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Abstract: Currently, there are two procedures to determine
the basis weight in papermaking processes: the measure-
ments made by the quality control laboratory or the mea-
surements made by the quality control system. This re-
search presents an alternative to estimating basis weight-
based artificial neural network (ANN) modeling. The NN
architecture was constructed by trial and error, obtaining
the best results using two hidden layers with 48 and 12
neurons, respectively, in addition to the input and out-
put layers. Mean absolute error and mean absolute per-
centage error was used for the loss and metric functions,
respectively. Python was used in the training, validation,
and testing process. The results indicate that the model
can reasonably determine the basis weight given the in-
dependent variables analyzed here. The R2 reached by the
model was 94%, andMAE was 12.40 grams/m2. Using the
same dataset, the fine tree regression model showed an
R2 of 99% and an MAE of 3.35 grams/m2. Additionally,
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a dataset not included in the building process was used
to validate the method’s performance. The results showed
that ANN-based modeling has a higher predictive capabil-
ity than the regression tree model. Therefore, this model
was embedded in a graphic user interface that was devel-
oped in Python.

Keywords: artificial neural network model; data science;
graphic user interface; hyperparameters; papermaking.

Introduction
It is a standard practice to take measurements of prod-
uct characteristics, either of a variable or attribute type, to
study specific processes by changing variables suspected
of contributing to the process variation. The resulting data
are then analyzed in a certain way to determine if the
changes occurred in these variables have had a signifi-
cant effect either scientifically or economically (Kim et al.
2019). The papermaking processes are no exception since
these processes havemultiple variables that affect product
quality, such as basis weight, caliper, moisture content,
ash content, and fiber orientation (Merbold et al. 2016), to
mention a few. In addition, whiteness is an essential prop-
erty of coated paper (Tarasov et al. 2018). Therefore, it is
vital to monitor these variables to identify the significant
differences in reducing process or product variation and
successfully improving product quality.

The traditional control chart technique has been
widely used in different industries (Dudek-Burlikowska
2005, Camargo et al. 2010, Shamsuzzaman et al. 2015,
Zhiyuan and Jinsheng 2015, Zaman et al. 2020, Rodríguez-
Álvarez et al. 2021). Although, the fuzzy set theory pro-
posed by (Zadeh 1965) has also been employed for at least
three decades to develop control charts based on this the-
ory (Chang and Aw 1996, Cheng 2005, Gülbay and Kahra-
man 2006, Gülbay and Kahraman 2007, Kaya and Kahra-
man 2011, Shu and Wu 2011). However, these approaches
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do not relate the operating conditions to the output vari-
ables (quality characteristics). This aspect is one of their
maindisadvantages. Toovercome this problem, regression
models are tools that relate input to output variables and
havebeenwidelyused for predictive andprocess optimiza-
tion purposes in the pulp andpaper industry. For instance,
(Adamopoulos et al. 2016) presented apredictivemodel for
the mechanical properties of corrugated base papers from
fiber and physical property data using multiple linear re-
gression andartificial neural networks. (Kilulya et al. 2015)
used a partial least squares (PLS) regressionmodel to eval-
uate the effects and influence of the lipophilic extractive
residues on quality parameters of dissolving pulp. Their
findings indicate that sterols, fatty alcohol, and saturated
and unsaturated fatty acids significantly influenced/af-
fected viscosity, kappa number, and carbohydrates in the
pulp. Meanwhile, (Marklund et al. 1998) modeled the in-
fluence of fiber properties on strength parameters for soft-
wood kraft made from 20 different wood samples by us-
ingmultivariate data analysis and the partial least squares
method. Recently, (Rodriguez-Alvarez et al. 2021) used a re-
gression tree model and experimental designs to find op-
timal operating conditions in the papermaking machine’s
complex rodsizer and spooner section.

On the other hand, neural network models have
demonstrated almost the same or more predictive capabil-
ity than traditional techniques (Costela and Castro-Torres
2020, Mahmoud Ali et al. 2021, Mohammadi et al. 2021,
Saha et al. 2021, Shamset al. 2021).However, this approach
has not been widely investigated to determine quality
characteristics in papermaking processes.

ABB and Honeywell (companies dedicated to the sale
of technology solutions for the pulp and paper industry)
contribute to solutions based on data analysis oriented to
the optimization and control of processes in various indus-
tries like the pulp and paper industry. For example, ABB is
a leader in the papermakingmarket by offering innovative
products for paper quality measurements, ranging from
in-line scanning to test laboratories (ABB 2021). Among its
robust solutions is a quality management system through
its Quality Control System (QCS), while Honeywell offers a
similar product with its Quality Control System 4.0 (HON-
EYWELL 2021).

The QCS is reliable for monitoring variables for qual-
ity assurance purposes. It keeps the output variables (base
weight, caliper, and moisture content mainly) under con-
trol since the values of the input variables (process) are
being controlled at all times. However, one of the signif-
icant disadvantages of these control systems is the self-
calibration process since, at time intervals defined by the

supplier or process characteristics. The systemhas to goof-
fline to perform the self-calibration and maintenance pro-
cess. During this time, the system is offline, and many lin-
ear meters (depending on the speed of the machine) may
not bewithin specification. Thus, leave the control inman-
ual mode and loss visibility of the behavior of the output
variables.

Currently, ABB offers a solution for monitoring ba-
sis weight by virtually measuring this variable of the pa-
per. If the QCS is offline, their approach helps operators
keep the basis weight properties with the target by creat-
ing an initial static conditional weight model using histor-
ical data and thus establishing an initial expectation of the
accuracy of the calculated basis weight. If the accuracy of
the initial model is acceptable, then the computed basis
weight measurement is implemented online through their
platform called ABB AbilityTM. However, this solution is
intended for output variable monitoring purposes while
theQCS is offline and is not intended for experimental pur-
poses.

Machine learning techniques are widely used inmany
industrial applications (Morala et al. 2021) including ex-
perimental designs (Mezgár et al. 1997, Wong et al. 2018,
Heinisch et al. 2021, Moreira et al. 2021). In addition, sev-
eral authors have workedwith interactive user tools called
soft sensors (Chang and Li 2021, Kamyar et al. 2021, Niño-
Adan et al. 2021, Zeng andGe 2021),which are employed as
tools for visualization of output data from the developed
models. However, there is no evidence of the development
of such interactive tools to determine basis weight in pa-
permaking processes.

Since there are only two approaches to determin-
ing basis weight in papermaking processes, this research
presents anoveltymodel basedondata science techniques
to estimate basis weight as an alternative to the current
methods. In addition, the model will be embedded in a
user interface so that the user will interact by entering in-
put variables values (process variables) to calculate with
reasonable accuracy the basis weight value (output vari-
able). Hence, the proposedmethod is an excellent alterna-
tive to the existing ones. Furthermore, the model could be
used to perform experimental designs to find optimal op-
erating conditions.

This paper is organized as follows: the next section
presents a brief review of neural network architectures, in-
cluding the common hyperparameters used to develop a
model based on the neural networks approach. Following
section presents the methodology, which corresponds to
thephases of a typical data scienceproject. Finally, the last
two sections include the results and conclusions.
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Neural networks architectures:
A brief review

For a few decades, artificial neural networks have consti-
tuted one of the essential computational intelligence tools
used in a wide variety of problems (Haykin 2004).

Two of the essential criteria in building up a neural
system model are network architecture and parameter se-
lection. The interconnections between the neurons in an
artificial neural network define its architecture. The neural
systems are intense nonlinear signal processors; however,
the results are regularly a longway from satisfactory (Rosli
et al. 2016). So, the number and type of neuron connectiv-
ity and the activation function are essential parameters,
and their selection is a determinant of producing a good
network for any case study (Karamichailidou et al. 2021).

Several neural systems architectures are available
in the literature (Dayhoff 1990, Karayiannis and Venet-
sanopoulos 1992, Fausett 2006, Teuscher 2012). In the
present work, we describe in detail the two most com-
mon architectures: the multilayer perceptron neural net-
work (MLP-NN) and radial basis function neural network
(RBF-NN), and, briefly, the generalized regression neural
network (GR-NN) and Elman neural network (Elman-NN).

Multilayer perceptron neural network

One of the most well-known architecture researchers has
used themultilayer perceptron (MLP). This architecture in-
cludes the input layer, hidden layer(s), and output layer.
The architecture is shown in Figure 1.

This approach is essentially a combination of neu-
rons, biases assigned to neurons, interconnections among
them, andweights assigned to these interconnections. The
learning process is performed according to input and tar-
get data sets and training algorithms (Hashemi Fath et al.
2020).

Figure 1: The architecture of MLP-NN (taken from Rosli et al. 2016).

Mathematically, a neuron K can be defined via the fol-
lowing equations:

yk = f (μk + bk) (1)

μk =
N
∑
i=1

wkixi (2)

where x1, x2, x3, . . . , xn denote the input signals, are the
connection weights of the neuron, μk is the linear output
of the linear combination amongweighted inputs,bk is the
bias term, is the activation function, and yk is the output
signal of the neuron.

The multilayer perceptron is trained based on the
backpropagation algorithm, which follows a learning pro-
cedure based on the error-correction rule. By comparing
the target values and the network’s output, the error value
is calculated. Afterward, the weights and biases are ad-
justed to minimize the error, and the training process con-
tinues until the network reaches a predefined minimum
allowable error. The error function typically used is the
mean square error (MSE) (Hashemi Fath et al. 2020). Still,
in the presence ofmany outliers in the training set, it is rec-
ommended to use the mean absolute error (MAE) (Géron
2019).

Radial basis function neural network

The radial basis function is widely used by many re-
searchers in various sciences, mainly as function approx-
imation and pattern classification (Moody and Darken
1989, Poechmuelloer et al. 1994, Nabney 1999, Fu and
Wang 2003). This network is accessible to train, design,
and robust tolerance to input noise (Hashemi Fath et al.
2020, Rosli et al. 2016).

This neural network architecture comprises an input
layer, a hidden layer, and an output layer. The input layer
serves only as an input distributor to the hidden layer. The
hidden layer contains radial basis functions, and the out-
put layer generates the network output by linearly com-
bining the outcomes of the hidden neurons (Hashemi Fath
et al. 2020). The architecture is shown in Figure 2.

The formulation of a radial basis function neural net-
work is as follows:

yi(x) =
k
∑
i=1

wij0(
""""x − Cj
"""") (3)

This parameter is a multidimensional radial basis
function describing the difference between an input vector
and a predefined center vector, where x is the input vector,
yi is the network’s ith output, K is the number of neurons
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Figure 2: The architecture of RBF-NN (taken from Rosli et al. 2016).

in the hidden layer, Cj denotes the center of the jth hid-
den neuron, wij represents the weight of the link from the
jth neuron in the hidden layer to the ith neuron in the out-
put layer, and ‖.‖ is the Euclidian norm. 0 is the radial basis
function used in the neurons of the hidden layer. Themost
commonapplications in the literature refer to theGaussian
Function, which is defined as follows:

0 (""""x − Cj
"""") = e

(
"""""x−Cj"""""2
2σ2j
)

(4)

where σi is the width of the jht hidden neuron, finding the
centers, widths, and the weights connecting hidden neu-
rons to the output is the key to constructing and training
the radial basis function neural network.

Generalized regression and Elman networks

Other types of neural network architectures are general-
ized regression and Elman neural networks. The general-
ized neural network has seldom been employed for ad-
dressing nonlinear process monitoring issues (Lan et al.
2020). However, due to its strong nonlinear mapping
capability, simplicity of the structure, and high robust-
ness, the generalized regression neural network has been
demonstrated to be a powerful tool for nonlinear super-
vised learning (Baruník and Křehlík 2016). Furthermore,
it can be trained to estimate the behavior of complex sys-
temswith a non-parametric technique (Antanasijević et al.
2015). This approach is treated as normalized (Konate et al.
2015) and belongs to radial basis function neural net-
works. Still, it can quickly perform fast learning and cov-
erage to the optimal regression surface (Specht 1991), even
when the number of training samples is limited (Amiri
et al. 2010).

The generalized regression neural network architec-
ture consists of four layers: the input, hidden, summation,

and output layers, respectively. The process from the orig-
inating neurons is multiplied by their weights at each hid-
den neuron (Rosli et al. 2016). The weights are added with
a bias to increment or decrement the input into the activa-
tion function defined (Rooki 2016).

Finally, the Elman neural network proposed by (El-
man 1990) is a kind of feedforward neural network which
is especially suitable for time series prediction. This ap-
proach better predicts performance because it has a load-
bearing layer that other neural networks do not have. One
of its main advantages is this approach can be regarded as
a recurrent neural network with a local memory unit and
local feedback connection (Zhao et al. 2020).

TheElmanneural network architecture consists of two
layers. A feedback connection is formedby feeding the out-
put of the hidden layer back to the input layer, referred to
as the context layer. A feedback loop with a single delay
stores the information and retains thememory (Sundaram
et al. 2016). Its structure is made simple, and the input pa-
rameters are minimized, thereby shortening the training
time (Sun et al. 2015).

Neural networks hyperparameters

As it is well-known, multilayer perceptron can be used for
regression tasks. If it is necessary to predict a single value,
then need a single output neuron; thus, the output is the
predicted value. When building an MLP for regression, it
is unnecessary to use an activation function for the out-
put neurons, so they are free to output any range of values.
However, if it is required to guarantee that the output will
always be positive, then the rectified linear unit activation
function can be used (Géron 2019).

There are many hyperparameters when a neural net-
work is designed. For instance, in a simple MLP, the num-
ber of layers, the number of neurons per layer, the type of
activation function to use in each layer, the weight initial-
ization logic, andmuchmore can change.Hyperparameter
tuning is still an active area of research. Recently, (Jader-
berg et al. 2017) have worked on this topic.

For the number of hidden layers, a common practice
is selecting a single hidden layer for many problems. It
has been shown that an MLP with just one hidden layer
can model even the most complex functions, provided it
has enough neurons. These facts convinced researchers
that there was no need to investigate deeper neural net-
works for a long time. However, deep networks have a
much higher parameter efficiency. It is better to start with
just one or twohidden layers for someproblems, and itwill
work just fine (Géron 2019).
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The input type determines the number of neurons per
hidden layer and output required. A common practice is
to form a pyramid, with fewer and fewer neurons at each
layer, the rationale being that many low-level features can
coalesce into far fewer high-level features. As for the num-
ber of layers, users can increase the number of neurons
until the network starts overfitting. The user will get more
bang for the buck by increasing the number of layers than
the number of neurons per layer. Unfortunately, the per-
fect number of neurons is still somehow a dark art.

The learning rate is arguably one of the most critical
hyperparameters. The optimal learning rate is about half
of the maximum learning rate. So a simple approach for
tuning the learning rate is to start with a large value that
makes the training algorithm diverge, divide this value by
three, try again, and repeat until the training algorithm
stops diverging.

Training a vast deep neural network can be painfully
slow. So, choosing a better optimizer is also vital to deal
with this possible problem. Fourways to speed up training
are common:
– Applying a good initialization strategy for the connec-

tion weights.
– Using a good activation function.
– Batch normalization.
– Reusing parts of a pre-trained network.

However, another considerable speed boost comes from
using a faster optimizer. The most used in practice are
momentum optimization, Nesterov accelerated gradient,
AdaGrad, RMSProp, and Adam and Nadam optimization
(Géron 2019).

Another hyperparameter is the batch size, which sig-
nificantly affects the model’s performance and training
time. In general, the optimal batch size will be lower than
32. A small batch size ensures that each training iteration
is very fast, and although a large batch sizewill give amore
precise estimate of the gradients. A commonpractice is the
use of a batch size greater than 10.

An issue related to training iterations does not need to
be tweaked: use early stopping instead.

Finally, it has beenwell recognized that the type of ac-
tivation functions plays a crucial role in themulti-stability
analysis of the neural network. Different activation func-
tions might lead to other equilibrium points and different
dynamical behaviors of neural networks (Nie et al. 2019).
The common activation functions available are relu (recti-
fied linear unit), sigmoid, softmax, softplus, softsign, tanh
(hyperbolic tangent), selu (scaled exponential linear unit),
elu (exponential linear unit), and exponential.

Many practical recommendations for deep networks
are presented by (Bengio 2012).

Methodology

For developing the interactive soft sensor, the present
study will follow a data science project’s typical process:
framing the problem, collecting raw data, processing the
data, exploring the data, performing in-depth analysis,
and communicating the results.

Problem statement

Beyond the methods used by the quality control labora-
tory and the quality control system (QCS) measurements
available on the market, there are no alternatives to deter-
mine the basisweight of the paper in thepapermakingpro-
cesses. So, in the present research, we intend to develop a
novelty model based on data science techniques to deter-
mine the basis weight in papermaking processes. In addi-
tion, a graphical user interface will be designed so that the
user can interact by entering values of the input variables
(process variables) and calculate with acceptable preci-
sion the value of the basis weight (output variable).

Data collection

The most common output variables monitored in paper-
making machines are the basis weight, caliper, and mois-
ture content. These variables are automatically monitored
through a scanner. Basis weight and moisture content are
included in the database (Raunio and Ritala 2018).

The database was collected on a 6-meter wide paper-
makingmachinewhich contains three forming tables (top,
middle, and back). This papermaking machine works all
year round, shutting down only when there is scheduled
maintenance or a process problem. The dataset includes
the independent variablesmonitored in the process,main-
taining under control and specification the basis weight
variable.

The complete dataset is a matrix of 342,501 rows by 25
columns. This dataset was extracted from the server that
stores historical data covering a period from 01 January
to 30 August, 2019. This period includes all paper grades
(paper basis weight) that aremanufactured in the process.
The dataset was the readings taken by sensors at 1-minute
time intervals in this period. The readings correspond to
themain factors affecting the paper’s basis weight (depen-
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dent variable, y): flow rates, consistencies, storage tank
levels, output pressures, lip angle, andmachine speed (de-
pendent variables, x’s).

Data processing

A first data cleaning operation was performed in Excel to
eliminate all those data and variables that do not affect the
basis weight of the paper. From the original dataset, a total
of eighteen columns were removed.

As mentioned above, in this study, twenty-five were
defined. One variable corresponds to the basis weight
(dependent variable). The remaining twenty-four are dis-
tributed in six categories: flows, consistencies, pressures,
levels, machine speeds, and lip position, corresponding
to the independent variables. These categories are high-
lighted in bold for each independent variable in Table 1.

A second data cleaning operationwas carried outwith
Excel to remove all data readings with no logic included.
First, all negative and zeros values were removed because
the process studied does not produce thin paper grades
(basis weight). Only readings equal to or greater than a

Table 1: Parameters of each independent variable.

Variable Name Mean SD Min Max

Pulp Flow at Machine Top 2268.4 683.9 100.1 4012.3
Consistency at Machine Top 4.1 0.5 2.0 5.1
Consistency at Tank Top 4.0 0.7 2.3 5.1
Output Pressure at Machine Top 2.2 0.2 0.0 3.0
Level Top 97.0 2.5 24.6 101.3
Pulp Flow at Machine Middle 5281.0 783.0 143.7 7252.4
Consistency at Machine Middle 3.8 0.3 2.0 5.1
Consistency at TankMiddle 3.6 0.3 2.4 4.6
Output Pressure at Machine
Middle

2.2 0.0 0.5 2.4

LevelMiddle 91.7 1.7 34.8 94.8
Pulp Flow at Machine Back 2611.1 314.0 105.3 3610.2
Consistency at Machine Back 2.9 0.6 1.8 4.6
Consistency at Tank Back 3.8 0.2 1.8 4.6
Output Pressure at Machine
Back

1.6 0.3 0.1 3.1

Level Back 93.4 1.2 27.3 96.2
Machine Speed Top 406.9 101.2 135.2 590.5
Machine Speed Middle 407.0 101.2 59.5 590.9
Machine Speed Back 406.3 101.1 136.8 589.7
Horizontal Lip Position Top 27.7 4.1 9.6 36.2
Vertical Lip Position Top 78.4 2.8 72.2 83.0
Horizontal Lip PositionMiddle 28.2 3.5 18.7 35.2
Vertical Lip PositionMiddle 20.7 3.6 14.3 28.8
Horizontal Lip Position Back 28.7 3.3 17.0 36.8
Vertical Lip Position Back 57.9 3.3 50.9 63.2

basis weight of 100 grams (dependent variable) are in-
cluded. Finally, becausebasisweight is determinedmainly
bymachine speed, only data readings obtained equal to or
greater than 50 meters per minute were included.

Explore the data

In the presence of null data, thesewill be imputedwith the
average value of each column (variable) that has shown at
least one null data (rows).

As an ideal tool for machine learning developments,
the TensorFlow library (included in Python programming
language) will be checked to identify a model capable of
determining the basis weight of the paper with reasonable
accuracy.

Perform in-depth analysis

In this research, the artificial neural network (ann) ap-
proach will be used to identify the model with good ac-
curacy (at least an R2 of 90%). At a minimum, the ann
network architecture comprises hidden layers, neurons,
and activation functions (Rosli et al. 2016). The multilayer
perceptron (MLP) system was a typical, well-known net-
work architecture. MLP is one of most analysts’ favored
neural system topologies of most analysts (Sharma et al.
2015). These networks are essentially a combination of
neurons, biases assigned to neurons, interconnections or
links among them, and weights assigned to these inter-
connections. The learning process is performed accord-
ing to input and target data sets and training algorithms
(Hashemi Fath et al. 2020).

Since themultilayer perceptron (MLP) is simpler to de-
sign and faster to train, the knowledge is already spread
well throughout different scientific communities (Canário
et al. 2020). In addition, its straightforwardness and capa-
bility to predict precisely for a regression scenario; there-
fore, in the present research, the multilayer perceptron
was selected as a baseline over other advanced strategies.

Firstly, themultilayer perceptron will be developed by
following the sequential model. This model is one of the
most straightforward neural network models composed
of a single stack of layers connected sequentially (Géron
2019). Each layer will be of a Dense type; they will be fully
connected layers. A typical architecture of a regression
MLP to be used in this research is summarized in Table 2
(Géron 2019).

Therefore, in the present research, the trial and error
strategy follows any path according to the hyperparame-
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Table 2: Typical Regression MLP Architecture.

Hyperparameter Typical Value

# input neurons One per input feature.
# hidden layers Depends on the problem. Typically 1 to 5.
# neurons per hidden
layer

Depends on the problem. Typically 10 to
100.

# output neurons 1 per prediction dimension
Hidden activation ReLU (o SeLU).
Output activation None or ReLU/Softplus (if positive outputs)

or Logistic/Tanh (if bounded outputs).
Loss function MSE or MAE

ters and typical values summarized inTable 2. This process
is applied until reach the desired results.

Gather thenumber of neuronsperhidden layer; a com-
mon practice is to size them by forming a pyramid. How-
ever, a rhombus shape is proposed in the present work.
Thus, the input data shape is a 24-dimensional vector with
a 48-dimensional output vector. The next layer has a 12-
dimensional output vector, and finally, the 1-dimensional
output vector corresponds to the response value. The rec-
tified linear unit activation function (relu) will be used for
each layer to guarantee that the output will always be pos-
itive.

The RMSProp will be used as an optimizer learning
rate. The main gist of this algorithm is to maintain a mov-
ing (discounted) average of the square of gradients and di-
vide the gradient by the root of this average (Hinton et al.
2012). The mean absolute error (MAE) and mean absolute
percentage error (MAPE) is considered themost proper for
the loss and metric functions. In addition, the mean abso-
lute error (MAE), the root mean square error (RMSE), and
the explained variance score (R2) would be calculated to
evaluate performance in thebuildingprocess of themodel.
A batch size of 32 will be used in the present work.

Related to the training iterations (epochs) and trying
to find an inflection point, 1000 epochs will be used for
the trainingprocess. Finally, to validate themethodperfor-
mance, a largedataset not included in thebuildingprocess
of the proposed model will be used.

The neural network model for determining the basis
weight in papermaking processes and the performance
evaluation of the model will be carried out in Python 3.8.5
programming language by using the TensorFlow 2.0 li-
brary.

The Matlab regression learner app will be used to ex-
plore alternative models for predicting basis weight with
acceptable accuracy. The same dataset used in the build-
ing process of the artificial neural network model will be
used in the building process of the alternative model. The

used criteria to select the bestmodelwill be basedonmean
absolute error (MAE), mean square error (MSE), and the
root mean square error (RMSE).

Communicate results

Since the neural network model developed is intended to
be an alternative tool to determine the basis weight in pa-
permaking processes. Therefore, a graphic user interface
(GUI) was designed and developed in Python 3.8.5 using
the streamlit app to enter the input variables data. Then,
the user can know the basis weight for any paper grade
with reasonable accuracy.

An overall scheme of the proposedmethodology to de-
velop an interactive soft sensor based on an artificial neu-
ral network model is shown in Figure 3.

Results

Using the collected data as described above, this section
presents the model and graphic user interface develop-
ment results.Until now, there is no evidenceofmodels that
can be used as alternatives to determine the basis weight
of the paper in the papermaking processes.

Model development

The model development follows the typical data science
process. The dataset collected included all paper grades,
so the period was adequate to develop a robust model. Af-
ter the cleaningprocesswas applied to thedataset, the size
of the resulting matrix was 215,103 rows by 25 columns.
These twenty-five columns include the twenty-four inde-
pendent variables corresponding to each physical input
feature that must be monitored. In addition, one column
corresponds to the physical output feature. In the actual
papermaking process, all the physical input features pre-
sented here must bemonitored by engineers to control the
basis weight of the paper at the end of the process. Table 1
shows each independent variable’s mean, standard devi-
ation, minimum, and maximum values. However, the set
point for each variable changes as a function of the paper
grade to be manufactured. The typical paper grades man-
ufactured go from 180 to 320 grams/m2. In addition, other
weighted paper grades as 440 grams/m2 can be manufac-
tured.

Fifteen percent of the datasetwas extracted to perform
different analyses with the proposed model, so these data
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Figure 3: Proposed methodology to develop an interactive soft sensor based on an artificial neural network model.

were not included in the training, validation, and testing
process. Thus, the size of the resulting array was 182,834
rows by 25 columns.

The independent variables that showed the presence
of null data were: consistency of output at machine head
top, consistency of output in mixing tank top, consistency
of output at machine head middle, consistency of output
in mixing tank middle, consistency of output at machine
head back, and consistency of output inmixing tank back.

These null data were imputed with the following average
values: 4.12, 4.00, 3.84, 3.60, 2.92, and 3.80.

After the cleaning process, the whole dataset was seg-
regated into two arrays. An input array size of 164,550 rows
by 25 columns was used in the training and validation
process, while an input array size of 18,284 rows by 25
columns was used in the test process.

Althoughall the parameters are defined in the training
process addition, it is essential to pass a validation pro-
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Figure 4: Training summary for the model loss level.

cess. For this purpose, fifteen percent was used from the
input array size of 164,550. Measuring the loss function on
this set at the end of each epoch helps see how well the
model performs.When the performance on the training set
is better than on the validation set, the model is probably
overfitting the training set. If you can see that the loss func-
tionwent down after 50 epochs (Géron 2019), this is a good
sign. This research does not seem to be much overfitting,
as shown in Figure 4.

However, suppose the results are not satisfiedwith the
expected performance of the model. In that case, it is nec-
essary to go back and tune the model’s hyperparameters
related to the number of layers, the number of neurons per
layer, the types of used activation functions for each hid-
den layer, the number of training epochs, and the batch
size by following alternative paths according to Table 2.
Since the interest in this research is to find an accuracy
model capable of explaining at least 90% of the variabil-
ity; therefore, this criterion was used to define the hyper-
parameters combinations in the training and validation
process.

When the training and validation process has reached
the desired accuracy, it is necessary to evaluate a test set
to estimate the generalization error before any model de-
ployment to production. Notice that it is common to get
slightly lower performance on the test set than on the val-
idation set because the hyperparameters are tuned on the
training and validation set, not for the test set.

The best-found architecture and structure of the neu-
ral network are shown in Table 3. By following the above-
described method, the activation functions and the num-
ber of neurons per layer were moved by trial and error for
the neural network architecture design. Notice that this
method could be tedious.

Using the loss and metric functions described above,
a learning rate of 0.001 for the RMSprop optimizer, a batch
size of 32, and 1,000 epochs, the resulting mean abso-
lute error (MAE) were 12.40 grams/m2. Meanwhile, the ex-
plained variance score (R2) was 94%. Figure 4 shows a
training summary for themodel loss level.Meanwhile, Fig-
ure 5 is shown the predicted vs. test data to evaluate the
model performance in the building process of the model.
Figure 6 shows indetail thepredicted vs. test data for a ran-
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Figure 5:Model performance: predicted vs. test data.

Table 3: Neural Network Model Architecture.

Model: “sequential”
Layer (type) Output Shape Param #

dense (Dense) (None, 48) 1,200
dense_1 (Dense) (None, 12) 588
dense_2 (Dense) (None, 1) 13
Total params: 1,801
Trainable params: 1,801
Non-trainable params: 0

dom range selected from 12000 to 12200. The results show
that the model developed can determine the basis weight
as an alternative to the quality control laboratory and the
measurements made by the quality control system (QCS)
available on the market.

Notice that themodelingprocess includes all indepen-
dent variables monitored by the engineers in operation to
control the dependent variable (basisweight). Because the
primary purpose of this research is to offer an alternative
method to estimate basis weight by using the soft sensor,
any feature selection was not included.

The same input array size of 164,550 rows by 25
columns was used in the training and validation process
to develop the best regression model, while an input ar-
ray size of 18,284 rows by 25 columns was used in the test
process. After the training and validation process, the best
model was a fine tree. The resulting mean absolute error
(MAE) was 3.35 grams/m2. Meanwhile, the explained vari-
ance score (R2) was 99%. Figure 7 confirms that the fine
tree model can predict the basis weight very well.

Finally, an external dataset not included in the build-
ing process of themodel was used to validate themethod’s
performance. Figure 8 shows the artificial neural networks
model performance by comparing the predicted values
against the real dataset selected for this purpose. The
dataset used here corresponds to the paper grades from
180 to 250 grams/m2. These are the most common manu-
factured paper grades. The input array size was 7,768 rows
by 24 columns, while the output array size was 7,768 rows
by 1 column. The resultingmean absolute error (MAE) was
12.10 grams/m2, the mean square error (MSE) was 326.46,
and the root mean square error (RMSE) was 18.07.
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Figure 6: In detail the predicted vs. test data for a random range selected from 12000 to 12200.

Figure 7: Fine Tree model performance: predicted vs. real dataset.
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Figure 8: Artificial Neural Network model performance with an external dataset.

The same external dataset not included in the build-
ing process of the model was used to validate the fine tree
performance. Figure 9 is shown the fine tree model perfor-
mance by comparing the predicted values against the real
dataset selected for this purpose. The resulting mean ab-
solute error (MAE) was 36.47 grams/m2, the mean square
error (MSE) was 2309.8, and the root mean square error
(RMSE) was 48.06.

Graphic user interface

A user interface was developed in Python programming
language by using the Streamlit app. Firstly, the layout for
input and output variables was designed, including the
text labels. The usermust specify the input values for each
machine section and the paper grade and quality variable.
The basis weight is displayed when these parameters are
introduced, as shown in Figure 10.

Since the ANN-based model demonstrated an excel-
lent predictive capability; therefore, the model was em-
bedded in a GUI to be assessed in situ. For this purpose,

the code of the GUI (name.py) and the file containing the
trained model (name.hdf5) can be obtained upon request.

Note that the file model was developed in Python;
therefore, this open-source software can be used to know
the model code in detail and, if necessary, retrain the
model with a new dataset or tune its hyperparameters. Ad-
ditionally, feedback regarding themodel performancemay
be provided upon request.

The generated package can be saved in any local host
and then run to be used in-situ. In addition, the GUI can
work in a web environment. Therefore, to run the GUI and
see the app, as shown in Figure 10, follow these steps:
– Install Anaconda (free and open distribution).
– Open Powershell from Anaconda.
– Save the previously requested files on your computer.
– Copy the path of the file .py
– InPowershell, type the “cd” instruction before pasting

the copied path.
– Run the app by typing the following instruction:

“streamlit run name.py”

Finally, although this GUI presented as a soft sensor can
estimate thebasisweight reasonably, general assumptions
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Figure 9: Fine Tree model performance with an external dataset.

must be verified. As described by (Fortuna et al. 2007) the
soft sensors exploit the essential information behind the
data to build models with excellent performance and ro-
bustness; however, this technology could be susceptible
to measurement drift from long-term usage, challenging
practical usability (Kim et al. 2020). Therefore, although
the based-neural network model deployment presented
here showed accuracy and reliability using data not in-
cluded in the building process, the following considera-
tions described in (Vinoth et al. 2022) will be required in
advance.
– If drift is observed from a long-term usage, neces-

sary compensation for the network o response vari-
able must be done.

– The performance of the neural network model can be
assessed by conducting periodical experimental trials
with known data. Results must be compared with the
earlier performance.

– The neural network model shall be trained with rel-
evant additional process data, which can improve the
generalization, robustness, precision, and accuracy of
predictions.

– Since the neural network model performance relies
heavily on the historian data for specific paper grades.
If there is a significant change in the paper included
during the design, rebuilding the neural network
model will be recommended.

Discussion

A soft sensor is defined as the association of a hardware
sensor enabling the online measurement of some process
variables employing an algorithm to estimate unmeasured
variables (De Assis and Maciel Filho 2000, Paggi et al.
2022). Likewise, (Napoli and Xibilia 2011) define soft sen-
sors as systems composedofmathematical algorithms that
produce reliable real-time estimates of unmeasured vari-
ables using correlationwith available data. This definition
describes how the soft sensor presented here was devel-
oped.

Themain disadvantages of the soft sensor are themar-
gin of error concerning either measurement for other sen-
sors and the that the measure comes from predictions
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Figure 10: Graphic user interface.

(Gadeo-Martos et al. 2011). Although the commercial qual-
ity control system (QCS) could present a little margin of
error, the results showed by the soft sensor presented
here are significantly closer to QCS; therefore, the pre-
dicted measurements can be acceptable for almost basis
weight.

Unlike the existingmethods (instruments) to measure
basis weight, this proposal does not use the final prod-
uct or service measures. Instead, it uses a dataset com-
ing directly fromeach independent variable; therefore, the
predicted measurements made by a trained model with a
reasonable precision embedded in a graphical user inter-
face could represent an advantage. The reason is that the

measures include the variability shown in each indepen-
dent variable that affects the response. A great number of
applied studies can be found in the literature, where the
dataset in the analysis comes from measurements taken
directly on the product or service.

Finally, the models based on neural networks have
demonstrated better predictions than other regression
techniques, mainly for data not included in the training
and validation process. The soft sensor presented in this
research had a lower MAE value than the regression tree
model obtained. They demonstrated the potential of neu-
ral networks for prediction purposes.
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Conclusions

The basis weight of paper is a critical quality characteris-
tic thatmust bemonitored and controlled in papermaking.
Currently, in the papermaking process, the basis weight
and other important quality characteristics are monitored
using traditional control charts (Rodríguez-Álvarez et al.
2021) due to the methods used by the quality control labo-
ratory. In addition, the commercial-quality control system
(QCS) available on the market is the other alternative to
monitor basis weight.

The present research proposed a new alternative to
measuring basis weight for any papermaking process. The
proposed model is advantageous since its development is
based on an artificial neural network using the multilayer
perceptron approach. Therefore, it can predict the basis
weight with reasonable accuracy (greater than 90%) for
newoperating conditions or data not included in the train-
ing and validation process. For this purpose, the perfor-
mance of the proposed method was validated by using
an external dataset not included in the building process
of the model. The findings showed a mean absolute er-
ror of 12.10 grams/m2. So, the model can predict the ba-
sis weight of paper, mainly for the grades from 180 to
250 grams/m2, reaching an error from 4.8 to 6.7%. On the
other hand, although the fine tree model showed a mean
absolute error of 3.35 grams/m2 in the training and vali-
dation process when this model was validated using the
external dataset, the results showed a mean absolute er-
ror of 36.47 grams/m2. Therefore, it is demonstrated that
artificial neural network-basedmodeling has a higher pre-
dictive capability than regression-basedmodeling for data
not included in the training and validation process.

One of the most significant findings from this study is
that model was embedded in a user interface. The gener-
ated package can be saved in any local host and then run
to use the user interface. Moreover, the developed model
can work in a web environment. Thus, the process en-
gineers can calculate basis weight offline without wait-
ing for the quality control laboratory results or the read-
ings shown by the quality control systems (QCS). In addi-
tion, continuous improvement engineers can use the user
interface mainly in the improvement phase for any six-
sigma project. Moreover, the user interface can be used
to perform non-invasive experimental designs (Rodriguez-
Alvarez et al. 2021), which is one of themain advantages of
avoiding the costs of any experimentation process.

Although the model predicts the basis weight with ac-
ceptable accuracy, determining optimal operating condi-
tions becomes a complicated function due to the number

of independent variables. So, in future work, the user in-
terface will be used to conduct experimental designs to
find optimal operating conditions, mainly in complex pro-
cesses. Even we will try to link the output data provided
by the model through the user interface directly to some
specialized statistical software.

Since the explained variance score reached by the
model was 94%. Trying to improve this value, in future
work, by using k-Means firstly to find the clusters (differ-
ent types of paper grades), the radial basis function (RBF)
approachwill beused to train andvalidate anewmodel. In
addition, a feature selection method based on experimen-
tal designs will be used to quantify the effect and direction
of each independent variable.
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