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Energy extraction in electrostatic extreme binary black holes

A. Baez1,∗, Nora Breton 1,†, and I. Cabrera-Munguia 2,‡

1 Departamento de F́ısica, Centro de Investigación y de Estudios

Avanzados del I. P. N. Apdo. Postal 14-740, Mexico City, Mexico
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Relying on the Penrose process mechanism, we study the possibility of energy extraction from a
binary system composed of two extreme electrostatic black holes (BHs) oppositely charged, separated
by a strut described by Bonnor’s metric (BM). We determined and plotted the generalized ergosphere
that surrounds only one of the BH. We demonstrate the existence of non closed orbits of negative
energy outside the event horizon; these orbits allow the possibility of energy extraction by particle
disintegration from a system described by the BM. Besides we prove that the extraction process
can occur when a charged test particle and the BH have opposite charges; also, we analyzed the
efficiency of the process.

PACS numbers:

I. INTRODUCTION

The Kerr metric is a stationary solution of Einstein’s
field equation that gives the more general description of
a rotating BH [1–3]; this metric possesses an interesting
region called the ergosphere, delimited by the station-
ary limit surface and the outer event horizon. When
a particle reaches the esgosphere a timelike trajectory
becomes spacelike, and a spacelike trajectory becomes
timelike and particles inside of the ergosphere can have
negative energy. However, the particle can yet avoid en-
ter the event horizon and can escape back to infinity.

The Penrose process is a mechanism proposed by Pen-
rose and Floyd [4] for extracting energy from a rotating
BH taking advantage of the fact that test particles in-
side the ergosphere can have negative energy states. It
consists of a particle that reaches the ergosphere and at
some point it disintegrates into two fragments, one of
the fragments is trapped within the ergosphere with neg-
ative energy and the other one escapes back to infinity
with more energy than the one of the incident particle;
by conservation of energy then rotating energy through
angular momentum has been extracted. However, the er-
gosphere is a characteristic region of stationary solutions,
then by means of the Penrose process it is, in principle,
impossible to extract energy from a static BH. However,
for electrostatic BHs it is possible to define a region where
charged test particles can have negative energy [5, 6].

Although the Penrose process applied to a single par-
ticle might seem unfeasible to carry out, it is possible
to establish relations between the Penrose process and
some astrophysical observations. For instance, the col-
lisional Penrose process might eventually eliminate dark
energy particles in the vicinity of a supermassive BH once
the multiple particles that scatter inside the ergosphere
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achieve an arbitrarily high center of mass energy [7]. On
the other hand, the influence of an external magnetic
field surrounding a rotating BH can form accretion disks
of charged ionized matter [8] and this may be related
to high-frequency oscillations noticed in microquasars,
galactic nuclei, or even the magnetic Penrose process it-
self [9] where ultra high-energy particles around rotating
magnetized BHs are created [10, 11]. Moreover, the ra-
diative Penrose process is connected to synchrotron radi-
ation of charged particles moving within the ergosphere
of a magnetized BH, where such a process considers a
special type of radiated photons having negative energy
relative to a distant observer [12, 13]. In addition, recent
numerical studies on plasmas and jets suggest the main
role of negative energy particles and the Penrose process
in the total flux coming from the BH jets [14]. Finally,
the electromagnetic Penrose process [15–20] allows events
of high energy emission in contrast with the efficiency of
20.7% of the well-known Penrose process due only to the
rotation of a Kerr BH.

The present paper aims to investigate energy extrac-
tion via the Penrose process in a BH binary system. In
[21] the energy extraction is analyzed for the Majumdar-
Papapetrou (MP) binary metric [22–24], which is an ex-
act solution of the Einstein-Maxwell equations describing
two static charged BHs whose charges equal their masses,
Qi = Mi, i = 1, 2. Therefore, in the MP binary metric,
the BHs remain in neutral equilibrium since their mu-
tual gravitational attraction compensates their mutual
electric repulsion no matter how far apart the sources
are. Our purpose is to use the method developed in [5, 6]
to determine negative energy states for charged test par-
ticles and prove that by means of the Penrose process is
possible the energy extraction in a binary system com-
posed of two electrostatic oppositely charged BHs de-
scribed by Bonnor’s metric (BM) [25, 26], where now the
gravitational attraction does not counterbalance the elec-
trical repulsion, and therefore, a conical singularity arises
[27, 28] in between the sources. In particular we study
the generalized ergosphere, its dependence on charged
test particle and how the energy extraction efficiency is
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affected by the presence of a BH companion with oppo-
site charge.
Our paper is organized as follows. In Sec. II A, we

introduce the spacetime described by the BM and derive
the motion equations for charged massive test particles
in a static and axisymmetric spacetime. In Sec. II B
the generalized ergosphere and the existence of negative
orbits is analyzed. In Sec. III the Penrose process is
described and the conservation equations are presented
(mass, charge, energy, linear momentum and angular mo-
mentum). In Sec. IV the constrictions over the parame-
ters and the maximum efficiency of the process are pre-
sented and in the last section conclusions are given.

II. BONNOR’S BINARY BH

Bonnor’s metric (BM) [25, 26] is a static solution of
Einstein-Maxwell equations that describes a two-body
system composed of two electrostatic BHs, separated by
a strut [27, 28], which is a line source of pressure that
produces a conical singularity (angle’s deficit); the strut
keeps apart the sources from overlapping with each other.
The BM can be derived from the general double Reissner-

Nordström spacetime [29] as a particular extreme limit,
in this sense the BHs of the BM are called extreme. In
this metric, the BH charges, Q1 and Q2, are opposite in
sign and for two BHs of masses M1 and M2 separated by
a distance R along the z-axis, are given by [26]

Q1 = M1

√

(R +M2)2 −M2
1

(R −M2)2 −M2
1

,

Q2 = −M2

√

(R +M1)2 −M2
2

(R −M1)2 −M2
2

,

(1)

the electric charges and masses fulfill the condition |Qi| >
Mi, i = 1, 2.

The stationary axisymmetric metric in Weyl’s cylindri-
cal coordinates (t, ρ, z, φ) is the Papapetrou metric [23]
given by

ds2 = f−1
[

e2γ(dρ2 + dz2) + ρ2dφ2
]

− f(dt− ωdφ)2, (2)

where for a static solution ω = 0. The binary BH BM
corresponds to the metric functions

f =

(

1

1 + g1
+

1

1 + g2
− 1

)2

, e2γ =

(

(1 − g1g2)g+g−
4d2

)4

,

g1 =
(1 + d)M1 − (1− d)M2

(1 + d)r− − (1 − d)r+
, g2 =

(1 + d)M2 − (1− d)M1

(1 + d)r+ − (1 − d)r−
, d =

√

R2 − (M1 −M2)2

R2 − (M1 +M2)2

g+ = 1 + d− (1− d)
r+
r−

, g− = 1 + d− (1− d)
r−
r+

, r± =
√

ρ2 + (z ±R/2)2. (3)

In Weyl’s cylindrical coordinates the BHs and their
horizons are represented by points at the z-axis (ρ =
0, z = ±R/2). The independent parameters of the BM
(2)-(3) are M1, M2 and R while the electric potential Aµ

is given by

Aµ = (At, Aρ, Aφ, Az) =

(

1

1 + g1
− 1

1 + g2
, 0, 0, 0

)

.

(4)
The interaction force associated with the strut between

the BHs is given by [30]

F =
2M1M2

R2 − (M1 +M2)
2

(

1 +
2M1M2

R2 − (M1 +M2)
2

)

, (5)

and because the masses and distance satisfy the inequal-
ity M1 + M2 < R, only attractive scenarios will be al-
lowed and then the force of the strut is positive F > 0.
On the other hand, since the BM is static, the space-
time does not possess an ergosphere in the usual sense
where the timelike Killing vector becomes spacelike, as

a consequence the energy associated to geodesic motion
of neutral particles is always positive, i.e., the energy ex-
traction is not possible. However, charged particles can
interact with charged BHs via Lorentz forces. According
to the ideas proposed by Denardo-Ruffini [5] for a single
charged BH and Sanches-Richartz for a BH binary [21],
we can define a particular region where negative energy
trajectories and energy extraction are, in principle, pos-
sible. In what follows we study the motion of charged
particles in the BM that is a binary BH with opposite
charges, and analyze the energy extraction.

A. Motion of charged particles

The motion equations for a test particle with charge-
mass ratio µ in a spacetime characterized by the metric
gµν and interacting with the electric potential Aµ, can
be obtained from the Euler-Lagrange equations with the
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Lagrangian

L =
1

2
gµν ẋ

µẋµ + µAαẋ
α, (6)

where the dot means derivative with respect to an affine
parameter. In terms of the metric coefficients in Eq. (2),
the Lagrangian is

L =
1

2

(

f−1
(

e2γ(ρ̇2 + ż2) + ρ2φ̇2
)

− f ṫ2
)

+ µAtṫ, (7)

which does not depend explicitly on the coordinates t
and φ. Then we can identify two motion constants of the

test particle: its energy E and angular momentum L per
unit mass, as measured by observers at infinity, given by

E = −∂L
∂ṫ

= f ṫ− µAt,

L =
∂L
∂φ̇

= f−1ρ2φ̇,
(8)

where after solving for φ̇ and ṫ, and substituting the result
into Eq. (7), we obtain the motion equations for ρ and z
coordinates, via the Euler-Lagrange equations, as

ρ̈− fe−2γ

2

∂

∂ρ

(

(E + µAt)
2

f
− fL2

ρ2

)

+

(

ż2 − ρ̇2

2

)

∂

∂ρ

(

ln
(

fe−2γ
)

)

− ρ̇ż
∂

∂z

(

ln
(

fe−2γ
)

)

= 0,

z̈ − fe−2γ

2

∂

∂z

(

(E + µAt)
2

f
− fL2

ρ2

)

+

(

ρ̇2 − ż2

2

)

∂

∂z

(

ln
(

fe−2γ
)

)

− ρ̇ż
∂

∂ρ

(

ln
(

fe−2γ
)

)

= 0.

(9)

It is worth mentioning that the motion equations for
ρ and z, in terms of the metric (2) are given in [31] for
neutral test particles. On the other hand, an explicit
expression for the energy E is obtained by plugging the
constants of motion (8) into the normalization condition
of the four velocity ẋµẋµ = −1,

E = −µAt ±
√

e2γ (ρ̇2 + ż2) +
L2f2

ρ2
+ f, (10)

where the positive root is taken for a positive energy
at infinity when µ = 0 [6]. After some straightforward
algebra, Eq. (10) can be expressed as

ρ̇2 + ż2 = E2
eff(ρ, z)− Veff(ρ, z), (11)

where

E2
eff(ρ, z) =

(E + µAt)
2

e2γ
,

Veff(ρ, z) =
1

e2γ

(

L2f2

ρ2
+ f

)

. (12)

These expressions are subject to the constraints:

Eeff(ρ, z) ≥ 0, E2
eff(ρ, z) ≥ Veff(ρ, z). (13)

The system of equations (9) fully describes the motion
of a charged test particle in a static and axisymmetric
spacetime; this set of equations can be numerically solved
once the appropriate initial conditions are chosen. In
order to solve this system of equations, the values for
the energy E, angular momentum L, and initial values
for ρ, z, and ż should be given; the initial value for ρ̇
is determined from Eq. (10). With these initial values

Eqs. (9) can be solved for ρ(λ) and z(λ) with λ being
the affine parameter; the full description of the motion
of a test particle is obtained when the set of Eqs. (8) is
solved using ρ(λ) and z(λ).

B. Generalized ergosphere

From the expression (10), we know that the energy is
determined by the angular momentum L, charge-mass
ratio µ, electric potential At and the coordinates and
velocities: ρ, z, ρ̇ and ż at a specific time. In order to
know if there are test particles with negative energy we
consider the minimun energy that it could have with a
fixed µ and position (ρ, z); this is the energy associated
with test particles at rest. Replacing ρ̇ = 0, ż = 0, and
L = 0 in (10), we get

Emin = −µAt +
√

f, (14)

since
√
f ≥ 0, then the existence of test particles with

negative energies is defined by the term −µAt. In order
that Emin < 0, µAt > 0. Hence we need to determine
the sign of At given by,

At =
1

1 + g1
− 1

1 + g2
. (15)

Using the explicit form of g1 and g2 in Eq. (3) one can
easily verify that the sign of At is different if (ρ, z) are
inside or outside the circle delimited by

ρ̄2 +

(

z̄ +
1

2

(

1 +M2
R

1−M2
R

))2

=

(

MR

1−M2
R

)2

, (16)

where ρ̄ = ρ/R, z̄ = z/R and MR = M2/M1. Note that
this region encircles the smaller mass. We distinguish
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two scenarios:
i) M1 > M2, then 0 < MR < 1, At > 0 inside the circle
in (16), and At < 0 outside.
ii) M2 > M1, then 1 < MR, At < 0 inside the circle in
(16), and At > 0 outside. The sketch of both regions is
shown in Fig.1.
When the values of M1 and M2 are exchanged the

sketch corresponding to Fig. 1, is rotated about the z = 0
plane; then, without loss of generality, we shall consider
only the case M1 > M2.
In order for Emin < 0 the sign of µ should be the same

than the sign of At. In contrast with the MP metric, an-
alyzed in [21], where the two BH charges are positive and
then energy can be extracted only by negatively charged
test particles, for the BM there exist negative energies for
both, positive and negative, charged test particles. On
the other hand, with the condition Emin < 0, Eq. (14)
can be written as

ρ̄2+ z̄2+
2µ
(

M̄1r̄+ − M̄2r̄−
)

d̄

d̄2 − 1
+

d̄2 + 1

d̄2 − 1
r̄+r̄− <

1

4
, (17)

where r̄± = r±/R, M̄1,2 = M1,2/R and d̄ =
√

(

1− (M̄1 − M̄2)2
)

/
(

1− (M̄1 + M̄2)2
)

are dimension-

less quantities restricted by
(

M̄1 + M̄2

)

< 1. Recall
that (ρ̄, z̄) are the coordinates of the initial particle, then
(17) restricts the position of the initially at rest parti-
cle. Note that this reparametrization is equivalent to fix
R = 1. The inequality (17) determines the generalized
ergosphere on the BM. The sketches of the ergosphere for
µ > 0 and µ < 0 are shown in Fig. 2; the charged test
particle can have negative energy in the region encircling
the BH with opposite charge. For particles with µ < 0
the generalized ergosphere surrounds the upper source
Fig. 2.a-2.e. If |µ| is sufficiently large the generalized
ergosphere would surround the region delimited by (16)
without including it. On the other hand, for particles
µ > 0 the generalized ergosphere surrounds the bottom
source, Fig. 2.f-2.h; and if |µ| is sufficiently large the
generalized ergosphere is delimited by (16).
From 2 we see that the generalized ergosphere depends

on the parameters µ, M1 and M2, i.e., not only on the
spacetime geometry but also on the charge of the test
particle via µ. The minimum energy per unit mass at a
given point inside the ergosphere also depends on µ and
one the masses of the BHs. To illustrate this, the energy
levels of the ergosphere are shown in Fig. 3 for different
values of M1, M2 for charge-mass ratio µ positive and
negative. One can see that in general the shape of the
ergosphere does not change and the magnitude of the
energy levels is larger as the test particle gets closer to
the BH oppositely charged.

C. Negative energy trayectories

The negative energy trajectories of the charged test
particles in the BM are confined inside the ergosphere

defined by (17) and this trajectory ends into one of the
BHs.
We shall describe two classes of orbits around the BH

binary described by BM. The first class of trajectories
are orbits with angular momentum L = 0; this condition
implies that the trajectories are confined to a meridional
plane, i.e., a plane with φ constant; for simplicity we
take φ = 0. Fixing the parametersM1, M2, µ and R, and
given a set of initial conditions ρ(0), z(0) and ż(0) we can
calculate ρ̇(λ) and solve the motion equations (9). In Fig.
4 we show some examples of trajectories of particles with
negative energy that are confined inside the generalized
ergosphere. Fig. 4.a exhibits three trajectories for µ =
−5 and Fig. 4.b exhibits three trajectories for µ = 20.
Note in these trajectories one of them ends at one of the
BHs.
The second class of orbits is a projection of geodesics in
the plane z = 0; in general, a particle that initially is
located at z = 0 is not restricted to maintain its move-
ment in this plane. Since the generalized ergosphere for
positive µ is always contained in the circle depicted by
Eq. (16) (see Figs. 2.f-2.h), then the ergosphere does not
reach the plane z = 0; then we only show the movement
for negative µ. Setting z = 0 in motion Eqs. (9) and
energy condition Eq. (11), the motion in the z = 0 plane
is constrained to the region E2

eff(ρ, 0) ≥ Veff(ρ, 0) where
the equality is satisfied for circular orbits. Fig. 5 shows
the energy and effective potential for BM at the z = 0
plane. The corresponding trajectory is also shown in Fig.
5.

III. PENROSE PROCESS

Now we investigate the possibility of energy extraction
from the binary BM. Considering Penrose process devel-
oped in [4], extended for RN BHs [5] and lately applied to
MP binary BH [21], we addressed the Penrose process for
the BM. It consists in sending a charged particle towards
the binary BH; at some point once inside the generalized
ergosphere, the particle breaks up into two fragments,
one of them escapes to infinity with more energy than
the initial one while the other remains inside the ergo-
sphere until it falls into one of the event horizons. We
denote the initial particle with subscript 0, the particle
that falls into the BH with subscript 1 and the particle
that escapes with subscript 2. We consider that the in-
cident particle follows the trajectory T(0), which starts
outside the ergosphere and ends inside it, at the break-
up point (ρ∗, φ∗, z∗). From the break-up point emerge
two trajectories, labeled T(1) which corresponds to the
particle with negative energy (E(1) < 0) that remains in-
side the ergosphere and the trajectory T(2) corresponds
to the particle escaping to infinity. The T(i) trajecto-
ries are timelike paths xµ

i (λ) parametrized by the proper
time λ. We denote as m(i), µ(i), E(i), L(i), and Pµ

(i), the

mass, the charge-mass ratio, the energy per unit mass,
the angular momentum per unit mass (with respect to
the z axis) and the four momentum of the i-particle, re-
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FIG. 1: The sign of the electric potential, At depends on the chosen (ρ, z); (a) If M1 > M2, 0 < MR < 1 then At is positive
inside the circle that surrounds the bottom source, and negative outside. (b) On the other hand, if M1 < M2, MR > 1 then At

is negative inside the circle that surrounds the upper source, and positive outside.
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(e) μ = -25
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(f) μ = 5
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(g) μ = 15
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1

2

(h) μ = 40

FIG. 2: It is shown the φ = 0 (meridional) plane section of the generalized esgosphere (shaded surface) for different values of
µ and fixed values of M̄1 and M̄2. The black circumference represents Eq. (16) and the dots symbolize the BHs. The shadow
regions in (a)-(e) represent the ergosphere for µ < 0; note that the ergosphere surrounds only the upper positively charged
source and excludes the region delimited by the black circumference. Inside the black circumference µAt < 0 and Emin > 0.
On the other hand, the shadow regions in (f)-(h) represent the ergosphere for µ > 0 that is surrounding the bottom (negatively
charged) source. For an arbitrarily large value of |µ| the ergosphere tends to occupy the space inside the black circumference.

spectively. The quantities that characterize each particle
should fulfill charge, energy and momentum conservation
equations. From the charge conservation we have,

µ(0)m(0) = µ(1)m(1) + µ(2)m(2). (18)

On the other hand, if we consider that at the break-up
point the four momentum is conserved,

P ν
(0) = P ν

(1) + P ν
(2). (19)

From the temporal component in Eq. (19) we have the
conservation of the total energy, i.e.

E(0)m(0) = E(1)m(1) + E(2)m(2), (20)

while the spatial components of Eq. (19) are the conser-
vations of linear momenta in each component, i.e.,

m(0)ρ̇(0) = m(1)ρ̇(1) +m(2)ρ̇(2),

m(0)ż(0) = m(1)ż(1) +m(2)ż(2),
(21)
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FIG. 3: Energy levels in the generalized ergosphere of the BM are illustrated with R = 1, M1 = 0.5, M2 = 0.2 and selected
values of µ. The color bar represents Emin. The dots indicate the location of the BHs. The horizontal and vertical axes are ρ
and z, respectively.
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-0.5 0.0 0.5

-1.0

-0.5
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0.5 (b)

FIG. 4: (a) Examples of trajectories for particle with charge-
mass ratio µ = −5; the other parameters are specified for
each trajectory. T(0): E = −0.1, ρ(0) = −1/2, z(0) = 1,
ρ̇(0) = −0.73758 and ż(0) = 0. T(1): E = −0.00001, ρ(0) = 0,
z(0) = 0, ρ̇(0) = 1.32396 and ż(0) = 0. T(2): E = −0.0001,
ρ(0) = 1/2, z(0) = 3/2, ρ̇(0) = 0.250857 and ż(0) = 0. (b)
Examples of trajectories for particle with charge-mass ratio
µ = 20; the other parameters are specified for each trajectory.
T(0): E = −0.002, ρ(0) = 0, z(0) = −1, ρ̇(0) = 0.998144 and
ż(0) = 0. T(1): E = −0.002, ρ(0) = −1/4, z(0) = −1/4,
ρ̇(0) = 0.423686 and ż(0) = 0. T(2): E = −0.002, ρ(0) = 1/4,
z(0) = −1/4, ρ̇(0) = 0.423686 and ż(0) = 0.

where the derivatives ρ̇(i) and ż(i) should be evaluated at
the break-up point. Besides, the conservation of angular
momentum is

m(0)L(0) = m(1)L(1) +m(2)L(2). (22)

Finally there is an additional restriction on the masses
m(i); squaring the four momentum (19) and using the
condition Pµ

(1)Pµ(2) (future-pointing timelike vectors)[15,

21], we have,

m2
(1) +m2

(2) < m2
(0). (23)

IV. ENERGY EXTRACTION EFFICIENCY

The efficiency η of the Penrose process can be defined
as the ratio between the energy output (energy of the

Eeff

Veff

0 1 2 3 4 5 6
0

1

2

3

4

5

ρ
-4 -2 0 2 4

-4

-2

0

2

4

ρcos(ϕ)

ρ
s
in
(ϕ
)

FIG. 5: Left: Effective energy (black curve) and effective
potential (red dashed curve) for L = 0.71, E = −0.15, M1 =
0.5, M2 = 0.2 and R = 1. Right: example of a trajectory
of negative energy at the z = 0 plane with initial conditions
ρ(0) = 2.19858, φ(0) = 0 and ρ̇(0) = 1.22395. The blue circle
corresponds to the generalized ergosphere.

outgoing particle) and the energy input (energy of the
incident particle). From (20), we have

η =
E(2)m(2)) − E(0)m(0)

E(0)m(0)
= −E(1)m(1)

E(0)m(0)
. (24)

In order to maximize the efficiency of the process we
need to make E(1) as large as possible and E(0) as small
as possible. On the other hand the mass of the negative
energy fragment m(1) should be as massive as possible
in comparison with m(0). In order to deduce the val-
ues of the parameters that maximizes the efficiency we
choose particular values for BM parameters M1, M2, R,
the break-up point coordinates (ρ∗, z∗), and the charge-
mass ratio µ(1). With these considerations we analyze
how much energy can be extracted from the BM binary
BH.

A. Maximum efficiency

The minimum energy of the incident particle coming
from infinity, according to Eq. (10) is E(0) = 1 and it
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corresponds to the particle having zero kinetic energy at
infinity. On the other hand, with the purpose of max-
imizing the efficiency, the absolute value of the energy
E(1) should be as large as possible, this occurs when the
particle m(1) is initially at rest. Recalling that E(1) < 0,
at the break-up point we set

ρ̇(1) = ż(1) = φ̇(1) = 0, (25)

hence, the angular momentum per unit mass and energy
per unit mass are, respectively, L(1) = 0 and

E(1)(ρ∗, z∗) = Emin
(1) (ρ∗, z∗) = −µ(1)At∗ +

√

f∗, (26)

where At∗ and f∗ are evaluated at the break-up point
(ρ∗, z∗). Now, we determine the restrictions over the
masses m(0), m(1) and m(2). From the linear momen-
tum conservation Eqs. (21), we have

m2
(2) =m2

(0)

ρ̇2(0) + ż2(0)

ρ̇2(2) + ż2(2)
+m2

(1)

ρ̇2(1) + ż2(1)

ρ̇2(2) + ż2(2)

− 2m(0)m(1)

ρ̇(0)ρ̇(1) + ż(0)ż(1)

ρ̇2(2) + ż2(2)
.

(27)

If we consider the condition given by Eq. (25), and

using
(

ρ̇2(i) + ż2(i)

)

from Eq. (11), substituting in Eq. (27),

yields

m(2) =
√

m2
(0) − 2m(0)m(1)α(0) +m2

(1), (28)

where

α(0) =
1 +At∗µ(0)√

f∗
, (29)

where f∗ and At∗ are evaluated at the break-up point.
α(0) can be written as α(0) = Eeff(0)

√

Veff(0) using Eqs.
(12) for an initially at rest particle at infinity (E(0) = 1,
L = 0), hence α(0) is always positive. The MP case is

recovered with f∗ → 1/U2
∗ and At∗ → 1/U∗−1 where U∗

is the interaction potential for MP binary BH [21].
From the inequality (23), squaring (28), and using the

fact that the masses are positive, we obtain

0 < m(1) < m(0)

(

α(0) −
√

α2
(0) − 1

)

. (30)

Where a necessary condition for the masses to have
real values is α2

(0) ≥ 1, namely,

α(0) =
1 +At∗µ(0)√

f∗
≥ 1, (31)

then the values of µ(0) depend on the location of the
break-up point, since At∗ is positive/negative, depending
if it is evaluated inside/outside of the region defined by

Eq. (16). For the case where the break-up point occurs
inside Eq. (16), µ0 is constrained by

µ(0) ≥
√
f∗ − 1

At∗

. (32)

Have in mind that the extraction process occurs in this
region if µ(0) is positive and the BH is negatively charged.
On the other hand, if the break-up point occurs outside
(16), the values which µ(0) can take are constrained by

µ(0) ≤
√
f∗ − 1

At∗

, (33)

and the extraction process takes place in this region if
µ(0) is negative. Note that the change of sign in the in-
equality (33) is because At∗ < 0. Then, to maximize the
range of m(1) the inequality (31) must be saturated; this
occurs when the inequalities (32) or (33) are saturated,
i.e., when µ(0) → (

√
f∗−1)/At∗ to the left or to the right

according to the sign of µ(0). In this case, one can choose
m(1) → m(0) thus maximizing the ratio m(1)/m(0) that
appears in (24). Then, the efficiency η of the Penrose
process in the BM is bounded according to

η < ηb = −Emin
(1) (ρ∗, z∗). (34)

The efficiency upper bound denoted by ηb is a function
of µ(1), the break-up point coordinates (ρ∗, z∗) and the
BM parameters M1, M2 and R according to Eq. (26).
The effect of varying each one of these parameters is an-
alyzed in the next subsection.

B. Dependence of the maximum efficiency on the

parameters.

From Eqs. (26) and (34) the explicit expression of the
efficiency upper bound ηb is given by

ηb = µ(1)At∗ −
√

f∗. (35)

The efficiency bound ηb has a linear dependence re-
spect to the charge-mass ratio µ(1). The dependence with
respect to the break-up point coordinates (ρ∗, z∗) can be
understood with the help of the energy levels shown in
Fig. 3; the efficiency upper bound increases as the break-
up point approaches one of the BHs, i.e., the Penrose
process is more efficient if the break-up point is located
near one of the horizons. If this is the case, using Eq.
(1)the upper bound of efficiency for µ(1) > 0 is

ηb = µ(1)

√

(R −M1)2 −M2
2

(R +M1)2 −M2
2

= −µ(1)
M2

Q2
, (36)

and for µ(1) < 0 the upper bound is

ηb = −µ(1)

√

(R−M2)2 −M2
1

(R+M2)2 −M2
1

= −µ(1)
M1

Q1
, (37)
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A relevant characteristic of the bound efficiency Eqs. (36)
and (37) is that it depends on the charge-mass ratio µ(1)

that can be chosen arbitrarily large; even can be chosen
such that the efficiency be greater than one, ηb > 1, as
can occur in the case of one single charged BH [15, 17, 20]
with charged particles that interact via electromagnetic
forces with the BH.
From (35) we can identify two scenarios according to

the sign of the charge-mass ratio µ, while the sign of At

is defined by the break-up point coordinates. The break-
up coordinates (ρ∗, z∗) dependence of ηb is illustrated in
Fig. 6.a for several values of ρ∗ and fixed values of M1,
M2, R and µ(1) < 0. On the other hand, the dependence
of the break-up coordinates for µ(1) > 0 is illustrated in
Fig. 6.b. The negative efficiency implies that the particle
that escapes towards infinity carries less energy than the
incident particle. Note that the extraction process occurs
only when the test particle and the BH have opposite
charges.
Due to the fact that the upper bound of efficiency given

in Eqs. (36) and (37) can be written in terms of the
charges of the BHs that satisfy the relation |Qi| > Mi,
then the upper bound efficiency is less than (−µ(1)) for
arbitrary M1, M2, and R, in contrast with the MP case
analyzed in [21] where the upper bound is (−µ(1)). In
the case that one of the BH masses is zero, the extraction
process occurs if µ(1) and the BH charge are oppositely

charged and the maximum efficiency is ηb = ±µ(1), for
Qi negative and positive respectively.
To determine how the efficiency changes with BH

masses, we analyze (35) in terms of the mass ratio
MR = M2/M1 withM2 < M1, total massMT = M1+M2

and fixed values of µ(1) and R = 1, then 0 < MR < 1
and 0 < MT < 1. The dependence on the total mass
MT for a fixed value of mass ratio MR, µ(1) with dif-
ferent values of the break-up point is shown in Fig. 7.
Note that in Fig. 7.a initially the efficiency for three se-
lected break-up points is negative, this occurs because
the break-up point is located outside the ergosphere and
the total mass is small (therefore the ergosphere is small
as well); for a fixed value of MR the generalized ergo-
sphere gets bigger as the total mass MT increases until
a critical value MTcrit is reached where the generalized
ergosphere has its largest size and the upper bound ef-
ficiency is maximum. For MTcrit < MT the ergosphere
gets smaller and the upper efficiency decreases even to
the point of becoming negative.
The critical value of the total mass MTcrit is given by

the MT satisfying

d

dMT

(

ηb
)

= 0,
d2

dM2
T

(

ηb
)

< 0, (38)

where ηb is the efficiency upper bound given by Eq.
(35), where the functions At∗ and f∗ are rewritten in
terms of total mass MT and mass ratio MR through
the transformations M1 = MT /(MR + 1) and M2 =
MRMT /(MR + 1).

For µ(1) > 0 the ergosphere and upper bound efficiency
exhibit the same qualitative behaviour, as shown in Fig.
8; the critical mass can be calculated with Eqs. (??).
Moreover, the mass ratio MR for a fixed value of total

mass MT = 1/2 and a negative µ(1), for different values
of the break-up points is shown in Fig. 9. In this case the
ergosphere and upper bound ηb decrease asMR increases,
i.e., the ergosphere and upper bound efficiency decrease
when the masses M1 and M2 tend to be equal. The
maximal efficiency upper bound ηb occurs whenMR → 0,
i.e., when M2 → 0 and is always less than or equal to
−µ(1). ηb as a function of MR for µ(1) > 0 is shown in

Fig. 10. In this case the upper bound ηb and ergosphere
increase as MR increases and the maximum upper bound
for an arbitrary break-up point occurs when MR → 1.

C. Examples of the Penrose process

Once we have described the efficiency ηb, we will give
some concrete examples of the Penrose process in a bi-
nary BH described by BM, whose efficiency approaches
the theoretical maximum described by Eq. (36) for test
particles with µ(1) > 0 and Eq. (37) for test particles
with µ(1) < 0. First, we fix the values of M1, M2, and R.
And then we fix the values of the charge mass ratio µ(1)

and the break-up point (ρ∗, z∗, φ∗), considered inside the
generalized ergosphere. According to the analysis in Sec.
IVA we set m(0) = 1, L(0) = L(1) = L(2) = 0, which
means that all the trajectories are confined to the merid-
ional plane φ = φ∗. The energy E(1) is determined by
Eq. (26) and we set E(0) = 1. The two scenarios for the
process correspond to negative and positive charged test
particle µ(1); the charge mass ratio µ(0) is bounded by
two different limits depending where the break-up point
(ρ∗, z∗) occurs according to Eqs. (32) and (33).
If the break-up point is located outside the region

bounded by (16), then, according to Eqs. (30) and (33),
we choose

µ(0) =

√
f∗ − 1

At∗

− ǫ1, (39)

m(1) = 1− ν1, (40)

where ǫ1 and ν1 are small positive parameters. Substi-
tuting Eqs. (39) and (40) into Eq. (30), we find that ǫ1,
and ν1, satisfy

ν1 >
At∗ǫ1√

f∗





√

1− 2
√
f∗

At∗ǫ1
+ 1



 . (41)

On the other hand, if the break-up point occurs inside
of the circle (16), then according to (30) and (32), we
choose

µ(0) =

√
f∗ − 1

At∗

+ ǫ2, (42)
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FIG. 6: It is illustrated the efficiency upper bound ηb as a function of z∗ for fixed values of ρ∗ and M1 = 0.5, M2 = 0.2, R = 1
and (a) µ(1) = −1.7, (b) µ(1) = 3.
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FIG. 7: It is shown the (a) Efficiency upper bound ηb as a function of MT = M1+M2 when MR = M2/M1 = 0.25 and µ = −1.7
for selected break-up points denoted by X, Y and Z. The values of MTcrit are MTcrit = 0.658999, MTcrit = 0.645854 and
MTcrit = 0.823573 for the break-up points X, Y and Z, respectively. (b) Generalized ergospheres for selected values of MT .
The black square markers are the locations of the break-up points (ρ∗, z∗) = (0, 0.8), (ρ∗, z∗) = (0, 0.3) and (ρ∗, z∗) = (0, 0)
that are labeled as X, Y and Z, respectively. Each curve in (a) corresponds to one of the break-up points in (b). The dots
represent the BHs.

m(1) = 1− ν2, (43)

Substituting these expressions into (30), we find that
ǫ2 and ν2 satisfy

ν2 >
At∗ǫ2√

f∗





√

1 +
2
√
f∗

At∗ǫ2
− 1



 , (44)

the charge mass ratio µ(2) and energy per unit mass E(2)

can be determined from Eqs. (18) and (20).
For a given angle between the velocities, θ(0) =

arg(ρ̇(0) + iż(0)), Eqs. (45) and (46) can be used to de-
termine ρ̇(0) and ż(0) at the break-up point.
At the break-up point, according to (25), we have

ρ̇(1) = ż(1) = 0 for the negative energy fragment. For

the incident particle, if the break-up point is outside the
circular region (16) and E(0) = 1 then

ρ̇2(0) + ż2(0) =

(

1 +At∗(1 − ǫ1)
)2

e2γ∗

− f∗
e2γ∗

, (45)

while if the break-up point is inside (16) we have,

ρ̇2(0) + ż2(0) =

(

1 +At∗(1 + ǫ2)
)2

e2γ∗

− f∗
e2γ∗

. (46)

The values for ρ̇(2) and ż(2) are obtained from lin-
ear momentum conservation (21). With this setting of
parameters the trajectories T(0), T(1) and T(2) are com-
pletely determined and the efficiency of the Penrose pro-
cess is given by η1,2 = (1− ν1,2)η

b. In order to maximize
the efficiency we need to choose ν1,2 as small as possi-
ble. However, ǫ1,2 and ν1,2 cannot be zero because the



10

X

Y

Z

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

MT

η
b

(a)

MT=0.1 MT=0.4 MT=0.6

-0.5 0.0 0.5

-1.0

-0.5

0.0

0.5 (b)

X

Y

Z

■

■

■

FIG. 8: It is shown the (a) Efficiency upper bound ηb as a function of MT when MR = 0.75 and µ = 3 for selected break-up
points. The values of MTcrit are MTcrit = 0.809496, MTcrit = 0.326936 and MTcrit = 0.611923 for the break-up points X,
Y and Z, respectively. (b) Generalized ergospheres for selected values of MT . The square markers are the locations of the
break-up points (ρ∗, z∗) = (0,−0.2), (ρ∗, z∗) = (0,−0.55) and (ρ∗, z∗) = (0,−0.75) that are labeled X, Y and Z respectively.
The dots represent the BHs. Each curve in (a) corresponds to one of the break-up points in (b).
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FIG. 9: It is plotted the (a) Efficiency upper bound ηb as a function of MR when MT = 0.5 and µ = −1.7 for selected break-up
points. (b) Generalized ergospheres for selected values of MR. The square markers are the locations of the break-up points
(ρ∗, z∗) = (0, 0.88), (ρ∗, z∗) = (0, 0.3) and (ρ∗, z∗) = (0, 0) that are labeled X, Y and Z, respectively. The dots represent the
BHs. Each curve in (a) corresponds to one of the break-up points in (b).
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FIG. 10: It is illustrated the (a) Efficiency upper bound ηb as a function of MR when MT = 0.5 and µ = 3 for selected break-up
points. (b) Generalized ergospheres for selected values of MR. The square markers are the locations of the break-up points
(ρ∗, z∗) = (0,−0.24), (ρ∗, z∗) = (0,−0.6) and (ρ∗, z∗) = (0,−0.7) that are labeled X, Y and Z respectively. The dots represent
the BHs. Each curve in (a) corresponds to one of the break-up points in (b).
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FIG. 11: Examples of Penrose’s processes near the maximum theoretical efficiency in a BM spacetime. The efficiencies of
the processes are 90% of the theoretical maximum. In both panels the incoming trajectory T(0) (black curve) splits at the
black point into the negative energy trajectory T(1) (red curve) and the trajectory of the particle that escapes T(2). The

Bonnor parameters in both cases are fixed as M1 = 0.5, M2 = 0.2, R = 1, the parameter ν and ǫ are fixed as ν1,2 = 10−2,
ǫ1,2 = 10−5, the charge-mass ratio, the break-up point and the angle θ(0) are fixed as: (a) µ(1) = −5, (ρ∗, z∗) = (1/4, 1/4)
and θ(0) = 0.0872665; (b) µ(1) = 20, (ρ∗, z∗) = (0.3,−0.8) and θ(0) = 0.296706. The initial values of the parameters that

generate these trajectories are shown in Tables I and II. The respective efficiency upper bound is ηb = 1.20854 (left panel) and
ηb = 0.208203 (right panel).

inequalities (41) or (44) cannot be saturated; but it is
possible, in principle, to set infinitesimally small values
for ǫ1,2 and ν1,2. According to these considerations we
explore two specific examples where the efficiency corre-
sponds to 90% for a break-up point located outside and
inside of the region bounded by (16) resulting that the
extraction process occurs with the BH with positive or
negative charge, respectively.

TABLE I: Initial values that generate the trajectories T(0),
T(1) and T(2) in the Penrose process shown in Fig. 11.a. The
derivatives ρ̇(i) and ż(i) are evaluated at the break-up point.

i m(i) µ(i) E(i) L(i) ρ̇(i) ż(i)
0 1 2.70371 1 0 1.45015 0.126872
1 0.9 -5 -1.20854 0 0 0
2 0.0998852 72.1199 20.9008 0 14.5182 1.27018

TABLE II: Initial values that generate the trajectories T(0),
T(1) and T(2) in the Penrose process shown in Fig. 11.b. The
derivatives ρ̇(i) and ż(i) are evaluated at the break-up point.

i m(i) µ(i) E(i) L(i) ρ̇(i) ż(i)
0 1 2.70371 1 0 1.45015 0.126872
1 0.9 -5 -1.20854 0 0 0
2 0.0998852 72.1199 20.9008 0 14.5182 1.27018

Fig. 11.a shows the Penrose extraction from a BH with
negative charge. The BM parameters M1, M2, and R are
fixed. It corresponds to the extraction process where the
break-up point occurs outside (16) and the charge-mass

ratio of the negative energy fragment (red line) is nega-
tive µ(1) (e. g. Fig. 2.c), the setting of these parameters
enables us to determine the trajectories T(1), having in
mind that the energy E(1) associated to the trajectory
T(1), Eq. (14), is the minimum possible and the trajec-
tories T(0) and T(2) are fully described once we fix ν1,2,
ǫ1,2, and θ(0). On the other hand, in Fig. 11.b it is shown
the Penrose process where the break-up point occurs in-
side the region bounded by (16) for a negatively charged
particle. We can highlight two different features of the
Penrose process in the BM binary BH in contrast with
the MP binary: first, the process of extraction can occur
for positively charged test particles with the negatively
charged BH. Second, if the Penrose process occurs in the
BH with negative charge, the particle that escapes with
more energy can be trapped by the other BH as shown in
Fig. 11.b. The parameters that generate these examples
satisfy the conservations Eqs. (18)-(23) and are given in
Tables I and II.

V. CONCLUSIONS

We have analyzed in detail the possibility of energy
extraction from the Bonnor BH binary (BM), that de-
scribes two oppositely charged BH kept apart by a strut
[25, 26]. In contrast to the Majumdar-Papapetrou (MP)
setup, the BH charges do not balance the gravitational
attraction.
We determine a generalized ergosphere that depends

on the parameters of the BM and the charge-mass ratio µ
of the test particle and we showed that energy extraction
is possible; the sign of the electric potential At is defined
by the location where it is evaluated. As a first differ-
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ence with the MP case the generalized ergosphere exists
for positive and negatively charged test particles µ. An-
other remarkable difference with respect to the MP case
is that the ergosphere cannot include both BHs, but only
one; the ergosphere encloses the BH with charge opposite
to the one of the test particle. Initial conditions of the
particle trajectory can be found such that the particle
that escapes with more energy is trapped by the other
BH. We have studied the efficiency of the process and its
dependence on the break-up point location. We deter-
mined as well the total mass MT = M1 +M2 and mass
ratio MR = M2/M1 that renders the highest efficiency
ηb. The upper bound efficiency in the BM is always lower
compared to the MP efficiency [21]. The behavior of ηb

as a function of MR depends on the sign of µ. If µ < 0
then ηb decreases when MR → 1; while if µ > 0 then
ηb increases when MR approaches 1. Moreover the max-
imum efficiency ηb does not increases monotonically as
MT increases, but there is a certain MTcrit such that for
MT > MTcrit, η

b decreases, and even can reach negative
values.
Due to the vast recent observations reported by the

LIGO-Virgo Collaboration, so far it has been able to
identify multiple candidates for compact binary systems.

We believe that the study of the Penrose process in BM
is useful because it extends the analysis carried out for
a MP black hole in [21] and this phenomenon could give
us relevant information regarding other astrophysical as-
pects such as the superradiant effects [32–34] where some
earlier researches have proposed that compact binary sys-
tems are intimately related to this effect [36, 37]. More-
over, the magnetic variant of the Penrose process that
takes into account the combined influence of external
magnetic field and the rotation of a BH seems to be con-
nected to the origin of accretion disks where the energy
extraction into jets can befall, or even yet the generation
of ultra-high energy cosmic rays [8, 35]. In this direc-
tion we aim to develop further research of the magnetic
Penrose process in BH binaries.
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