for applications using navigation systems, algorithms such as
the graph-based optimisation of Simultaneous Localisation and Map-
ping (SLAM) (Hu et al., 2018), RANSAC (Malavazi et al., 2018), and
H∞ (Velasquez et al., 2020) have been used. The AgriColMap library
has also been used to detect wild plants (Pretto et al., 2021).

Table 5 presents the applications of LiDAR technology focused on
artificial vision. This table shows that clustering has been repeatedly
combined with MLSs to detect apples. This may be due to the proximity
of the points generated by the collision of the laser pulse with the
fruit. In addition, some LiDAR sensors can record the intensity of
the reflection, and this intensity is linked to the type of object with
which the light pulse has collided. In general, clustering is the most
widely used approach to detect fruits and wild plants in agriculture.
Additionally, navigation is mainly addressed through LiDAR technology
because it allows the vehicle to navigate among the crops with a highly
accurate representation of the obstacles in the environment through
which the vehicle will move. Although navigation applications have
been developed for maize, even though it becomes a dense crop in the
production stage, it is still a challenging field in which to navigate.

Fig. 5 depicts the processes followed by the applications presented
in this category. Two groups of LiDAR applications for artificial vision
are clearly differentiated: object detection and navigation. In general,
they share the following processes: data acquisition, preprocessing,
cluster identification, object separation (only for object-detection sys-
tems), identification of false positives, and obstacle-avoidance move-
ment (only for navigation systems).

In most LiDAR applications for artificial vision, an indirect product
can be obtained. For example, in fruit detection, some researchers
reported that the characteristics of the crop’s geometry can be obtained
from the same point cloud. In navigation applications, the height of
the crop can be jointly estimated. In addition, LiDAR technology more
precisely gives the location of fruits and trees, often with a millimetric
error. The quality of the point cloud is not affected by the light
conditions in the crop (in contrast to techniques based on image or
video processing).

3.4. Planning and decision support

The aim of Agriculture 5.0 is to benefit agricultural production
from the use of technology, growing crops in a way that would be
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more resource efficient and improve production. LiDAR technology
allows several crop characteristics to be estimated, such as biomass,
wood volume, sunlight, soil properties, and tree structure. These esti-
mations enable the development of technological solutions that support
decision-making in the planning of crop maintenance and production
activities.

Analysing soil characteristics provides many benefits for planning
activities in agriculture. Thus, Estrada et al. (2017) analysed the soil
characteristics of plots in Spain with an ALS in combination with
satellite information to find irrigation patterns and improve irrigation
planning. In another example, ruminants leave urine patches on crop
soils while grazing, which helps to nourish the soil with nitrogen in an
organic form. In a recent study on urine patch detection (Roten et al.,
2017), an MLS was used to detect urine patches on the plots and to
estimate the nitrogen supplied by this means. The aim is to suggest
that the farmer only acquires the necessary nitrogen by other means.

The biomass in sugar cane helps to estimate the amount of nutrients
needed by this type of plant. Consequently, Shendryk et al. (2020)
proposed an ALS to estimate the biomass of sugar cane in different
seasons of the year to predict their growth and to then plan the
amount of fertiliser that needs to be applied to the crop. Another
application that focuses on crop biomass can be found in Pan et al.
(2022), who developed an artificial network to predict the biomass of
wheat by scanning the crop with an MLS. Spreading fertiliser on crops
is one of the most important processes in agriculture and is carried out
in different seasons, depending on the crop. An exciting application
of LiDAR for pesticide application is that of Liu et al. (2022), who
developed an autonomous vehicle for pesticide application in fruit tree
groves, reducing pesticide application by up to 32.46% compared to
traditional pesticide application.

Given that the biomass of sorghum is directly linked to its produc-
tion, Masjedi et al. (2020) applied multi-temporal predictive modelling
to point clouds to estimate the biomass of this crop to forecast the
production that will take place during the year. Another application
for predicting crop yield is that of Dilmurat et al. (2022): they used
the H2O-AutoML framework to combine point cloud and hyperspectral
data acquired with a UAV to predict the yield of a maize field, and
concluded that combining both sensors yields better results than using
them separately.

In Section 3.2 (digitisation), Westling et al. (2018) was cited be-
cause they used LiDAR to digitise tree structures, which was necessary
to calculate the sunlight entering the canopy of avocado trees. The
purpose of working on measuring the sunlight index on these trees
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Table 5
LiDAR applications for artificial vision in cultivating crops.

Study Task Crop Strategy Software Type of
LiDAR

Gené-Mola et al. (2020) Fruit detection Apple Support vector machine,
DBSCAN

CloudCompare, MatLab MLS

Main findings: • This system detected and located more than 80% of the visible fruit.
• A methodology for fruit location and crown characterisation was developed.
• The forced air and multi-view utility helped to reduce the number of fruit occlusions.

Pending challenges: • Further research should focus on analysing and comparing fruit occlusions in different training systems.

Gené-Mola et al. (2019) Fruit detection Apple Clustering CloudCompare MLS

Main findings: • The results suggested that the apparent reflectance parameter can help detect apples.
• Apple detection through LiDAR showed similar results to those based on RGB; however, it had the advantage of providing direct 3D information.

Pending challenges: • The most important limitation of this research is the small data set.
• Future work should focus on analysing fruit reflectance under different laser wavelengths.

Tsoulias et al. (2020) Fruit detection Apple 𝑘-nearest neighbours,
Sparse Outlier Removal

MatLab, CloudCompare MLS

Main findings: • Evaluation of apple bunches on foliated trees over bunches on defoliated trees showed that robustness is affected by fruit size.
• The geometry of the fruit influences the accuracy of the detection.

Pending challenges: • Further research should be carried out to test the method on different apple cultivars with a less spherical shape and varying surface
properties to identify and address possible deviations in geometric and reflectance values.

Cruz Ulloa et al. (2021) Fruit detection Cabbage Clustering ROS MLS

Main findings: • This article presented the first proof of concept of an integrated robotic system for fertilisation using only LiDAR data.
• The proposed method has demonstrated that relative localisation can be reliably established from real-time feature extraction.

Pending challenges: • Further research on extracting the main features of the clusters to develop more complex tasks for the robotic arm (e.g. fertiliser
application, irrigation, weeding, and harvesting).

Tang et al. (2022) Fruit detection Camellia Clustering SCENE TLS

Main findings: • The algorithm developed in this research showed better results in oil tea identification than the traditional DBSCAN and
maximum–minimum distance clustering algorithm.
• The improved method had high stability and repeatability and provided a new reference for other performance estimates.

Pending challenges: • The main factors causing uncertainty in the identification process are LiDAR performance errors and errors caused by the environment
and target attributes.
• Deep learning should be applied in this system to explore the possibility of obtaining better results in the most challenging conditions.

Mao et al. (2022) Navigation Apple RANSAC ROS MLS

Main findings: • This research developed a navigation system for a harvesting robot with master–slave navigation methods for apple harvesting.
• This system met the demands of cooperative operation without collisions.

Pending challenges: • The robot could navigate at a maximum speed of 0.5 m/s: if this speed is exceeded, tracking errors occur.
• Future work should be focused on the optimisation of the tracking algorithm and the design of PID control rules to increase the
efficiency of the robot.

Velasquez et al. (2020) Navigation Maize 𝐻∞ MatLab MLS

Main findings: • The main contribution was the design and implementation of an 𝐻∞ controller to reduce cross-track error.
• Despite environmental disturbances, the navigation system kept the robot centred between the crop rows.
• The 𝐻∞ controller was tested in three different situations in a maize crop: one in the vegetative stage, and two in the reproductive stage.

Pending challenges: • Small robots (smaller than a lane and shorter than neighbouring plants) made quantitative performance analysis difficult.

Malavazi et al. (2018) Navigation Maize PEARL, RANSAC, RUBY SIFT MLS

Main findings: • The modified PEARL approach developed in this research improved crop detection compared to the classical PEARL and RANSAC-based
approaches.
• The proposal was tested on both synthetic and real-world case studies.

Pending challenges: • Due to the terrain conditions, when the robot used the odometry data, it tended to make errors in the row change.
• When the weed is at a higher level than the LiDAR position, the developed approach could not be used to detect the crop.

Nguyen et al. (2021) Navigation Grass Linear regression RTKNavi, Mission Planner MLS

Main findings: • The DairyBioBot proposed in this paper was the first system developed to autonomously measure perennial ryegrass plants’ volume.
• Plant volume measured with LiDAR and fresh matter biomass are strongly correlated, demonstrating the usefulness of the DairyBioBot
for autonomous biomass estimation in the field.

Pending challenges: • Future work should optimise data collection and data analysis with less human effort.

Hu et al. (2018) Navigation Dummy trees LM, RRT*, SLAM
(Hector, Gmapping, Karto)

ROS, MatLab ALS

Main findings: • With a lower computational complexity, the system developed in this research can accomplish the tasks even in the presence of many
tree-shaped obstacles.
• The improvements to the algorithm selected in this research decreased the failure rate by 2.6 times compared to the original algorithm.

Pending challenges: • This approach was only tested on simulated trees, using cylinders as obstacles.
• The current algorithm was only applied to two-dimensional environments and has little applicability to UAV systems.

Aguiar et al. (2022) Navigation Vineyards RANSAC, Iterative
Closest Point, VineSLAM

ROS MLS

(continued on next page)
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Table 5 (continued).
Study Task Crop Strategy Software Type of

LiDAR

Main findings: • This approach could locate the robot accurately, even in long and symmetrical vineyard corridors.
• Localisation is achieved using only three orthogonal half-planes.

Pending challenges: • Future research should extend the algorithm’s capabilities to extract features with semantic representations.
• The algorithm should be tested in a broader range of irregular scenarios.

Jiang et al. (2022) Navigation Greenhouse Dynamic Kalman filter, SLAM,
Dijkstra

ROS MLS

Main findings: • The robot navigates at speeds of 0.2, 0.4, and 0.6 m/s.
• Adding objects with structured features in the greenhouse environment can improve the robot’s positioning accuracy.

Pending challenges: • This research only accomplishes simple positioning and navigation of the robots in greenhouses.
• Future work plans to use 5G, cloud computing platforms and other models to improve robot efficiency.

Tiwari et al. (2020) Roof detection Greenhouse Classification ArcGIS, eCognition Developer,
ERDAS IMAGINE

ALS

Main findings: • This strategy interpreted orthophoto data, measured ground data and LiDAR to classify and map structural features in an agricultural region.
• The procedure has an accuracy of 92% for classifying and typing the protected agriculture structures in the study.

Pending challenges: • This study could help to understand the pattern of cultivation and its growth.
• Data is collected through questionnaires sent to farmers, so it would be beneficial to develop a system to automate this task.

Holmgren et al. (2022) Tree detection Spruce,
Scots pine

Clustering R ALS

Main findings: • A higher detection rate of trees is observed using data collected at low altitudes (150 m above ground level).
• The 3D crown segmentation method allowed more trees to be detected than a 2D method. In addition, 3D dots allowed the detection of
trees underneath other trees.

Pending challenges: • Only with the first part of the algorithm, high proportions of stem volume were detected. This is useful information for mapping forest
resources over larger areas. It would be interesting to test the LiDAR system under these challenging conditions.

Itakura and Hosoi (2018) Tree detection Ginkgo
trees

Voxelisation, SLAM ROS ALS

Main findings: • Trees were detected in the 3D point cloud with high accuracy, and the number of trees and diameter at breast height were estimated.
• This method could detect partially scanned trees.

Pending challenges: • If the trunk representation was poor, the estimate’s accuracy fell below 52%.
• The tree detection method should be tested on larger areas of trees.

Wu et al. (2019) Canopy structure
detection

Canola Clustering, Classification PhenoSMART, CloudCompare,
MatLab

MLS

Main findings: • This research showed that the Random Forest algorithm is adequate for canola point cloud classification.
• LiDAR-derived height and intensity information enriched the identification of canola features.
• LiDAR can be used to differentiate plant parts efficiently.

Pending challenges: • Further research is needed to investigate whether the method is adaptable to other types of crops.

LeVoir et al. (2020) Plant detection Maize Clustering NAVLAB MLS

Main findings: • The solutions developed in this research outperformed most of the current computer vision algorithms used for precision agriculture.
• Combining adaptive RGB filtering and inverted linear regression provided higher precision.

Pending challenges: • The computer vision system is expected to be sensitive to weather conditions (however, less sensitive than GPS-based approaches).

Reiser et al. (2018) Plant detection Maize Clustering ROS, MatLab MLS

Main findings: • This research used 2D LiDAR for obtaining georeferenced 3D point clouds of maize plants at different stages of growth and used this
information to cluster individual plants.
• The contextualised iterative plant clustering method was accurate and reliable with an RMSE between 3.0 and 2.7 cm.

Pending challenges: • Discrimination between crops, weeds or other objects is not possible because the described methods do not consider the shape of the objects.

Pretto et al. (2021) Wild plant detection grass-weed Gaussian Processes, CMA-ES AgriColMap, MAPLAB,
PatchMatch framework, ROS

ALS and
MLS

Main findings: • The main contribution is a robotic solution for precision agriculture combining the aerial reconnaissance capabilities of a UAV with a
multi-purpose agricultural unmanned ground vehicle.
• The solutions proposed were a breakthrough in robotic systems for precision agriculture, easily applicable to a wide range of robots.

Pending challenges: • The implementation of this technology can become quite expensive. The research should be extended to consider low-cost LiDAR sensors.

Borowiec and Marmol
(2022)

Land boundaries
detection

Crops in
Zimno
(village)

PCA, Hough transform,
multi-resolution algorithm

MatLab ALS

Main findings: • The use of LiDAR proved to be an useful technology in the process of detecting agricultural boundaries. Most of the boundaries were
legible in the laser data.
• Knowing an additional 𝑧-coordinate allowed more accurate edge detection in areas where 2D information was ambiguous.
• The method developed is helpful for automatic verification and tracking of anomalous information.

Pending challenges: • The boundaries of plots cultivated and covered with different plant species should be analysed. This diversity could be challenging
because each species can have a different intensity value.
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was to be able to make recommendations for their pruning. Large-scale
pruning of fruit trees consists of cutting branches from the trees to make
their structure more efficient. With this aim in mind, Westling et al.
(2021) extended their research by using an MLS to scan the structure
of avocado and mango trees and make pruning suggestions based on the
sunlight index (which is 25%). Bohn Reckziegel et al. (2022) also used
an MLS to scan cherry trees and make suggestions on pruning structures
through the Quantitative Structure Model (TreeQSM) algorithm to
improve the efficiency of light passage in the trees.

As shown in Table 6, there is a diversity in the applications for
planning in agriculture because these types of solutions are more robust
to support the farmer in making their crop activities more efficient. For
example, ALSs are used to estimate sorghum production, but the ap-
proaches differ (cf. Masjedi et al., 2018, 2020). In addition, techniques
that recommend the amount of fertiliser to be applied use both LiDAR
systems and different strategies to address the problem (cf. Roten et al.,
2017; Shendryk et al., 2020). For applications that seek to analyse soil
characteristics, algorithms such as RANSAC (Roten et al., 2017) and
Maximum Value Composite (MVC) (Estrada et al., 2017) have been
used. In addition, artificial networks have been used for biomass esti-
mation (Masjedi et al., 2018); algorithms such as PCA have been used
for fertiliser application in relation to sugar cane biomass (Shendryk
et al., 2020), and regression models have been used for forecasting the
biomass of a crop of sorghum (Masjedi et al., 2020).

The problem of pruning is also addressed here. Most applications
for pruning in digitisation only focus on creating a good representation
of the tree structure and the farmer is then supposed to evaluate the
pruning. However, Westling et al. (2021) made recommendations about
the final structure that presents the best efficiency. Voxelisation and
TreeQSM have been used to make recommendations on pruning (e.g.
Westling et al., 2021; Bohn Reckziegel et al., 2022). All of the appli-
cations that are presented in Table 6 involve strategies that have been
used for applications of all of the previous categories in this taxonomy.

For these LiDAR applications, the researchers agree that the effi-
ciency of the application is improved by combining different sensors.
However, it is more accurate to use the sensors separately for some
applications, such as fertiliser application in sugar cane. Meanwhile, it
is faster to process the point cloud generated by the LiDAR system com-
pared to photogrammetry for this type of application. Unfortunately,
the speed at which the system moves makes it unfeasible to implement
these solutions in practice.

4. Concluding remarks

LiDAR technology in precision agriculture can make crop perfor-
mance estimations more efficient, allowing farmers to make better use
of their resources without neglecting the quality of production, promot-
ing the objectives behind Agriculture 5.0. However, their cost is still
one of the main limitations to the development of LiDAR applications
in agriculture.

Because the adoption of LiDAR technology depends on the task to be
performed, we can make the following suggestions based on a review
of the state-of-the-art literature:

• According to the type of LiDAR sensor:

– Mobile Laser Scanners (MLSs) are suitable for tasks such
as monitoring and maintenance of crops, detection and
classification of objects, estimation of the volume of trees,
crop scouting, and navigation. This is due to the ease with
which an MLS can enter the crop.

– Terrestrial Laser Scanners (TLSs) are adequate for
digitisation-related activities, like approximating the tree
structure or the tree foliage. Pruning is one of the activities
where TLSs stand out.
18
– The models of LiDAR sensors commonly used as MLSs or
TLSs are the following: LMS400, LMS111, UTM-30LX, Focus
X330, LMS511, and VLP-16 (a.k.a. Puck).

– Airborne Laser Scanners (ALSs) are appropriate for tasks
such as counting trees, determining irrigation areas, navi-
gation system for quadrators, and monitoring activities in
orchards, among others. This is due to their bird’s-eye view
(BEV) perspective, which is ideal for capturing surrounding
objects and their spatial locations. The most commonly used
sensor is the VLP-16 model.

• The most popular software tools for processing point clouds in the
literature are Point Cloud Library, LiDAR360, and CloudCompare.

• ArcGIS is often used to visualise and process data that results from
LiDAR point cloud rasterisation.

• Among the methods used in point cloud processing are: descrip-
tive statistics, which are used for metric estimation; clustering
and classification techniques are suitable for both artificial vision
and monitoring tasks; and voxelisation techniques are suitable
for creating digital representations (such as seeds, plants, tree
structure, and tree foliage).

Concerning metric estimation, there is a marked tendency for cal-
culating the Leaf area index (LAI), Normalised Difference Vegetation
Index (NDVI) and height. These indices are used to estimate the pho-
tosynthetic capacity of the crop, estimate the production, and evaluate
the crop’s health status. Here, we can say that MLSs are widely used for
scanning activities because most autonomous vehicles are terrestrial,
which allows them to access the crops easily. Indeed, they are quite
popular to monitor height and biomass because these features are
strongly related to their yield, soil salinity, and plant health. Also, these
estimates help to determine the application of fertiliser and pesticide.

In terms of computer vision, the trend is that LiDAR technology is
used in object-detection systems to count fruit on the trees (mainly
through MLSs) and estimate crop yields, inventory trees, and detect
wild plants in the crop. On the other hand, ALSs are used as a computer
vision system for UAVs to perform activities oriented towards estimat-
ing metrics involving tree canopy or properties of the soil to generate
irrigation and roughness maps.

Regarding digitisation, TLSs are mostly used because they have a
higher spatial resolution, which allows a more detailed and accurate
characterisation of crops compared to MLSs and ALSs, becoming ad-
equate to digitise complex characteristics (such as tree structure or
foliage) and make further estimates based on them.

In regard to planning and decision support, it has had an impact on
pruning in vineyards, as well as avocado and mango orchards. Here the
trend is to make recommendations for tree pruning structure, detect the
branches that need to be pruned, and recommend the pruning structure
based on different indices, such as sunlight.

A discussion of the main challenges researchers face when using
LiDAR technology follow.

In LiDAR applications for crop monitoring, most MLSs can go at a
maximum speed of 1–11 km/h to avoid decreasing the efficiency of the
application, which is insufficient in practice. Speed is the main limiting
factor when accuracy is the objective in measuring crop characteristics.

Although the use of TLSs predominates for crop digitisation, it is
feasible to use an ALS for this type of application. Nevertheless, if the
foliage is dense, then it is challenging to digitise the tree from a BEV
perspective with a single backtrack ALS.

Variations in leaf colour can represent the state of a tree and the
health of a plant. However, in low-cost LiDAR, it is difficult to measure
this feature.

Finally, experimentation on the crop increases the cost of doing
field research in Agriculture 5.0 and, unfortunately, there are very few
repositories containing instances of crops scanned with LiDAR systems.

From these challenges, we identify the following issues that require

further research:
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Table 6
LiDAR applications for planning and decision support in cultivating crops.

Study Task to be supported Crop Strategy Software Type of
LiDAR

Shendryk et al. (2020) Fertiliser
application

Sugar cane PCA Global Mapper ALS

Main findings: • The results of this research were of significant interest for nutrient management programmes for nitrogen fertilisation.
• Predicted yield peaks early in the season (100–142 days after harvest), and it decreases as the harvest date approaches.

Pending challenges: • Future research should apply the models from this work to predict leaf nitrogen content and biomass with a UAV.
• Environmental factors, such as pest occurrence, can affect LiDAR-derived and multispectral measurements.

Roten et al. (2017) Fertiliser
application

Grass RANSAC MatLab MLS

Main findings: • This study helped determine the capability and feasibility of using a LiDAR system to detect urine stains created during grazing.
• Contour maps of the pasture were accurately detected by asymmetrical urine stains and calculating a percentage of urine area with high
nitrogen content.

Pending challenges: • Scanning speed (0.65 km/h) was not practical for commercial farming operations.

Liu et al. (2022) Fertiliser
application

Fruit trees RANSAC PCL MLS

Main findings: • Compared with traditional spraying, variable-rate spraying applies 32.46% less pesticide, suffers 44.34% less drift and 58.14% less ground loss.
• This research found that reducing ineffective spraying is essential for improving the efficiency of the spraying.

Pending challenges: • Making appropriate spraying decisions for fruit tree canopy characteristics is a way to improve the efficiency of the spraying.

Estrada et al. (2017) Irrigation Herbaceous, Woody,
Grazing

Classification, MVC The Sentinel-2 Toolbox ALS

Main findings: • The algorithm for identifying irrigation patterns yielded an overall accuracy of up to 95%.
• This kind of identification of irrigated areas would benefit the EU’s Common Agricultural Policy considerably, allowing to its saving
significant amounts of money annually.

Pending challenges: • Additional data (e.g. very high-resolution images) and field visits are still necessary to correctly determine agricultural characteristics.

Masjedi et al. (2020) Production Sorghum Multi-temporal
predictive models,
Regression-based models

Scikit-learn library ALS

Main findings: • Geometric features derived from the LiDAR point cloud to characterise the plant structure and chemical features extracted from the
hyperspectral data provided the most accurate predictions.
• The number of samples in the training set for the prediction was an important factor in determining the accuracy of the predictions.

Pending challenges: • It is recommended to collect at least 50 samples. However, if high variability in the biomass data associated with the varieties in the
experiments is expected, more samples would be needed.

Masjedi et al. (2018) Production Sorghum Support vector regression,
Multi-layer perceptron

Headwall SpectralView ALS

Main findings: • The regression model predicted end-of-season biomass with relatively higher accuracy.
• This article used high temporal and spatial resolution remote sensing data to focus on predicting sorghum biomass.

Pending challenges: • The use of other inputs derived from remote sensing should be investigated.
• Late season values were affected by the complexity of the canopy.

Pan et al. (2022) Production Wheat BioNet PointNet, PointNet++,
DGCNN, GS-Net,
PyTorch

MLS

Main findings: • A Biomass prediction Network (BioNet) was proposed, which also considered plant structure.
• Experiments showed that BioNET improved by about 33% over current state-of-the-art methods.

Pending challenges: • Introducing more sensors into the system is desirable to improve prediction accuracy.

Dilmurat et al. (2022) Production Maize classification and
regression

H2O-AutoML ALS

Main findings: • UAV platforms incorporated with multiple sensors can provide multi-domain characteristics, the spectrum and texture of the canopy, as
well as its structure, thus proving a capable tool for predicting the yield of maize.
• UAV-based multisensory data fusion provided performance superior to that of many previous studies concerning the estimation of plant
traits and grain yield.

Pending challenges: • Yield estimation via UAV-based multisensory data fusion and machine learning should be investigated across various crop types and in
different field environments.

Westling et al. (2021) Pruning Avocado,
mango

Voxelisation ACFR, Comma and Snark,
SimTreeLS

TLS

Main findings: • The final results of this research showed the great potential of this framework to be the starting point for automated pruning.
• Compared to a tree pruned with current techniques, light distribution improved by up to 25.15% using the framework of this research.

Pending challenges: • Research should continue improving the suggestion mechanisms and, in addition, incorporate more agricultural objectives and operations
connected to pruning.
• The basis of this framework should be extended to provide a commercially applicable pruning suggestion system.

Bohn Reckziegel et al.
(2022)

Pruning Cherry Leaf Creation Algorithm,
TreeQSM

LaserControl, CloudCompare,
MatLab

TLS

Main findings: • This research contributed to the virtual pruning of tree structures, to be used strategically for the maintenance, planning, and design of
tree crop farming systems.
• The pruning recommendations for low-intensity treatments presented solutions applicable to real fields.

Pending challenges: • The high-intensity treatments produced results that were not applicable in the field, e.g. they removed up to 60% of the tree volume.
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• It is necessary to develop sensors with a more accessible cost
for researchers but without – critically – losing the quality of
their performance. Conjointly, the researchers should develop
approaches that satisfactorily work using low-cost LiDAR sensors
to make this technology accessible to farmers.

• One issue that must be addressed when using an MLS is the
speed at which a person scans an object because scanning quickly
will affect the density of the point cloud. For this reason, it is
necessary to develop software that deals with this issue.

• It is necessary to complement the LiDAR systems with other
sensors that can capture information, such as leaf colour, to
determine tree and plant health status. One way to obtain spectral
information for the point cloud is to use a multi-band LiDAR
system.

• Regarding foliage-oriented digitisation, the presence of wind sig-
nificantly affects the accuracy of the employed algorithms be-
cause the generated point clouds are blurred. The development
of approaches less sensitive to this outdoor condition would be
valuable.

• It is necessary to make more repositories containing instances
of crops scanned with LiDAR systems publicly available, which
would help to mitigate the high cost of the experimentation and
promote research in Agriculture 5.0.
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