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ABSTRACT ARTICLE HISTORY

In this paper, the Additive Perks Distribution (ADP) is presented; this Received 14 March 2022
distribution describes the behavior of the bathtub curve, which is one of ~ Accepted 5 November 2022
the most deeply rooted concepts in reliability analysis. The proposed KEYWORDS
dlstrlbuthn is based on th.e s_um_of the positive _and negatl_ve.hazard Additive perks distribution;
rate functions of the Perks distribution. ADP’s statistical properties include bathtub distributions; non-

Measures of Central Tendency, moments, moment generating function, monotone failure rate; Perks
statistical order, residual lifetime, reversed residual lifetime, Rényi entropy, distribution; reliability
time-varying, and life-stress relationship modeling presented. For estimat- analysis

ing the ADP parameters, the Maximum Likelihood Method is used. On the
other hand, the APD is tested in three case studies and compared with
other distributions that can describe the failure rates in a bathtub curve.
The results from the case studies showed that the APD is a good choice for
describing the failure times in the shape of a bathtub curve.

1. Introduction

Reliability engineering has become a handy quality tool to determine the life behavior of any class of
devices. One of the most widely used concepts in reliability is the description of device failures
through the bathtub curve (see Figure 1). The concept of the bathtub curve lists that during the early
stage of the device (infant mortality), failures can arise due to the manufacturing process or the
quality of the components. The failures at this point behave in an exponentially decreasing way until
stabilizing. When the device enters the stabilization stage, this is considered the operating use stage.

During this process, the failures are constant until the internal components reach their max-
imum life, so the probability of failure is low. Finally, the device enters the wear stage, where the
failure is represented in an increasing exponential behavior; at this stage, the probability of failure is
high, and the device can stop working correctly. Some distributions, such as the Weibull distribu-
tion (WD), Exponential Distribution (ED), and Lognormal Distribution (LD), among others, are
the first choice for reliability practitioners to perform statistical analyzes due to the flexibility of
these models. Nevertheless, these classical distributions show a constant or monotone failure rate,
which breaks the assumption of bathtub curve behavior.

Researchers have proposed hybrid distributions that can represent the behavior of the bathtub
shape curve with different applications towards reliability. For example, Aarset (1987) proposed the
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Figure 1. Reliability bathtub failure rate representation.

methodology to identify if the data have the property of a failure rate in an increasing, decreasing, or
bathtub curve through the Total Time on Test (TTT). Mann et al. (1974) proposed a series of
mixtures to the WD to improve the experimentation data results. Hjorth (1980) proposed
a distribution with three parameters, with which it is possible to obtain Increasing, Decreasing,
and Bathtub fajlure rate properties. Bebbington et al. (2007) introduced an extension of the WD by
adding two parameters that allow data to be represented in the shape of a bathtub curve. Carrasco
et al. (2008) analyzed a variation of four parameters from the WD. The proposed distribution has
better flexibility to analyze the bathtub-shaped failure times than exponentiated and modified
Weibull submodels functions. Other modifications that achieve a bathtub curve behavior are
presented and analyzed by Pham and Lai (2007), Murthy et al. (2004), C. Lai (2013), Dey and
Elshahhat (2022), Al Mutairi et al. (2021), Sharma et al. (2022), Benkhelifa (2022) and Krishna et al.
(2022).

Similarly, some authors propose a mixture of two distributions from which a failure rate can be
obtained in the form of a bathtub. Lai et al. (2016) introduced a new form of parameterization,
which involves the representation of the hazard function as a generalized beta function ratio, with
which it is possible to obtain bathtub curve representations. Lee et al. (2007) proposed the Beta-
Weibull (BWD) distribution of four parameters, where the properties of the Beta and Weibull
Distribution are combined for modeling a non-monotonic failure rate in reliability analysis.
Nadarajah et al. (2013) studied the Exponentiated Weibull Distribution (EWD), which is
a generalization of the two-parameter WD to accommodate non-monotone hazard rates.
Mahdavi and Kundu (2017) introduced the Alpha Power Transformation (APT); this transforma-
tion proposes to add a new parameter to the family of exponential distributions. The proposed new
parameter incorporates skewness, which allows the distributions to have better flexibility to
represent non-monotonic behaviors. A practical case of the application of the APT with the WD
where the reliability of electronic devices (ELD) is determined is reported by Méndez-Gonzalez
et al. (2022)

Other notable methodologies propose the sum of the risk functions; this sum can be combined
with the same distribution or two different distributions. Following the additive methodology, Xie
and Lai (1996) presented the addition of two risk functions of the WD, calling it the Additive
Weibull (AWD) function. Xie et al. (2002) modified the WD with which they were able, with only
two shape parameters and one scale parameter, to obtain a non-monotonic representation that
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resembles a bathtub curve, thus presenting the Modified Weibull Extension (MWE). The MWE is
asymptotically related to the WD and the Exponential Distribution, giving it the flexible properties
of these two distributions. Almalki and Yuan (2013) modified the AW proposed by Xie et al. by
considering a serial system with one component called the New Modified Weibull (NMW). Zaindin
and Sarhan (2009) proposed the Sarhan and Zaindin modified Weibull (SZMW), which has better
flexibility to model the failure rate; the SZMW starts from being a special case of the WD. Other
additive distributions can be seen in Abd EL-Baset and Ghazal (2020), He et al. (2016), Thach
(2022) and Thanh Thach and Bri$ (2021).

The distributions presented in the literature can model the failure rate in a non-monotonic way.
However, the observed shape tends to have a ‘] or a “V” shape. This type of shape can be a problem
in reliability analysis since it does not have a shape close to Figure 1. That is because the life of
normal use is not adequately represented (in many cases is a very short portion of the hazard
representation by the distribution). Therefore, the estimation and representation of the life of the
device may not be the closest to reality.

The aforementioned establishes a need to explore new distributions that can describe the
behavior of the devices closer to the real usage rate. The Perks distribution (PD) introduced by
Perks (1932) has been widely used in the actuary branch to determine the mortality rate of people in
insurance collection. In recent years, Singh and Choudhary (2017), Zeng et al. (2016), and
Oguntunde et al. (2018) introduced methodologies that use PD in the analysis of the reliability of
devices, managing to obtain shapes close to the bathtub curve. So, in this article, the Additive Perks
Distribution (APD) is proposed as an alternative for the reliability analysis of devices with non-
monotonic failure behavior. The APD is formulated from the sum of the positive and negative risk
functions. The APD is more flexible with the experimental data that possess a non-monotonic
failure than some distributions presented in the literature. The Mathematical flexibility shows that it
can be a good option for reliability analysis.

The mentioned properties of the APD help to describe the lifetime behavior of some common
devices in reliability analysis, such as electrical, electronic, and mechanical. These devices have life
behaviors similar to those of living beings, where the probability of death decreases as the systems
mature at early ages. However, at advanced ages, they may tend to a probability of death that may
increase suddenly or remain constant under natural conditions. This type of behavior represents
a problem for distributions that cannot change over time. For this reason, using a mortality model
such as the one presented by Perks can be very useful for product, design, and maintenance
engineers to determine the real behavior of the device under analysis, maintenance times, perfor-
mance, and quality. On the other hand, the APD proposal uses the same mortality equation without
combining it with any other known probability distribution in the study of product survival. The
above is attractive for a clearer understanding of the different behaviors of the lifetimes data may
have under other methodologies that propose properties similar to the APD.

In order to test the APD, three case studies were established where the APD is compared against
other distributions of different construction methodologies that represent bathtub curve failures.
To estimate the parameters of each of the distributions, the Maximum Likelihood Method (MLE)
was used. The Akaike information criterion (AIC), the Bayesian information criterion (BIC),
Kolmogorov Smirnov test (K-S), Anderson-Darling (AD), Cramér-von Mises (CVM), and
P-value were used to compare the distributions under analysis.

Finally, this paper is organized as follows: Section 2 presents the APD model construction.
Section 3 presents the Measures of Central Tendency of APD. Section 4 presents the order
statistics. Section 5 presents the moments and moments generating function (MGF). Section 6
presents the residual and reversed residual lifetime function. Section 7 presents the Rényi
Entropy. Section 8 presents an approach for time-varying modeling of APD and an Accelerated
Life Testing (ALT) modeling centered on ELD. Section 9 presents the likelihood function to
calculate the parameters proposed in section 2. Section 10 presents the case studies of the paper.
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11 presents the conclusions of the manuscript and a future work proposal of the proposed
statistical distribution.

2. APD model construction

x e . —0x
Let hpp(x) = %> the positive hazard rate function of PD. On the other hand let h,, (x) = ff;ﬂ,

the negative hazard rate function of PD. Therefore, the risk function of the APD is defined by:

h(x) = hyp(a; 1) + hpu(B; 0).

[ are™ N BOe% (1
U 4ae™ 14 fetx)’

where, «,f are the shape parameters and A,0 are the scale parameters of the APD
with a, 3,1, 0>0.
The Probability Density Function (PDF) of APD from Eq.1 can be defined as:

X

09 = () - exp(— [ noe ).

< aret BOet ) (L4 a)(1+pe™)
L+ae™ 1+Be ) (1+B)(1+ aet)

)

The Reliability Function R(x) of the APD can be derived from the Eq.1 and Eq.2 and can be
written as:

(1t a)(1+Be ™)

RO = B+ ae) ®

The Cumulative Density Function (CDF) can be written as:

PDF
©
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Figure 2. PDF for some parameter values derived of APD.
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Figure 3. Hazard Rate for some parameter values derived of APD.
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Figures 2 and 3 respectively show some representations of the PDF and the Hazard of the APD.

3. Measures of central tendency

In this section, some essential statistical metrics of the APD are presented.

3.1. Quantile
The p — th quantile g, denoted by x of APD based on the Eq.4, can be obtained as:

B (1+a) (1 + [3679‘1)
-1 (5 sam) ©

As can be seen, Eq.5 does not have an analytical solution in closed form; therefore, it must be
estimated by numerical methods such as Newton-Raphson. Nevertheless, for some special cases, it

is possible to get some solutions.

3.1.1. Special cases of quantile function
WhenA =1, and 8 =1:
V4@ +a—tp+(p—1)F —4(p— 1)(@ +1a—1p)f+ (@+p)’+(-p+1)f—a—p
g =In
2a(p—1)(1+ )

(6)

Whena =0, and A =1
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Ge = — 7ln ((P;%) . ™)

Other special cases can be obtained in a similar way.

3.2. The skewness and kurtosis

Skewness and kurtosis can be measured based on the quantile functions obtained in the subsection
3.1.1 and determine the shape of the APD. For this case, Bowley’s expression Bowley (1920) and
Moors expression Moors (1988) for skewness and kurtosis are used, respectively, and can be
written as:

. Q(3/4)+Q(1/4) ~2-Q(1/2)

Y QB/4) - Q04 @
= QU7/8) +Q(3/8) — Q(5/8) — Q1/8) )
Q(6/8) — Q(2/8) '
3.3. Mode
The mode for APD can be obtained by solving the equation:
fix) =0
((a2(9 + /l)z(eb‘)2 +2a(6* 4+ 601 —12%) e + 02>/3e_9" + ar?et (ae — 1)) (1+a)
- =0.
(1+ae)’(1+ )

(10)

The Eq. 10 does not have an analytical solution in general, so as in section 3.1, the mode of APD
has to be estimated by numerical methods. The analytical solution can be estimated for some special
cases, such as those presented in section 3.1.1.

4. Order statistics

The k-out-of-n is a popular representation in reliability engineering, which applies to redundant
systems that handle information or perform critical processes (Kuo & Zuo, 2003). Let x;,x; . .. X,
a random sample from the APD with PDF. Thus, the PDF of the kth order statistic xy is given by:

1

Jien(x) = ”(Z:I)F(X)k_l(l — F(x))" " (x). (11)

By taking Eq. 2 and Eq. 4 and replace them in Eq. 11, the following is obtained:

ﬂm@)n<z—i)bCl+axl+ﬁf&»]k{ .

(1+B)(1 + ae¥)
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{(1 +0£)(1 +/3€_9"):| n—k
(1+B)(1 + aeh)

are BB\ (1+a)(l+ pe ™)
(1 a1 +/5e9J<) (1 +B)(1+ aet)

After performing some mathematical operations, Eq. 12 can be reduced as:
_ (n-1 k—1 ntit1—k
it =377 ) e o (F7 e, (13)

where h(x) and R(x) are the hazard function and reliability function of the APD. On the other
hand, to obtain the smallest (x;) and largest (x,) statistical order, it is necessary to set k = 1 and
k = n, respectively.

5. Moments, MGF and incomplete moments

This section describes the equations of moments, and the MGF for the APD formulated in Eq. 2.

5.1. Moments

The rth row moment of APD is given by:

E(x") = JOO rx"'R(x)dx.

_1’(1+0€) oorfl. 679x . ae/\x _lx
=13 Jox (1+pe ™) (1+ac™) d

By binomial and Taylor series expansion, we know that:

1+ae—bx E al —btx7

Therefore, applying the series expansions discussed above and applying algebraic reduction, the
rth Moment is written as:

_ ﬁ 91 ) o
E(x) = 1+;; 1;0 I(i+j+6), (14)

where I'(.) is the gamma function.

5.2. MGF
The MGF of X is given by:
My (t) = E(e")
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M0 = |

By series expansion, it is known that:

Finally, by substituting the obtained in Eq. 14, the MGF can be written as:

Auﬂzwuw)iiﬁpw%qu

155 T I(i+j+4€). (15)

ij,€,u=0

The characteristic function of the APD can be obtained with the same procedure followed by MGF.

itx __ oo (itx)"
Just, replace the expansion series for ¢ = 3 " ° 2=

5.3. Incomplete moments

One aspect to consider within lifetime models is the incomplete moments related to the Bonferroni
and Lorenz curves. The incomplete moments are defined as:

m,(t) = J;x’f(x)dx

o 1+oce“+1+[3e*9" ' (14 B)(1 + aelr)

dx.

_1+(X.thr.ﬁ[( )e)Lx_i_e] —Qx_i_‘xe)tx
1+ Jo (1+ aeh)?

Applying series expansion

l+a ' Ax —0x Ax
=15 Zr(;+ JO {Bla(1 + 0)e™ + 0]e™™ + ade™ Jdx.
By solving the above integral, we get

a =) MY [« Ty , .
WEEELE (io) +u1§ p { B+ OO NI | ooy, - ﬁ(et)]%},

(16)

where

y,=I(G+r+1,(0-21)r).
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y, =I(G+r+1,-61).

6. Residual and reversed lifetime function

The residual and reversed lifetime functions play an essential role in reliability analysis to under-
stand a device’s lifetime and failure time under an operational environment. The residual life can be
defined by the conditional random variable R, = X — ¢#|X>¢,¢ > 0 and represents the period from ¢
until the time of failure of the device. Mathematically, the residual life can be written as:

R(x+1t)

Based on Eq. 17 and by taking the Eq. 3, the residual lifetime of APD is given by:

B (1 +/_))e—9(x+t))(1 + (xe)tx)
Sr(nX = (14 aet0)(1 4 Be=bx) (18)

The reversed residual lifetime denoted by F; = t — X|X < t represents the time elapsed from the
failure of a component in the device given its life < t. The reversed residual life can be written as:
F(t —x)

SF(f)X = F(t) (19)

Based on Eq. 19 and by taking the Eq. 4, the reversed residual lifetime of APD is given by:

(B + a)e =9 — a(1 4+ B)e!=) + o — B) (1 + ae)

SeX == (1+ aett=2)(—B(1 + a)e ™ +a(1 + B)eM —a+f)

(20)

7. Entropy

Entropy is used in reliability to measure the uncertainty of the information obtained. In the case of
the APD, the entropy of Rényi (Rényi, 1961) has been investigated, which is defined as:

In(8) = ﬁ . logJO F(x)dx. 1)

By taking the Eq.2 and substituting in the Eq. 21, the Rényi Entropy for the APD can be
calculated as follows:

1 e pee N\ (1+a)(14pe ™))’
Ir(8) = ——-log . .
1-6 o (\1+ae” 148 %) (1+B)(1+ ael¥)
In the first instance, it is necessary to develop f (x)6. For this, we will use binomial and Taylor

series and we know that:

n

(a+b)" = Z =a" .

i=0
Therefore, by applying the previous series expansion, and in turn, those used in the section 5, the
f(x)° is reduced to the following term:
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f(x)‘s <1+/3> i i()( ) (1+u (“A)OJJ (91)"[5(‘“’”)( 8)6

i=0 j,p,u

(/\(]+€) p+u))x (22)

Taking the result obtained in Eq. 22, the Renyi entropy for the APD is:

In(8) = <1+ﬁ>8 26: i ( ) 0 (@) O i (i 20"

i=0 j€,p,u=0

1

ln{—MH_e) ! (23)

9(p+u)}

8. Time-varying and ALT modeling for APD

In this section, we consider two models that may be useful for reliability engineering practitioners to
determine the behavior of devices under real operating situations. Firstly, we establish an approach
to model the APD in a time-varying scenario. As the second model, we propose a life-stress
relationship where the APD and the Inverse Power Law (IPL) are combined to describe devices’
behavior through an ALT.

8.1. APD time-varying model

Let x(u) be a function that describes the behavior of the stress supplied to the device under analysis
during a time t. The PDF of the APD described in Eq.2 can be described as:

are PO N\ (1+a)(1+ e ?)
1+aeh 1 +/3€‘91'> (1)1 +aeh)

Fltx(t)) = ( 24

where y = J x(u)du and x(u) > 0.
0

Eq.24 is helpful in cases where the analysis is focused on obtaining the behavior of the device
in real operating environments. An example of this is presented in ELD, where the voltage
variations in the supply line can reduce the average lifetime and the device’s performance over
time.

8.2. APD-IPL modeling

The following proposed model is valid when accelerated experimentation data are obtained. ALTSs
are one of the most widely used techniques in the field of reliability to quickly obtain failure times by
accelerating some physical variable with which the device is affected.

The models that describe the behavior of the devices under an ALT are built through two
elements. One is the statistical distribution that describes the device’s behavior over time. The
statistical distribution that will be part of the life-stress model is the PDF of the APD
presented in Eq. 2, with the behavior of the data obtained from the ALT will be represented.
The second is a stress relationship that describes the device under a physical variable. The
relation selected for this case is the IPL, defined as an empirical model where the life of
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a device is linked to a certain level of an accelerated variable, which directly affects the
device’s life. Generally, the IPL is used in reliability analysis to determine the behavior of the
ED under an accelerated voltage variable, which directly affects the lifetime of the ED.
Mathematically, the IPL is defined as:
A= (25)
S

where ¢>0 represents the physical characteristics of the internal components with which the
device under analysis is built. w> 0 represents the stress level applied during the ALT. For the case
of determining reliability in ED, the most common stress is voltage. Parameter p>0 measures the
effects of stress on the analyzed device. The device’s lifetime is considerably affected if the value of p
is substantial.

Taking Eq.25 and substituting it in the shape parameters of the APD proposed in Eq.2, the PDF
of the APD-IPL stress-life relationship can be written as:

M
(1 + cw,,) (¢ + 1w (1 + pr)P(HwP) (((6+21)e™ + OswP) e + Agwrel)

. NG
cz(wP)z(qu + eMv) <c(1 + ;:up)w(]. + f;,,) ( P) + 1)

fAPDflPL (x) =

(26)

9. Maximum Likelihood Estimator (MLE)

An essential aspect of the APD is the estimation of the parameters («, 8, A, 8); for this, the MLE is
used.

Let X;,X; ... X,, a random sample from the lifetime distribution with PDF f(x) and based on
sample of size m. Then the likelihood function of Eq. 2 is written as follows:

[ H ake™ ﬁee—f’x (1+a)(1+ Be ™)
1+ a1 +Be %) (14 B)(1+ae) [
By taking the logarithm of the above equation, the log-likelihood function (A) becomes:

A=Z{1n< wle’ Bl ™ )} +mIn(1+a) — min(1 - )

— 1+ aeM 1+ et

m

+zm:1n[1+ﬁe* i Z 1—|—oce 27)
im1

By taking the first partial derivative of Eq. 27, the estimation for each parameter «, 3, A, and 0 can
be calculated as follows:

oA m . A et
e - ; 28
Oa 1 +(X+i21:<(1+06elxi)2h(xi) 1 +(xe/1x,) ( )

IA m —Gx[ e—exi
BT F +Z< 1 pe oy (,.)+1+/3e—9x1'>’ (29)

i=1
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0N Isfaei(we™ +Ax+1)  axe (30)
o = (14 aer)’h(x;) 1+ aet )’
oA zm: Be ¥ (Be ™ —bx;+1)  Pxie ™ (31)
00 £\ (4 pe i ihin) 1P )

where h(x;) is the hazard function of the APD presented in Eq.1.
The Fisher information matrix based on Eq.28 to Eq.31 is given by:
Toa Iaﬁ I Ing

Igy Igg Ipy I
d) = — Ba BB Lpr Lpo 32
/() La Dg Dy L (32)
Toa Tog gy Ioe

The elements of the fisher matrix are shown in Appendix A.
To obtain the confidence intervals, we based on the asymptotic normality of MLEs. The
100(1 — {)% confidence intervals for «, 5, A, andf are given by:

(4212 /rar(@). (33)

<f3 + 2,0 | var (/5)) . (34)

<;\ + 21,04/ var (i)) . (35)
(é 21, var(é)) , (36)

where, z,_,/, is the upper (p/2) percentile of the standard normal distribution.

10. Cases of study

In this section, the APD is tested in three case studies to highlight the importance of the proposed
distribution in the reliability analysis. For this, the APD is compared with other distributions that
can describe the behavior of the bathtub curve; the list of the compared distributions is shown in
Table 1. The MLE and the optimization method Newton-Raphson programmed in RStudio were
employed to estimate the parameters. The AIC, BIC, K-S, AD, CVM, and P-values were calculated
to derive the conclusions for each distribution.

Table 1. Bathtub shape distributions.

Model h(x)

Perks Distribution (PD) are™ (1 + ae"X)q

Additive Weibull (AWD) a1 4 exO

Alpha Power Transformation Weibull (APTW) In(a))\ﬁxﬁ‘1e"‘xﬂ (ae,,\xﬁ)*"
Modified Weibull Extension (MWE) /\B(ﬁ)ﬂqe(g)ﬁ

S-Z modified Weibull (SZMW) a+ !

Exponentiated Perks Distribution (EPD) ;;)mﬁ(wa)eﬂ(eMA)‘H

(1-+ae™)[(1+ae)f —af (e —1)°]
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Table 2. Aarset Data of 50 Devices for the case of Study 1.

DATA

0.1 0.2 1 1 1 1 1 2 3 6
7 1 12 18 18 18 18 18 21 32
36 40 45 46 47 50 55 60 63 63
67 67 67 67 72 75 79 82 82 83
84 84 84 85 85 85 85 85 86 86
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Figure 4. TTT-Plot for the Aarset data.

10.1. Case of study 1

For this case study, we will use the data obtained by Aarset (1987), which consists of the failure
times of 50 devices. Data are presented in Table 2 and the TTT (fitted and empirical) plot is
presented in Figure 4.

Table 3 shows the results of the parameters of each of the models compared against the APD,
their respective MLE’s, standard errors, the AIC, BIC, K-S, AD, CVM, and the P-value. The
conclusions of Table 3 show that the APD has a better performance in connection with AIC,
BIC, K-, AD, and CVM concerning the models that describe the failure rate in the form of a bathtub
curve presented in Table 1.

In Figure 5, the reliability plots are shown for each distribution under analysis for case
study 1. In Figure 5a, the shape of the PDF for the proposed distribution (APD) is shown; it
has a better fit to the histogram of the Aarset data compared to the models established in
Table 1. In Figure 5b the reliability graph is appreciated, where the models under analysis are
compared with the empirical reliability, the results of this Figure 5b show that the APD model
has a better approach to the empirical reliability for the data established in Table 2. This
approach implies that the APD model can better describe the behavior of the operating
lifetime of the device under analysis. Figure 5c¢ shows the shape of the failure times for the
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Figure 5. Reliability Plots for the Aarset Data of Case of Study 1.

Table 4. Meeker and Escobar Data of 30 Devices for the case of Study 2.

DATA

275 13 147 23 181 30 65 10 300 173
106 300 300 212 300 300 300 2 261 293
88 247 28 143 300 23 300 80 245 266

data presented in Table 2. This graph shows that the APD model approximates the bathtub
shape better than the other models for this study case.

On the other hand, it is observed that concerning the non-parametric curve, the curve drawn by
the APD is adjusted in a more significant number of points, so the description of the faults under
the APD may be better. Finally, the camulative hazard plot is shown in Figure 5d. For this case, the
APD also offers a better fit compared to the models in Table 1 and a good approximation of the
non-parametric curve.

10.2. Case of study 2

This case study is based on the data presented by Meeker et al. (2021). The data characteristics
consist of 30 devices from a large system field-tracking study. Table 4 presents the data from this
case study. In Figure 6, the TTT plot is shown, which empirically and theoretically defines the
behavior of the failure times of the data presented in Table 4.
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Figure 6. TTT-Plot for the Meeker & Escobar data Case Study 2.

Table 5 shows that the APD can be a better model for representing the failure times presented in
Table 4. This conclusion can be derived from the AIC, the BIC, K-S, AD, CVM and P-value criteria,
where the APD has good results indices of all distributions listed in Table 1.

In Figure 7, the reliability graphs of the behavior of the data for the case of study 2 are
appreciated. Figure 7a shows the behavior of the PDF of case 2. In this case, it can be seen that
the APD has a shape where not all the histogram points. Nevertheless, the shape of the APD has
a better adjustment than the other models. Figure 7b shows the behavior of the reliability of the case
2 data. The evidence shows that the APD touches the line drawn by the Kaplan-Meier method in
a more significant number of points, which indicates that the APD will more closely describe the
behavior of the device under analysis.

On the other hand, we can observe that the other models under analysis are far from the line of
empirical reliability; this can directly affect the calculation of the warranty times and the MTTF in
the device. Figure 7c shows the behavior of the failure times of the data from case study 2
concerning each of the models under analysis. As can be seen, the APD shows behavior that closely
resembles the shape of a bathtub curve and touches more points in the non-parametric risk
function. Likewise, the other distributions under analysis show behavior that does not resemble
a bathtub curve, which affects the estimation of the device’s behavior under analysis. Figure 7d
shows the behavior of the cumulative hazard plot; as can be seen, the APD fits better with the non-
parametric curve established for the data of case study 2. The above indicates that the APD is a good
choice for describing failure times compared to the other models under review.

10.3. Case of study 3

This case study is represented by the failure times of 18 ELD presented by Wang (2000); the failure
times mentioned above can be seen in Table 6. Figure 8 shows the behavior (empirical and
theoretical) of the TTT plot for the data presented in Table 6.

Estimated values for Case of Study 3, are presented in Table 7.
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Figure 7. Reliability Plots for the Aarset Data of Case of Study 1.

Table 6. Wang Data of 18 ELD for the case of Study 3.

Data
5 1 21 31 46 75 98 122 145
165 196 224 245 293 321 330 350 420

Table 7 shows the data from case study 3. The APD is a better option for describing failure times
based on the AIC, BIC, K-S, AD CVM, and P-value criteria, in which the APD has the best indices
for all distributions under analysis.

Figure 9 shows the graphs of the reliability behavior for the data of case study 3. Figure 9a shows the
behavior of the PDF for all the distributions analyzed with the data presented in Table 6. As can be
seen, the PDF of the APD touches on more points than the histogram of the data representation in
Table 6. Figure 9b shows the reliability graph for the data from case study 3. The results of Figure 9b
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Figure 8. TTT-Plot for the Wang data Case Study 3.

show that the APD reliability fits slightly better than the reliability line established by the Kaplan-Meier
method. Figure 9c shows the behavior of the failure times for the case of study 3. From this figure, it is
noted that the APD has similar behavior to the bathtub curve. In contrast, the other models proposed
in the analysis do not have a non-monotonic behavior. Only the AWD model comes slightly closer to
behavior in the shape of a bathtub curve. Finally, as shown in Figure 9d, the APD fits the non-
parametric representation better, which is taken as the basis for understanding the behavior of the data.
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Figure 9. Reliability Plots for the Aarset Data of Case of Study 1.
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As a conclusion of this case study, we can establish the flexibility of the APD since, within the
description of the failure times presented in Figure 9c, it was the one that obtained the best behavior
and representation of the bathtub curve. The above indicates that the APD can be used for different
data types from reliability tests.

10.4. Discussion of results

The results show that the APD may be the best option to describe the behavior of failure times in
each of the analyzed case studies. In all cases, the APD showed behaviors similar to the bathtub
curve. This advantage offered by the APD to practitioners of reliability analysis allows them to
calculate maintenance times more precise and closer to the reality of the device under analysis, the
MTTF, and the development of a plan to improve product quality. Therefore, based on the evidence
shown in the case studies, practitioners could be inclined to select the APD concerning some
classical or hybrid distribution described in the literature review since, in some cases, the distribu-
tions are put under analysis despite having the bathtub curve property. These distributions did not
represent such behavior in the hazard plot, so the information was biased, which means that the
behavior of the data was not completely described as in the case of the bathtub curve. From the
manufacturing point of view, the loss of information mentioned above can be vital for the increase
or not of manufacturing costs; this is due to incorrect planning of the number of devices that fail
before fulfilling the warranty. Therefore, the distribution with which the reliability analysis is
carried out must be the most faithful to the design and characteristics of the product.

On the other hand, the implementation of APD is similar to any classical distribution used in
reliability analysis. Therefore, adjusting the failure times to the APD will depend on the design of
the experiment with which the failure times are obtained, whether accelerated or not, and on the
device’s physical characteristics under analysis. In turn, given the flexibility of the APD parameters,
it allows reliability engineering practitioners to test any device, whether or not the failure times have
non-monotonic behavior. This flexibility makes the APD a quite versatile distribution when
representing the behavior of a device or system.

11. Conclusion and future scope

This paper presented the APD for reliability analysis, which has two-shape and two-scale para-
meters. The proposed distribution was based on the sum of the positive and negative risk functions
of the Perks distribution. One of the most notable characteristics of the APD is the flexibility to
represent failure times in a non-monotonic way. Statistical properties such as measures of central
tendency, order statistics, and the function of moments were developed. On the other hand, to make
APD more attractive to reliability engineering practitioners, time-varying modeling was presented;
the APD in time-varying can be used to determine the reliability of devices closer to real conditions.
At the same time, the APD-IPL modeling is presented and is useful when the experimental data
comes from an ALT. The parameters of APD were calculated via MLE; for this, an R code was
developed. Three case studies were analyzed to verify the proposed distribution, and the results
were compared against other distributions with similar properties to the APD. The case studies
focused on failure times with bathtub curve characteristics. The results showed that the APD is
a competitive model to represent failure times with a bathtub curve. Finally, the APD proved to be
a flexible model since in the three study cases presented; it was the one that obtained the best
bathtub curve representations in comparison with the models presented in Table 1.

A Bayesian analysis may be considered for future research to estimate the APD parameters. In
turn, given the flexibility of the APD, it can be mixed with other distributions to obtain a more
robust model. Finally, developing other life-stress models can be considered for analyzing different
stress variables used in ALT.
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Appendix
Appendix A. OBSERVED FISHER MATRIX ELEMENTS

In this section, the elements of the Fisher Matrix presented in Eq.32 are detailed.
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