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Abstract: Competitiveness motivates organizations to implement statistical approaches for improve-
ment purposes. The literature offers a variety of quantitative methods intended to analyze and
improve processes such as the design of experiments, steepest paths and stopping rules that search
optimum responses. The objective of this paper is to run a first-order experiment to develop a steepest
ascent path to subsequently apply three stopping rules (Myers and Khuri stopping rule, recursive
parabolic rule and recursive parabolic rule enhanced) to identify the optimum experimentation stop
from two different simulated cases. The method includes the consideration of the case study, the
fitting of a linear model, the development of the steepest path and the application of stopping rules.
Results suggest that procedures’ performances are similar when the response obeys a parametric
function and differ when the response exhibits stochastic behavior. The discussion section shows a
structured analysis to visualize these results and the output of each of the stopping rules in the two
analyzed cases.

Keywords: design of experiments; steepest ascent/descent methodology; Myers and Khuri stopping
rule; recursive parabolic rule; optimization
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1. Introduction

Today’s industry demands more optimization in its processes. Weichert et al. [1] assure
that advances in the manufacturing industry and the resulting available data have brought
important progress and large interest in optimization-related methods to improve produc-
tion processes. In several different disciplines, engineers have to take many technological
and managerial decisions at different stages for optimization purposes. The literature
shows different examples of this, such as the case of [2–4], with research that successfully
involves optimization for different purposes. The ultimate goal is either to minimize the
effort required or to maximize the desired benefit. For instance, Balafkandeh et al. [5] and
Juangphanich et al. [6] focus their efforts on optimizing operations to minimize outputs,
while, Oleksy-Sobczak and Klewicka [7] and Delavar and Naderifar [8] pursue optimization
of inputs to maximize results.

However, companies are not only concerned with creating more products with less
resources; they also have the intention of performing right operations the first time. Several
organizations around the world use statistical approaches as the core of process problem
solving. According to Bryant [9], problem solving constitutes the ambition to transcend
the limits of ordinary capability, sometimes against rational ideas and the limitation of
human capabilities, because people still have the need to reduce potential complexity and
manage cognitive load. Inside an industrial environment, problem solving is widely related
to productivity and it is an everyday issue to solve. In this scenario, each company is
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responsible for its own development. As noted by Apsemidis et al. [10], the complexity of
the industrial environment may be large enough to avoid classical process monitoring tech-
niques and substitute new statistical learning methodologies. This is why mathematical and
statistical approaches are being designed for organizations to obtain higher performance in
their processes.

There are several quantitative methods such as Design Of Experiments (DOE), in-
tended to analyze and improve processes. As explained by Montgomery [11], experiments
are useful to understand the performance of a process or any system that combines opera-
tions, machines, methods, people and other resources to transform some inputs (commonly
a material) into an output with one or more observable response variables. Likewise,
experimental designs have found several methods of learning through a series of activities,
with the aim of making conjectures about a process to drive innovation in the product
realization process, resulting in improvement of process yield, reduction of variability,
closer conformance to nominal, reduction of development time and, finally, reducing costs
by the optimization of processes.

For instance, Sheoran and Kumar [12] studied a set of processing parameters that
needed to be carefully selected for a specific output requirement. It was noted that some
of these parameters were more significant for the response variable than the rest; this
significance needed to be identified and optimized. Therefore, researchers explored dif-
ferent experimental or statistical approaches such as DOE for optimization and property
improvement purposes.

The task of optimizing systems is always complex because of the quantity of factors
involved. Beyond DOE, there is a method called Response Surface Methodology (RSM)
used for this purpose. As stated by Myers et al. [13], a RSM is a collection of statistical
techniques useful for developing, improving and optimizing a process. In the case of
industrial processes, it is very useful to apply this method particularly in situations where
different input variables influence the performance or quality characteristics of the product
(the response variable). This method is useful in the solution of several problems such
as mapping a response surface over a particular region of interest, selection of operating
conditions to achieve specifications, customer requirements and, of course, optimization of
a response.

For example, Karimifard and Moghaddam [14] presents RSM as a powerful tool
for designing experiments and analyzing processes related to different environmental
wastewater treatment operations with successfully optimized outputs.

Beyond these strategic tools, an auxiliary method to analyze the behavior of a response
is called the Steepest Ascent or Descent Method (SADM). It is useful to obtain a region
where optimization is feasible. Myers et al. [13] remarks that this method searches for
such regions through experimental design, model-building procedure and sequential
experimentation. The type of designs that are most frequently used are the two-level
factorial and fractional factorial designs. It is fundamental to remember that the strategy
involves sequential movement in the factors from one region to another, resulting in more
than one experiment. As mentioned by De Oliveira et al. [15], optimization of processes
commonly involves statistical techniques such as the RSM as one of the most effective ways
to pursue optimization by modeling techniques.

A great exemplification of this is application of SADM by Chavan and Talange [16], who
applied a full factorial statistical design to obtain a model to find which input factors affect
the response variables significantly in a process of fuel cells. The steepest ascent method
was applied to find the maximum power delivered by these fuel cells within the defined
ranges of input factors.

Since the SADM entails consecutive individual experimentation, it becomes necessary
to have a procedure that gives mathematical support to recognize when the response has
been improved and no more experimentation needs to be carried out. They are called
Stopping Rules (SRs).
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Myers and Khuri [17] presented a procedure that consists in performing a sequence
of sets of trials with the information provided by the first-order fitting. This Myers and
Khuri Stopping Rule (MKSR) is used to determine a path to observe an increasing or
decreasing response. This procedure considers the random error variation in the response
and avoids the need to take many observations when the true mean response is decreasing.
Furthermore, it prevents premature stopping decisions when the true mean response is
decreasing. The stopping procedure is applied once a steepest path is developed and
has been used in experimental strategy in optimum seeking methodology. There have
been different informal procedures to stop, such as one that orders a stop at the first drop.
Another informal tendency has been stopping after three consecutive drops. Nevertheless,
due to the presence of random error variation in the observed response, the dropping of the
response may not be true all along the function. Therefore, the need to design formal rules
such as the MKSR has been important. The most important characteristic of the MKSR is
that it assumes that y(t) is normally distributed with mean η(t) and variance σ2 from a
sequence of independent normal variables.

Similarly, Miró-Quesada and Del Castillo [18] reported that a first-order experimental
design is commonly followed by a steepest ascent search where there is a need for a
stopping rule to determine the optimal point in the search direction. This procedure,
known as Del Castillo’s Recursive Parabolic Rule (RPR), has been studied for quadratic
responses. It is assumed that it is of interest to maximize the response, so the steepest
ascent case is considered. In real experimentation, stopping a search before the maximum
response over a path means that the optimum value will not be selected and the procedure
will not be able to be efficient because of the wasting of resources in experimentation. One
of the most important considerations when applying the RPR is that this procedure tries to
fit a quadratic behavior to the observed data. It also recursively updates the estimate of the
second-order coefficient and tests if the first derivative is negative. However, the necessity
of developing a more robust procedure to also consider non-quadratic behavior is starting
to be an important issue to solve.

Finally, Del Castillo [19] explains a procedure to also consider non-quadratic behavior,
called the Recursive Parabolic Rule Enhanced (RPRE). It has the advantage of being more
robust because it becomes more sensitive when the standard deviation of the error is small.
It mainly consists of three modifications to the traditional recursive rule. The intercept and
the first order term, in addition to the second term, are recursively fitted. Furthermore, only
a local parabolic model along the search direction is fitted, defined by a new concept called
window. Finally, a coding scheme on the numbers of steps is used to reduce variance.

In this paper, a comprehensive study is carried out. It considers two simulated
processes that offer response variables after a set of inputs (different levels and factors)
configured according to a factorial design. The application and comparison of the men-
tioned three SRs will be illustrated, with the objective of recognizing the best performance.
This analysis is important and relevant considering that current literature lacks recent
studies of this nature, where three of the most important formal stopping rules are applied
over a path of improvement that considers the coefficients of a linear model. This study
is characterized by its lack of comparability with previous studies, because the response
variables obtained by the simulators applied were specially obtained for this particular
experiment. This means that comparison with previous studies is not feasible, since it can
only be applied to the special conditions where responses were exclusively obtained for
this case.

At this point, the originality of the contribution of this paper not only relies on the
verification and comparison of performance of SRs, but also on the interaction of SRs
with the behavior of the outputs. SR performance is similar when the response obeys
a parametric function and differs when the output follows a stochastic behavior. It is
important that further analysis over stochastic behaviors continue to pursue an even better
procedure to stop over the path of improvement.
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After this first section of introduction, Section 2 is intended to show the method
used for the paper and explain the application of rules. Section 3 presents the results
obtained with both of the cases after the application of the three SRs. Finally, discussion
and conclusion are presented in Sections 4 and 5, respectively.

2. Method

This procedure is intended to follow the main objective, which consists in running a
first-order designed experiment and subsequently performing a steepest ascent/descent.
The core of this analysis is to run the SRs previously addressed to discover the best per-
formance between the MKSR, the RPR and the RPRE under the conditions of the specific
experimentation schemes and cases considered.

The method is explained in Figure 1 as a flow chart to easily visualize the progress.

Figure 1. Flow chart for the proposed method of the manuscript from the consideration of the case
study to the selection of the rule with the best performance.

The first stage of the method consists in the considerations of the three cases that will
be presented. Second, the first-order model is fitted; a linear regression equation is used.
Then, the steepest path with the first-order model is determined so that the application
of the MKSR, RPR and RPRE is possible. Finally, the selection of the rule with the best
performance is denoted for each of the analyzed cases.

a. Considerations of the case study
The analysis considers two different simulated cases, both of which will consider the

implementation of a factorial experimentation design. This factorial analysis includes seven
factors, two levels, six center points and two replicates. It gives a total of 262 experimental runs.
For ANOVA, the main assumptions of normality, equality of variances and independence of
residuals must be assured for a well-performed analysis [20].

b. Fit the first order model
The execution of the designed experiment starts with the consideration of the levels for

each of the seven factors given by the simulators. The factorial design with the replicates
and center points is given by a statistical software. Once the design is done, specific values
of the factors are set in the simulators so that a response variable can be obtained from each
of the two simulators. Once the responses are obtained, a factorial analysis is performed.
The analysis offers a Coded Coefficients (CC) table which is used to build the Coded
Unit Regression Equation (CURE). This first order model is obtained as the base for the
development of the path for the SADM.

c. Determine the steepest path with the first order model
Once the coded unit regression equation is obtained. the steepest path can now be built.

According to [13], it is necessary to give a general algorithm to determine the coordinates
of a point on the path. Considering that the point x1 = x2 = · · · = xk = 0 is the origin
point, it is necessary to:

* Select a step size for the path. The variable with the largest absolute regression
coefficient is the one selected;

* Calculate the step size in the other variables with (1) as follows:

∆xj =
bj

bi/∆xi
, j = 1, 2, · · · , k, i 6= j (1)

where bj represent the regression coefficient of the factor whose step size is to be estimated
and bi represents the regression coefficient of the factor with the largest absolute coefficient,
while ∆xi and ∆xj work as the step size of the process variables;

* Convert ∆xj from the coded variables to the natural variables.
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d. Application of MKSR, RPR and RPRE
The intention is to utilize a formal procedure in order to stop at a required value. For

this paper, the MKSR, RPR and RPRE will be applied for comparison.
The procedure of Myers and Khuri [17] is as follows:
1. The MKSR assumes the behavior in the observed response y(t) to be normally

distributed; thus y(t) ∼ normal(η(t), σ2);
2. A significance test is run using confidence intervals as follows:
y(ni + 1)− y(ni) ≥ b; where individual experimentation continues;
y(ni + 1)− y(ni) < b > a; where individual experimentation continues;
y(ni + 1)− y(ni) ≤ a; where individual experimentation stops;
3. A solution is established for the limits of the procedures a and −b in (2) as follows:

a = −b = Φ−1(
1
2k

)(σε)(
√

2); (2)

where a and b work as the limits of the interval for the significance test, Φ is the normal
cumulative distribution function, κ is a guess of the number of individual experimentation
runs to arrive to the improvement and σ is the square root of the adjusted mean square of
ANOVA from the factorial analysis;

4. Once the values for a and b are computed, the decision to stop is determined with
(3) as follows:

y(ni)− y(ni − 1) ≤ a < 0 (3)

where y(ni) is a present value from the response variables in the path of improvement
from SADM, y(ni − 1) is a past value from the path and a is a limit of the interval of the
significance test of the procedure;

5. The moment where individual experimentation stopped is the time where the
response is considered to be the best. Nevertheless, if a better response is identified in a
previous time, that value is the new best response.

On the other hand, ref. [18] presents the RPR procedure:
1. It assumes the behavior of the observed response y(t) to be quadratic and pro-

poses to obtain the first derivative of y(t) = η(t) + εt = θ0 + θ1t + θ2t2 + εt to obtain
y′(t) = θ1 + 2θ2t = 0; thus t∗ = −θ1/2θ2;

2. The parameters θ0 or y(0), θ1 and θ2 are estimated as follows:
a. θ0 is obtained by computing the arithmetic mean of center points of the experiment;
b. θ1 is estimated by calculating (4):

θ1 =
√

b1
2 + b22 +· · ·+ bk

2 (4)

where θ1 is one of the parameter estimations that assists computation in the procedure and
bi represent the regression coefficients of the linear model;

c. θ2 must be recursively estimated. Therefore, there will be one θ2 for each iteration
or individual experimentation t. This means the estimation of θ2

(t);
3. θ2

(t) should be estimated as follows:
a. For θ2

(0), (5) is considered:

θ
(0)
2 =

−θ1

2 ∗ tprior
(5)

where θ
(0)
2 works as an estimation for the procedure when t = 0, and tprior works as an

initial guess about the number of iterations or individual experiments that are considered
to be necessary to reach the optimum value;
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b. For θ2
(t) starting from θ2

(1), the updating is calculated using (6) as follows:

θ
(t)
2 = θ

(t−1)
2 +

Pt−1 ∗ t2

1 + (t4 ∗ Pt−1)
∗ (Y(t)−Y(0)− θ1t− θ

(t−1)
2 ∗ t2) (6)

where Y(t) represents the response variable in t time in the path of improvement.
c. To calculate P0 in Pt, Miró-Quesada and Del Castillo [18] propose that it is necessary

to establish an initial value, similar to the initial guess of tprior;
d. For Pt starting from P1, the updating is calculated using (7), as shown next:

Pt = (1− Pt−1 ∗ t4

1 + t4 ∗ Pt−1
) ∗ Pt−1 (7)

where Pt is considered the scaled variance of θ
(t)
2 after t iterations of individual experimen-

tation, noted as: Pt =
1

σ2
ε

Var(θ(t)2 );

e. An estimation for the variance of the error
(

σ2
(θ1+2θ

(t)
2 t)

)
is obtained with (8) as follows:

σ2
(θ1+2θ

(t)
2 t)

= 4σ2
ε ∗ t2 ∗ Pt. (8)

This result will be used next for comparison purposes;
4. A decision rule is applied to state if (9) is fulfilled. If so, individual experimentation

stops. The in-equation is as follows:

θ1 + 2θ
(t)
2 t < −3

√
σ2

θ1+2θ
(t)
2 t

. (9)

The intention is to compare both sides of (9) to assure the stopping iteration;
5. The iteration where t stopped is the value in y where the response is considered to

be the best answer. Nevertheless, if a better response is identified in a previous time, that
value is the new best response (the same as in the MKSR).

Finally, Del Castillo [19] explains the RPRE, which recursively fits the intercept and
the first-order term in addition to the second-order term in (10), as shown here:

Y(t) = η(t) + εt = θ0 + θ1t + θ2t2 + εt (10)

where η(t) denotes the operation θ0 + θ1t + θ2t2.
The procedure can be summarized with the following five main steps:
1. The recursive fitting increases the robustness for non-quadratic behavior by specify-

ing a maximum number of experiments in the recursive least squares algorithm, applying
a concept called “window” to fit only a local parabolic model along the search direction to
make it less sensitive to large scale deviations from quadratic behavior. The “window” size
(N) is determined using an indicator called “Signal-to-Noise Ratio” (SNR) estimated with
(11) as follows:

SNR =
‖b‖
σε

(11)

where σε is the standard deviation from the center points of the experiment.
The variable ‖b‖ is estimated using (12) as follows:

‖b‖ = ‖β‖ =

√√√√ k

∑
i=1

b2
i . (12)

Finally, it is necessary to identify N in a table of values of window sizes. In the
enhanced stopping rule, it is proposed to visualize the N× 1 vector bN and the scalar

√
vN;
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2. As in the procedure for the RPR, tprior continues to be an initial guess about the
number of individual experiments that are suggested to be necessary to reach the optimum
value. Now, for the estimation of parameters when t = 0, computations (13)–(15) are
suggested, as illustrated next:

θ
(0)
0 = Y(0) (13)

where Y(0) represents the average of the response variables obtained from the center points
of the experiment. Furthermore:

θ
(0)
1 = ‖b‖ (14)

where ‖b‖ represents the square root of the sum of the squares of the regression coefficients
of the linear model of the experiment. Next:

θ
(0)
2 = −

θ
(0)
1

2 ∗ tprior
(15)

where the constant 2 proposed by the author of the rule has the intention of making the
value of tprior more robust;

3. The algorithm makes use of the matrix definitions (16)–(19) for updating the three
parameters θ0, θ1 and θ2:

θ(t) =

θ
(t)
0

θ
(t)
1

θ
(t)
2

; (16)

φt =

 1
t
t2

; (17)

dφt

dt
≡ dt =

 0
1
2t

; (18)

P0 =

1 0 0
0 1 0
0 0 10

. (19)

The large value of 10 given to P0 makes the rule robust against possibly large discrep-
ancies between tprior and t∗, giving “adaptation” ability to varying curvature.

Now, (20) is used to update θ(t):

θ(t) = θ(t−1) +
Pt−1φt

1 + φ′tPt−1φt
(Y(t) − φ′tθ

(t−1)). (20)

Furthermore, (21) is used to update Pt:

Pt = Var(θ(t))/σ2
ε = (I − Pt−1φt

1 + φ′tPt−1φt
φ′t)Pt−1; (21)

4. If (22) is fulfilled, the search stops and returns to t∗, such that the maximum response
is determined by Y(t∗) = maxl=1,...,t {Y(l)}. The rule is shown next:

d′tθ
(t) < −1.645σε

√
d′tPtdt (22)

where −1.645 represents a standardized value of the normal distribution for a significance
level of 0.05.
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Otherwise, the procedure continues computing t ≥ N − 1 following the next steps
according to Del Castillo [19]:

a. Perform an experiment at step t ≥ N − 1;
b. Update vector YN(t) with the observed value Y(t) by discarding its first element,

shifting the remaining elements one position up in the vector and including Y(t) as the last
element in YN(t);

c. Read bN and vN using the table of values of window size N in the enhanced stopping
rule proposed by [19], where it is possible to visualize the N × 1 vector bN and the scalar√

vN . After this, continue individual experimentation until (23) is fulfilled:

b′NYN(t) < −1.645σε
√

vN ; (23)

5. If the inequality holds, then stop the search and return t∗ such that Y(t∗) =
maxl=1,...,t {Y(l)}.

Next, Figure 2 shows the steps to follow in each of the SRs previously mentioned.

Figure 2. Flow chart that relates the steps needed to develop the MKR, RPR and RPRE.

e. Selection of the rule with best performance for each case.
In this last stage of the method, the response value with the best performance is

observed for each of the simulators. This means that through the analysis, either the MKSR,
RPR or RPRE will have better performance according to the application of each SR and
their adjustment with the behavior of the data. For each simulator, the best value and SR
is mentioned.

3. Results

The analysis considers two cases. The selection of these two simulated cases is based
on the importance of a well-performed approach to processes with several inputs and
only one output. The combination of levels and factors is vital to understanding the
interactions in the system; nonetheless, identifying relevant factors even among several of
them is indispensable in terms of optimization of the response. Furthermore, as multiple
experiments are required for the comparison of the considered stopping rules, the simulated
processes may represent an important option, as they offer practical scenarios that can be
reproducible for optimization purposes. These two cases follow factorial designs, which
contain seven factors, two levels, six center points and two replicates. This gives a total of
262 experimental runs per case. The first case has factors P, Q, R, S, T, U and V. The low
levels for each of these factors are 11, 68, 67, 275, 0.4, 70 and 16, respectively. The high levels
for the factors are 13.5, 84, 92, 300, 0.5, 80 and 20, respectively. After the factorial analysis
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was performed using Minitab®, only factors P, Q, S and U were significant for the response.
The second case has factors S, T, Y, Z, E, F and G. The low levels for each of these factors
are 325, 650, −2, 1.4, 1, 28.5 and 9, respectively. The high levels for these factors are 350,
700, 0, 1.5, 3.0, 31 and 13, respectively. Only factors Y, Z, E and G were significant. This
information was used in both cases to build the steepest path using the procedure in [13]
to determine the step size of the path for each of the significant factors. The sufficiency of
diversity in the nature of these experiments to generalize findings and make more general
recommendations will follow the conditions and properties of the experiment itself. This
means that all conclusions will be highly valuable for oncoming situations with similar
natures and characteristics to the ones here presented.

Next, the application of the three mentioned SRs in Case 1.

3.1. Results for Case 1

The coded unit regression equation for Case 1 is:
y = 4.2943− 0.0367P + 0.2123Q− 0.0381S + 0.0519U.
The path for the steepest ascent is built considering:

• The selection of a step size for this path. The variable with the largest absolute
regression coefficient is the one selected. In this case, factor Q is selected;

• The proposed natural step size for the factor Q is ∆Q = 1. Through conversion from
coded to natural units, the coded step size for Q is ∆XQ = 0.1250;

• The calculation of the coded step sizes for the rest of the variables is performed
with (1).
For example, the coded step size of P is:
∆XP = −0.0367

0.2123/0.1250 = −0.0216.
Thus, the coded step sizes for the significant factors are:
∆XP = −0.0216 for P,
∆XQ = 0.1250 for Q,
∆XS = −0.0224 for S and;
∆XU = 0.0306 for U.
The natural step sizes for the same factors are:
∆P = −0.0270 for P,
∆Q = 1 for Q,
∆S = −0.2804 for S and;
∆U = 5 for U.
The path for Case 1 is built next.

Application of MKSR to Case 1
1. Assumption of behavior in Case 1. The steepest direction is shown in Table 1,

running 15 iterations. It starts with step 0, computing the center points of the experiment.
This procedure assumes a normally distributed behavior in response y(t). Figure 3

shows the behavior of the response in its steepest path from t = 1 to t = 14. The straight
line tries to illustrate the assumption of normality for the response.

2. Significance test in Case 1. Iterations or individual experimentation through the
steepest path stop when y(ni + 1)− y(ni) ≤ a.

3. Estimation for limits a and b in Case 1. Limits a = −0.744 and −b = 0.744 are
calculated using (2) as shown in Table 2. Those limits are used to identify the moment
where (3) is fulfilled. It is important to remember that the value of κ is a guess of the
number of individual experimentation runs to arrive at the improvement. In this case, the
considered value of κ = 15.
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Table 1. Implementation of steepest ascent path for Case 1.

t P Q S U y

0 12.30 76.00 287.50 75.00 4.62
1 12.20 77.00 287.20 80.00 4.44
2 12.20 78.00 286.90 85.00 4.51
3 12.20 79.00 286.70 90.00 4.43
4 12.10 80.00 286.40 95.00 4.05
5 12.10 81.00 286.10 100.00 4.36
6 12.10 82.00 285.80 105.00 4.48
7 12.10 83.00 285.50 110.00 5.16
8 12.00 84.00 285.30 115.00 4.91
9 12.00 85.00 285.00 120.00 5.12
10 12.00 86.00 284.70 125.00 5.13
11 12.00 87.00 284.40 130.00 4.85
12 11.90 88.00 284.10 135.00 5.10
13 11.90 89.00 283.90 140.00 6.37
14 11.90 90.00 283.60 145.00 4.87

Figure 3. Graph with the steepest ascent path of the response Y with a straight line, which assumes
normality in Case 1.

Table 2. Obtained limits of MKR in Case 1.

a b Φ−1(1/2k) σε

√
2

−0.74 0.74 −1.83 0.28 1.41

4. Application of decision rule in Case 1. The decision to stop is determined by (3).
This means that the time t should stop when y(ni)− y(ni − 1) ≤ −0.744. The behavior of
the data is shown in Table 3.

5. Selection of optimum response in Case 1. If y(ni)− y(ni − 1) ≤ a, the search stops
and it returns to t∗ such that Y(t∗) = maxl=1,...,t {Y(l)}. As noted, the best performance for
the MKSR us found in iteration 13, with a response of 6.37 units.
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Table 3. Obtained results from MKSR procedure in Case 1.

t P Q S U y y(ni + 1)− y(ni) Status

0 12.30 76.00 287.50 75.00 4.62 - Starts
1 12.20 77.00 287.20 80.00 4.44 −0.18 Continues
2 12.20 78.00 286.90 85.00 4.51 0.07 Continues
3 12.20 79.00 286.70 90.00 4.43 −0.08 Continues
4 12.10 80.00 286.40 95.00 4.05 −0.38 Continues
5 12.10 81.00 286.10 100.00 4.36 0.31 Continues
6 12.10 82.00 285.80 105.00 4.48 0.12 Continues
7 12.10 83.00 285.50 110.00 5.16 0.68 Continues
8 12.00 84.00 285.30 115.00 4.91 −0.25 Continues
9 12.00 85.00 285.00 120.00 5.12 0.21 Continues

10 12.00 86.00 284.70 125.00 5.13 0.01 Continues
11 12.00 87.00 284.40 130.00 4.85 −0.28 Continues
12 11.90 88.00 284.10 135.00 5.10 0.25 Continues
13 11.90 89.00 283.90 140.00 6.37 1.27 Continues
14 11.90 90.00 283.60 145.00 4.87 −1.50 Stops

Application of RPR to Case 1
1. Assumption of behavior in Case 1. The steepest path applies the same way for

this case. Now, Figure 4 shows the behavior of the response in the steepest path from t = 1
to t = 14. The curved line tries to illustrate the quadratic assumption of the response.

Figure 4. Graph with the steepest ascent path of the response y with a curved line, which assumes
quadratic behavior in Case 1.

2. Estimation of parameters θ0 and θ1 in Case 1. The estimation starts with θ0, which
is obtained by calculating the arithmetic mean of center points. In this case:

θ0 = 4.10+4.41+4.42+4.37+3.88+4.45
6 ; thus, θ0 = Y(0) = 4.2710.

Applying (4) through the coefficients of significant factors,
θ1 =

√
(−0.0367)2 + (0.2123)2 + (−0.0381)2 + (0.0519)2 = 0.2249.

This is known as the slope of the response function at the origin in the steepest direction.
3. Recursive estimation of parameters in Case 1. Table 4 details the recursive estima-

tion of parameters, which assists the stopping decision. For this case, P0 = tprior = 10.
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Table 4. Obtained results of the RPR procedure in Case 1.

t y(t) θ
(t)
2 Pt θ1 + 2θ

(t)
2 t σ2

θ1+2θ
(t)
2 t

−3
√

σ2
θ1+2θ

(t)
2 t

Status

0 4.62 −0.01 10 0.22 0.00 0.00 Starts
1 4.44 −0.05 0.91 0.12 0.30 −1.64 Continues
2 4.51 −0.05 0.06 0.01 0.08 −0.83 Continues
3 4.43 −0.06 0.01 −0.11 0.03 −0.52 Continues
4 4.05 −0.07 0.00 −0.31 0.01 −0.37 Continues
5 4.36 −0.05 0.00 −0.28 0.00 −0.27 Stops

4. Application of decision rule in Case 1. The decision to stop is given when (9) is
fulfilled. The "Status" column of Table 4 shows the moment that this occurs.

5. Selection of optimum response in Case 1. As seen in Table 8, the decision to stop
occurred in iteration 5; nevertheless, the best response was at 4.62 units because it returns
to t∗ such that Y(t∗) = maxl=1,...,t {Y(l)}.

Application of RPRE to Case 1
1. Assumption of behavior in Case 1. Figure 5 shows the response behavior in

the steepest path and the assumption of both quadratic and non-quadratic behavior.
The straight and curved lines illustrate the capability of this procedure to assume both
types of behavior.

Figure 5. Graph with steepest ascent path of the response y with both straight and curved lines,
which assumes both quadratic and non-quadratic behavior in Case 1.

In order to estimate the indicator SNR and obtain the N, it is necessary to use (12)
to compute:

‖b‖ =
√

∑k
i=1(b

2
i ) =

√
(−0.042) + (0.21)2 + (−0.04)2 + (0.05)2 = 0.22.

This is the slope of the response function at the origin in the steepest direction.
Then, (11) is applied to estimate the indicator SNR:
SNR = ‖b‖

σε
= 0.22

0.21 = 0.23.
This indicator makes the value N = 15. It means that computations shall start for:
t < N − 1 ∴ t < 15− 1 ∴ t < 14.
2. Estimation of parameters θ0, θ1 and θ2 when t = 0 in Case 1.
Results for parameters θ0, θ1 and θ2 when t = 0 are presented next:
θ
(0)
0 = 4.62; θ

(0)
1 = 0.22; θ

(0)
2 = −0.01.

3. Recursive estimation of θ2 and Pt when t < N − 1 in Case 1.
Table 5 shows the recursive procedure of θi and Pt when t < N − 1. For this case, P0

obeys (19) and tprior = 18.
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Table 5. Recursive procedure of θi and Pt when t < N − 1.

t Y(t) θ0 θ1 θ2 Pt d′tθ(t) −1.645σε

√
d′tPtdt

1 0 0
0 4.62 4.62 0.23 −0.01 0 1 0 0.23 NA

0 0 10

0.90 −0.10 −0.80
1 4.44 4.59 0.19 −0.31 −0.10 0.90 −0.80 −0.43 −0.91

−0.80 −0.80 2.30

0.70 −0.20 −0.10
2 4.51 4.51 0.15 −0.08 −0.20 0.90 −0.40 −0.19 −0.53

−0.10 −0.40 0.30

0.60 −0.30 0.00
3 4.43 4.49 0.12 −0.05 −0.30 0.70 −0.20 −0.18 −0.38

0.00 −0.20 0.10

0.60 −0.30 0.00
4 4.05 4.50 0.14 −0.06 −0.30 0.60 −0.10 −0.28 −0.30

0.00 −0.10 0.00

0.60 −0.30 0.00
5 4.36 4.50 0.02 −0.02 −0.30 0.40 −0.10 −0.48 −0.25

0.00 −0.10 0.00

4. Application of decision rule in Case 1. If it is not fulfilled, modifications for
t ≥ N − 1 are applied.

In this case, in-equation d′tθ
(t) < −1.645σε

√
d′tPtdt is fulfilled, so the search stops and

returns to t∗, such that Y(t∗) = maxl=1,...,t {Y(l)}.
5. Selection of optimum response in Case 1. Table 5 shows the decision to stop,

which occurred in iteration 5. Nevertheless, the best response was at 4.62 units.
Now, the application of the three SRs in Case 2.

3.2. Results for Case 2

The coded unit regression equation for Case 2 is:
y = 149.7810 + 9.5079Y− 0.2023Z + 31.1119E + 29.8927G.
The path for the steepest ascent is built considering:

• The selection of a step size for this path. The variable with the largest absolute
regression coefficient is the one selected. In this case, factor E is the one selected to
propose a natural step size;

• The proposed natural step size for factor E is the unit; thus, the step size for E is
∆E = 1.0000. Through conversion from coded to natural units, the coded step size for
E is ∆XE = 1.0000. By coincidence, it is equal for both coded and natural units;

• The calculation of coded step size in the other variables is performed with (1). For
example, the coded step size of Z is:
∆XZ = −0.2023

31.1119/1.0000 = −0.0065.
Thus, the coded step sizes for the significant factors are:
∆XY = 0.3056 for Y,
∆XZ = −0.0065 for Z,
∆XE = 1.0000 for E and;
∆XG = 0.9608 for G.
The natural step sizes for the same factors are:
∆Y = 0.3056 for Y,
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∆Z = −0.0003 for Z,
∆E = 1.0000 for E and;
∆G = 1.9216 for G.

The path for Case 2 can now be built.
Application of MKSR to Case 2
1. Assumption of behavior in Case 2. Table 6 shows the steepest path from iteration

0 to 14.

Table 6. Obtained results for the steepest ascent path of Case 2.

t Y Z E G y

0 −1.00 1.50 2.00 11.00 163.41
1 −0.70 1.40 3.00 12.90 212.22
2 −0.40 1.40 4.00 14.80 232.75
3 −0.10 1.40 5.00 16.80 226.16
4 0.20 1.40 6.00 18.70 191.12
5 0.50 1.40 7.00 20.60 130.32
6 0.80 1.40 8.00 22.50 42.51
7 1.10 1.40 9.00 24.50 −82.49
8 1.40 1.40 10.00 26.40 −233.67
9 1.80 1.40 11.00 28.30 −405.47
10 2.10 1.40 12.00 30.20 −573.87
11 2.40 1.40 13.00 32.10 −849.67
12 2.70 1.40 14.00 34.10 −1094.76
13 3.00 1.40 15.00 36.00 −1356.20
14 3.30 1.40 16.00 37.90 −1605.82

Next, Figure 6 shows the behavior of the response in its steepest path from t = 1 to
t = 14.

Figure 6. Graph with the steepest descent path of the response Y with a straight line, which assumes
normality in Case 2.

2. Significance test in Case 2. As in Case 1, individual experimentation over the
steepest path stops when y(ni + 1)− y(ni) ≤ a.

3. Estimation for limits a and b in Case 2. Limits a = −3.668 and b = 3.668 are
calculated using (2) with κ = 30, as shown in Table 7. Those limits are used to identify the
moment where (3) is fulfilled.
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Table 7. Obtained limits of the MKSR in Case 2.

a b Φ−1(1/2k) σε

√
2

−3.67 3.67 −1.83 1.41 1.41

4. Application of decision rule in Case 2. The decision to stop occurs when
y(ni)− y(ni − 1) ≤ −3.67. The behavior is shown in Table 8.

Table 8. Results for the MKSR procedure in Case 2.

t Y Z E G y y(ni + 1)− y(ni) Status

0 −1.00 1.50 2.00 11.00 163.41 - Starts
1 −0.70 1.40 3.00 12.90 212.22 48.81 Continues
2 −0.40 1.40 4.00 14.80 232.75 20.54 Continues
3 −0.10 1.40 5.00 16.80 226.16 −6.60 Stops

5. Selection of optimum response in Case 2. In this case, the best performance for
the MKSR in Case 2 is the response of 232.75 units, because it stopped in t∗ such that
Y(t∗) = maxl=1,...,t {Y(l)}.

Application of RPR to Case 2
1. Assumption of behavior in Case 2. Figure 7 shows behavior of the response in the

steepest path.

Figure 7. Graph with steepest descent path of y with a curved line, which assumes quadratic behavior
in Case 2.

2. Estimation of parameters θ0 and θ1 in Case 2. These estimations are shown next:
θ0 = 163.23+162.70+162.44+162.02+162.67+163.22

6 = Y(0) = 162.71.
This next estimation is performed the same way as in the previous case (Case 1):
θ1 =

√
(9.5079)2 + (−0.2023)2 + (31.1119)2 + (29.8927)2 = 44.18.

3. Recursive estimation of parameters in Case 2. Table 9 shows the recursive estima-
tion needed with P0 = tprior = 10.

4. Application of decision rule in Case 2. The “Status” column in Table 9 shows the
moment when (9) is fulfilled.

5. Selection of optimum response in Case 2. Table 11 illustrates the decision to
stop, which occurred in iteration 4. However, the selection falls in t∗ such that Y(t∗) =
maxl=1,...,t {Y(l)}; therefore, the best response was at 232.75 units.
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Table 9. Obtained results for the RPR procedure in Case 2.

t y(t) θ
(t)
2 Pt θ1 + 2θ

(t)
2 t σ2

θ1+2θ
(t)
2 t

−3
√

σ2
θ1+2θ

(t)
2 t

Status

0 163.41 −2.21 10.00 44.18 0.00 0.00 Starts
1 212.22 4.64 0.91 53.46 7.27 −8.09 Continues
2 232.75 −3.99 0.06 28.23 1.87 −4.10 Continues
3 226.16 −7.03 0.01 1.98 0.73 −2.57 Continues
4 191.12 −8.65 0.00 −25.02 0.36 −1.80 Stops

Application of RPRE to Case 2
1. Assumption of behavior in Case 2. Figure 8 shows the behavior of the response in

the steepest path and the assumption of both quadratic and linear behavior.

Figure 8. Graph with steepest descent path of y with straight and curved lines, which assumes both
quadratic and non-quadratic behavior in Case 2.

The variable ‖b‖ = 44.181.
The indicator STNR = 95.005.
This makes the value of N = 3.
This means that computations shall start for t < N − 1 ∴ t < 3− 1 ∴ t < 2.
2. Estimation of parameters θ0, θ1 and θ2 when t = 0 in Case 2.
Results for parameters θ0, θ1 and θ2 when t = 0 are presented next:
θ
(0)
0 = 163.4100; θ

(0)
1 = 44.1810; θ

(0)
2 = −2.2091.

3. Recursive estimation of θ2 and Pt when t < N − 1 in Case 2.
Table 10 shows the recursive procedure of θi and Pt when t < N − 1.
P0 follows (19) and tprior = 10.

Table 10. Recursive procedure of θi and Pt when t < N − 1.

t y(t) θ0 θ1 θ2 Pt d′tθ(t) −1.645σε

√
d′tPtdt

1 0 0
0 163.41 163.41 44.18 −2.21 0 1 0 44.18 −0.70

0 0 10

0.90 −0.10 −0.80
1 212.22 163.94 44.71 3.05 −0.10 0.90 −0.80 50.80 −1.86

−0.80 −0.80 2.30
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4. Application of decision rule in Case 2. If it is not fulfilled, modifications for
t ≥ N − 1 are applied.

In this case, in-equation d′tθ
(t) < −1.645σε

√
d′tPtdt is not fulfilled, so the search contin-

ues for t ≥ N − 1, as seen in Table 11.

Table 11. Recursive procedure for t ≥ N − 1.

t Y(t) Y N(t) b′NY N(t) −1.645σε

√
vN

2 232.75 163.41 212.22 232.75 6.40 −1.78
3 226.16 212.22 232.75 226.16 −20.16 −1.78

5. Selection of optimum response in Case 2. Table 11 shows the decision to stop,
which occurred in iteration 3. Nevertheless, the best response was at 232.75 units due to t∗

in Y(t∗) = maxl=1,...,t {Y(l)}.

4. Discussion

Now that the three SR procedures have been applied for both cases, the discussion and
comparison of the best performance are presented next. In Case 1, the method from [17]
needed 14 iterations to stop, giving an optimum response of 6.37. The method from [18]
stopped at the fifth iteration, obtaining the optimum response of 4.62. The method from [19]
had the same results as the previous one. In Case 2, Ref. [17] needed 3 iterations to stop,
delivering a response of 232.75. Ref. [18] stopped at the fourth iteration, with 232.75
as a response. Ref. [19] obtained 232.75 after 3 iterations. The most important piece of
information in this case is related to the maximized shown response. For these cases,
the number of iterations is not as critical as the response obtained, due to the adaptation
that it could suffer. This means that the higher the step size for the steepest path, the faster
the maximum response will be reached. However, the intention is to carefully analyze the
experiment and the obtained outcomes for comparison.

Table 12 illustrates information of the results. Furthermore, Figure 9 shows the best
results for each of the two analyzed cases.

Table 12. Performance comparison for the three SRs.

Author and Year of
SR Procedure

Case 1 Case 2
Iterations

to Stop
Best

Response
Iterations

to Stop
Best

Response

R. Myers and Khuri (1979)
MKSR 14 6.37 3 232.75

Miró-Quezada and Del Castillo (2004)
RPR 5 4.62 4 232.75

Del Castillo (2007)
RPRE 5 4.62 3 232.75

The behavior of the responses of the individual experiments in both study cases is
considerably different. In the graph on the right side of Figure 9, the shape of the response
tends to resemble a simple parametric function, which could be compared to a quadratic
or even a logarithmic model. In these functions, it is relatively easy to find a maximum or
a minimum point. This situation becomes evident when observing the way in which the
three SRs determined the maximum point in the same place. However, the issue becomes
complicated by a case such as the graph on the left side of Figure 9, in which the response
does not follow a fixed trend. On the contrary, it shows random variations up and down,
so it cannot easily be assimilated into a specific behavior. When this occurs, it can be said
that this is a case belonging to a stochastic model. An interesting phenomenon occurs
in this type of behavior; the performances of the SRs are not the same; they does not
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coincide and are different from one another. In a few words, the evidence shown here
suggests that the performances of the SRs are similar when the response obeys a parametric
function. On the other hand, the performances of the SRs differ when the response exhibits
stochastic behavior.

In the particular case of this analysis and under the conditions proposed, the MKSR
seems to have better performance, while it is observed that the RPR and the RPRE show a
lower output. This situation is not strange; it is explained due to the assumptions of each
rule. The MKSR assumes normally distributed behavior, the RPR suggests a quadratic
parametric function, and the RPRE obeys quadratic and non-quadratic behavior. None of
the previous assumptions easily adjusted to the responses of these individual experiments;
however, the MKSR adjusted to give a higher performance.

Figure 9. Graphs with paths from both cases comparing the three SRs.

As previously mentioned, an important task here was to conduct experimentation to
simulate behaviors for these three applied stopping procedures. This allowed the possibility
of comparison and selection of the procedure with the best performance. The results, with
responses and number of needed iterations, are visualized above.

At this point, the complexity of the behavior of the trajectory is particularly important,
because it becomes necessary to not only infer using parametric known functions, but also to
consider the analysis of these stochastic behaviors. Fortunately, there are several stochastic
models that can be considered to characterize the behavior of a steepest ascent trajectory.
The Wiener process may be a good option, as it has non-monotone increments with a drift
and diffusion parameters that can characterize the randomness in a trajectory, which is the
case of the steepest ascent. Stopping rules can be implemented in the stochastic process
by considering specific parametric functions in the drift to define a recursive strategy to
determine the stopping time.

5. Conclusions

As mentioned by [21], several industrial activities follow Research and Development
(R&D) schemes to develop new products or to improve existing ones by analyzing different
factorial designs, considering the results of experimentation obtained with repetitions,
preliminary results and deviations. The main goal is the response improvement seen as
the process of obtaining the optimum result of experimentation on an initially constructed
optimization strategy by applying different methods, procedures or rules.

In this case, the applied procedures were DOE, SADM and, finally, three SRs (MKSR,
RPR and RPRE). The first of these, the MKSR, assumes normality in the data. This means
that linear behavior is the core for the data analysis. On the other hand, the RPR considers
parabolic behavior in the information. This means that a quadratic function takes place
for this procedure. However, it is reported that the RPRE is as robust, as it is able to work
properly with normality, non-normality, quadratic and non-quadratic behavior.

The nature and conditions of the case study and experiment developed will always be
critical for the development of each of the procedure and rules. In this case, the conditions
related to the designed experiment considered a full factorial design with seven factors,
two levels, six center points and two replicates. This gives a total of 262 experimental runs
per case. The analysis of this factorial design produced the lineal equation of coded units
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as the core piece of information for the steepest path. Once the path was built, the decision
to stop was critical, because it determined the efficiency of the applied stopping procedure.

The aim was to maximize the response; other schemes of experimentation should be
proposed if the intention is to minimize the response or if the researchers wish to obtain a
certain value. The SRs illustrated assumed a certain and specific parametric function to
establish their theoretical base.

Considering this, and as previously mentioned, research shall continue to propose
new exploration schemes relating stochastic processes with the possibility of modifying the
parametric base to better characterize the random behavior of the improvement trajectory,
in order to search for minimum, maximum or target values.

Author Contributions: Conceptualization, P.E.G.-N. and L.A.R.-P.; methodology, L.A.R.-P.; valida-
tion, L.A.R.-P.; data curation, P.E.G.-N.; formal analysis, P.E.G.-N.; investigation, P.E.G.-N.; supervi-
sion, L.A.R.-P.; resources, P.E.G.-N.; writing—original draft preparation, P.E.G.-N.; writing—review
and editing, L.A.R.-P., L.C.M.-G. and I.J.C.P.-O.; visualization, L.C.M.-G. and I.J.C.P.-O.; funding
acquisition, P.E.G.-N. and L.A.R.-P. All authors have read and agreed to the published version of
the manuscript.

Funding: The APC was funded by the Autonomous University of Ciudad Juárez and the Technologi-
cal University of Chihuahua via the Teacher Professional Development Program through the special
program for graduate studies.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Weichert, D.; Link, P.; Stoll, A.; Rüping, S.; Ihlenfeldt, S.; Wrobel, S. A review of machine learning for the optimization of

production processes. Int. J. Adv. Manuf. Technol. 2019, 104, 1889–1902. [CrossRef]
2. Rafiee, K.; Feng, Q.; Coit, D.W. Reliability assessment of competing risks with generalized mixed shock models. Reliab. Eng. Syst.

Saf. 2017, 159, 1–11. [CrossRef]
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