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Abstract
When cranial bone needs to be removed or lost, subsequent reconstruction of the defect is 
necessary to protect the underlying brain, correct aesthetic deformities, or both. 
Cranioplasty surgical procedures are performed to correct the skull defects requiring 
reconstruction of form and function. Personalized cranial implants can repair severe injuries 
to the skull can be done through This study presents the optimization of cranial titanium 
implants. A total of sixty different models were subjected to a simulation by Finite Element 
Analysis (FEA) applying the mechanical properties of a grade 5 titanium alloy (Ti6Al4V) 
implant material. The material was subjected to intracranial pressure (ICP) conditions, with a 
typical range (10 mm Hg) and twelve fixation points in the boundary conditions. An artificial 
neural network (ANN) was created to connect the designs, obtaining maximum 
displacements. Optimal designs were obtained using a generalized reduced gradient that 
minimizes the amount of material, maintaining as a restriction a maximum displacement of 
0.1 mm for the 5th to 95th percentiles, which represent the group of individuals under 
study.
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1. Introduction
The human head is often subjected to impact during automobile 
accidents, falls, or sport-related events. These impact conditions 
can lead to mechanically induced head injury, which constitutes 
one of the major causes of accidental death [1]. Head injuries 
could be grouped into three categories: scalp damage, skull 
fracture, brain injury, or a combination of these [2,3].

Improving indications for cranial decompressive procedures, 
mainly after traumatic injuries and vascular lesions had led to a 
demand for effective bone substitutes in cranial reconstruction, 
particularly in large and complex bone defects. Cranioplasty is 
carried out to restore the morphological and functional 
anatomy of the cranial vault, to protect the brain, thus avoiding 
neurological disorders, deficits, or changes in the cerebrospinal 
fluid, and to restore cranial aesthetics [4,5]. Cranioplasty 
surgery does not only offer cosmetic and sometimes lifesaving 
benefits but also gives relief to psychological drawbacks and 

improves the life quality for patients [6]. Cranioplasty surgical 
procedures may be conducted by using autografting (the 
implant is taken from the patient's body) and allografting 
(implant taken from a donor’s body) or alloplastic (non-biologic 
such as polymeric and metallic) materials [7].

Metallic alloplastic materials, used in alloys with titanium, have 
mechanical properties greater than bone, manufacturing ease, 
and good resistance to corrosion degradation [8]. Besides, due 
to good mechanical properties superior to those of human 
bone, such as modulus of elasticity and yield strength, they lend 
themselves to load-bearing applications in the human body and 
prevent fractures after use.

Ti-containing alloys, such as the commonly used surgical Grade 
5 titanium (Ti6Al4V), present low density, a high strength-to-
weight ratio, high biocompatibility, and form an oxide layer to 
which bone progenitor cells can strongly adhere [9]. Titanium is 
used in the cranium for fixation devices such as plates and 
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screws, mesh, or solid plates, and in combination with other 
materials such as inert plastic or ceramic components [10].

The selection of cranial implants must satisfy several important 
criteria, such as biocompatibility, customized geometry to 
ensure direct contact with bone tissue, and sufficient 
mechanical properties to withstand function related stress [11]. 
Technical readiness for clinical application, short lead time, low 
cost, and ease of manufacture for alloplastic cranioplasty are 
also important considerations [12].

On the other hand, developments in tissue engineering are 
moving forward, exploiting advanced designs and fabrication 
technologies to design and produce implants, patterns or 
templates that enable the fabrication of custom-made 
prostheses without requiring a model of the anatomy to be 
made [13]. In this regard, the optimization of implants becomes 
relevant to reduce the weight, material usage, and cost of the 
implants while assuring their structural integrity and 
functionality [14], at the same time, parameters of the material 
such as porosity can be adjusted [15].

Particularly, the skull provides the structure to the head and 
face while protecting the brain, it is composed of flat and 
irregular bones. The skull can be divided into a facial part called 
Viscerocranium, the bones which form the face, and a 
Neurocranium, known as the braincase, that protects the brain 
and brainstem [16,17].

The presence of a lesion (intra- or extra-axial) can generate 
displacement of the brain's midline, causing herniation, 
compression of basal cisterns, increased intracranial pressure, 
and leading to death. A midline shift greater than 0.5 cm is a 
predictor of a bad result in the neurological outcome of patients 
with head injuries hospitalized in intensive care [18].

It is essential to classify the injury to address the diagnostic 
study of a seriously ill patient due to severe head trauma. The 
most widespread and defended of the classifications of 
traumatic brain injury (TBI) by CT is that of Marshall et al. [19], 
which is based on the state of the mesencephalic cisterns, the 
degree of deviation from the midline, and the presence or 
absence of focal lesion (Lesions diffuse-type I, II, III or IV).

Modern design and manufacturing engineering technologies 
have greatly improved how modern craniofacial implants are 
designed and fabricated. However, sophisticated optimization 
algorithms that simultaneously deal with multi-functional 
designs on multiple length scales need to be developed [14].

Artificial neural networks (ANN) models are successfully used in 
different fields of study; after they are satisfactorily competent 
and tested, it can generalize rules and respond rapidly 
(instantaneously) to input data to predict required outputs 
within the domains covered by the training examples. 
Moreover, it can handle many data sets, implicitly detect the 
complex nonlinear relationships between dependent and 
independent variables, and detect all possible interactions 
between predictor variables [20,21]. The multi-layer perceptron 
(MLP) network, typically referred to as back propagation (BP) 
network, is the most popular ANN in engineering issues and 
may have one or several hidden layers.

The optimization is to obtain the best possible result in a 
process or system by determining the values of the variables 
that intervene; in mathematical terms, it consists of searching 
for a minimum or maximum of a function. For example, the 
design of bone implants allows the design of structures to meet 
the desired objectives and restrictions [22,23]. The generalized 
reduced gradient or GRG search method is a nonlinear 
constraint optimization method used in the Excel Solver [24].

Implementing computer-aided design (CAD) and optimization in 
implant design is hampered by the high computational cost; 
however, the application of neural networks can solve the 
problem by reducing simulation times. In addition, the 
integration of optimization technology with simulation and 
artificial intelligence techniques will reduce experimental times 
and costs.

This study aims to determine the optimal design that minimizes 
the amount of Ti6Al4V material, subject to a maximum 
displacement constraint of 0.1 mm (total analysis deformation), 
for a neurocranial implant. The rest of the paper is organized in 
materials and methods, where it is presented from data 
acquisition, implant design, functional finite element analysis, 
and artificial neural network. Subsequently, a results section 
presents a normality test, implant design, functional analysis, 
predictive neural network, GRG optimization, and finally, the 
conclusions.

The challenge of this article is to determine the savings 
obtained by minimizing the volume of material and the cost 
savings by reducing the design time of the implant, concerning 
other methodologies recorded in specialized literature. To 
overcome it, a future investigation is recommended where the 
cost factor is measured.

2. Materials and methods
The proposed methodology for the design and optimization of 
titanium cranial implants is shown in the block diagram in 
Figure 1. The whole methodology is divided into five modules: 
data acquisition, implant design, finite element analysis (FEA), 
artificial neural network (ANN), and optimization (GRG method).

Figure 1. Design and optimization methodology for titanium cranial implants

2.1 Data acquisition (cranial anatomy approach)

In the present study, six variables were selected using 
anatomical points, and a craniometric study was performed 
(130 Mexican adult skulls with ages between 18 and 50 years 
were analyzed). The participants of the study come from 
fourteen different states (Chihuahua, Guerrero, Sinaloa, Sonora, 
Tijuana, Hidalgo, Jalisco, Mexico City, Guanajuato, Colima, 
Coahuila, Queretaro, and Veracruz). The inclusion criteria were 
free of physical injuries, without cranial fracture, deformities, or 
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surgeries in the skull.

An anthropometer brand Rosscraft model Campell® 10 RC-10 
with 18 cm range, a Rosscraft metallic ribbon for 
anthropometric use with 200 cm range, each equipment has an 
accuracy of 0.5 mm; and an ErgoMeasure vertical 
anthropometer with 500 cm range and precision of ±1mm; were 
used to measure the anthropometric dimensions.

The anthropometric dimensions used in the study indicate the 
distance between two referenced craniometric points: Glabella 
(G), Vertex (V), Opisthocranion (Op), and Eurion (Eu). Figure 2 
shows an overview of the skull bones of the Neurocranium 
(Frontal, Parietal, Temporal and Occipital bones) and the 
variables (craniometric dimensions) used in the study with 
craniometric reference landmarks: Eu-Eu = head width (1), G-Op 
= skull length (2), V-G = head height (3), Eu-V-Eu = Semicircular 
length of Eu-V-Eu (4), G-V-Op = Semicircular length G-V-Op (5) 
and head circumference (6).

Figure 2. The neurocranial skull parts, anthropometric dimensions, and 
craniometric reference landmarks

 Following the ethics committee of the Autonomous University of 
Ciudad Juárez (UACJ), the protocol applied was reviewed and 
approved. The participants signed a consent form accepting 
their participation in the study and the absence of health risks 
when participating in the study. The information collected was 
treated confidentially and was used only for academic purposes. 
A team of 3 anthropometrics was trained to perform cranial 
anthropometric measurements. Descriptive statistics (mean, 
standard deviation, minimum, maximum, range, and 5th, 25th, 
50th, 75th, and 95th percentiles) were calculated. The 
Kolmogorov-Smirnov test was applied to ensure the normality 
of the data, considering a significance value of 0.05. All 
statistical procedures were conducted using SPSSv17 software.

2.2 Implant design

The design of the implant must satisfy two main requirements: 
geometry and functionality [25-27]. The functionality considers 
the geometry, dimensions, and materials to satisfy functional 
requirements such as structural performance. From the values 
obtained in the craniometric study, the values corresponding to 
the 5th, 25th, 50th, 75th, and 95th percentiles were selected. The 
bone implants were designed using SolidWorks software, 
applying the values obtained.

Different designs were performed for each percentile varying 
the thickness of the implant between 0.5 mm to 1 mm, 

thickness commonly applied in commercial meshes, the size 
(diameter of 3 mm, 4 mm, 5 mm, and 6 mm), and separation of 
the holes (5° and 10°) in such a way that, for each percentile, 
there is a different geometry and volume. The percentage of 
empty spaces (A) was calculated using Eq.(1), where the total 
volume corresponds to the geometry without the holes and the 
final volume with holes. The volume values were determined 
using the software, while the models were exported in Parasolid 
format (*.x_t)

A = ( Total Volume − Final Volume
Total Volume ) (100) (1)

The specifications of hole size, separation of holes and thickness 
of each design corresponding to 5th, 25th, 50th, 75th, and 95th 
percentiles are shown in Table 1.

Table 1. Implants design specifications

Specifications of design 1 2 3 4 5 6 7 8 9 10 11 12 Percentile
Hole diameter (mm) 3 3 3 3 4 4 4 4 5 5 6 6

5thSeparation of holes (degrees) 5 5 10 10 5 5 10 10 10 10 10 10
Thickness (mm) 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1
Specifications of design 13 14 15 16 17 18 19 20 21 22 23 24 Percentile
Hole diameter (mm) 3 3 3 3 4 4 4 4 5 5 6 6

25thSeparation of holes (degrees) 5 5 10 10 5 5 10 10 10 10 10 10
Thickness (mm) 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1
Specifications of design 25 26 27 28 29 30 31 32 33 34 35 36 Percentile
Hole diameter (mm) 3 3 3 3 4 4 4 4 5 5 6 6

50thSeparation of holes (degrees) 5 5 10 10 5 5 10 10 10 10 10 10
Thickness (mm) 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1
Specifications of design 37 38 39 40 41 42 43 44 45 46 47 48 Percentile
Hole diameter (mm) 3 3 3 3 4 4 4 4 5 5 6 6

75thSeparation of holes (degrees) 5 5 10 10 5 5 10 10 10 10 10 10
Thickness (mm) 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1
Specifications of design 49 50 51 52 53 54 55 56 57 58 59 60 Percentile
Hole diameter (mm) 3 3 3 3 4 4 4 4 5 5 6 6

95thSeparation of holes (degrees) 5 5 10 10 5 5 10 10 10 10 10 10
Thickness (mm) 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1

2.3 Normality test

Table 2 shows the normality test results, conducted using the 
Kolmogorov-Smirnov test. Due to the p-value of the six variables 
being higher than 0.05, data is considered normal, and it is 
possible to perform additional statistics and model analysis.

Table 2. Normality test results

Skull dimension Kolmogorov Smirnov P-value
Eu-Eu 0.462 0.983
G-Op 0.938 0.342

Head Circumference G-Op 0.650 0.791
G-V-Op 0.771 0.591
Eu-V-Eu 0.703 0.707

V-G 0.898 0.395

2.4 Data acquisition and implant design

Table 3 shows the descriptive statistics of craniometrics 
dimensions (mean, the standard deviation, the minimum, the 
maximum, and the 5th, 25th, 50th, 75th, and 95th percentiles) of 
head width (Eu-Eu), skull length (G-Op), head height (V-G), Eu-V-
Eu Semicircular length, G-V-Op Semicircular length, and head 
circumference.

According to the percentiles values shown in Table 3, a total of 
sixty tridimensional implants were designed using SolidWorks 
software. Figure 3 shows two 3D designs of the skull implant, 
corresponding to the dimensions of the 5th percentile with 
variations in their geometry. The percentage of empty spaces 
(A) and the volume of each design are shown in Table 4.
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Table 3. Craniometrics dimensions descriptive statistics

Descriptive 
statistics

Head 
width
 Eu-Eu
 (mm)

Cranial 
length
 G-Op
 (mm)

Head Circum
ference

 (mm)

G-V-Op 
Semicircular
 length (mm)

Head 
height V-G

 (mm)

Eu-V-Eu 
Semicircular
 length (mm)

Mean ± SD 153.50 ± 
6.71

190.40 ± 
9.28

563.73±20.02 313.28 ± 
29.50

76.57 ± 
3.29

311.57 ± 
19.51

Minimum 138.70 171.00 508.00 261.00 69.70 263.30
Maximum 170.00 218.70 614.00 525.00 86.60 370.00

Percentiles

5 142.40 176.00 529.60 274.70 71.50 277.90
25 148.60 183.70 551.30 297.70 74.20 297.90
50 153.50 190.00 563.20 312.50 76.40 313.80
75 157.80 195.70 577.70 325.80 78.50 325.00
95 165.70 209.30 600.00 353.10 83.30 343.40

Table 4. Implant designs’ percentage of empty spaces (A) and the volume

Specifications of 
design 1 2 3 4 5 6 7 8 9 10 11 12 Percen

tile

Empty spaces (%) 17.1
2

18.3
8 4 5.21 31.8

8
33.2

1 7.17 8.41 11.3
5 12.6 16.6

2
17.8

8
5th

Volume (mm3)
151
04

299
68

175
21

348
07

126
21

250
00

169
18

335
95

161
42

320
43

151
93

301
45

Specifications of 
design 13 14 15 16 17 18 19 20 21 22 23 24 Percen

tile

Empty spaces (%) 15.8
8

15.9
7 3.71 3.73 29.5

2
29.6

8 6.66 6.69 10.5
4 10.6 15.4

2 15.5
25th

Volume (mm3)
168
13

333
74

192
29

382
07

143
30

284
08

186
26

370
04

178
50

354
48

169
01

335
51

Specifications of 
design 25 26 27 28 29 30 31 32 33 34 35 36 Percen

tile

Empty spaces (%) 20.7
3

16.7
3 9.98 11.5

3 24.2 18.2
2

12.4
3 12.8 15.0

9
14.1

1
18.0

1
15.4

9
50th

Volume (mm3)
181
78

360
96

205
95

409
30

156
95

311
29

199
91

397
23

192
15

381
70

182
66

362
73

Specifications of 
design 37 38 39 40 41 42 43 44 45 46 47 48 Percen

tile

Empty spaces (%) 18.5 15.7
2 8.39 10.6

8
21.7

5
17.1

7 10.7 11.9
1

13.2
1

13.1
9

15.9
5

15.0
3

75th

Volume (mm3)
195
16

385
88

204
65

434
22

169
44

336
20

212
41

422
15

218
45

406
62

194
28

387
64

Specifications of 
design 49 50 51 52 53 54 55 56 57 58 59 60 Percen

tile

Empty spaces (%) 15.1
1 3.51 3.53 27.8

9
28.0

4 6.31 6.34 9.98 10.0
3

14.5
9

14.6
7

14.5
2

95th

Volume (mm3)
220
92

439
02

245
18

487
46

196
04

389
24

239
09

475
36

231
32

459
81

221
81

440
79

Figure 3. 3D design of the skull implant with 0.5 
mm of a thickness corresponding to the 

dimensions of the 5th percentile using (a) 10° 
with 6 mm of diameter and (b) 5° of separation 

with 3 mm of diameter

2.5 Functionality analysis (finite element 
analysis)

Sixty models were transferred to the ANSYS Workbench 18.1 
(ANSYS Inc) to generate the FEA models. The FEA mesh of the 
computational model (Figure 4a) consisted of 10 nodes 
tetrahedral and 20 nodes hexahedral elements (Ansys non-
linear elements). The minimum element size of the mesh was 
0.5 mm for all models. Element sizes were chosen based on 
preliminary tests and sensitivity calculations. Subsequently, 
quality controls of the elements were carried out.

The use of titanium material (Ti6Al4V) was simulated. Table 5 

shows the mechanical properties of this material [28].

Table 5. Ti6Al4V Mechanical properties

Property Value
Yield strength (σy ) 896 MPa

Ultimate yield strength (σu ) 965 MPa
Elastic modulus (E) 116 GPa
Poisson ratio 0.34

 According to Nahum et al. [29] and Schneider et al. [30], 
minimum thresholds of 2450 N for men and 2000 N for women 
were suggested for clinically significant skull fractures. 
Messerer [31] determined that approximately 2000 N were 
needed to fracture the subcondylar region. In this study, a 
uniform distributed force of 2000 N was applied in the Y-axis in 
all the simulated designs located in the craniometric vertex (V), 
in the upper part of the implant, as seen in Figure 4b.

The static pressure of 10 mm Hg was considered based on 
intracranial pressure conditions [32] and a standard earth 
gravity of 9.8 m/s2; the pressure was applied on the inner 
surface and evenly distributed over an implant area. As Wen et 
al. [33], the bone-implant contact area was assumed to be 
complete osseous integration, and so the contact area was 
simulated by using a surface-to-surface option fully bonded. 
Both loading and boundary conditions of the FEA models are 
shown in Figure 4b.

Figure 4. (a) Model with tetrahedral and hexahedral mesh with (b) fixation point and 
forces

 The screws to hold the implant are not simulated since these 
are considered independent elements of the implant. Although 
the screws interact with the model after surgery, their design is 
independent of the model proposed in this article; therefore, 
the structural integrity of the cranial implant is not affected 
during the design.

The mechanical properties of implants were all treated as 
isotropic, homogeneous, and linear elastic. Therefore, the safety 
factor is high in all the proposed designs, and large 
deformations are not considered since the element is expected 
to deflect (maximum displacement of 0.1 mm), but without 
exceeding the yield point, the element does not reach the 
plastic failure.

Because the present work focused on optimizing the geometry, 
the mechanical performance of the bone-implant construction 
was analyzed only in terms of the deformation parameter. 
According to Didier et al. [34], no study considers the 
phenomenon of “protection against stress” between the bone 
and the implant in its optimization process. Therefore, in this 
work, the optimization approach only considers the mechanical 
characteristics of the optimized part.
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2.6 Artificial neural network application

An artificial neural network (ANN) based on multi-layer 
perceptron (MPL-ANN) was elaborated with the MATLAB Neural 
Network Toolbox to process the obtained data and create a 
predictive system that relates the anthropometric dimensions, 
the volume, and the thickness with the maximum displacement 
of the cranial implants designs. The MLP-ANN model predicted 
the maximum displacement. Figure 5 shows the final 
architecture of the MPL-ANN proposed. It consisted of three 
layers: an input, a hidden, and an output layer. Each layer 
consists of a few neurons and connections; weights were 
established between neurons. In the input layer, seven variables 
were introduced: thickness specifications, hole size, separation 
of holes, volume, head width, cranial length, and head height; 
the output layer was the maximum displacement of the 
designs. Randomly 70% of the data obtained in the simulation 
were used as training data, 15% as a validation, and the 
remaining 15% as a test. The performance and accuracy of the 
MLP model were examined by measuring the determination 
coefficient (R2). Then, the values of the 30th, 40th, 60th and 80th 
percentiles were introduced to obtain the maximum 
displacement of their corresponding designs without 
submitting to simulation.

Figure 5. MPL-ANN architecture

 New theoretical designs were proposed for the 30th, 40th, 60th 
and 80th percentiles, which were not subjected to simulation; 
however, the maximum displacement was obtained for each of 
them using the artificial neural network created previously. This 
information was subsequently used for optimization.

2.7 Generalized reduced gradient optimization

The optimal point in a function corresponds to the value of x  
where the derivative f′(x ) is equal to zero. Furthermore, the 
second derivative f″(x )  indicates whether the optimum is a 
minimum or a maximum. If f (x ) < 0 (negative), it is a maximum; 
if f″(x ) > 0 (positive), it is a minimum. In a two-dimensional 
function f (x , y ),  the directional derivative g′(0) can be calculated 
from the partial derivatives along the x  and y  axes, as shown 
Eq.(2), by:

g′ (0) = fx cosθ + fy sinθ (2)

where partial derivatives are evaluated at x = a  and y = b . The 
gradient (Eq.(3)) is a vector that is related to the directional 
derivative of f (x , y ) at the point x = a  and y = b

∇f (x , y ) = ⟨ fx (x , y ) , fy (x , y ) ⟩ = fx i + fy j (3)

The generalized gradient to n  dimensions (Eq.(4)) is defined in 
vector notation as:

∇f (x ) = | fx1 (x )
⋮

fxn (x )
| (4)

Both the first and second derivatives offer valuable information 
in the search for the optimum. The first derivative provides a 
maximum tilt path for the function and indicates when the 
optimum has been reached. Once in the optimum, the second 
derivative f″(x ) will indicate if it is a maximum (negative) or if it is 
a minimum (positive). The determinant of a matrix formed with 
the second derivatives is known as the Hessian (H) of f :

H = | fxx fyx

fxy fyy
| (5)

 Equation (5) is the Hessian of f , in addition to providing a means 
of discriminating whether a multidimensional function has 
reached the optimum, allows searches that include second-
order curvature. The GRG method requires the storage of an 
approximation of the Hessian matrix (Eq.(5)) and performs a 
search varying the displacement amplitude for the 
improvement of the reduced objective. The Excel solver is based 
on the GRG method, and they are evolutionary algorithms 
according to the input data and the objective function. First, a 
search direction is established to improve the objective function 
using a quasi-Newton procedure (BFGS), which requires the 
storage of an approximation of the Hessian matrix. Once the 
search direction is established, a one-dimensional search is 
performed using a variable step size procedure. The tool 
considers several points in the search space [35].

Using simple linear regression using the least squares method 
in Minitab statistical software, a multivariate linear regression 
model was obtained using four design variables (skull length, 
thickness, diameter, and hole spacing) as continuous predictors 
and final volume implant as a response variable as follows 
(Eq.(6)):

V = β0 ± ∑
i =1

n

βi xi ± ϵi
(6)

where V  is the response variable (Volume), Xi  the independent 
variables or predictors, β0 the ntersection coefficient, βi  the 
linear coefficient, and ϵi  the random experimental error.

Subsequently, using the Curve Fitting Toolbox of MATLAB, a 
polynomial function was found that best fits the data of the 
predictor variables length of the skull and the maximum 
displacement obtained by FEM with the final volume of the 
implant (response variable). The terms were identified as 
significant for selecting the models, and the highest adjusted R2 
value with a significance level of p < 0.05.

The optimal designs for each percentile that minimizes the 
Ti6Al4V material were found using a GRG method in an Excel 
solver, maintaining a maximum displacement of 0.1 mm as a 
restriction, since in this condition, a diffuse type II lesion may 
occur. The mesencephalic cisterns are present in diffuse-type II 
lesions, and the midline moderately deviates equal to or less 
than 5 mm [19]. The optimal designs were obtained by 
optimization equations where the minimum volume was used 
as the objective, using the maximum displacement (less than or 
equal to 0.1 mm) as the restriction. We optimized nine new 
theoretical designs for the 5th, 25th, 30th, 40th, 50th, 60th, 75th, 
80th, and 95th percentiles and then validated them with MEF.
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To solve the disadvantage of the generalized reduced gradient 
search method for finding the local minimum, the value of the 
step length was varied, and it was observed whether there was 
an improvement in the objective function. A search was 
performed with a different value if no improvement was 
observed. In the same way, the method can take us to a saddle 
point if the Hessian matrix is not positively defined. As all the 
identified eigenvalues of the Hessian matrix were positive, it can 
be determined that our function is being approximated by a 
quadratic function of circular or ellipsoidal contours that have a 
minimum.

3. Results

3.1 Functionality analysis and predictive neural 
network
The geometric models were subjected to the simulation by FEM 
in the ANSYS® software. Table 5 shows the results of the 60 
simulations with an applied force of 2000N, where the 
displacements obtained corresponding to different designs are 
observed for the 5th, 25th, 50th, 75th, and 95th percentiles: at 
thicknesses of 0.5 and 1 mm. Figures 6 and 7 show the results of 
10 of the 60 simulations; it could be noticed that displacements 
are greater for 0.5 mm than those established for 1 mm. The 
75th percentile for 0.5 mm thickness shows the highest value, 
and the other percentiles observed are within the range of the 
maximum allowed offset. According to Figures 6 and 7, these 
displacements are observed mainly at the diametric base of 
each percentile studied.

Table 5. Implant designs’ maximum displacement

Design 1 2 3 4 5 6 7 8 9 10 11 12 Percent
ile

Maximum 
displacement (mm)

0.1
61

0.0
34

0.1
05

0.0
11

0.1
17

0.0
27

0.0
84

0.0
08

0.0
86

0.0
17

0.0
92

0.0
27 5th

Design 13 14 15 16 17 18 19 20 21 22 23 24 Percent
ile

Maximum 
displacement (mm)

0.1
54

0.0
34

0.0
71

0.0
13

0.1
54

0.0
30

0.0
66

0.0
13

0.0
73

0.0
18

0.0
87

0.0
24 25th

Design 25 26 27 28 29 30 31 32 33 34 35 36 Percent
ile

Maximum 
displacement (mm)

0.2
11

0.0
38

0.0
60

0.0
13

0,1
57

0.0
29

0.0
63

0.0
13

0.0
73

0.0
15

0.1
03

0.0
23 50th

Design 37 38 39 40 41 42 43 44 45 46 47 48 Percent
ile

Maximum 
displacement (mm)

0.2
07

0.0
39

0.0
61

0.0
13

0.1
34

0.0
19

0.0
65

0.0
12

0.0
95

0.0
20

0.2
39

0.0
46 75h

Design 49 50 51 52 53 54 55 56 57 58 59 60 Percent
ile

Maximum 
displacement (mm)

0.1
83

0.0
35

0.0
75

0.0
11

0.0
92

0.0
06

0.0
70

0.0
15

0.0
80

0.0
17

0.0
92

0.0
19 95h

Figure 6. Results of the cranial implant simulations 
with an applied force of 2000N corresponding to 

design number. (a) 3 (percentile 25 with a thickness 
of 0.5 mm). (b) 4 (percentile 25 with a thickness of 1 

mm). (c) 13 (percentile 50 with a thickness of 0.5 

mm). (d) 14 (percentile 50 with a thickness of 1 mm)

Figure 7. Results of the cranial implant simulations 
with an applied force of 2000N corresponding to 

design number. (a) 31 (percentile 50 with a 
thickness of 0.5 mm). (b) 32 (percentile 50 with a 
thickness of 1 mm). (c) 47 (percentile 75 with a 

thickness of 0.5 mm). (d) 48 (percentile 75 with a 
thickness of 1 mm). (e) 57 (percentile 95 with a 

thickness of 0.5 mm). (f) 58 (percentile 95 with a 
thickness of 1 mm)

 To predict the mechanical behavior of the new designs 
(maximum displacements) of cranial implants, an MLP-ANN was 
elaborated to relate the created designs' specifications 
(thickness, hole size, separation of holes, volume, head width, 
cranial length, and head height).

Figure 8 shows the iteration in which the validation 
performance reached a minimum. The epoch is the number of 
times the algorithm was executed; in this case, the best 
validation performance was at epoch 4. As a result, the 
validation and test curves are remarkably similar; therefore, 
there is no excess of adjustment. Figure 9 shows the neural 
network selected based on its regression graph, where a global 
R2 value of 0.9725 was obtained, showing a 97% relationship 
between the outputs of the network and the targets.

The ANN obtained was used to predict the maximum 
displacement of new theoretical designs of craniofacial implants 
for the 30th, 40th, 60th, and 80th percentile.
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Figure 8. Artificial Neural Network performance

Figure 9. Training, testing, and validation regression graphs

3.2 Optimization

Using simple linear regression utilizing the Minitab statistical 
software, a linear model was obtained, applying the design 
variables as continuous predictors (skull length, thickness, 
diameter, and hole spacing) and the final implant volume as a 
response. The terms were identified as significant for selecting 
the model using the R2 and general statistics of the significant F 
test. Table 6 shows the analysis of variance and the results of 
the R2 DF (Degree of Freedom), SS Fit (Sum of Squares), MS Fit 
(Mean Square), the F  value, and the P-value of the variables 
analyzed. The degrees of freedom indicate the number of 
independent elements in the sum of squares for each 
component of the model; having 60 different designs, we obtain 
a total of 59 DF, and the sum of squares (SS) is the deviation of 
the mean of the factor level estimated around the general 
mean. The Mean Square (MS) is an unbiased estimator of the 
variance and is the sum of squares divided by the degrees of 

freedom. According to the values obtained in the F  and P  
values, it was observed that each of the terms is statistically 
significant when obtaining p values <0.05 and higher Fisher's F  
values with a significance level alpha = 0.05. A mathematical 
model was developed to relate the design variables to the final 
volume of the implant, obtaining an R2 of 0.97. Table 7 shows an 
adjusted R2 of 97.31%, indicating that the model can estimate 
the volume using the design variables as predictors.

Table 6. Variance analysis

Source DF SS Adjust MS Adjust F -value P -value
Regression 4 6211342822 1552835705 534.30 0.000

Skull Length (G-Op) 1 754802731 754802731 259.71 0.000
Thickness 1 5156845417 5156845417 1774.38 0.000
Diameter 1 100376598 100376598 34.54 0.000

Separation 1 292120699 292120699 100.51 0.000
Error 55 159845539 2906283
Total 59 6371188360

Table 7. Model summary

Standard error R-square R-squared (adjusted) R-squared (predicted)
1704.78 97.49% 97.31% 96.94%

 The relation between the variables skull length (x1), thickness (
x2), diameter (x3), and hole spacing (x4) to the final implant 
volume (V ) is presented in Eq.(7)

V = − 62812 + 314.3(x1) + 37083(x2) − 1351(x3) + 1043(x4) (7)

Using the anthropometric dimensions of the skull and 
modifying the design variables (thickness and percentage of 
empty spaces), a mathematical model was found in Matlab 
using the MATLAB Curve Fitting application (Figure 10), 
obtaining an R2 of 0.97. Eq.(8) relates the length of the skull (x1), 
the maximum displacement (y1), and the volume (V ) is as 
follows

V = − 4.32x104 + 466.6(x1) − 2.72x104(y1) − 2336(x1)(y1) +
1.73x106(y1)2 (8)

 The resulting equations were entered as formulas in a 
spreadsheet in Excel. First, a cell was selected for each decision 
variable: the design variables thickness, diameter, and hole 
spacing. Then, a cell was created for the objective function, 
which corresponds to the final volume of the implant.

Figure 10. Polynomial function that adjusts data corresponding to skull length (G-
Op), maximum implant displacement, and design volume
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 Finally, the optimal designs for each percentile were found 
using the solver tool, which minimizes the amount of material 
(Ti6Al4V) while maintaining a maximum displacement of 0.1 
mm. The optimal designs are shown in Table 8 and were 
obtained with the minimum volume by Eq.(7) as the objective, 
using the maximum displacement of Eq.(8) as a restriction 
(minor or equal to 0.1 mm). The maximum displacement of 
these designs was validated using MEF and shown in Table 8.

Table 8. Values corresponding to the optimal designs of cranial implants

Percentile

x1
 Skull 

length
 (mm)

x2
 Thickness

 (mm)

x3
 Diameter

 (mm)

x4
 Separation

 (°)

V
 Volume
 (mm3)

MEF Maximum 
displacement

 (mm)

5 176.00 0.56 4.77 5.18 12333.68 0.0843
25 183.70 0.55 4.80 5.15 14137.10 0.0906
30 185.00 0.55 4.81 5.15 14440.00 0.0934
40 188.00 0.54 4.75 5.19 15139.00 0.0969
50 190.00 0.53 4.76 5.18 15605.00 0.0991
60 193.18 0.52 4.70 5.24 16345.94 0.0997
75 195.70 0.52 4.71 5.23 16933.10 0.0989
80 196.00 0.52 4.72 5.23 17003.00 0.0974
95 209.30 0.50 4.74 5.20 18666.62 0.0912

4. Discussion
Nowadays, designing a 3D cranial implant model is a challenge. 
Some cranial implant models designed with Ti6Al4V and other 
polymeric materials have been proposed by other authors 
[36,37]. Morais et al. [38] proposed a Deep Learning (DL) 
approach toward automated CAD for the design of cranial 
implants. On the other hand, Stutz et al. [39] proposed machine 
learning-based approaches to shape completion. Wu et al. [40] 
proposed an architecture called 3D Shape Nets, in which the 
input shapes are given as input to a convolutional Deep Belief 
network that learns a probabilistic distribution from 3D volumes 
for 3D reconstruction. However, this type of network is difficult 
to train. For this study, the optimization of Ti6Al4V cranial 
implants was achieved by applying a novel proposal based on 
three tools, the generalized reduced gradient (GRG) search 
method, artificial neural networks (ANN), and applying the finite 
element method (FEM). According to work presented by Şensoy 
et al. [41], to optimize topologies for mandibular distractor 
plates and the geometry design, they used MATLAB-PYTHON-
ANSYS and found superior stability with a less implant volume.

Ameen et al. [42] found an optimally designed implant with 0.5 
mm thickness from test loading. In our case, optimal designs 
were found for the 5th to 95th percentiles, which minimizes the 
amount of Ti6Al4V material while maintaining a maximum 
offset of 0.1 mm, which is compatible with a large part of 
individuals of productive age of the Mexican population since 
they were considered in the data collection stage, individuals 
from 18 to 50 years of age, representative of 14 states of the 
Mexican Republic.

The optimization was based on the mechanical analysis 
(maximum displacement) of the design under the FEM 
simulation using normal intracranial pressure conditions (ICP = 
10 mm Hg), twelve fixation points, and a force of 2000 N to 
lighten the structure (minimize volume) while maintaining the 
mechanical functionality and protection provided by the 
implant.

5. Conclusions
For this study, the optimization of Ti6Al4V cranial implants was 
achieved by applying a novel proposal based on three tools, the 
generalized reduced gradient (GRG) search method, artificial 
neural networks (ANN), and applying the finite element method 
(FEM). As a result, optimal designs were found for the 5th to 95th 
percentiles, which minimizes the amount of Ti6Al4V material 

while maintaining a maximum offset of 0.1 mm, which is 
compatible with a large part of individuals of productive age of 
the Mexican population since they were considered in the data 
collection stage, individuals from 18 to 50 years of age, 
representative of 14 states of the Mexican Republic.

The optimization was based on the mechanical analysis 
(maximum displacement) of the design under the FEM 
simulation using normal intracranial pressure conditions (ICP = 
10 mm Hg), twelve fixation points, and a force of 2000 N to 
lighten the structure (minimize volume) while maintaining the 
mechanical functionality and protection provided by the 
implant.

Using an ANN, it was possible to predict the response for 
numerous combinations of geometric parameters without 
creating or modifying new models by significantly reducing 
design and simulation time. The GRG optimization allowed us to 
identify the most efficient and lightweight conceptual designs, 
finding the geometries of the 3D models that require less 
volume of material for their manufacture, considerably 
reducing the final cost of the implant.

Future research proposes applying the same methodology and 
comparing different biocompatible materials; for example, in 
addition to Ti6Al4V, consider steel and polymethyl methacrylate, 
including the variable cost of the material. A second future 
investigation includes other software that facilitates the design 
stage, such as Easycranea, Easyimplant, MIMICS, Biobuild, 
MeVisLab, BioCAD, or 3D-Doctor. Also include other artificial 
intelligence tools such as simulated annealing metaheuristics, 
genetic algorithms, and taboo search to find the best solutions 
that reduce the volume of material and, consequently, the cost.

A third investigation that is proposed is to compare the 
monetary savings obtained by applying the methodology 
proposed in this work with other registered in specialized 
literature.
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