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Abstract: Today, the growth of the cosmetic industry and
dramatic technological advances have led to the creation
of functional cosmetical products that enhance beauty
and health. Such products can be defined as topical cos-
metic drugs to improve health and beauty functions or
benefits. Implementing nanotechnology and advanced
engineering in these products has enabled innovative
product formulations and solutions. The search included
organic molecules used as cosmeceuticals and nanopar-
ticles (NPs) used in that field. As a result, this document
analyses the use of organic and inorganic particles, metals,
metal-oxides, and carbon-based particles. Additionally,
this document includes lipid and nanoparticles solid
lipid systems. In conclusion, using NPs as vehicles of
active substances is a potential tool for transporting
active ingredients. Finally, this review includes the
nanoparticles used in cosmeceuticals while presenting
the progress made and highlighting the hidden chal-
lenges associated with nanocosmeceuticals.

Keywords: cosmeceuticals, nanoparticles, solid lipid sys-
tems, carbon-based particles.

1 Introduction

As humans, it is natural to pursue beauty. The use of
products to improve skin health has been consistent
throughout history. Previously, natural ingredients such
as milk, citric fruits, and clay were used [1]. Since 1986,
when Christian Dior´s company developed the first cos-
metic using a nanocarrier technology through a liposome
system, a nanotechnology market emerged [2], and it is
expected to exceed US$ 125 billion by 2024 [3].

Cosmeceuticals are products aiming to improve beauty
using ingredients that offer health benefits. The concept
was coined by Kligman, combining cosmetics and pharma-
ceuticals, in 1984 [4]. They are multifunctional products
that deliver active pharmaceutical ingredients to repair or
improve the skin [5]. They are applied to the skin as cos-
metics but contain ingredients that contribute to the bio-
logical process of the skin [6]. New advances and growth in
the cosmetic industry have created beauty-enhancing pro-
ducts and a functional pharmaceutical role.

There are many properties that cosmeceuticals can
offer to obtain healthy skin, such as anti-aging and
anti-wrinkle, among others [7]. However, retaining the
unique functional characteristics of active compounds,
particularly those that help promote frequent dermal
absorption, is a question that requires better formulation.
The implementation of nanoparticles (NPs) in these pro-
ducts has enabled innovative product formulations and
solutions [5].

The International Cooperation on Cosmetic Regulation
considers a cosmetics nanomaterial as an insoluble ingre-
dient with one or more dimensions less than 100 nm [8].
Using micro- and nanostructured vehicles such as NPs can
maximize the penetration and tolerability properties of
the skin and optimize the aesthetic appeal of cosmeceu-
tical formulations and their organoleptic characteristics [9].
Additionally, they protect the active ingredient, decreasing
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its degradation and increasing its stability. Each type of
vehicle has different features that allow it to be used in
various formulations [10].

With so many claims about the properties of NPs
concerning cosmeceuticals, a series of questions arise
that need answers. What is the role of NPs in the develop-
ment of cosmeceutical skin products?What are the proper-
ties of nanometric structures? Is there any potential health
problem related to these nanocosmetics? Therefore, this
review will attempt to answer these questions, reviewing
the NPs used in cosmeceuticals while presenting the pro-
gress made and highlighting the hidden challenges asso-
ciated with nanocosmeceuticals.

This research was conducted based on a biblio-
graphic analysis through extensive review. The articles
analyzed and selected for this review were written in
English and no older than 2008. The search included
organic molecules used as cosmeceuticals and NPs used
in that field. The study was developed using the following
search words “cosmeceutical,” “cosmetic,” “nanoparticle
skin,” “liposome cosmeceutical,” “solid lipid skin,” “nano-
crystals skin,” and “Nanostructured Lipid Carriers” in the
title, abstract, or keywords. The research was developed
in the Science Direct, Springer Link, Ebsco, and Google
Scholar databases. The search was developed in English.
On the whole, 208 articles, books, or book chapters were
analyzed

2 Cosmetics and skin

The Food and Drug Administration [11] considers cos-
metics as particles intended to be applied to the human
body to clean, improve beauty, or change appearance.
Cosmetics include several products, depending on the
surface of the skin. According to Effiong et al. [12], these
can be classified as follows:
1. skincare cosmetics such as moisturizing agents or

cleaning agents;
2. hair care products such as dyes, styling substances,

or shampoos;
3. facial beauty products such as lip gloss powders or

face bases;
4. manicure products such as enamel and nail removers;
5. fragrance products such as perfumes, lotions, deo-

dorants, and colonies;
6. UV light protective preparations such as sunscreens.

Most cosmetological products possess both cosmetic
and health objectives. For example, when shampoo is

used to clean hair, its purpose is cosmetical. However,
if anti-dandruff is used, it is considered a drug to treat the
disease. Other examples of cosmetics and medications
are moisturizers with sun protection and makeup deodor-
ants with antiperspirants.

What sets cosmetics aside from drugs is their intended
use. On the one hand, the function of drugs is to detect,
treat, or prevent a health disorder or affect the body’s
operation. On the other hand, when their use is solely
for beautifying, cleaning, and promoting attractiveness,
it is cosmetic and does not need approval by the FDA
[13]. Nevertheless, when a product is a cosmetic drug, it
must comply with the legislation corresponding to its use
as a drug [11].

The term cosmeceutical is the fusion of two terms:
cosmetic and pharmaceutical, and it is used to define a
topic that involves medical and cosmetical characteristics
[13]. Cosmeceuticals represent a newmultifunctional pro-
duct category that relies on science and technology to
provide the skin with clinically proven active ingredients
[5].

In skincare, this term describes a product with a quan-
tifiable biological action on the skin as a drug. It is con-
trolled as a cosmetic because it pretends to improve its
appearance [14]. Kaul et al. [15] define cosmeceutical pro-
ducts as a substance that incorporates a bioactive ingre-
dient with medicinal benefits on the applied surface and
improves appearance. They can be naturally derived or
chemically synthesized. Ideally, the ingredients should
be safe, effective, novel, stable, factory-efficient, andmeta-
bolized within the skin [1].

Cosmeceuticals possess multiple advantages over stan-
dard cosmetics. They contain high entrapment capacity and
improved sensory properties. They are more stable than
conventional cosmetics, so they are interested in applying
and researching natural ingredients [15]. There are many
properties that cosmeceuticals can offer to obtain healthy
skin, such as anti-aging signs, acne problems, and inflam-
matory problems. Besides, they have excellent properties to
fight wrinkles and help skin regeneration. Likewise, cosme-
ceuticals have multiple protective effects on cells to rebuild
healthy skin at the cellular level [16].

Despite the advantages of their active compounds,
retaining their unique functional characteristics is often
a question that requires a new pharmacological composi-
tion. Since 1959, it has been a health concern that the skin
can easily absorb materials on the nanoscale [5,14,15].

Incorporating nanotechnology into cosmeceuticals
aims to formulate more valuable and practical products.
The use of NPs in cosmeceuticals has some advantages.
For instance, they can improve the stability of the
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ingredients by encapsulating key components like vita-
mins and antioxidants. Similarly, applying the bioactive
ingredient in the desired place is feasible and generates a
controlled delivery for a prolonged effect [17].

NPs can be used in products like shampoos and con-
ditioners, creams, lotions, cosmetics, anti-aging creams,
shower gels, soap, toothpaste, deodorants, fragrances,
shaving cream, firming body oil, tanners, exfoliating,
and gel for styling [18]. Nanocosmeceuticals have a wide
application and are assimilated into the care of nails, hair,
lips, and skin. The main classes of nanocosmeceuticals are
presented in Figure 1.

The skin is a complex organ that protects the body
externally, with an area of 1.5–2 m2 in adults. Its thick-
ness varies depending on the body’s location. Thick skin
is on the hands and soles, and thin skin is on the rest of
the body [19].

Healthy skin is a barrier against mechanical, chemical,
toxic, heat, cold, UV radiation, and pathogenic microorgan-
isms and protects internal organs, bones,muscles, and other
soft structures. Besides, it is essential in vitamin D synthesis,
sensation, and body temperature regulation. The skin pre-
vents water loss, maintains thermal equilibrium, and trans-
mits external information that accesses the body through the
senses, temperature, and pain receptors [19,20].

The skin is divided into the epidermis and dermis
[19]. As illustrated in Figure 2, the epidermis is the
most superficial part of the skin that separates the body
from the environment; it acts as a barrier against external
factors and is the layer of the skin with the most signifi-
cant number of cells and with an extensive replacement
dynamics [21,22]. Commonly, it is divided into four layers:
the basal cell layer or germination stratum, the squamous
cell layer or spiny stratum, granular cells or grainy stratum,
and the cornified cell layer or corneal stratum [23]. The
epidermis is continuously renewed through the flaking pro-
cess that involves keratinocytes. The process takes about
four weeks [1].

The dermis provides structural support to the skin. It
protects the body from mechanical injuries [24]. It is
located underlying the basal membrane of the epidermis.
Its structure is like a sponge with numerous fibers asso-
ciated with an intracellular matrix and few cells (fibro-
blasts, dendritic cells, andmast cells). The dermis provides
structural support to the epidermis. In addition, it offers an
adequate vascular contribution for metabolic exchange
and abundant nervous innervation [25].

Nerves are derived from the neural crest, but the rest
of the dermis components have a mesodermal origin.
Collagen is one of its main constituents. Collagen fibers

Figure 1: Main nanodermoceutics (created by BioRender.com [15]).
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are the most numerous, and their thickness and arrange-
ment vary according to the level at which they are found.
The dermis contains the papillary and the deeper reti-
cular layer. The papillary dermis is the outer and thinnest
part of the dermis, constitutes approximately 10% of the
dermis, and contains a relatively small and loose distri-
bution of elastic fibers and collagen within a significant
amount of the fundamental substance. On the other
hand, the reticular dermis is a connective tissue con-
taining collagen and thick elastic fibers. The reticular
dermis provides skin strength, extensibility, and elasti-
city [26].

Protecting and preserving the skin is essential; envir-
onmental elements, ultraviolet radiation, air pollution,
and natural aging can alter its barrier properties. During
the aging process, the skin will experience significant
structural modifications in the components of the epi-
dermis and dermis. The appearance of wrinkles, pigmen-
tation alterations, and skin atrophy are the main changes
seen in senile skin [28].

The epidermis is the outer coat of the skin and there-
fore needs to regenerate continuously. The stratum corneum
can achieve this process, the outer layer of the epidermis
that prevents continuous detachment of keratinocytes, pro-
vides mechanical protection, and avoids water loss and
invasion of external substances [29]. The stratum corneum
cells of healthy skin are composed of free fatty acids, cera-
mides, triglycerides, cholesterol, water, and cholesterol sul-
fate [30]. This constitutes the lipid barrier of the skin.

Damage to this barrier will result in dry, flaky, and rough
skin that is easily irritated. Damage to the living epidermis
will affect the function of the skin barrier. Likewise, dermal
damage will result in wrinkles, stretch marks, or thin, sag-
ging skin [1].

3 Nanomaterials

The chemical substances andmaterials used in nanotech-
nology are called nanomaterials. They differ depending on
their provenance, size, shape, and chemical nature [31].
Although there are multiple categorizations, they are gen-
erally classified according to their origin. Nanomaterials
can be obtained from a natural resource, like a volcano
or a byproduct of an industrial process. They can be gen-
erated synthetically in a lab [32].

Manufactured nanomaterials can be presented as
nano-objects. The nanomaterials can be characterized
by having one to three external dimensions on the nano-
scale. The nanostructured materials have a nanoscale
internal or nanosurface structure [33]. These nano-
structures form building blocks that, depending on
whether they have one, two, or three external dimen-
sions, are called nanolayers, nanofibers, and NPs [32].
Nanostructured materials can be presented in powder,
composites, solid foam, porous materials, and fluid
dispersion [34].

Figure 2: Human skin representation [27] (created with BioRender.com).
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Materials pretended to be used in an organism are
known as biomaterials [35]. The term is designated to
those materials used to manufacture devices that interact
with biological systems and apply to various medical
specialties [36]. They are used in biomedical applications
to assist, augment, or replace injured tissue or physical
function [37]. They can be natural or synthetic, temporary
or permanent in the body, and they aim to restore the
existing defect and, in some cases, get tissue regeneration.

A biomaterial must be biocompatible. The body must
accept compatible material; it should not alter living tis-
sues while in direct contact. Likewise, it should not be
toxic or carcinogenic. It must be chemically stable (no
degradation over time) and inert unless it aims to achieve
biodegradability. It must have adequate mechanical strength,
density, and weight and be relatively economical, reprodu-
cible, and easy to manufacture and process for large-scale
production [36].

There is a wide variety of biomaterials: metals, plastic,
glass, and ceramics that can be culturedwith cells. Alongside
this structural diversity, there is another functional one. The
biomaterials can be used in the prosthesis, orthosis, or scaf-
fold. The scaffolds can be powders, films, foams, or fabrics
with different microstructures [38].

4 NPs

NPs are structured less than 100 nm and can be synthe-
sized from countless materials, including metals. Observing
them requires high-resolution microscopes such as scan-
ning electron microscopy or transmission electron micro-
scopy [39]. Their small size and shape can incorporate
substances that facilitate recognition by cells and tissues.
In addition, they can act as a transport vehicle for antimi-
crobial agents. Evidence shows that NPs can promote tissue
regeneration [40,41].

NPs are often considered simple molecules. However,
they are complex mixtures, even in the most uncompli-
cated cases. These materials can be zero, one, two, or
three dimensions [42]. Essentially, they consist of at least
two layers, the surface and the nucleus. The surface can
be functionalized with different functional groups, mole-
cules, surfactants, metal ions, or antibodies; the shell
layer properties are other than the nucleus. Finally, the
core encloses the central part of the NP [43]. NPs can be
analyzed according to their morphological characteristics
and their physical and chemical properties as if they are
based on metals, metal oxides, carbon, or composite
materials.

4.1 Organic NPs

The most common organic NPs are liposomes, dendri-
mers, ferritin, and micelles. These are characterized by
being nontoxic and biodegradable. Some micelles and
liposomes have a vacant core sensitive to electromagnetic
and thermal radiation [42]. Organic NPs have ideal char-
acteristics for biomedical applications. One of its most
significant benefits is that it can be injected containing
some medication [44].

4.2 Metal-based and metal oxides NPs

On the other hand, inorganic NPs are considered all particles
that are not carbon-based but are formed from metals and
metal oxides. They are generally safe, biocompatible, and
non-cytotoxic [45]. Metal-based NPs are elaborated using
metals with nanometric sizes (10–100nm) through destruc-
tive or constructive methods. Almost all metals can be used
to elaborate NPs. Themost commonly used are iron (Fe), zinc
(Zn), aluminum (Al), gold (Au), silver (Ag), copper (Cu), cad-
mium (Cd), lead (Pb), and cobalt (Co). They are characterized
by a high ratio of surface area to volume and their superficial
load density. They have crystalline or amorphous structures.
Furthermore, they mainly have spherical, cylindrical shapes
(52) and anisotropic shapes like nanorods, nanotriangles,
nanocubes, and nanostars [46]. They are reactive and sensi-
tive to environmental factors such as sunlight, air, humidity,
and thermal radiation [45].

Metal oxide-based NPs, on the other hand, are elabo-
rated usingmetal precursors [47]. These particles have been
prepared using electrochemical, sonochemical, microwave,
sol–gel, solvothermal, and chemical vapor deposition
methods [48]. Oxidation has been found to increase their
reactiveness and efficiency. The synthesized are common
copper oxide (CuO), silver oxide (Ag2O), zinc oxide (ZnO),
titanium oxide (TiO2), oxidized aluminum (Al2O3), magne-
tite (Fe3O4), cerium oxide (CeO2), iron oxide (Fe2O3), and
silicon dioxide (SiO2) [44,45,47]. The common applications
of these particles include microbial activity, absorbents,
semiconductors, gas sensors, ceramics, superconductors,
and catalysts [47]. Moreover, some metal oxide NPs have
anti-inflammatory properties. Titanium oxide has been
used in pigments, cosmetics, skincare, etc. [48].

4.3 Carbon-based NPs

Another way to classify NPs is related to their origin, like
carbon-based NPs. These, in turn, can be divided into
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carbon nanotubes (CNT), fullerenes, graphene, black carbon,
nanofibers, and nano-sized activated charcoal [44].

Fullerenes and CNTs are the twomain classes. Fullerenes
are hollow spherical cages with distinctive physical proper-
ties. These particles can recover their original shape after
being subjected to high pressures. Since shallow arrange-
ments with dimensions are similar to various active biological
molecules, they are helpful because different substances can
be included in other applications [49].While CNTs, given their
excellent chemical and physical characteristics, are not only
used in their original condition form but as nanocomposites.
It has several industrial applications, such as absorbent for
water contaminants and support material for heterogeneous
catalysts [50].

4.4 Hybrid NPs

Hybrid NPs refer to particles composed of more than one
NP sector, i.e., suppose the mixture of a polymeric NP
and liposome is performed, resulting in a polymer–lipid
hybrid system [45].

4.5 NPs in skincare cosmeceuticals

Recently, the cosmetic industry has developed products
based on nanotechnology. In this regard, NPs have made
it possible to improve outcomes using ingredients that
interact with the skin tissue or enhance beauty [51].

Nanoencapsulation is any system capable of loading
a substance to facilitate its penetration of active cos-
metics due to its size from 20 to 1,000 nm. The character-
istics of the carriers are essential for the permeation
mechanism, such as hydrophobicity, stiffness, charge,
and molecule size [52]. The transepidermal flow is influ-
enced by the polarity, doses, nature, long-term stability
of dissolved substances, solubility, and size of the par-
ticle [52,53]. Also, efficacy depends on the bioactive sub-
stance’s properties, such as size, charge, and solubility
[54]. It has been documented that polymeric NPs can
control their release mechanism and have high mechan-
ical properties and non-deformability. Still, they have the
limitation that they must avoid the immune system due to
their size. Nanoemulsions have long-term stability and
high solubilization capacity [55].

NPs have become an option to increase the efficiency
of cosmeceutical products. Mainly, they increase the
interaction of the ingredients with the area of interest
in the skin, allowing more excellent stability and less
toxicity. The particles are used to fulfill various functions
in cosmetic products, such as active substances, nano-
carriers, and modifiers of the appearance or viscosity of
the product [56]. The morphology influences their prop-
erties. For instance, AgNP in colloidal form has higher
antibacterial activity than disk, polygonal, or prismmorphol-
ogies [57]. For example, in the case of nano cellulose for skin
care, depending on its size, geometry ratio, porosity, and
aspect ratio, it can be used as a moisturizer, formulation
modifier, or additive [58]. Furthermore, the particles’ mor-
phology can affect their surface reactivity [59]. Although
lipid-based systems are widely used for their safety, efficacy,

Table 1: Advantages and disadvantages of different forms of nanosystems or NPs

Systems geometry Advantages Disadvantages Source

Liposomes Easy preparation, improved solubility of active
substances

Toxicity must be assessed. They cannot be sterilized
with heat

[65–67]

Nanosomes Composed of a row of H2O and a row of fatty
tails. They are smaller than liposomes and can
permeate into the skin

It cannot be employed in products containing
chemical preservatives, sunscreen, fragrances, and
colorants

[65]

Niosomes They are biocompatible, nonimmunogenic, and
biodegradable. They can incorporate lipophilic
and hydrophilic compounds

Dry heat and steam sterilization are not adequate for
them because heat destroys the lipidic membranes

[65,66]

Cubosomes They have large internal surfaces and the
potential to encapsulate hydrophobic,
amphiphilic, and hydrophilic compounds

If the bulk cubic phase is divided into dispersed
nanostructured particles, the diffusion rate is
increased, which causes a complex controlled release
system

[65,68]

Nanoemulsions It can carry lipophilic molecules They are unstable thermodynamically, which causes
colloidal instabilities, and then leakage and
degradation of encapsulated substances

[65,69]
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and high bioavailability, they have low drug loading capacity
due to their crystalline structure, drug extrusion during sto-
rage, and particle size disadvantages [60]. On the contrary,
the NPs protect substances against degradation and dena-
turation, reducing adverse effects. When the drug is covered
with a polymer shell, it reaches better bioavailability and
controlled release [61]. This protection allows them to be
more convenient than lipid-based systems [55].

Theyhave crystalline or amorphous structures. Furthermore,
they mainly have spherical, cylindrical [52], and aniso-
tropic shapes like nanorods, nanotriangles, nanocubes,
nanostars, or other forms in nanosystems (Table 1) [46].
In the case of pickering emulsions, the morphology of
particles is essential. Although NP morphology is crucial
to define some aspects of its use in nanocosmetics, it is not
the main criterion. Traditional emulsifiers are spherical,
ellipsoid, cylinder, flake, dumbbell, or wire. The effect is
related to the steric effect and from capillary forces in the
interface [62]. On the contrary, the toxicity assessment of
nanomaterials concludes that the safety of NPs is affected
by size, morphology, shape, surface chemistry, and che-
mical composition [63]. For example, it has been evaluated
the toxicity of nano-zinc oxide as a function of the particle
size [64].

Figure 3 shows several novel nanocarriers for admin-
istering cosmeceuticals to the skin.

NPs can enter the skin via transappendageal. For this
purpose, they use sweat glands, hair follicles, or lipid
matrices with keratinocytes [70].

5 Cubosomes

The transporter is expected to release the corresponding
substance at a controlled rate and a specific concentra-
tion in a drug delivery system. The active substance will
depend on the interaction between the vehicle and the
drug [71]. Cubosomes are crystalline liquid NPs usually
made of amphiphilic lipids. They have been considered a
promising proposition for active drug loading, as they
can be used in the medical industry’s oral, transdermal,
ocular, or chemotherapy products (Table 2) [71]. Cubo-
somes are NPs that use surfactant and polymer systems.
Unlike liposomes, cubosomes can include amphiphilic or
lipid-, hydrophilic, and water-soluble active substances
[72]. L’Oreal and Nivea use cubosomes in oil-in-water
emulsion in cosmetics [73].

6 Micro and nanoemulsions

The multilayered skin structure includes the stratum cor-
neum, composed of dead keratinized cells and a matrix
with fatty acids, cholesterol, cholesterol esters, and cer-
amides. There exists three pathways to penetrate the skin
barrier, the inter and trans-cellular pathways, and hair
follicles. Good penetration of the active substance in the
skin is required to obtain benefits. An emulsion system in
the nanoscale could improve the synergy between the

Figure 3: NPs used in developing dermoceutics. Created by BioRender.com.
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base component of the formulation and the active com-
pound, considering lipophilicity, molecular size, and degree
of ionization [80]. It is used in the cosmetic market because
it is an efficient vehicle for sustained active substance
delivery and can reduce skin water loss [81,82]. The

emulsion contains two immiscible vehicles, water, oil,
and surfactant. Nanoemulsions are non-equilibrium sys-
tems, oil/water or water/oil emulsion, with droplets from
50 to 1,000 nm. Oil-in-water dispersions are metastable
[80]. These systems are more stable against sedimentation

Table 2: Applications of cubosome formulations

Cubosome formulation Application Reference

Dexamethasone/Glyceryl monooleate,
poloxamer 407, and oleic acid cubosomal

Treatment of vitiligo with 83.58% of drug release at the end of 12 h [74]

Coenzyme Q10/poloxamer 407 and glyceryl
monooleate cubosomal

The enzyme is an antioxidant that prevents lipid peroxidation. The
formulation enhances the hepatoprotective activity of CoQ10

[75]

Triclosan/Monoolein cubosomal Triclosan cubosomes were evaluated for the dermal treatment of
bacteria-related acne. The results showed that the cubosomes carrying
triclosan could be safely used in anti-acne cosmetics and other
antibacterial cosmetics

[76]

Alpha lipoic acid/poloxamer cubosomes Anti-aging formulation with alpha lipoic acid that has antioxidant
properties and anti-inflammatory effects

[77]

Cellulose polymers/hydroxypropyl
methylcellulose acetate succinate cubosome

Cellulose polymers/Hydroxypropyl methylcellulose acetate succinate
can act as a novel emulsifier of cubosomes with no internal structure
modification

[78]

Monoolein cubosome containing hinokitiol Cubosomes have higher skin permeation than hinokitiol dissolved in
water

[79]

Table 3: Applications of nanoemulsions

System Company Description Source

Bruma De Leite Natura Moisturizing solution [89]
Skin Caviar La Prairie The formulation helps increase the skin’s

tautness and suppleness
[89]

Bepanthol Facial Cream
Ultra Protect

Bayer Healthcare The nanoemulsión improves facial care for
sensitive skin, moisturizes, and prevents aging
of the skin

[89,90]

Coco Mademoiselle Fresh
Moisture Mist

Chanel A body mist with moisturizing properties [89]

Nanovital VITANICS Crystal
Moisture Cream

Vitacos Cosmetics A nanoemulsion formulated with niacinamide,
arbutin, vitamin c, oriental herbs and for
antiaging effect of skin whitening due to the
easy permeation of its active agents into
the skin

[89]

Azelaic acid It is a whitening agent composed of azelaic acid
in a nanoemulsión with hyaluronic acid

[91]

Nanocream Sinerga Emulsifier blend, which enables de production
of oil/water nanoemulsions. It is a combination
of vegetable-based substances lipoaminoacids
and palm glycerides

[92]

Nano emulsion multi-
peptide Moisturizer

Hanacure The nanoemulsión affects the appearance of
skin tone and texture. The nanoemulsión
contains peptides, sodium hyaluronate,
squalene, and mushroom extract. The skin gets
long-lasting hydration

[89,93]

Nanoemulsion of citral,
deionized water, and
cosolvent

Health Sciences and Management/China
University of Science and Technology/
Providence University/Da-Yeh University/
National Taiwan University

Citral can penetrate the lipid structure of
bacteria destroying the cell membrane and
causing cell lysis and death

[94]
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than liposomes [83] but are more suitable for carrier lipo-
philic substances [84].

A nanoemulsion can transport high loads of lipophilic
substances. Also, it protects bioactive substances from oxi-
dation, hydrolysis, or enzymatic degradation. Furthermore,
it can improve bioactivity and bioavailability [85].

Nanoemulsions have been used to treat dry skin in
sunscreens, body lotions, wet wipes, skin creams [84],
whitening, antiaging, or moisturizing agents (Table 3)
[86]. Reducing ceramides causes dry skin, and emulsions
improve skincare because nanodroplets penetrate the
skin surface. They use bioactive compounds designed
for transdermal hydrophobic drugs [87]. These systems
have good sensory properties, such as merging textures
and rapid penetration [80], and can be used when appro-
priate encapsulation for sensitive actives is required [88].

7 Lipid-based nanosystems

These systems have proven to play their part as dermal
vehicles. They have biocompatibility, stability, improve-
ment in penetration, effective delivery of active ingredi-
ents to different therapeutic targets, and the possibility to
be incorporated into various innovative forms of dosing
[51,95].

These nanosystems include lipid NPs and liposomes.
Lipid NPs can be stable NPs (SLNs) or nanostructured
lipid carriers (NLCs) [96].

Liposomes are spherical capsules of colloidal dimen-
sions; their size usually varies between 20 nm and a few
hundred micrometers and is generally made up of cho-
lesterol and phospholipids in an aqueous environment in
the proportion of lipids to water [12]. Depending on the
preparation method, these vesicles may consist of a
bilayer (ULV unilaminar vesicles) or more layers (MLV
multilaminar vesicles) of phosphatidylcholine. They con-
sist of two sets of amphiphilic phospholipids with non-
polar hydrophobic tails pointing directly toward the interior
and groups of polar hydrophilic heads indicating outwardly
laminar structures, as shown in Figure 4 [14,17].

This structure allows the hydrophilic drug to be included
in the nucleus. In contrast, lipophilic substances can be
encapsulated in the vesicles’walls. Due to their bilayer struc-
ture, liposomes can quickly enter the stratum corneum’s lipid
coat. Therefore, they can enhance the dermal administration
of medications and reduce systemic absorption [97].

Liposomes are very useful in cosmeceuticals because
they are biodegradable, nontoxic, biocompatible, and
adaptable vesicles that mimic cell membranes and can

easily encapsulate active ingredients to protect them
from the surroundings. Additionally, they increase the
compositions’ durability and chemical stability [14,99].
Liposomes act as drug transporters and locators. They
can act as drug deposits on the skin and surroundings,
resulting in a dermal release of medicine compounds,
thus improving the benefits at the target site and pre-
venting systemic absorption [17].

As mentioned earlier, its composition and structure
are similar to the epidermis, allowing it to penetrate epi-
dermal barriers more efficiently. Therefore, the moistur-
izing and restorative action of lipids reduces the roughness
of the skin. It is due to interaction with corneocytes [14].

In addition to their unique benefits, liposomes show
some disadvantages, such as high manufacturing costs and
low solubility. They can degrade by hydrolysis or oxidation,
having a short life span during storage. Sometimes, drug
molecules can leak from liposomes, depending on their
composition and drug. Some gel bilayers containing choles-
terol slowly lose the associated medication. Moreover, liquid
bilayers are more likely to lose the drug [96,97,99]. The
benefits and disadvantages of the lipid-based NPs used in
cosmetics are summarized in Table 4.

7.1 Application of liposomes as drug carriers
in cosmeceuticals

Liposome applications include their use as fragrance car-
riers in deodorants, antiperspirants, and lipgloss [51].
Liposomes are widely exploited in the case of moisturizers
due to their hydration properties, creating a phospholipid

Figure 4: Liposome showing the phospholipid bilayer (created with
BioRender.com [98]).
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coat on the skin and resulting in a blockage effect. Even
unoccupied liposomes have the property to keep and
improve tissue moisture and, thus, restore skin barrier
function [100].

Glycolic acid is one of the most incorporated active
ingredients in liposomal systems. This active ingredient
is used in many cosmetic products, such as exfoliating
and moisturizing. Nevertheless, this has been linked to
irritation and burns as side effects of the substance. It has
been found that the lysosomal dosage, which contains gly-
colic acid, represents an adequate administration system to
regulate drug delivery, which provides the best conditions
to administer its side effects [99].

7.2 Sunscreens

Another application of liposomes is in the manufacture of
sunscreens. In theory, an ideal sun protection product
must show a high skin buildup with minimal flow to
the systemic circulation; it should remain on the tissue
surface and pass minimally through it [99]. Lipid release
systems have demonstrated UV protection that depends
on lipid structure and particle size; that is, the activity of
the solar protector is inversely proportional to the particle
size [97].

Among the pigments encapsulated in solid lipid nano-
particles (SLNs) for sunscreen is octyl methoxycinnamate
[101]. Other lipid systems have been developed containing
phosphatidylcholine to improve softening properties of
skin care creams [102].

Liposomes help remediate pigmentation in the face
and neck. These problems are usually unwanted in women
due to hormones, cosmetics, perfumes, and sun radia-
tion [103].

An example of this has been their incorporation into 4-
n-butylresorcinol creams. This resorcinol derivative inhibits

melanin production and the activity of both tyrosinase and
protein 1. This formulation is more than 60% more efficient
in treating melasma than the vehicle alone [99]. Liposome
affiliation as a vehicle for linoleic acid in hydrogels has
improved the incorporation into melanocytes. The permea-
tion rate was higher, suggesting a longer retention time of
acid in the skin, ideal for topical treatment of hyperpigmen-
tation disorders [97].

7.3 Anti-acne agents

Acne is a chronic skin disease commonly present during
adolescence. It is an inflammation of the sebaceous
glands caused by Propionibacterium acnes and Staphylococcus
epidermidis [104]. Liposomes were also shown to be an inter-
esting vehicle of tretinoin for skin diseases. Negatively charged
liposomes had better hydration in newborn pigskin and better
retention of tretinoin in the skin [97,99].

On the other hand, cationic liposomes consist of a
double-chain cationic surfactant. Experiments with phos-
phatidylcholine suggest cationic liposomes can be used to
administer drugs intradermally, such as retinoic acid [105].

Similarly, salicylic acid, a drug used to treat acne,
with a controlled delivery during a prolonged period
using liposome vehicles, provides the opportunity to pre-
pare a less irritating form of acid dosage and less frequent
application [97].

7.4 Anti-aging treatments

Skin aging is related to biological, environmental, and
hormonal mechanisms. Internal and external aging has
been associated with the free radical activity. The cellular
metabolism produces these radicals. In contrast, the

Table 4: Benefits and disadvantages of liposomes [15]

Benefits Disadvantages

Non-toxic, biodegradable, non-immunogenic, and
biocompatible

It is possible an unintentional release of the encapsulated substance

They are naturally attracted to the skin. Low solubility
It keeps the skin hydrated Possibility of breakdown in contact with the skin and therefore cannot

penetrate the skin
It can improve the effectiveness of medicine at the
specific site

Short half-life

Load stability can be improved by encapsulation High cost of production
It may decrease contact of sensitive tissues with toxic
loads
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aging process is increased externally by UV rays and
habits such as smoking and drinking alcohol [106].

Antioxidants diminish the free radical unwanted
effects by uptake, thus avoiding cell damage. However,
the formulation stability and diminished permeability limit
their use at the target site on the skin. Liposomes may be
appropriate for delivering antioxidants, as they contain sev-
eral ingredients for skin rejuvenation, such as phospholi-
pids. They can encapsulate active antiaging components
and bring them into tissue. Therefore, the liposome can
be an effective carrier that absorbs quickly and enter the
epidermis and dermis, mixing perfectly with membranes
to prevent the initial signs of aging, as already men-
tioned [107].

Another helpful liposomal formulation in developing
these products is sodium ascorbyl phosphate. This sub-
stance can attract free radicals and block UV light [108].
Similarly, liposomes loaded with curcumin-loaded soy-
bean phosphatidylcholine have improved stability dis-
persed with ascorbyl palmitate [109]. In addition, it has
been found that liposomes containing aloe vera improve
cell proliferation, and collagen production increases antia-
ging and skin regeneration [110].

7.5 Anticellulite agents

Cellulite is an unwanted issue common in the lower extre-
mities and pelvic region inmore than 85% of adult women.
This condition causes the skin to look like “orange peel.”
While this is not a pathological condition, it remains one of
the most recurrent cosmetic problems [111].

The role that liposomes have acquired in the face
condition is critical. It has been found that the liposomal
system can penetrate the subcutaneous tissue and then
reach and decompose the lipid cells. Like other applica-
tions, liposomes help the drug get into fat cells affected
by cellulite without noticeable waste [99].

One of the most active ingredients is caffeine, mainly
used for its slimming effect. This can be applied topically
to stimulate lipolysis in the epidermis. To optimize these
formulations, they must reach the adipocytes. Liposomes
have been used as vehicles to get to the active site
fast [112].

Other natural medicines used for cellulite treatment are
liposomes containing green tea extract, ginkgo biloba, kukui
nut oil, and silicone resin. These substances act on adipose
tissue metabolism, promoting the reduction of cells and the
width of the subcutaneous layer. Consequently, softer skin is
obtained due to the increase of moisture in the deeper layers
of the skin [99].

Other liposomes include ethosomes and transfero-
somes. These vesicles are produced using ethanol or
softening surfactants. Their main characteristic is
ultra-deformability, which improves skin permeability [89].
Ethosomes are lipid-based vesicular systems with high
ethanol concentrations to prolong their physical stability,
resulting in easy penetration of medication into deeper
skin layers [113,114].

A summary of all liposome applications is summar-
ized in Figure 5.

8 NPs of solid lipids and carriers of
nanostructured lipids

SLNs consist primarily of solid lipids such as waxes, tri-
glycerides, and glycerides. These particles are active car-
riers to deliver drugs for different treatments at slow
rates. The amount of active surface species is an impor-
tant parameter to define their functionalities and physical
stability [51,115]. The systems are used when solubility
and bioavailability have to be enhanced in poorly water-
soluble actives and to shield actives from degradation
[116]. The particles are around 50–1,000 nm and are com-
posed of a single layer with a lipid nucleus [14,17]. SLNs
are common in the pharmaceutical industry because they
are lipids with low toxicity and are biodegradable. Besides,
they can enter through the skin to the stratum corneum.
Furthermore, it has UV resistance properties and acts as
physical sunscreen to enhance protection with diminished
side effects (Figure 6) [117].

The attributes that must be controlled in SLNs are the
particle’s polymorphism, size, shape, long-term stability
of the lipid particle, and surface properties for Pickering
stabilization [116]. Lipid nanocarriers are often used due
to their high loading capacity, appropriate kinetic release
pattern, and good stability [118].

NLCs consist of solid and liquid lipids with a drug
enclosed in their core [96]. They are considered the
second generation of lipid NPs. NLCs are mainly three
types whose base develops the structure according to
their composition (Figure 6). They are spheres around
10–1,000 nm and have recently caught attention due to
their lower toxicity and reaction effects [15]. When the
nanocarrier is designed, it is essential to define if they
have to overcome the epithelial barrier that limits their
cellular entry. Then, the carrier systems’ size, surface
hydrophobicity, and surface charge must be modified.
A negative and neutral charge can permeate the mucus
layer while the positive nanocarriers are entrapped [119].
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NLCs have a modulated drug release profile (Figure 7),
i.e., a two-phase drug delivery system; the drug is initially
released with an outburst and after at a constant rate.
Furthermore, it has greater skin hydration due to the bar-
rier properties. Their nanometric dimension improves the
exposure to the stratum corneum, causing more drugs to
enter the skin. An advantage of this nanosystem is a UV-
blocking system with diminished side effects [15].

9 SLN vs NLC in cosmeceutical
development

As already mentioned, lipid NPs (SLN and NLC) are
essential in improving cosmetics’ usefulness. Due to their
excellent safety, they have many applications in the
treatment of skin tissue. These spheres can be added to
existing medication friendly due to their structural

Figure 5: Liposome applications in the cosmeceutical industry. Created with BioRender.com.

Figure 6: (a) SLN and (b) NLC (created with BioRender.com [120]).
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stability and affinity to lipophilic, hydrophilic, and soluble
active ingredients [15].

They are colloidal administration systems whose for-
mulation results in better UV protection effects and skin
moisture. These systems prevent the degradation of the
drug inside the core, improve penetration and absorp-
tion, and control delivery at the target site [121].

While storing SLNs, they tend to generate reordering
of the crystalline structure to obtain a more orderly and
stable shape. The imperfections of the matrix provide a
space to pack inside the drug preventing its loss [51].
Thus, NLCs have a higher load capacity than SLNs and
lowwater in the suspension due to the amorphous structure

that creates more space. Besides, NLCs can minimize vig-
orous load ejection during storage [122]. The benefits and
detriments of the cosmetic application of lipid-based NPs
are included in Table 5. Also, Table 6 shows the cosmetical
application of NPs.

9.1 Application of SLN and CNCs as drug
carriers in cosmeceuticals

The essential features of lipid NPs are improving the
hydrolysis, oxidation, and chemical stability of active

Figure 7: Effect of lipid NPs on the skin (created with BioRender.com [15]).

Table 5: Benefits and detriments of SLNs [15]

Lipid nanoparticle Benefits Detriments

Solid nanoparticle (SNL) Controlled delivery of drugs and augmented Ejecting cargo during storage
Bioavailability of trapped medicine
Increased stability of substances
Biocompatible and biodegradable
Moisturizing effect on the skin and good penetration of the drug
They act as physical sunscreens High water content in nano lipid

suspensionsSuitable for transporting lipophilic loads as hydrophilic
Easy to scale and sterilize
Less expensive compared to polymeric/surfactant carriers
More comfortable with validating and getting regulatory approval

NLCs It can produce a thin coat on the epidermis to prevent the chemical
decomposition of the drug

Cytotoxic effects related to
concentration

Simple preparation and enlargement
They have controlled the particle size The irritating effect of some

surfactantsGood dispersibility in an aqueous environment
They have extended lead release
Close contact with the corneum stratum due to its small size

Delivery systems in nanocosmeceuticals  913



optical sites, which benefits some active ingredients like
Vitamin E, ascorbic palmitate, retinol, retinoids, caro-
tenes, lipoic acid, lutein and some sunscreens [123].

Due to their occlusion effect, these NPs are widely
used as moisturizers and wrinkle softeners. They prevent
water loss from the tissue, consequently increasing the
hydration of the skin increases [124]. An increment in
moisture is noticed with a diminished particle size, which
offers better adhesion and quick coat production. Dola-
tabadi et al. [125] analyzed the barrier effects of SLN and
NLC particles. They concluded that SLNs and nanomi-
cellar systems were better than NLCs as vesicles for
curcuminoids.

Consequently, the occlusive properties of NLCs improve
the penetration of medication into the epidermis. Moreover,
it improves skin moisture and smoothes wrinkles [126].

Moreover, it was noticed that SLN presented the max-
imum barrier effects with a lowmelting point, lipids, high
crystallinity, and small particle size [127]. On the other
hand, nanometric SLN and NLC systems were analyzed In
further research, showing occlusion factors around 36%
and 39%, respectively. However, the score (red Nile)
showed that NLCs penetrate deeper into the SC than
SLNs [128].

Argan oil has been used for its medicinal properties,
such as anti-aging, protection, and hydration in cosme-
ceutical products. Tichota et al. [129] developed an
NLC argan oil composite to improve skin moisture. The

composite was evaluated using in vivo human models.
This analyzed drug improved skin moisture in the study
participants.

Lipid NPs are widely used in the development of
sunscreens. The SLNs have shown excellent properties
in blocking UV light. The SLN matrix produced better
UV absorption than the nanoemulsion containing oil in
water (o/w). Also, titanium dioxide can block UV rays at
the molecular level. Nevertheless, it could be photoal-
lergic and phototoxic. When SLNs were combined with
sun protection creams., the amount of titanium dioxide
could be reduced, reducing the side effects associated
with these sun protection molecules [17].

Dietyltoluamide (DEET) is a popular ingredient used
to repel insects. However, its utilization is often affected
because it can be absorbed in a massive systemic way.
Puglia et al. [130] analyzed the encapsulation conse-
quences of DEET and OMC on SLN, demonstrating that
the particles could reduce the skin permeability of both
compounds compared to an O/W emulsion.

10 Niosomes

Niosomes are vesicles composed of bilayers formed from
organized nonionic surfactants hydrated with or without
incorporating cholesterol or lipids. Its structure varies
from 100 nm to 2 mm in diameter [4]. Its characteristics
are comparable to liposome properties, except for improved
stability, higher price, and adaptability [51]. The first com-
mercial product elaborated with these vesicles was Nio-
somes® by Lancôme [89].

The niosomes can be simply laminar or multilaminar,
depending on the preparation method. Due to their unique
geometry, niosomes can enclose substances with different
water affinities in their structure. The entrapment in nio-
somes can occur in the water domain or adsorb on the
surface of the bilayer. In contrast, hydrophobic substances
enter the bilayer structure dividing it (Figure 8) [131].
These vehicles are biodegradable, non-toxic, and more
stable than liposomes [132].

Niosomes are elaborated by some methods such as
thin film hydration [133], microfluidics [134–136], sonica-
tion [137], multiple membrane extrusion [138], and reverse
phase evaporation technique [138].

Niosomes offer excellent chemical stability than lipo-
somes, a longer lifespan, and osmotic activity. Likewise,
its surface can be easily modified due to a functional
group in the hydrophilic face. Besides, they are more com-
patible and degradable by biological systems. Almost all

Table 6: Cosmeceutical application of lipid NPs

Application Active ingredient Source

Chemical
stabilizer

Vitamin E [17,129]
Ascorbic palmitate
Retinol and retinoids
Carotenes
Lipoic acid

Moisturizers/
occlusive

Argan oil [17,129]
Empty lipid NPs
TiO2

Kukui nut oil
Milk proteins
Coconut extract
Omega 3 and 6
Sunflower oil
Avocado oil
Urea
Ginseng extract
Glycoproteins

UV Blocking BaSO4 SrCO3 TiO2

Benzophenone 3 Orxibenzona
Molecular sunscreens

Insect repellents DEET OMC

914  Santos-Adriana Martel-Estrada et al.



routes of administration can administer niosomes. In par-
ticular, their size and encapsulation can be modified by
changing additives, proportions, or combinations [131].
Also, they are known due to their capacity to be injected
by ocular o transdermal routes, which are not common
pathways [139]. Also, the niosomes are cheaper to fabri-
cate than liposomes [140,141].

However, although the niosome delivery system has
several advantages, it can be hydrolyzed in aqueous sus-
pension. The issue of drug outflow from the encapsula-
tion site and agglomeration of niosome formation and
formulation techniques can be time-consuming [15,142].
Moreover, some challenges must be considered, such as
consistent and reproducible construction of niosomes
[134]. The strengths and weaknesses of the cosmetic
uses of lipid-based NPs are summarized in Table 7.

Niosomes are utilized in cosmetic and skin treatments
because they can reduce and repair the permeability of the
cornea layer (Figure 9). There is more excellent protection
of trapped drugs and an enhancement in the bioavail-
ability of substances. The formation of niosomes is affected
by surfactants, encapsulated substances, membrane prop-
erties, and hydration temperature. Also, they have problems

with physical stability, including aggregation, fusion, leakage
in storage, and sedimentation [143]. An alternative is the
proniosomes. They are liquid crystalline compact niosome
hybrids [144–146] and nonionic surfactant vesicles used to
improve the administration of drugs because they can pro-
duce an aqueous dispersion of niosomes [15,142], using dry
and free-flowing product storage and can be hydrated imme-
diately before use to form a liposomal dispersion [143]. This
system increases bioavailability and reduces side effects [124],
especially on skin penetrating the barrier and enhancing the
drug’s penetration due to its amphiphilic nature [147]. They
can be used to entrap hydrophilic and lipophilic drugs [148].

Nevertheless, niosomes can be used in the pharma-
ceutical industry, oral, ocular, topical, pulmonary, parental,
and transmucosal drug delivery and cosmetic applications
[141]. Niosomes have been used to encapsulate essential
oils characterized by low stability and biocompatibility
because they cannot be used for direct topical administra-
tion [149], such as Lippia citriadora essential oil [150]. Also,
niosomes can encapsulate poorly soluble drugs like mela-
tonin [151]. Other substances include some for anti-aging
treatments [152], like gallic acid for anti-skin aging [153,154],
rice (Oryza sativa L.) bran for antiaging activity [155], deer

Figure 8: The bilayer structure of the niosome exhibits the entrapment of the hydrophilic and hydrophobic substances [131] (created by
BioRender.com).

Table 7: Strengths and weaknesses of the niosomes [15]

Strengths Weaknesses

Non-toxic, biodegradable, Non-immunogenic and
biocompatible

You may have fusion, leaching, or hydrolysis of the trapped drugs,
limiting the lifespan

Controlled and targeted drug delivery Requires specialized equipment for manufacturing
They can be administered in almost every way Insufficient drug load capacity
Improves the therapeutic performance of the drug Trapped drug leak
Better chemical stability Physically unstable
Osmotic activity and longer lifespan Time-consuming techniques for formulation
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antler velvet extract to stimulate the growth of skin and hair
cells [156].

11 Metal, metal oxides, and
inorganic NPs nanosystems

Metals, metal oxides, and inorganic NPs have appeared
in the cosmetical industry, mainly skin formulations,
providing an original approach to delivering entrapment
drugs. These NPs are based on herbal medicine, cos-
metics, sunscreens, and makeup [51]. The inorganics
NPS include metal or metal oxides and carbon-based
NPs with controlled physical properties (Table 8). In
dermal products, it is common to use gold NPs, silver
NPs, titanium oxide, zinc oxide NPs, silica NPs, cooper
NPs, aluminum oxide NPs, nanotubes, fullerenes, and
nanodiamonds [89]. Titanium dioxide and zinc oxide
are common in sunscreen formulations. These substances
protect from UVA and UVB light [157].

On the other hand, gold particles have several advan-
tages, such as nontoxicity, high stability, chemically
inert, and no photobleaching [15]. L’Oreal sells some pro-
ducts with gold nanoparticles to improve the elasticity
and firmness of the skin [158]. Silica NPs have a hydro-
philic surface and low cost. They are applied in the cos-
metical industry because they can penetrate carrier drugs

and release them into the skin. The particle size, surface
charge, chemistry, chemical composition, and porosity
enhance dermal penetration [159]. Fullerenes contain
odd-numbered carbon rings, commonly used in anti-
aging products [160]. On the other hand, CNT have
been used in hair staining because they enhance the affi-
nity of carbon black with gray or white hair [2]. Never-
theless, the main challenge of these systems is how to
increase the penetration of the active ingredients through
the skin barrier to achieve therapeutic goals [161].

They have been used for topical applications to enhance
the solubility of apolar drugs, controlled release, higher sta-
bility, and capability to target specific areas to deliver active
substances [161]. Their main applications of metal andmetal
oxide NPs include controlled release, sun-protected creams,
and antimicrobial protection [51].

Silver and gold NPs have been used as novel cosme-
ceuticals [162]. They are used in toothpaste, soaps, deo-
dorants, sunscreens, herbal products, hair cosmetics, wet
wipes, body foams, lip, and makeup [102,163]. On the other
hand, silica NPs are studied as the epidermal, dermal, and
transdermal routes [164]. They are used in cosmetics, but
their hazardous effects are recently evaluated on humans
and the environment [165]. Zinc oxide is an inorganic com-
pound insoluble in water. It has a hexagonal or cubic struc-
tural form. It is practical to absorb and scatter UV radiation
[166]. The substance re-emits the absorbed radiation in less
damaging UVA as fluorescence or heat [167].

Figure 9: Niosomes applications. Created with BioRender.com.
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12 Dendrimers

Dendrimers are macromolecules with a tree structure to
encapsulate and deliver bioactive substances [184]. Den-
drimers or fractal polymers are a class of highly branched
three-dimensional dispersed mono-macromolecules with
well-defined sizes and geometry that are precisely designed
and contracted for their application. This is achieved by
introducing desired functional groups at the ends of the

surface branches that will react with the target [17]. In other
words, they consist of a series of chemical layers built
around a small nucleus molecule and have four main
components: a nucleus, identically sized arms, linked or
branched points, and final functional groups [14].

Dendrimers are nanoscopic, with diameters ranging
from 2 to 10 nm. They are synthesized by controlling their
chemical composition from a reactive polyfunctional
nucleus that acts as a molecular center of proliferation,

Table 8: Applications of inorganic NPs in the cosmetic industry

NP Applications Reference

Gold Antiaging, colorant, carrier, preservative [89,168,169]
Used in deodorant, anti-aging creams, and face packs. It Is
commercialized Chantecaille with anti-inflammatory and
antioxidant properties

Silver Antifungal and antimicrobial [14,89,96,168]
Effective against Trichophton leismaniasis, onychomycosis, and
Staphylococcus aureus
Used in the face pack, antiaging cream Coil Whitening Mask by
Natural Korea and deodorants Nano-In Hand by Nano-Infinity
protected from UVA and UVB

Titanium oxide Used commercially in products for sun tan effects like Mineral
Fusion®

[89,158,170]

Zinc oxide Protect from UVA and UVB. Used commercially in products like
Neutrogen® or sunscreens and moisturizers by L’Oreal or Nivea

[14,89,158,169]

Silica It improves the texture of cosmetic products [14,89,160]
Used in Lancôme Microlift in Lancôme Renergie Microlift

Cooper Biocidal and antiaging products [89]
Fullerenes Antioxidants and antiaging agents [14,73,171]

It is used commercially in Zelens Fullerene C-60 by Zelens
CNT Hair colorants and to improve permeabilization [15,101,158]
Cerium oxide Sunscreen preparation to block UV light [172]
P. ginseng leaves-mediated gold NP Cosmetic applications are due to their antioxidant, moisture

retention, and whitening properties
[173]

Snail slime-based gold NPs Particles synthesized by green chemistry for sunscreen products [174]
Green gold NPs obtained through gold salt
reduction by polyphenol contained in Hubertia
ambavilla extracts

The NPs were evaluated by obtaining dermo-protective green
gold NPs useful to block ultraviolet A

[175]

Gold NPs synthesized from P. ginseng berry NPs exhibited moisture retention capacity that shows
biocompatible and environmentally safe material for cosmetics

[176]

Silver NPs Silver NPs were evaluated, and the results suggest they can be
used as a preservative in cosmetics

[177]

Silver NPs synthesized with natural extracts The particles were evaluated in hybrid sun-protective body milk
showing a high degree of solar protection

[161]

Silver NPs synthesized with Phoenix sylvestris L.
extract

The NPs have antimicrobial properties to treat acne-causing
pathogens

[178]

ZnO and TiO2 These NPs are commonly used as inorganic UV filters in
sunscreens. They have high stability to light and good
dispersive properties. TuO2 effectively blocks UV-B and ZnO to
UV-A, eliminating sunscreens’ chalky white appearance.
Furthermore, the substances are used in cosmetics and
toothpaste

[166,179–182]

Collagen/SiO2 and ZnO composite materials The composite was used in cosmetics creams for solar
protection showing high antibacterial activity

[183]
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achieving an orderly configuration of monomers. The
layers around the core are called dendrons [185]. They
have uniform size, water solubility, high degree of branching,
internal cavities available, and polyvalency [186]. Mainly
lipophilic molecules are encapsulated in dendrimers via
Van der Waals or apolar forces [184].

The dendrimersome is a self-assembly dendrimer
used to encapsulate and deliver cosmetics, drugs, and
diagnostic materials [187]. This nanocarrier was devel-
oped in Finland and the USA. It is biocompatible and
has stability, tenability, monodispersity, and versatility.
It is possible to produce them with uniform size and easy
chemical functionalization [188].

Polyamidomin dendrimers (PAMAMs) are the most
used in cosmetics development. The interior of this den-
drimer contains empty spaces suitable for encapsulating
host molecules. Simultaneously, the outer surface includes
some potentially reactive sites adapted to alter the solubility
of the NPs, making them a more efficient carrier polymer.
Other dendrimers are DABs or PPIs (polypropylene imine
dendrimers), both of which have 16 amino groups on the
periphery of their configuration. These are used to increase
the penetration of certain substances into the skin, like
PMMH (phosphorus dendrimer) and bis-MPA (2.2-bis acid
dendrimers (propionic methylol) [25].

It is essential to mention that something that charac-
terizes dendrimers is their intrinsic viscosity. Dendrimers of
lower molecular weight have a better viscosity, which is
quite beneficial for the formulation of cosmetics [189].
Some L’Oreal patents describe how using dendrimers helps
avoid disadvantages with high molecular weight polymers.
Dendrimers’ low-viscosity suspensions have improved per-
formance, including satisfactory sensory properties [25].
This company has used PAMAM dendrimers in deodorant
and self-tanning compositions [25]. Moreover, the company
uses dendrimers to fabricate mascara or nail polish [190].

On the other hand, Revlon has been used amidoa-
mine dendrimers in personal care and cosmetic products.

The company has encapsulated salicylic acid using the
PAMAM-salicylic acid complex [191] for anti-acne com-
positions [25]. Unilever has used dendrimers in gels,
lotions, and sprays (Table 9) [173,192–195].

On the other hand, dendrimers functionalized with
ferulic, caffeic, and gallic acids have been used as anti-
bacterial substances [196].

Dendrimers improve the skin permeability of the
drug by interacting with lipid skin bilayers [51] and
have applications in skin treatment, hair care, bath pro-
ducts, and fragrances [17].

13 Nanocrystals

Nanocrystals are drug particles stabilized by surfactants
without any lipid or polymeric matrix [203]. They are
aggregated of hundreds to thousands of atoms combined
into a group and are in a size range of 10–400 nm. Gen-
erally, they are applied to improve the dermal penetra-
tion of poorly soluble cosmetic substances [204–206] and
creams or lotions [207].

Nanocrystals are assembled from several hundred
thousand atoms to form a polycrystalline or straightfor-
ward arrangement to release scarcely soluble active ingre-
dients [73]. They have unique properties such as increased
solubility of insoluble assets, higher dissolution rate, good
adhesion, higher concentration gradient, and improved
bioavailability [205].

Nanocrystals are used in cosmetic actives like lutein,
flavonoids, coenzyme Q10, and flavonoids (Table 10) [203].
It was found that the dermal absorption and activity of the
herbal compound can be improved using nanocrystals. One
of their uses is flavonoids. Flavonoids of plants are part of
the secondary metabolites. They have antioxidant and
anti-inflammatory properties that decrease vascular per-
meability and protect blood vessels from treating rosacea.

Table 9: Commercial uses of dendrimers

Dendrimer System Source

Unilever Hydroxyl functionalized dendrimers made from polyester units for gels, sprays, and lotions [90,197]
Hair: composition with dendrimer macromolecule

Dow Corning Toray Co Carbosiloxane dendrimer structure for use as a cosmetic raw material [198]
L’Oréal Skin: The company uses hydroxyl functionalized polyesters dendrimers for skin applications [199,200]

Deodorant: Contains amine function dendrimers for human applications
Revlon Cosmetics that have keratolytic and anti-acne activity [201,202]

Nails, hair, and eyelash treatments: Keratin treatments nu hydrolyzed or partially hydrolyzed
keratin
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However, they are mainly used because of their UV protec-
tion properties [205]. The bioactivity of flavonoids was
increased using a nanocrystal-based routine.

Moreover, similar behaviors have been seen in the
case of the plant antioxidant hesperidin [208]. Also,
nanocrystals of bioflavonoids have been evaluated for
therapeutic efficacy, but more studies related to safety
are necessary for commercial purposes [208]. Moreover,
curcumin nanocrystals elaborated through smartCrys-
tals® for use in dermal formulations provide a new
mechanism for the nanocrystals’ concentration [209].
Research shows that Cinnamate-functionalized cellulose
nanocrystals are photostable and with an enhanced sun
protection factor [210].

It was reported a nanomaterial based on diethyl sina-
pate-grafted cellulose nanocrystals. The material has col-
loidal stability and exhibits antioxidant and anti-UV
properties in moisturizing cream with glycerol [211]. Also,
it was prepared a delivery system for Symurban as nano-
crystals for the treatment of skin pollution [212].

Some companies have used nanocrystals in cosmetic
products, such as Renewing Serum and Juvedical®,
Juvedical®, DNA Skin Optimizer Fluid, and Cream SPF
20 by Juvena [213,214], and Capture produced by Dior
[214] and Petersen for blocking UV radiation with enhan-
cing SPF [215].

14 Discussion

Incorporating liposomes in cosmeceutical products has
advantages, such as biodegradability and excellent bio-
compatibility with the skin and its derivatives. Also, they
have similar epidermis permeability properties, allowing
more penetration than other treatments [158]. It should
be noted that liposomes can administer drugs locally in
the skin layer and improvemoisture in skin conditions due
to the affinity between liposome components and skin
lipids [17]. Therefore, liposomes can be used as vehicles
of cosmeceutical material or as active agents. Additionally,

they can interact not only with the skin but also with
proteins and carbohydrates to repair or reach a normal
state when the skin is damaged because of moisture defi-
ciency or eczema. It has even been found that they can
increase the concentration of tretinoin in the epidermis
and dermis, which protects it from photodegradation and
minimizes its irritation compared to conventional creams or
gels [41].

The production of liposomes is simple since it does
not use massive amounts of raw material due to its small
size resulting in financial products [219]. However, the
number of liposomal systems markets is well below expec-
tations. The cause can be attributed to the inconvenient
production methods proposed in the literature: low cell
absorption, difficulty controlling the particle size distribu-
tion, low encapsulation efficiency, and continuous design.
Among these, liposomes’ low entrapment efficiency and
particle magnitude are challenging to maintain. They
are responsible for the waste of vast percentages of the
number of molecules trapped, and as a result, the cost of
producing them increases considerably [220].

The main advantage of SNL compared to other sys-
tems is its high biocompatibility and reliable physical
properties, as well as the ability to control the delivery
of substances. Nevertheless, some issues have been found
with the total payload of the drug, which becomes insuffi-
cient due to the limited miscibility of some substances in
solid lipids [123].

Consequently, new systems such as NLC have been
explored. These second-generation NPs consisting of solid
and liquid lipids offer the convenience of drug-carrying
capability and improved release properties. In that sense,
NLCs are more effective for topical, dermal, and trans-
dermal administration [221].

They are more productive systems, facilitate the load
for the accommodation of drugs, and contain different C
chains in the crystal structure. Thus, medicines such as
ascorbic palmitate, clotrimazole, ketoconazole, and other
antifungal agents show a controlled release behavior
[222]. However, they have some limitations related to
cytotoxic effects due to the nature of the polymer and

Table 10: Uses of nanocrystals

Nanocrystal Description Source

Nanocrystals of cosmetic actives Increase bioactivity of the molecules in the skin [216]
Nanocrystal cellulose It is a sunscreen cream cosmetic composition of cellulose and nano-titanium dioxide [217]
Rapamune It was the first pharmaceutical product in the market [214]
Juvedical Renewing serum and skin optimizer fluid [214]
Platinum Rare by La Prairie Hesperidin crystals are one of the most expensive cosmetics in the world [206,218]
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its concentration. Furthermore, some surfactants can irri-
tate and have specific application problems when using
protein and peptide drugs [221].

Due to problems related to toxicity, research has
shifted its interest to systems such as nyosomes, which
are non-cytotoxic particles that contain nonionic surfac-
tants and cholesterol. These substances produce a rigid
structure and keep the charged molecule stable, both
hydrophilic and hydrophobic [131].

They have been extensively investigated as a carrier
system of cosmetic bioactive substances and the useful-
ness of niosomes in traditional formulations such as
emulsions, which showed lower cytotoxicity. Some meta-
bolites extracted from plant materials are relevant in
cosmetic research; these compounds possess beneficial
effects such as antioxidants and antiaging. Many natural
bioactive compounds using niosomes to enhance their
impact on the epidermis have even been investigated
[223].

Bartelds et al. [224] characterized and optimized some
formulations of niosomes and compared the properties of
these compositions with those of liposomes elaborated
from cholesterol and phosphatidylcholine lipids/phospha-
tidylethanolamine. Niosomes were stable and even more
permeable than liposomes, as analyzed by ion calcein lib-
eration; ion permeability (KCl) was higher than the lipo-
somes. In addition, they found that the magnitude of
niosomes diminishes substantially after freezing in liquid
nitrogen and subsequent thawing. Similarly, they discov-
ered that the antimicrobial peptides melittin and ala-
methicin behave similarly in these systems composed of
unsaturated components and were not affected when satu-
rated amphiphile drugs were used. Lastly, in permeability
and stability for drug-sized molecules, niosomes are similar
to liposomes and may offer a reasonable and economical
option for administration purposes.

The main drawback of this kind of system is that the
loaded drug can be hydrolyzed in aqueous suspensions.
It can leak the drug from the site of entrapment or the
added formation of a niosome [131].

NLC and lysosomes are economical and easy to pro-
duce based on the collected information. They present
lower toxicological and leakage risks since they are more
stable. However, if you are looking for aqueous suspen-
sions, the best option is to use NCL. On the other hand,
inorganic NPs, metal oxides, and metallic oxides appear in
cosmetics, particularly skin formulations, to deliver encap-
sulated ingredients. They may be present in different com-
positions, such as formulations based on hair, cosmetics,
sunscreens, and botanical products [51,225]. Metal NPs
(TiO2 and ZnO), gold (Au), and silver (Ag) have attracted

attention for their practical antibacterial effect [63], leading
to the development of several methods to synthesize AuNPs
and AgNPs. Generally, chemical processes are the most
beneficial as they reduce production costs [226]. Their rele-
vance is due to their tunable optics, small size, stability,
chemical and physical surface, and absence of cytotoxicity.
They can be functionalized with biomolecules such as DNA,
amino acids, carboxylic acids, and DNA. They provide an
excellent drug delivery system. Furthermore, AgNPs inhibit
proliferation and microbial infection much more than
AuNPs [227].

While these NPs are similar in application, some
research says AgNPs tend to be more unstable than
AuNPs. Pulit et al. [228] evaluated the risks of using cos-
metic preparations with AgNPs and AuNPs, for which
stable cosmetic formulations (creams) were made with
AgNPs and AuNPs at different concentrations. Both showed
that they had good fungicidal properties. The standard
cream’s estimated yield limits were obtained based on the
viscosity curves. The creams with NPs improved the consis-
tency and distribution of the skin. However, the best ratings
obtained in texture, absorption, lubrication, color, and odor
were assigned to AuNPs emulsion.

The worst uniformity, color, and smell ratings were
obtained for emulsion with AgNPs. The most noteworthy
aspect of this study was evaluating the permeability of
metallic NPs through artificial dermal membranes. Higher
permeabilities were confirmed for creams with metal NPs,
which is a cause for concern as the cytotoxic properties of
metal NPs have not been accurately evaluated.

The properties of AuNPs are frequently affected by
interactions between particles and their assembling. NPs
can easily penetrate the skin and accumulate, stimulating
actin filaments and abnormal matrix construction. They
can decrease intracellular protein synthesis and reduce
cell proliferation, adhesion, and motility [229]. The toxic
effect of AgNPs is related to silver ions’ delivery and size.
Particles of 10 nm are more harmful than higher ones.
Based on the information collected, these particles have
potential applicability. Nevertheless, they present some
toxicological risks when applied in high doses or with
minimal size [230].

Dendrimers are artificial polymers characterized by
repeated branched units that emanate from a focal point
and have many neutral, cationic, or anionic terminal
groups on their surface. Their properties are different
compared to conventional polymers. They are helpful
as a transport system for drugs and genes, including
some with medicinal uses, due to their antibacterial, anti-
fungal, and cytotoxic properties [231]. In addition, many
substances cannot be exploited due to their low toxicity,
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solubility, or stability issues, and dendrimers can solve
these problems, improving their clinical applications [187].

There are a few drawbacks to them, but they should
not be taken lightly; they have toxicity, location, biodis-
tribution, and high cost of production. Its efficiency in the
skin depends mainly on its size and surface load; the
easy-to-control features are shape, size, liposome occlu-
sion dendrimeric structure, surface functionality, length
of branches, and synthesis of specific dendritic frame-
works [232].

Vaidya et al. [233] mention that the toxicity of den-
drimers can be reduced by changing their shell with bio-
compatible substances such as polyethylene glycol, fatty
acids, carbohydrates, amino acids, and peptides. Another
strategy is synthesizing and designing biodegradable and
biocompatible dendrimers using reagents. They are bio-
compatible and easily assimilated by biological systems.
Dendrimers of amino acids, carbohydrates, peptides, and
triazines are examples of such biodegradable dendri-
mers. In addition, the PEGilation of PAMAM dendrimers
significantly reduces toxicity due to the reduction of cationic
charge by the PEGilation of the dendrimer surface.

On the other hand, nanocrystals are typically pro-
duced from poorly miscible substances, class II drugs
classified by the biopharmaceutical system (BCS). They
have been successful in the market since 2000 [234], and
the first nanocrystal product emerged for cosmetics in
Switzerland in 2007. Nevertheless, the nanocrystals were
manufactured from poor miscible, traditional, and active
ingredients. Recently, it has been proposed as a novel
concept in dermatology for drugs of medium solubilities,
such as caffeine [235].

Unlike dendrimers, this type of nanodrug has a high
proportion of stabilizing medicines that leads to approxi-
mately 100% of the load capacity of the drug. Nanocrystals
are suitable for drug delivery to produce an adequate con-
centration in the desired area, and they are much simpler
and more viable for industrial production [234]. Moreover,
nanocrystals have low toxicity, and their solubility permits
the skin to release poorly miscible actives to increase the
substance’s saturation solubility, which can improve the
drug’s release, dissolution rate, dermal bioavailability,
and surface adhesion [203,236].

In such a way, nanocrystals can improve the solubi-
lity of poorly miscible substances in the water much
better than dendrimers. It is believed that they could
increase epidermal deposition and enhance skin perme-
ability, improving the permeability of traditional topical
formulations [236]. One of the most significant drawbacks
of these compounds is the requirement for recurrent dose
administration that can produce clusters and precipitation

of nanocrystals, which can increase the possibility of sys-
temic permeability and adverse reactions [237].

In this sense, nanocrystals are more attractive for the
formulation of cosmetics. They can work perfectly without
the most significant risk if used in the relevant doses. Still,
the constant advance of technology could undoubtedly
improve or even displace this type of NPs.

15 Challenges in
nanocosmeceuticals

The use of NPs in cosmetics has some challenges. It is
hard to scale up the technology developed due mainly to
the complicated operation and low efficiency [52,238].
Also, the market approval of nanoformulation requires
additional studies. It is essential to evaluate biodegrad-
ability and biocompatibility with organisms. These studies
imply in vivo studies. Furthermore is required a sustainable
process that includes exposition during manufacturing, use,
and final disposition [239]. Although some marketed cos-
metics and patents exist, toxicity issues must be discussed
and evaluated. These studies have to include an analysis of
metabolization, permeation, biodistribution, and elimina-
tion of subproducts [67,96,164].

On the other hand, nanomaterials used in cosmetics
can damage DNA, membranes, and proteins and produce
increased quantities of oxygen species [240]. The sub-
stances’ safety must be analyzed and regulated to include
guidelines about their toxicity, safety, and efficacy [52,241].
The risk of exposure is currently poorly established [238].
One of the restrictions on the use of NPs is that they must
not reach the bloodstream, which means that penetration is
allowed, but permeation is not. Similarly, there are risks of
NPs being inhaled in cosmetic powders [52]. They have
required in vivo and ex vivo studies about the effects and
mechanisms of permeation [164].

In order to evaluate the benefits and risks of the NPs
used, it is crucial to establish the potential hazards asso-
ciated with the use, exposure levels, and the effects once
released in the environment, for instance, water and soil.
Zhao et al. analyze the impact of NPs in species exposed
to the aquatic environment and the neurological toxicity
in humans [240]. It is essential to control the particles’
attributes, such as size and shape, because they affect the
health concerned. For instance, the average size of metallic
NPs defines their antibacterial and catalytic activity [241].

Some lipidic systems, such as liposomes, are unsui-
table for conventional sterilization methods. Although
some researchers consider that gamma radiation could
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be an option, the effect on the physical and chemical
properties of niosomes must be studied in the future [66].

On the other hand, it is difficult to control the release
of substances in cubosomes, so some researchers are
looking for ways to change their properties to control
the drug loading and release kinetics [68].

Although some reports refer to different forms or geo-
metries of NPs (Oake et al., 2019; Rawtal et al.), it is
necessary to establish the relationship between the mor-
phology and the delivery kinetics of the molecule to be
used in cosmetics.

Although some reports refer to different forms or geo-
metries of NPs (Oake et al., 2019; Rawtal et al.), it is
necessary to establish the relationship between the mor-
phology and the delivery kinetics of the molecule to be
used in cosmetics.

16 Conclusion

NPs can be composed of organic (flexible) and inorganic
(rigid) materials. Nanometric-sized structures are helpful
in controlled and directed transport, increasing efficiency
and stability. They have the characteristic of presenting
biocompatibility with the skin and provide a prolonged
effect, so it helps improve the final appearance of cosmetics.

Their use in cosmetics can be associated with the
manufacture of cleansing lotions, lipsticks, anti-wrinkle
treatments, eye shadows, hair conditioners, and makeup,
among others.

Some biosafety mechanisms still need to be regulated
for their use. However, recent research has harnessed this
toxicity to combat other problems to help control some
pathogens. One of the main challenges currently facing
it is to determine the “right” to obtain these benefits
without running the risk of poisoning or to ensure that
the nanostructures used in no way cause us harm.

Due to its wide use, we consider that its development
and application present a wide field of study within cos-
metology science.
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