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Abstract
We give a characterization of paving matroids through their sets of hyperplanes and
an algorithm to construct all of them. We also give a simple proof of Rota’s basis
conjecture for the case of sparse-paving matroids and for the case of paving matroids
of rank r on a set of cardinality n� 2r, and a counterexample to Oxley’s charac-
terization of paving matroids.
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1 Introduction

In 1959, Hartmanis [12] defined paving matroids through the concept of d-partitions
in number theory. For a modern treatment of paving matroids, the reader may consult
Welsh [25], Oxley [21] and Jerrum [15]. Paving matroids play an important role in
computer science via greedy algorithms and the matroid oracles, see for example
Heunen and Patta [13]. In this work, we give a characterization of paving matroids
which leads to a concrete construction of their hyperplanes and to an algorithm to
find them. We also provide a counterexample to a characterization of paving matroids
given by Oxley [21] (1.3.10). Finally, we give a simple proof of Rota’s basis
conjecture for the case of sparse-paving matroids and for the case of paving matroids
of rank r on a set of cardinality n� 2r.

In this paper, all matroids are assumed to be simple, so they do not have circuits of
cardinality 1. We start with a characterization of the hyperplanes of a paving matroid
of rank r.

Lemma 2 A simple matroid M of rank r� 2 is a paving matroid if and only if the
intersection of any two different hyperplanes of M of cardinality at least r has
cardinality at most r � 2.

Since the hyperplanes of cardinality at least r of a sparse-paving matroid are
exactly the circuits of rank r � 1, which have cardinality r, we get the following,

Corollary [18] A simple matroid M of rank r� 3 is sparse-paving if and only if the
intersection of any two different circuits of cardinality r of M has cardinality at most
r � 2.

The next result gives a concrete construction of the hyperplanes of a paving
matroid.

Theorem 1 Let S be a set of cardinality n and 2� r� n. Let H0 be a nonempty
family of subsets of S with cardinalities between r and n� 1, such that the
intersections of different elements in H0 have cardinalities at most r � 2. Let Cr be
the family of subsets of S of cardinality r which are contained in an element ofH0 and
let H be the union of H0 and the family of subsets of S of cardinality r � 1 which are
not contained in elements of Cr. Then, H is the set of hyperplanes of a paving
matroid of rank r on S, and Cr is the set of circuits of cardinality r.

Proposition 2 Let Pavn;r be the set of paving matroids of rank r on a set of
cardinality n and let Spn;t be the set of sparse-paving matroids of rank t on that set.

Then, Pavn;r
�� ��� Qn�1

t¼r Spn;t
�� ��� Spn;n2

�� ��n�r
.

This paper is organized as follows. In Sect. 3, we give a characterization of paving
matroids by their sets of hyperplanes, a concrete construction of the hyperplanes of
paving matroids and some consequences. In Sect. 4, we give an algorithm to
construct the set of hyperplanes of a paving matroid of rank r on a set of cardinality n
and prove a relation between the number of paving matroids and the number of
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sparse-paving matroids of rank r� 3 on a set of cardinality n. In Sect. 5 we give a
new proof of Rota’s basis conjecture.

We thank the anonymous referee for the careful review, many helpful comments
and improving the algorithm in Sect. 4. This research was partially supported by
UNAM-DGAPA sabbatical fellowship and UNAM-Papiit project IN115414.

2 Definitions and known results

For later reference, we summarize some definitions and basic results.
A matroid M ¼ ðS; IÞ consists of a finite set S and a collection I of subsets of

S (called the independent sets of M) satisfying the following independence axioms:
(I1) The empty set ; 2 I .
(I2) If X 2 I and Y � X then Y 2 I .
(I3) If U ;V 2 I with Uj j ¼ Vj j þ 1, there exists x 2 UnV such that

V [ fxg 2 I .
A subset of S which does not belong to I is called a dependent set of M. A basis

(respectively, a circuit) of M is a maximally independent (respectively, minimally
dependent) set of M. Any matroid M ¼ ðS; IÞ is determined by its set of bases, B,
namely, I ¼ fX � S : 9B 2 B with X � Bg. The rank of a subset X of S, denoted by
rkX, is the maximum cardinality among the independent subsets of X. The rank of the
matroid M is the rank of S. A hyperplane of M is a maximal subset of rank rkM � 1.
Any circuit of M has cardinality at most rkM þ 1, and any hyperplane Y satisfies
rkM � 1� Yj j � n� 1.

IfM ¼ ðS; IÞ is a matroid, the dual ofM is the matroid M� ¼ ðS; I�Þ whose bases
are the complements in S of the bases of M.

A matroid M is paving if it has no circuits of cardinality less than rkM and it is
sparse-paving if M and its dual M �are paving matroids. Well-known examples of
sparse-paving matroids are the uniform matroids of rank r on a set S of cardinality n,
denoted by Un;r, whose bases are all the subsets of S of cardinality r. Any simple
matroid of rank 1 must be uniform, so we will work with matroids of rank at least 2.

For a set X and m� 0,
X
m

� �
denotes the family of subsets of X of cardinality m.

Definition 1 Let M ¼ ðS; IÞ be a paving matroid of rank r� 2 on S ¼ f1; 2; :::; ng.
Let B be the set of bases of M and let Cr and Crþ1 be the circuits of cardinality r and
r þ 1, respectively. Define

N 1 ¼ X 2 S

r þ 1

� �
j X ¼ C [ B for some C 2 Cr and B 2 B

� �
ð1Þ

N 2 ¼ X 2 S

r þ 1

� �
j for all A 2 X

r

� �
;A 2 Cr

� �
: ð2Þ

It is easy to show that the set C in the definition of N 1 is unique.
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Lemma 1 [18] If M ¼ ðS; IÞ is a paving matroid of rank r then
S

r þ 1

� �
¼ Crþ1 [N 1 [N 2. Moreover, M is a sparse-paving matroid if and only

if N 2 is the empty set.

3 A description of the paving matroids through their sets
of hyperplanes

Recall that a family F of two or more subsets of a set S is a d-partition if every set in
F has cardinality at least d and every subset of cardinality d of the union of the
elements of F is contained in exactly one set in F .

In [25], Welsh characterized paving matroids as follows. A matroid M ¼ ðS; IÞ of
rank d þ 1 with 3� d þ 1\ Sj j is paving if its hyperplanes form a d-partition. See
also [12]. We give another characterization.

Lemma 2 A simple matroid M of rank r� 2 is a paving matroid if and only if the
intersection of any two different hyperplanes of M of cardinality at least r has
cardinality at most r � 2.

Proof Suppose that M is a paving matroid of rank r. Then the family of hyperplanes
of M forms a ðr � 1Þ-partition. To prove assertion ð��Þ; observe that if C1 and C2 are
circuits of cardinality r with C1 \ C2j j ¼ r � 1; then C1 [ C2j j ¼ r þ 1; and by
Lemma 1 C1 [ C2 2 N 2. Then neither C1 nor C2 are hyperplanes,
rk(C1 [ C2Þ ¼ r � 1; and since the hyperplanes of M form a ðr � 1Þ-partition, there
is a unique hyperplane H containing C1 [ C2. Therefore, if H1 and H2 are different

hyperplanes of cardinality at least r then
H1

r � 1

� �
\ H2

r � 1

� �
¼ ; and

H1 \ H2j j � r � 2:
To prove that a matroid M of rank r satisfying property ð��Þ is paving, we will

show that any subset of cardinality r � 1 of S is an independent set. Assume that
there is a dependent subset A of cardinality r � 1. Then, rkA� r � 2, and since the
rank of M is r, there are two different elements a, b in S � A so that A [ fag and
A [ fbg have rank at most r � 1. By ð��Þ neither A [ fag nor A [ fbg are
hyperplanes. So A [ fa; bg has also rank at most r � 1, so there is another element x
in S � ðA [ fa; bgÞ such that A [ fa; xg is a dependent set of rank at most r � 1, and
by ð��Þ neither A [ fa; xg nor A [ fa; bg are hyperplanes. In a finite number of steps,
this procedure reaches S, a contradiction since rkS ¼ r. Therefore, every subset of
cardinality r � 1 is independent, and so M is paving. h

The next result is the construction of the hyperplanes of a paving matroid.

Theorem 1 Let S be a set of cardinality n and 2� r� n. Let H0 be a nonempty
family of subsets of S with cardinalities between r and n� 1, such that the
intersections of different elements in H0 have cardinalities at most r � 2. Let Cr be
the family of subsets of S of cardinality r which are contained in an element ofH0 and
let H be the union of H0 and the family of subsets of S of cardinality r � 1 which are
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not contained in elements of Cr. Then H is the set of hyperplanes of a paving matroid
of rank r on S, and Cr is the set of circuits of cardinality r.

Proof We first prove that H is an ðr � 1Þ-partition of S. Let Hr�1 be the family of
subsets of cardinality r � 1 of S which are not contained in circuits of cardinality r.
By construction ofHr�1 andH

0, every subset of S of cardinality r � 2 is contained in
an element of Hr�1 or H0. Thus, S is the union of the elements in H.

Now, we prove that for any subset A of cardinality r � 1 of S, there is a unique
element X in H containing A. By construction of Hr�1, all its elements are

hyperplanes of cardinality r � 1. If A is not in Hr�1 there exists C in Hr [ eC r such

that A is contained in C, where eCr ¼ fC 2 S
r

� �
j 9X 2 H, Xj j � r þ 1 and C �

Xg and Hr ¼ C 2 H j Xj j ¼ rf g. Now we consider two subcases:
If C is in Hr then by Lemma 2, for any X in HnfCg, X \ Cj j � r � 2 and so

A cannot be contained in X.

If C is in eCr, there exists X in H of cardinality at least r þ 1 containing C. Again
by Lemma 2, for every Y inHnfXg, X \ Yj j � r � 2 and so A cannot be contained in
Y.

Therefore, H is a ðr � 1Þ- partition of S and so H is the set of hyperplanes of a
paving matroid on S. h

As a consequence of the above results and since the hyperplanes of any matroid of
rank r have cardinalities between r � 1 and n� 1; we get an injective function from
the set of paving matroids of rank r on a set S of cardinality n into the direct product
of the sets of sparse-paving matroids of rank k on S for r� k� n� 1.

Proposition 2 Let Pavn;r be the set of paving matroids of rank r on a set of
cardinality n and let Spn;t be the set of sparse-paving matroids of rank t on that set.
Then

Pavn;r,!
f Qn�1

t¼r Spn;t and therefore, Pavn;r
�� ��� Qn�1

t¼r Spn;t
�� ��� Spn;n2

�� ��n�r
.

Proof Let M be a paving matroid of rank r on a set of cardinality n and let Ht be the
family of hyperplanes of cardinality t of M. By Lemma 1 [18], Ht defines a sparse-
paving matroid M ðtÞ of rank t, whose set of circuits of cardinality t is Ht. Define
f ðMÞ ¼ ðM ðtÞÞt. h

Remark In [21](1.3.10), Oxley gives the following characterization of paving
matroids: Let D be a collection of non-empty subsets of a set E. Then, D is the set of
circuits of a paving matroid on E if and only if there is a positive integer k with
k� Ej j and a subset D0 of D such that

1. Every member of D0 has k elements, and if two distinct members D1 and D2 of
D0 have k � 1 common elements, then every subset of D1 [ D2 with k elements
is in D0.

2. D�D0 consists of all subsets of E with k þ 1 elements that contain no member
of D0.
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This characterization is not quite correct. If M is a paving matroid of rank k, Ck is the
set of circuits of cardinality k and Ckþ1 the set of circuits of cardinality k þ 1 then
D ¼ Ck [ Ckþ1 satisfies (1) and (2) with D0 ¼ Ck . But now, let E ¼ f1; 2; 3; 4g,
k ¼ 3 and let D ¼ D0 ¼ ff1; 2; 3g, f1; 2; 4g; f1; 3; 4g; f2; 3; 4gg be all the subsets of
cardinality 3 of E. Then, D satisfies (1) and (2), since every pair D1 and D2 of
elements in D have intersection k � 1 and D1 [ D2 ¼ E. But this construction cannot
give a matroid of rank 3, since there is no basis.

4 An algorithm to construct the paving matroids

The algorithm below constructs a maximal set Ht of hyperplanes of cardinality t� r
of a paving matroid of rank r on a set S of cardinality n and the hyperplanes of

cardinality r � 1 are the sets Hr�1 ¼ S
r � 1

� �
�Sn�1

t¼r Ht:

5 Another proof of Rota’s basis conjecture for sparse-paving
matroids.

Rota’s Basis Conjecture Let B1; :::;Br be r disjoint bases of M. Let A be the r � r-
matrix with Bi as its ith-row, for i ¼ 1; :::; r. Then, there exist a permutation in each
row, such that all the columns of A are also bases of M.

In 1989, Rota published his basis conjecture [14] (conjecture 4), [24] (problem 1)
which has an important role in matroid theory and is related to problems which can
be solved if this conjecture is true. This motivated the weak and asymptotic versions
of this conjecture, among others, see [1, 4, 6, 9] and [23]. In [10], Geelen and
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Humphries proved it for paving matroids, and there are results for the asymptotic
behaviour [8, 23] and for infinitely many values in real linear algebras [11].

We give a proof for sparse-paving matroids that is both simple and reveals the
permutations needed to produce matrices whose columns form the desired bases. The
proof also works for paving matroids of rank r on a set of cardinality n� 2r, since for
permutations in the rows, the columns remain disjoint and the hyperplanes have
cardinality at most 2r � 1; so there is at most one circuit of each hyperplane as a
column of the matrix of the conjecture.

Proposition 3 Rota’s basis conjecture holds for sparse-paving matroids of rank at
least 3.

Proof Recall that in a sparse-paving matroid M all the circuits of rank r � 1 have
cardinality r, and a matroid M is sparse-paving if and only if for each pair of different
circuits X and Y of rank r � 1, jX \ Y j � r � 2 ð��Þ. Let

A ¼

a11 a12 	 	 	 a1r
a21 a22 	 	 	 a2r

..

. ..
. ..

.

ar1 ar2 	 	 	 arr

2
66664

3
77775 ¼

B1

B2

..

.

Br

2
66664

3
77775:

That is, Bi ¼ fai1; ai2; :::; airg is a basis of M, for i ¼ 1; :::;M. We will consider four
cases:

Case 1 If each column of A is already a basis of M, we are done.
Let ðij;ikÞA be the matrix obtained from A by interchanging its (i,j) and (i,k) entries.

Case 2 If M has exactly one circuit of rank r � 1 and this circuit is a column of A.
We may assume that it is the first column of A. Since M has exactly one circuit of
rank r � 1 and we remove it from A, then the matrix ð11;12ÞA has bases of M in all its
columns, so we are done.

Case 3 Let M be a sparse-paving matroid with at least two different circuits of rank
r � 1: Let m be the number of columns of A which are circuits of M.

If A has at least m� 2 circuits of cardinality r, then we can assume that the circuits
are in the first columns of A.

A ¼

a11 a12 	 	 	 a1m 	 	 	 a1r

..

. ..
. ..

. ..
. 	 	 	 ..

.

ar�1;1 ar�1;2 	 	 	 ar�1;m a2r
ar1 ar2 	 	 	 arm 	 	 	 arr

2
66664

3
77775

Take the cyclic permutation p : ar1 �! ar2 �! 	 	 	 ar;m�1 �! arm �! ar1. There-
fore, by ð��Þ and applying the permutation p, the resulting matrix
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pA ¼

a11 a12 	 	 	 a1m a1;mþ1 	 	 	 a1r

..

. ..
. ..

. ..
. ..

. 	 	 	 ..
.

ar�1;1 ar�1;2 	 	 	 ar�1;m ar�1;mþ1 a2r
arm ar1 	 	 	 ar;m�1 ar;mþ1 	 	 	 arr

2
66664

3
77775

has bases of M in all its columns, and we are done.

Case 4 M ¼ ðS; IÞ has at least two circuits of cardinality r andA has exactly one circuit.
Using that r� 3 (ie., Sj j � 9),wewill prove that there is a permutation in some rows, such
that the resulting matrix has at least 2 columns which are circuits ofM and then we can
apply Case 3 to get the result. We can assume that A has a circuit in its first column.

Proof of Case 4 By way of contradiction, assume that for all u ¼
u1

..

.

ur

0
B@

1
CA in ðSrÞr;

where ui is a permutation of elements in the ith row of A, the resulting matrix, uA has
a unique column which is a circuit of M.

In particular, the assumption is true for all the transpositions (i1, ij) with j 6¼ 1:
Then, by ð��Þ; the resulting matrix ði1;ijÞA has a basis in the first column and
therefore, the jth column is a circuit of M.

Let us construct ð21;22ÞA and ð22;23Þð31;33ÞA from a matrix Awhose unique circuit is

in the first column.

Then

a12
a21
a32
a42
..
.

ar2

2
66666664

3
77777775
and

a12
a23
a32
a42
..
.

ar2

2
66666664

3
77777775
are elements of Cr with intersection of cardinality r � 1,

contradicting ð��Þ:
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Thus, there existsu in ðSrÞr such that uA hasmore than one circuit ofM and byCase 3,
we are done. Therefore, Rota’s basis conjecture is true for all sparse-paving matroids.h
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