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A B S T R A C T   

Many-objective optimization is an area of interest common to researchers, professionals, and practitioners 
because of its real-world implications. Preference incorporation into Multi-Objective Evolutionary Algorithms 
(MOEAs) is one of the current approaches to treat Many-Objective Optimization Problems (MaOPs). Some recent 
studies have focused on the advantages of embedding preference models based on interval outranking into 
MOEAs; several models have been proposed to achieve it. Since there are many factors influencing the choice of 
the best outranking model, there is no clear notion of which is the best model to incorporate the preferences of 
the decision maker into a particular problem. This paper proposes a hyper-heuristic algorithm—named Hyper-
ACO—that searches for the best combination of several interval outranking models embedded into MOEAs to 
solve MaOPs. HyperACO is able not only to select the most appropriate model but also to combine the already 
existing models to solve a specific MaOP correctly. The results obtained on the DTLZ and WFG test suites 
corroborate that HyperACO can hybridize MOEAs with a combined preference model that is suitable to the 
problem being solved. Performance comparisons with other state-of-the-art MOEAs and tests for statistical sig-
nificance validate this conclusion.   

1. Introduction 

The complexity of real-world problems often requires the simulta-
neous optimization of several conflicting objective functions. Multi- 
objective Evolutionary Algorithms (MOEAs) have become powerful 
tools to solve such problems, mainly when only a few objective functions 
are involved. However, real-world problems frequently involve more 
than three objectives: the so-called Many-objective Optimization Prob-
lems (MaOPs). Most MOEAs have limitations in addressing MaOPs [1], 
being more severe for algorithms based on Pareto ranking [2] and less 
severe for decomposition-based algorithms like MOEA/D [3]. Unfortu-
nately, swarm-based metaheuristics have not been explored so widely in 
this context [4]. Still, some studies give evidence of the great potential of 
variants of Ant Colony Optimization [5] and Particle Swarm 

Optimization [2] to solve MaOPs. 
Most MOEAs focus on approximating the Pareto optimal set 

(abbreviated as PF), but identifying this frontier is insufficient. The 
Decision Maker (DM) needs to find the so-called Region of Interest 
(RoI)—the privileged zone in the Pareto frontier most in agreement with 
the DM’s preferences—and, finally, identify the best compromise within 
that RoI. The best compromise is indeed the final solution to the prob-
lem. Hence, the problem cannot be solved without articulating the DM’s 
preferences. Such information can be incorporated at different stages of 
the decision-making process: a priori, interactively, or a posteriori. 

The a posteriori incorporation of preferences is widely used by 
traditional MOEAs; this way assumes that (i) the metaheuristic algo-
rithm obtains an approximate Pareto front containing the RoI, and (ii) 
the DM is able to choose the best compromise on this portion of the 
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Pareto set. Contrarily, the a priori incorporation of preference requires 
that the DM defines the preference information before the search pro-
cess; lastly, in the interactive way, the preference information is artic-
ulated progressively (e.g., [6]). Both a priori and interactive ways 
increase the selective pressure toward solutions closer to the RoI, 
reducing the search space [7]. 

To deal with preferences, there has been a growing interest in 
combining MOEAs and Multi-Criteria Decision-Making techniques 
(MCDM) [7]. In the scientific literature, many proposals articulate the 
preference information in the evolutionary search process to improve 
the selective pressure toward the RoI. Two comprehensive reviews on 
this topic were published by Li et al. [8] and Bechikh et al. [9], sum-
marizing the preference information most commonly used by re-
searchers. The a priori and progressive incorporations of preferences on 
appropriate frameworks could bring closer results to the RoI than the a 
posteriori way [8,10,11]. Nevertheless, the experimental results of Li 
et al. [8] showed that incorporating preferences into the evolutionary 
search does not always lead to a better approximation of the RoI than 
traditional MOEAs, especially when the number of objectives is small. 
According to Li et al. [8], incorporating preferences becomes more 
critical when the number of objective functions increases. 

One of the approaches that Bechikh et al. [9] listed is the so-called 
outranking parameters, which refers to those methods where out-
ranking relations model the credibility degree of the predicate “solution 
x is at least as good as solution y.” This calculation is based on a 
non-compensatory approach using criterion weights and veto thresholds 
(cf. [12]). Notably, the outranking approach is advantageous when the 
DM is compatible with non-compensatory preferences and should 
handle non-transitive preferences, incomparability, and veto effects. 
The outranking approach was recently extended by Fernández et al. [13, 
14] to deal with imprecise model parameters and criterion scores by 
using interval numbers. In an a priori articulation of preferences, the DM 
does not know with sufficient precision the appropriate values of their 
preference model parameters; so, an approach that copes with such 
imprecise information is a significant advance. 

The interval outranking approach [13] has been used as an a priori 
preference articulation in two recent studies [15,16]. Fernández et al. 
[15] incorporated preferences into MOEA/D’s update phase, using six 
different binary preference relations derived from the credibility degree 
of the interval outranking. Rivera et al. [16] incorporated interval 
outranking-based preferences into an ACO algorithm; the outranking 
model was used for sorting the solutions in the pheromone trail to guide 
the search toward the RoI. The obtained results in both proposals are 
compared to state-of-the-art a posteriori many-objective metaheuristics. 

These papers provide interesting results when DTLZ and WFG test 
problems are solved: although most of the time the a priori articulation 
of preferences brought better results than a posteriori metaheuristics, its 
effectiveness depends on the particular problem, the number of objec-
tive functions, the metric used to evaluate distances to the RoI, and the 
way to define the binary preference relation derived from the out-
ranking credibility degree. As stated by Li et al. [8], the results confirm 
that the relative effectiveness of a preference articulation increases with 
the number of objectives. Nevertheless, these results [15,16] provide 
evidence against a universal best method of a priori incorporation of 
preferences—even within the outranking paradigm—since there was no 
single way that could be recommended for all problems and metrics. 
Then, in the presence of a new problem, the question about the “best” 
way remains unanswered. 

Considering the difficulties above, the motivation of this paper is to 
propose a more general approach that combines a given set of a priori 
ways of incorporating outranking-based preference models. Such a 
general approach will be able to manage satisfactorily diverse perfor-
mances of the different preference incorporation ways. Hyper-heuristic 
algorithms can integrate several heuristics or metaheuristics, allowing 
combining and sequencing preference incorporation methods. 

The rest of this paper is structured as follows. Section 2 overviews the 

related literature. Section 3 presents the theoretical foundations needed 
to introduce our proposal. Section 4 introduces the algorithm used in 
HyperACO and describes each step in detail. Section 5 presents the 
numerical results that support the advantages of HyperACO. Lastly, 
Section 6 discusses pertinent conclusions and provides directions for 
future research. 

2. An overview of the related literature 

Hyper-heuristics were created to solve complex search problems of 
one or multiple objectives. A hyper-heuristic is a search method that 
includes learning mechanisms that operate on a fixed set of heuristics, 
monitoring and combining their strengths. Its main aim is to create 
general search methodologies that automate the design of heuristic 
methods [17]. The distinctive feature of hyper-heuristics is that they 
operate in a heuristic search space rather than directly in the search 
space of the underlying problem, as is the case with most metaheuristic 
approaches. The two main classes of hyper-heuristics are selection 
hyper-heuristics and generation hyper-heuristics [18]. 

Selection hyper-heuristics use a set of previously defined heuristics 
to solve a problem; the task is to discover a sequence of using those 
heuristics to improve the quality of solutions. To our knowledge, state- 
of-the-art hyper-heuristics with preference incorporation fall into this 
category. This class of hyper-heuristics comprises a High-Level Heuristic 
(HLH) that controls a set of Low-Level Heuristics (LLHs). The HLH 
searches the space of the sequences of the LLHs, instead of directly 
searching the space of solutions of the underlying problem. 

Rivera et al. [19] presented a hyper-heuristic algorithm for solving 
the social project portfolio problem. The proposed method used a ge-
netic algorithm as the HLH and basic operations (e.g., adding, removing, 
or exchanging projects) as the LLHs. The DM‘s preferences are incor-
porated a priori into the search process using the outranking model by 
Fernandez et al. [20]. 

Raghavjee and Pillay [21] proposed a hyper-heuristic to solve the 
school timetabling problem. The proposed algorithm used permutations 
of LLHs (exchange heuristics) and incorporated the teachers’ prefer-
ences as soft constraints. 

Muklason et al. [22] addressed the problem of generating examina-
tion timetables. They introduced a fairness objective function containing 
penalties from soft constraint violations; such a fairness function is 
minimized with the other objectives. The students’ preferences were 
expressed as a difficulty index for each exam to define penalties. The 
HLH was a well-known hyper-heuristic framework referred to as HyFlex, 
and the LLHs were 13 common perturbation heuristics and one of 
movement. 

Jakubovski-Filho et al. [23,24] proposed two hyper-heuristics based 
on reference points for software product line testing. These studies used 
a variant of NSGA-II as HLH and a set of 12 operators of crossover and 
mutation as LLHs. The DM’s preferences were incorporated by assigning 
a reference point provided by the tester. 

Macias-Escobar et al. [25] proposed a hyper-heuristic to solve dy-
namic multi-objective optimization problems, using a plane-separation 
method as HLH and dynamic versions of NSGA-II and GDE3 as LLHs. 
The preference articulation was based on reference points. The perfor-
mance of that proposal was evaluated over a set of benchmark problems. 

Although there are hyper-heuristics in the scientific literature that 
incorporate preferences, HyperACO (the hyper-heuristic proposed in 
this paper) offers MOEAs composed of sequences that indicate how to 
use different ways of preference incorporation. This feature is relevant 
because, as far as we know, there is no single model to incorporate 
preferences into MOEAs that always results in a better performance. 
Consequently, the advantage of HyperACO is that its resulting MOEAs 
are ad hoc designed to face the challenges that would arise in solving the 
specifically addressed MaOP. The quality of the results is statistically 
tested on the DTLZ and WFG test suites (two of the most widely accepted 
benchmarks for multi-objective optimization) and simultaneously 
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compared with: (i) six different a priori ways for incorporating interval 
outranking models into evolutionary computation, and (ii) two state-of- 
the-art a posteriori MOEAs for many-objective optimization. 

3. Background 

This section overviews the following selected topics: interval math-
ematics (Subsection 3.1), the outranking approach extended by 
including interval numbers (Subsection 3.2), different ways to incor-
porate the interval outranking approach in MOEA/D (Subsection 3.3), 
and the definition of the RoI in the framework of interval outranking 
(Subsection 3.4). 

3.1. Interval numbers 

An interval number is a continuous subset of real numbers bounded 
by two specific given numbers, the lower and upper limits. Interval 
mathematics is commonly used to model the imprecision generated by 
inaccuracies and fluctuations in measurements, beliefs, and judgments 
[26]. In this paper, interval numbers are represented by letters in 
boldface and italic; e.g., A = [A,A], where the lower and upper limits are 
A and A. All the basic arithmetic operations are also defined on interval 
numbers. Below, we only exemplify two relevant operations with the 
interval numbers A and B. The following equation defines addition: 

A + B = [A+B,A+B ].

The possibility function, Poss(A ≥ B), defines two relations on in-
terval numbers (≥ and >) [27–29] as follows: 

Poss(A ≥ B)= {

1 if pAB > 1,
0 if if pAB < 0,

pAB otherwise,
(1)  

where pAB =
A− B

(A − A)+(B− B)
. 

For the case of degenerate intervals, when the intervals numbers are 
real numbers A and B, Poss(A ≥ B) = 1 if and only if A ≥ B; otherwise, 
Poss(A ≥ B) = 0. 

A realization of A is a real number a in the interval [A,A] [30]. 
Fernández et al. [13] reinterpreted the possibility function as the degree 
of credibility of the statement “once both realizations, a and b, are given 
from A and B, a will be greater than or equal to b.” The relation A ≥ B is 
defined by Poss(A ≥ B) ≥ 0.5, and the relation A > B is defined by 
Poss(A ≥ B) > 0.5. These relations are transitive and can also be used to 
compare real numbers. 

3.2. The interval outranking approach 

Fernández et al. [13] proposed the Interval Outranking Approach 
(IOA), which can model imprecision and uncertainty in DM’s judgments 
and beliefs. Their proposal simultaneously addresses multi-criteria 
non-compensatory preferences and poor information in model param-
eters and objective scores. Additionally, it helps approximate the Region 
of Interest (RoI) of a particular Multi-objective Optimization Problem 
(MOP). The IOA is an extension of the ELECTRE methods, and the rest of 
this section formalizes it. 

Let x and y be a pair of actions of a decision set (for example, solu-
tions of a MOP). Let us denote by σ(x, y) the credibility index of the 
assertion “x is at least as good as y.” The credibility index is calculated by 
Eq. (2), whose elements are defined in Table 1. 

σ(x, y) = max
γ∈Ω

{
σγ
}

(2) 

The application of the interval outranking approach assumes the 
DMs can set the model parameter values as interval numbers. In this 
paper, the parameters are the following: objective weights, veto 
thresholds, majority thresholds, and credibility thresholds. This setting 
action does not imply requirements of “rational” behavior from the DM. 
More information about the IOA and its applications can be found in [13, 
31]; additionally, Appendix A provides a numeric example of how to 
calculate σ(x,y). 

3.3. Some different ways to incorporate the IOA in MOEA/D 

MOEA/D is an evolutionary algorithm proposed by Zhang and Li [3] 
that solves a MOP by decomposing it into various scalar optimization 
problems using weight vectors with uniform distribution. During the 
evolutionary process, if a solution x (offspring of y) is better than y, the 
parent is substituted by the offspring solution during the update phase. 
These solutions are compared with each other through a scalarizing 

Table 1 
Definition of elements used for the computation of σ(x,y).  

Element Description 

x, y A solution x has an image f(x) = 〈f1(x), f2(x), f3(x), …, fm(x)〉, where 
fk(x) is the value of the kth objective of x. Analogously, f(y) = 〈f1(y),
f2(y), f3(y), …, fm(y)〉. 

Ω Ω = {δk(x,y) : δk(x,y)> 0 ∀k ∈ {1, 2, 3, …, m}}, where m is the number 
of objectives and δk(x, y) is the credibility degree of the statement “x 
outranks y with respect to objective k.” This index is calculated using δk(x,
y) = Poss(fk(y) ≥ fk(x)). 

σγ σγ = min
{

γ, Poss(c(x,y, γ) ≥ λ), 1 − max
k∈D(xSγ y)

{dk(x,y)}
}

. 

w, v, λ,
β 

Preference model parameters. The DM’s value system, denoted as w, v, λ,
β, consists of the weight vector w, the veto threshold vector v, the interval 
number λ that reflects a majority threshold, and the overall credibility 
threshold β. All these parameters are interval numbers. Note that 
∑m

k=1wk ≤ 1 and 
∑m

k=1wk ≥ 1 in a feasible preference system, as well as β 
> 0.5 and λ > 0.5. 

c(x,y, γ) The concordance index according to γ, defined as c(x,y, γ) =
[
c(x, y),

c(x, y)
]
, where: 

c(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

∑

k∈C(xSγ y)
wk if

∑

k∈C(xSγ y)
wk +

∑

k∈D(xSγ y)
wk ≥ 1,

1 −
∑

k∈D(xSγ y)
wk otherwise.

c(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

∑

k∈C(xSγ y)
wk if

∑

k∈C(xSγ y)
wk +

∑

k∈D(xSγ y)
wk ≤ 1,

1 −
∑

k∈D(xSγ y)
wk otherwise.

C(xSγy) C(xSγy) = {k ∈ {1, 2, 3, …,m} : δk(x, y) ≥ γ} is the set of the objectives 
in the concordance coalition. 

D(xSγy) D(xSγy) = {1, 2, 3,…, m}\C(xSγy) is the set of the objectives in the 
discordance coalition. 

dk(x,y) It is the credibility degree of the assertion “the kth objective alone vetoes 
the assertion x outranks y”; dk(x,y) = Poss(fk(x) ≥ fk(y) + vk), where vk is 
the veto threshold associated with the kth objective.  

Table 2 
Variants of the scalarizing functions in MOEA/D/O based on outranking 
relations.  

Variant Scalarizing function Preference Relation 
xRıy Description 

V1 xR1y ∧ gte(x|λ, z) ≤
gte(y|λ, z)

R1 : σ(x,y) > σ(y,x) Preference in favor of x, 
although its credibility 
may be below. 

V2 xR2y ∧ gte(x|λ, z) ≤
gte(y|λ, z)

R2 : σ(x,y) ≥ β x is at least as good as y. 

V3 xR3y ∧ gte(x|λ, z)
≤ gte(y|λ, z)

R3 : σ(x,y) ≥ β ∧

σ(y,x) ≤ β 
Asymmetric preference in 
favor of x. 

V4 xR4y ∧ gte(x|λ, z) ≤
gte(y|λ, z)

R4 : σ(x,y) > σ(y,x)
∧ σ(x,y) > 0.5 

Preference in favor of x. 

V5 xR5y ∧ gte(x|λ, z)
≤ gte(y|λ, z)

R5 : σ(x,y) ≥ β ∧

σ(y,x) < 0.5 
Strict preference in favor 
of x. 

V6 xR6y ∧ gte(x|λ, z)
≤ gte(y|λ, z)

R6 : ∨5
..=1 xR..y Disjunction of the first 

five outranking relations.  
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function. The weighted Chebychev distance is a well-known scalarizing 
function with a reference point z = 〈z1, z2, z3,…, zm〉 (that is the set of 
the best objective values) and the weight vector λ = 〈λ1, λ2, λ3,…, λm〉

(associated with the current solution y). The update of y is applied to 
those new solutions x that satisfy the Chebyshev condition in Eq. (3). 

gte(x|λ, z) ≤ gte(y|λ, z), where gte(x|λ, z) = max
k∈{1,2,3,…,m}

{λk|fk(x) − zk|} (3) 

Fernández et al. [15] presented an improved MOEA/D called 
MOEA/D/O. That paper proposes six different ways of incorporating 
preferences in the update phase. These six ways are based on different 
preference relations derived from the IOA; these ways and the associated 
binary outranking relations are described in Table 2. Each way implies a 
particular preference relation Rı between x and y (Column 3). In the 
MOEA/D/O update phase, the Chebychev distance (Eq. (3)) is combined 
with an outranking preference relation in Column 3. Thus, the solution 
update is performed if it satisfies the Chebyshev distance and the related 
preference condition. Each of those ways constitutes a variant explored 
in that paper; there is even a variant that incorporates the disjunction of 
all preference relations and the Chebyshev condition. 

In the remainder of this paper, xRıy denotes the preference relation 
Rı between solutions x and y under the DM’s value system, DM = (w, v,
λ, β). As a consequence of veto effects and the Condorcet’s Paradox1, 

these relations are not transitive. That is, xRıy and yRız do not neces-
sarily imply xRız. Incomparability (¬xRıy ∧ ¬yRıx) is also possible. 
Except for R2, the remaining preference relations are asymmetric. 

Fernández et al. [15] measured the closeness to the RoI using 
Euclidean and Chebyshev distances. This study revealed that, in many 
instances, MOEA/D with preference incorporation achieves results 
closer to the RoI than the original MOEA/D; this effect is more relevant 
when the number of objectives increases. In general, the six ways to 
incorporate the interval outranking-based preferences outperformed 
MOEA/D regarding the Euclidean distance. Contrastingly, MOEA/D 
tended to perform better when the Chebychev distance was taken. 
However, no variant was always better than the others. It should be 
underlined that the results of the comparison of MOEA/D with 
MOEA/D/O depended on the preference relation used by MOEA/D/O, 
the type of optimization problem, the number of objective functions, the 
performance indicator considered as the most relevant by the DM, and 
even the specific DM’s preferences. Such relativeness arises as a serious 
obstacle when the DM faces a new optimization problem whose char-
acteristics are either unknown or different from those studied by 
Fernández et al. [15]. In such a case, an algorithm that automatically 
identifies an appropriate combination of the variants listed in Table 2 
would be very promising for treating real-world MaOPs. 

3.4. Identifying the Region of Interest 

The ROI is closely related to the concept of the best compromise 
solution of a MOP: the most satisfactory solution for the DM. If the DM’s 
preferences can be represented by a value function U, the best 
compromise would correspond to the global maximum of function U. In 
the framework of outranking methods, a formal definition of the best 
compromise solution was proposed by Fernandez et al. [20] and 
enhanced by Balderas et al. [27]. According to these papers, x∗ ∈ PF is 
the best compromise solution only if it fulfills two conditions:  

(a) There is no y ∈ PF such that y is preferred to x∗ by the DM.  
(b) There are good arguments to support the assertion “x∗ is as at 

least as good as the other solutions that satisfy (a).” 

Let us consider the strict preference relation P as the relation R5 in 
Table 2, that is: 

xPy ⇔ σ(x, y) ≥ β ∧ σ(y, x) < 0.5. (4) 

Two concepts should be introduced to model the fulfillment of the 
above conditions. The weakness of x in a set of alternatives O , which is 
calculated as: 

W(x,O ) = {y ∈ O : yPx}. (5) 

The strength of x in O is defined as 

S(x, O ) = {y ∈ O : xR2y}. (6)  

where R2 denotes the crisp outranking relation defined in Table 2. 
According to conditions (a) and (b), the best compromise solution 

from a set of actions O should satisfy: 

x∗ = argmin
x∈O

{|W(x,O )|, − |S(x, O )|}. (7) 

The RoI contains all the solutions satisfying Eq. (7), with lexico-
graphic priority in favor of |W(x, O )|. By extension, the RoI of a MOP 
may be characterized using O = PF in Eq. (7), where PF would be the 
Pareto frontier. 

4. Our proposal: The ACO-based Hyper-heuristic 

This section describes HyperACO, a hyper-heuristic algorithm 
intended to treat MaOPs by sequencing the different variants of MOEA/ 
D/O (Table 2). The application of HyperACO demands that the DM’s 
preferences are compatible with outranking models. Fortunately, the 
preferences of many DMs are non-compensatory. The scientific litera-
ture provides recent studies with several satisfactory applications of 
outranking to real-world problems (e.g., [32–38]). 

In the proposed hyper-heuristic, the HLH is an ACO algorithm that 
searches for the best solution in a sequencing optimization problem with 
discrete decision variables; here, the objective functions measure the 
closeness to the RoI to identify the sequence that generates the solutions 

Algorithm 1 
Run of sequences.  

1 A paradox of intransitive preferences arising from the aggregation of indi-
vidual preferences under a majority rule. 
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that best match the DM’s preferences. 
The LLHs are the different ways to embed the outranking relations 

into MOEA/D/O. The LLHs search for the best compromise solution in 
MaOPs with continuous decision variables; here, the two objective 
functions measure the quality of the solutions in terms of the outranking 
model (weakness and strength) as stated in Eqs. (5) and (6). 

The rest of this section is structured as follows. Subsection 4.1 pre-
sents how the HLH represents the sequences and how they are evaluated. 
Subsection 4.2 describes the pheromone matrix and provides details of 
the criteria used to archive solutions in this structure. Subsection 4.3 
presents how the ants exploit the pheromone matrix to construct new 
sequences iteratively. Lastly, Subsection 4.4 structures the information 
provided in the previous subsection in the form of an algorithm, which is 
explained. 

4.1. Solution representation 

In HyperACO, a vector xi = 〈xi,1, xi,2, xi,3,…, xi,ℏ〉 represents the 
sequence generated by the ith ant, where ℏ is the size of the sequence, 
xi,l ∈ {0, 1, 2,…, 6} ∀i ∈ {1, 2, 3,…,κ}, l ∈ {1, 2, 3,…,ℏ}, and κ is the 
size of the colony. xi,l represents that the variant Vxi,l (see Table 2) is set 
as the lth component of the ith solution (xi,l = 0 represents the original 
MOEA/D, without DM’s preferences). 

Algorithm 1 presents how HyperACO generates the solution sets by 
applying the sequence xi. Here, r is a parameter defining the number of 
runs for each sequence, Oi is an array of r sets, and g is a parameter 
defining the number of generations for each component of the sequence. 
The initial population of the variants xi,1 is generated at random (first 
component of the sequence). The initial population of the variants xi,l for 
1 < l ≤ ℏ is taken from the previous variant xi,l− 1. Accordingly, a 
sequence represents the order in which the LLHs should consecutively 
run—like a relay race—to provide an efficient composite MOEA. 

Regarding the computational complexity, the basic operation in Al-
gorithm 1 is the run of MOEA/D/O, which is in O(m2n) (cf. [15]), where 
m is the number of objectives and n is the number of decision variables. 
Note that this operation is amortized over ℏ iterations (Lines 3 and 4), so 
that ℏ does not increase the order of complexity. Therefore, the 

complexity function is in O(m2nr ). 

4.2. Pheromone representation 

In HyperACO, a bi-dimensional matrix τ represents the pheromone, 
which stores the κ best-so-far sequences. Fig. 1 depicts the structure of τ. 
Here, the required size of τ to store the sequences is κ× ℏ. 

Furthermore, the sequences in τ are sorted in increasing order based 
on the distance to the best-so-far approximation to the RoI (the set made 
of all the solutions generated so far that satisfy Eq. (7)). This distance is 
calculated by taking the solution sets generated by the sequences, which 
can be calculated through Algorithm 1. Keep in mind that Oτi is an array 
of r solution sets, one for every single run of the sequence τi. 

In Fig. 1, the weights ωi measure the importance of the sequence τi in 
function of its position, expressed as 

ωi =
p(i)

∑ κ
j=1p(j)

, where p(i) = i− ς. (8) 

Eq. (8) defines p(i) to be values of a power-law function with expo-
nent ς and argument i, and ωi to be an adjustment of its probability 
function to a discrete domain considering κ elements only. Here, ς is a 
parameter (ς ≥ 1) that sets the intensification in the algorithm. On the 
one hand, if ς≫1, the probability of intensifying the search space around 
τ1 increases exponentially. On the other hand, if ς ≈ 1, the probability of 
intensifying the search space around any τi becomes more linear 
(1 ≤ i ≤ κ). 

According to Fig. 1, the criterion to sort τ is a pivotal element. First, 
the best-so-far approximation to the RoI (represented by the set O ι) is 
calculated through Algorithm 2. Then, the distance from any solution set 
Oτi

j to O ι may be calculated. Let’s consider the following distance metrics 
between sets:  

• d Euclid
min (Oτi

j ,O
ι): It is the Euclidean distance between the closest pair 

(x,y) ∈ Oτi
j × O ι.  

• d Euclid
avg (Oτi

j ,O
ι): It is the average Euclidean distance between all the 

pairs (x,y) ∈ Oτi
j × O ι.  

• d Cheb
min (Oτi

j ,O
ι): It is the Chebyshev distance between the closest pair 

(x,y) ∈ Oτi × O ι.  
• d Cheb

avg (Oτi
j ,O

ι): It is the average Chebyshev distance between all the 
pairs (x,y) ∈ Oτi

j × O ι. 

The extreme values of these distances are associated with the per-
formance of a sequence τi, being expressed as interval numbers as fol-
lows: 

zEuclid
min (τi) =

[
zEuclid

min (τi), zEuclid
min (τi)

]
(9) 

Fig. 1. Pheromone representation.  

Algorithm 2 
Approximation to the RoI.  
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where 

zEuclid
min (τi) = min

1≤j≤r

{
d Euclid

min

(
Oτi

j ,O
ι
)}

,

and 

zEuclid
min (τi) = max

1≤j≤r

{
d Euclid

min

(
Oτi

j ,O
ι
)}

.

Similarly, the performance in terms of the other indicators is calcu-
lated using Eqs. (10)–(12). 

zEuclid
avg (τi) =

[

min
1≤j≤r

{
d Euclid

avg

(
Oτi

j ,O
ι
)}

, max
1≤j≤r

{
d Euclid

avg

(
Oτi

j ,O
ι
)}]

(10)  

zCheb
min (τi) =

[

min
1≤j≤r

{
d Cheb

min

(
Oτi

j ,O
ι
)}

, max
1≤j≤r

{
d Cheb

min

(
Oτi

j ,O
ι
)}]

(11)  

zCheb
avg (τi) =

[

min
1≤j≤r

{
d Cheb

avg

(
Oτi

j ,O
ι
)}

, max
1≤j≤r

{
d Cheb

avg

(
Oτi

j ,O
ι
)}]

(12) 

An interval number is a straightforward way to model the variability 
of the output. This variability stems from the stochastic nature of the 
composite MOEAs represented by the sequences. According to Eqs. (9)– 
(12), these intervals are calculated taking the r runs of the sequences. 

The relevance of the four interval indicators depends on the DM’s 
preferences. The Chebyshev indicators would be more appropriate for 
DMs with worst case-oriented preferences. Minimum and average dis-
tances are complementary to the same kind of indicators; minimum 
indicators measure the quality of the solution set considering the best 
solution alone, and average indicators measure the overall trend of the 
complete solution set. 

Following the structure depicted in Fig. 1, we propose sorting τ using 

the possibility function on the interval indicators. In this regard, one of 
the three following sorting criteria may be applied according to the DM’s 
perspective:  

1 Euclidean indicators are considered with lexicographic priority in 
favor of the minimum distance. Formally, “τi precedes τj” following 
Eq. (13). Here, the symbol ≺E represents a binary order relation 
taking the Euclidean indicators. 

τi≺E τj =
{(

τi, τj
)

: Poss
(
zEuclid

min

(
τj
)
≥ zEuclid

min (τi})
)
> 0.5 ∨

Poss
(
zEuclid

min
(
τj
)
≥ zEuclid

min (τi )
)
= 0.5 ∧ Poss

(
zEuclid

avg
(
τj
)

≥ zEuclid
avg (τi )

)
> 0.5} (13)    

2 Likewise, Chebyshev indicators may also be taken to construct the 
binary order relation ≺C to sort τ, attaching priority to the minimum 
distance. That is, “τi precedes τj” according to Eq. (14). 

τi≺C τj =
{(

τi, τj
)

: Poss
(
zCheb

min

(
τj
)
≥ zCheb

min (τi)
)
> 0.5 ∨

Poss
(
zCheb

min
(
τj
)
≥ zCheb

min (τi)
)
= 0.5 ∧ Poss

(
zCheb

avg
(
τj
)
≥ zCheb

avg (τi)
)
> 0.5

}

(14)    

3 Lastly, an order relation may be defined considering an aggregate 
score of the four interval indicators. Here, the relation “τi precedes 
τj” is expressed as 

τi≺W τj =
{(

τi, τj
)

: Poss
(
zW

(
τj
)
≥ zW (τi)

)
> 0.5

}
, (15) 

Algorithm 3 
The HyperACO algorithm.  
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where 

zW (τi) = w1⋅zEuclid
min (τi) + w2⋅zEuclid

avg (τi) + w3⋅zChev
min (τi) + w4⋅zChev

avg (τi). (16) 

In Eq. (16), w = 〈w1, w2, w3, w4〉 is a weight vector. Note that zW (τi) is 
also an interval number, which cumulates the weighted sum of the four 

interval indicators. 
The relation ≺W models a DM with a preference lying between ≺E 

and ≺C . The vector w should be inferred to reflect the DM’s preferences 
about the indicators. 

About the computational complexity, the identification of the RoI 
(Algorithm 2, Line 5) implies the comparison of all the solution pairs 
considering the m objectives; therefore, it is in O(κ2m). The calculation 
of (average and minimum) indicators implies that the distances between 

Fig. 2. Flowchart of HyperACO.  
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all the m-dimensional points in τ× τ, considering the r runs, must be 
measured. In other words, it is in κ2mr . Additionally, the sorting of the 
pheromone matrix may be performed in O(κlog2κ). Ergo, the complexity 
function of the pheromone update is in O(κ2mr ). 

4.3. Solution construction 

Ants construct solutions by performing the following steps:  

1 A row of the pheromone matrix is selected. Here, the well-known 
roulette-wheel technique on the associated probability distribution-
—represented by the weights ωi—is used. Let j be the row selected by 
the ith ant.  

2 Afterward, the ith ant constructs the ith sequence of the colony, 
denoted as xi. The sequence xi is assigned as follows: 

xi,l =

{
τj,l if ℘() < 1 − ρ,

pick at random() otherwise, ∀l ∈ {1, 2, 3, ⋯, ℏ},

(17)   

where xi,l is the lth component of xi (analogously, τj,l), ℏ is the size of the 
sequences, pick at random() is a function that randomly chooses one of 
the seven LLHs, ℘() is a function generating pseudorandom numbers 
with ℘() ∼ U(0, 1), and ρ is a parameter to set the balance between 
exploitation and exploration (0 < ρ < 1). This parameter has an effect 
similar to the evaporation rate in the classic ACO: new regions in the 
search space are explored with high values; otherwise (with low values), 
long subsequences in the best solutions are exploited and replicated. 

The complexity function of Step 1 depends on the calculation of the 
weights, which is in O(κ). Regarding Step 2, the complexity function is in 
O(κℏ) because Eq. (17) must be performed on each decision variable (in 
the HLH’s domain) and each ant of the colony. Ergo, the complexity of 
the complete construction procedure is in O(κ⋅(ℏ + 1)). 

4.4. The main algorithm of HyperACO 

Algorithm 3 presents an algorithmic outline for HyperACO. Here, 
Lines 1–3 initialize the main data structures: the array containing the 
sequences generated in each iteration by the ant colony (A ), the pher-
omone matrix (τ), and the best-so-far approximation to the RoI (O ). 
After that, the initial solutions are generated (Lines 4–9). Note that the 
first seven initial solutions correspond with the original MOEA/D and 
the six variants of MOEA/D/O (Lines 4–6), and the rest of the initial 
solutions are generated at random (Lines 7–9). These initial sequences 
are run to estimate their performance (Lines 6 and 9). Then, the first 
approximation of the RoI is calculated, and the pheromone matrix is 
sorted accordingly (Lines 10 and 11). 

Lines 12–21 present the body of the main iterative process. Here, 
itermax is a parameter defining the maximum number of iterations for 
HyperACO. Each ant of the colony constructs a solution following the 
steps described in Subsection 4.3 (Lines 13–17). These recently con-
structed sequences are considered to update the best-so-far approxi-
mation to the RoI (Line 18). Then, the κ solutions closest to O are kept in 
τ (Lines 19–21). Consequently, τ1 archives the sequence offering the best 
performance; so, this data structure is the response finally returned by 
HyperACO (Line 22). 

Furthermore, Fig. 2 presents a flowchart depicting the main pro-
cesses of Algorithm 3. Here, each flowchart symbol indicates the line 
numbers of Algorithm 3 it represents. 

Regarding the computational complexity of Algorithm 3, the 
following points must be considered:  

(a) The complexity of Lines 4–9 is in O(κ⋅(m2nr + ℏ + 1)). The term 
m2nr is because of Algorithm 1, and the term ℏ +1 is because of 

the construction procedure. Note that this complexity function 
also applies to Lines 13–17.  

(b) The complexity of Lines 10 and 11 is in O(κ2mr ), which represents 
the pheromone update (as discussed in Section 4.2). Bear in mind 
that the complexity functions of the sorting (κlog2κ) and 
approximation of the RoI (κ2m) are dominated by the greater 
order function associated with the calculation of distances to the 
RoI. Moreover, note that this complexity function also applies to 
Lines 18–21. 

Therefore, a preliminary version of the complexity function would be 
in O(itermax⋅κ⋅ (m2nr + κmr + ℏ + 1)). The variables defining the input 
size are m and n in the LLHs’ domain and r and ℏ in the HLH’s domain. 
Because itermax and κ are constant parameters; they should be discarded. 
Finally, the complexity function of Algorithm 3 is in O( m2nr + ℏ). 

5. Experimental validation 

This section presents the numeric results supporting the validity of 
HyperACO. Subsection 5.1 describes the experimental conditions: the 
features of hardware and software, the test suites, and the reference 
solutions to measure performance. Subsection 5.2 presents the results of 
HyperACO and MOEA/D/O to emphasize the advantages of the pro-
posed hyper-heuristic compared to MOEA/D/O, a state-of-the-art MOEA 
that incorporates the DM’s preferences. In contrast, Subsection 5.3 
compares the results of HyperACO with two MOEAs that approximate 
the complete Pareto frontier: RVEA-iGNG (Reference Vector-guided 
Evolutionary Algorithm using Improved Growing Neural Gas) by Liu 
et al. [39] and AR-MOEA (Indicator-based Multi-Objective Evolutionary 
Algorithm with Reference Point Adaptation) by Tian et al. [40]. 

5.1. Experimental settings 

We implemented Hyper-ACO using C under Linux Ubuntu on a 
computer with an Intel Core i7 at 2.70 GHz with 16 GB of RAM. The 
LLHs have the same parameter settings suggested by Fernández et al. 
[15]. The parameter settings of the HLH were: κ = 50, ρ = 0.1, ς = 2, 
itermax = 100, r = 5, g = 50, and ℏ = 20. These settings allow 
Hyper-ACO to compose MOEAs performing 100,000 evaluations of the 
objective functions. The reference MOEAs (MOEA/D/O, RVEA-iGNG, 
and AR-MOEA) are also limited to the same number of evaluations (to 
ensure a fair comparison). 

There are different test suites to assess the performance of for 
MOEAs; e.g., DTLZ [41], WFG [42], LZ/UF [43] and MaOP [44]. In this 
paper, we have used the DTLZ and WFG test suites to validate our 
proposed approach. DTLZ and WFG are widely accepted as standard 
benchmarks to assess the performance of MOEAs. There are nine 
continuous problems in both DTLZ (DTLZ1–DTLZ9) and WFG 
(WFG1–WFG9), which are considered representative because they offer 
a wide range of geometries in the resulting Pareto frontiers. Moreover, 
these problems are scalable regarding the number of decision variables 
and objective functions. 

Each problem has been tested with three, five, and ten objective 
functions. Consequently, we have 54 input instances. Each problem is 
customized considering n (number of decision variables), m (number of 
objective functions, m ∈ {3, 5, 10}), and k (number of position-related 
variables) as follows:  

• DTLZ1: n = m+ k − 1, where k = 5.  
• DTLZ2–6: n = m+ k − 1, where k = 10.  
• DTLZ7: n = m+ k − 1, where k = 20.  
• DTLZ8–9: n = 10(k + 1), where k = m − 1.  

• WFG1–9: k = 2(m − 1) and n =

⎧
⎨

⎩

24 if m = 3,
47 if m = 5,

105 if m = 10.
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Regarding the DM’s preferences, we took the ten interval outranking 
models used by Fernández et al. [15]. The parameter values of these 
models were synthetically generated to represent ten DMs with different 
systems of preferences. The true RoI of these synthetic DMs for the DTLZ 
and WFG problems had already been approximated and used in recent 
studies (e.g., [15,16,45,46]), favoring replicability and comparability of 
results. The Approximated RoI (A-RoI) considers the solutions satisfying 
Eq. (7) from a representative sample of 100,000 Pareto-efficient points. 

HyperACO and MOEA/D/O were run 30 times for each synthetic DM 
on each input instance. RVEA-iGNG and AR-MOEA were also run 30 
times; however, they do not consider the DM’s preferences. All statistical 
tests for significance were performed through the STAC platform [47]. 

5.2. A comparison with the variants of MOEA/D/O 

In this section, we compare the results of the composite MOEAs 
obtained by HyperACO with the best variants of MOEA/D/O reported by 
Fernández et al. [15]. In this experiment, we consider incorporating the 
three order relations into HyperACO, giving rise to the following three 
versions: ≺E -HyperACO, ≺C -HyperACO, and ≺W -HyperACO, in 
accordance with Eqs. (13)–(16). The weights for the relation ≺W are 
w = 〈0.3, 0.1, 0.4, 0.2〉. 

Table 3 summarizes the results of this experiment. Here, the first 
column refers to the version of HyperACO, and the second column in-
dicates the problem being treated. Afterward, the results are grouped by 
the number of objectives: three (the third and fourth columns), five (the 
fifth and sixth columns), and ten (the seventh and eighth columns). 

Table 3 
Comparison between the composite MOEAs by HyperACO and MOEA/D/O.    

3 objectives (m = 3) 5 objectives (m = 5) 10 objectives (m = 10) 
Version of 
HyperACO 

Problem Best variants of 
MOEAD/D/O 

HyperACO significantly 
gets closer to the A-RoI 

Best variants of 
MOEAD/D/O 

HyperACO significantly 
gets closer to the A-RoI 

Best variants of 
MOEAD/D/O 

HyperACO significantly 
gets closer to the A-RoI 

≺E -HyperACO DTLZ1 3 ✓ 1, 2, 4, 5  2, 6 ✓ 
DTLZ2 5 ✓ 2, 3 ✓ 2, 6 ✓ 
DTLZ3 0, 2 ✓ 6 ✓ 0, 2, 6 ✓ 
DTLZ4 3, 5 ✓ 3, 5 ✓ 3, 5 ✓ 
DTLZ5 0–6  0-6  0–6  
DTLZ6 0–6  1 ✓ 0 ✓ 
DTLZ7 0, 1, 4 ✓ 1 ✓ 1, 3, 5 ✓ 
DTLZ8 0-6  0 ✓ 4 ✓ 
DTLZ9 3, 5 ✓ 2 ✓ 1, 2, 4, 6 ✓ 
WFG1 3, 5 ✓ 2 ✓ 1, 2, 4, 6 ✓ 
WFG2 0–6  0 ✓ 4 ✓ 
WFG3 3 ✓ 1, 2, 4, 6  2,6 ✓ 
WFG4 1–6  1 ✓ 0 ✓ 
WFG5 0, 2 ✓ 6 ✓ 0, 2, 6 ✓ 
WFG6 3, 5 ✓ 3, 5 ✓ 3,5 ✓ 
WFG7 0–6  0–6  0–6 ✓ 
WFG8 5 ✓ 2, 3 ✓ 2, 6 ✓ 
WFG9 0, 1, 4 ✓ 1 ✓ 1, 3, 5 ✓ 

≺C -HyperACO DTLZ1 0 ✓ 6 ✓ 2, 6 ✓ 
DTLZ2 0 ✓ 0 ✓ 0 ✓ 
DTLZ3 0 ✓ 6  0, 2, 6 ✓ 
DTLZ4 0 ✓ 0 ✓ 5 ✓ 
DTLZ5 0 ✓ 0 ✓ 0–6 ✓ 
DTLZ6 0 ✓ 0 ✓ 0 ✓ 
DTLZ7 1, 4 ✓ 0, 2, 6 ✓ 1, 3–5 ✓ 
DTLZ8 0–6  1–6  1–6  
DTLZ9 0, 2, 6  6 ✓ 2 ✓ 
WFG1 0, 2, 6  6 ✓ 2 ✓ 
WFG2 0–6  1–6  1–6  
WFG3 0 ✓ 6 ✓ 2, 6 ✓ 
WFG4 0 ✓ 0 ✓ 0 ✓ 
WFG5 0 ✓ 6  0, 2, 6 ✓ 
WFG6 0 ✓ 0 ✓ 5 ✓ 
WFG7 0  0  0–6  
WFG8 0 ✓ 0 ✓ 0 ✓ 
WFG9 1, 4 ✓ 0, 2, 6 ✓ 1, 3–5 ✓ 

≺W -HyperACO DTLZ1 0, 3 ✓ 1–6  2, 6 ✓ 
DTLZ2 1–6  2 ✓ 0 ✓ 
DTLZ3 5 ✓ 1, 2, 4, 6 ✓ 0, 2, 6 ✓ 
DTLZ4 1, 4 ✓ 1–6  5 ✓ 
DTLZ5 0  1–6  0–6 ✓ 
DTLZ6 0 ✓ 0 ✓ 0 ✓ 
DTLZ7 1, 4 ✓ 2, 4, 6 ✓ 1, 3–5 ✓ 
DTLZ8 0–6  2–5 ✓ 1–6  
DTLZ9 0, 2, 6  2, 6 ✓ 2 ✓ 
WFG1 0, 2, 6  2, 6 ✓ 2 ✓ 
WFG2 0–6  2–5 ✓ 1–6  
WFG3 0, 3 ✓ 1–6  2, 6 ✓ 
WFG4 0 ✓ 0 ✓ 0 ✓ 
WFG5 5 ✓ 1, 2, 4, 6 ✓ 0, 2, 6 ✓ 
WFG6 1, 4 ✓ 1–6  5 ✓ 
WFG7 6  1–6  0 ✓ 
WFG8 0  2 ✓ 0 ✓ 
WFG9 1, 4 ✓ 2, 4, 6 ✓ 1, 3–5 ✓  
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Then, given a DTLZ/WFG problem and a number of objectives, the third, 
fifth, and seventh columns present the best variants of MOEA/D/O (cf. 
[15]); the results of these variants are the closest to the A-RoI, and there 
is no statistically significant difference among them. Lastly, the fourth, 
sixth, and eighth columns indicate (with a checkmark) the problems in 
which HyperACO composed an ad hoc MOEA with a better approxima-
tion of the A-RoI than the best variants of MOEA/D/O. These compari-
sons are supported by a Friedman non-parametric test for statistical 
significance and a Nemenyi Post-hoc analysis (both with a 0.95-confi-
dence interval). Bear in mind that the initialization of HyperACO in-
jects MOEA/D and the six variants of MOEA/D/O (Lines 4–6 in 
Algorithm 3) as initial sequences; ergo, the composite MOEA generated 
by HyperACO is always at least as good as the best of them. 

The information provided in Table 3 allows us to highlight the 
following points:  

• The advantages of HyperACO become more tangible as the number 
of objective functions increases. This conclusion is drafted because 
the number of problems in which HyperACO outperformed the best 
variants of MOEA/D/O correlates with the number of objective 
functions.  

• When the Euclidean distance is taken (≺E -HyperACO), no gain was 
observed in DTLZ5 regardless of the number of objectives. According 
to Deb et al. [41], this problem may be particularly easy to address 
for a well-designed search algorithm because of the geometry of its 
Pareto frontier. Consequently, we concluded that for this problem, it 
is not necessary to apply a composite MOEA generated by Hyper-
ACO; any of the variants of MOEA/D/O seems to be efficient enough.  

• When the Chebyshev distance is considered (≺C -HyperACO), there 
is no gain in DTLZ8, WFG2 and WFG7 regardless of the number of 
objectives. Let’s consider the following discussions:  
○ On the one hand, according to Deb et al. [41], the Pareto frontier of 

DTLZ8 is a combination of a straight line (due to side constraints) 
and a hyper-plane. MOEAs will find severe difficulties maintaining 
a good distribution while finding solutions in both regions of this 
problem. Consequently, we concluded that the composite MOEAs 
by HyperACO do not satisfactorily cope with the geometry of this 
Pareto frontier. The side constraints could be affecting the per-
formance of our approach. Note that this conclusion is also 
partially held for ≺W -HyperACO.  

○ On the other hand, WFG2 is the single problem in this benchmark 
with a convex but disconnected region; and WFG7 is concave, 
separable, and unimodal [48]. Huband et al. [42] identified the 
WFG problems in which evolutionary algorithms are more likely to 
converge to the Pareto front. WFG2 and WFG7 are two of these 
problems. We hypothesized that, in these problems, HyperACO did 
not contribute because the original versions of MOEA/D/O per-
formed well enough. Note that this behavior also occurred for 
≺W -HyperACO with m = 10 in WFG2.  

• In DTLZ4, DTLZ7, WFG1, WFG5, WFG6, WFG8, and WFG9, the 
contribution of HyperACO stands out. Focusing on the unconstrained 
problems, these seven problems are particularly challenging for 
MOEAs. Zapotecas-Martínez et al. [48] and Huband et al. [42] pre-
sented studies on the geometry and properties of these problems. 
Such challenging conditions allowed the advantages of HyperACO to 
be remarked.  

• Lastly, the results of HyperACO are encouraging because it reached 
better approximations of the RoI in 122 of the 162 times it was 
applied (three versions of HyperACO ran on 54 input instances). 
What is more, the highest contribution was observed in MaOPs 
(m > 4). 

Additionally, Appendix B presents the results of Table 3 in more 
detail. This appendix presents the results of the statistical tests for each 
version of HyperACO, each value of m, and each problem. This in-detail 
information is provided for consultation. 

Table 4 
Comparison between the composite MOEAs by HyperACO and two state-of-the-art MOEAs.  

Version of HyperACO Benchmark Number of objectives Problems in which HyperACO significantly* outperformed Problems in which HyperACO is significantly* outperformed by 
(b) RVEA-iGNG (c) AR-MOEA (b) RVEA-iGNG (c) AR-MOEA 

≺E -HyperACO DTLZ 3 5, 7, 9 3–6, 8, 9 1, 2, 3 1 
5 2, 4–6, 8, 9 2, 4–6, 8, 9 3 1, 3 
10 1, 3, 4, 6, 7, 9 1–4, 6, 7, 9   

WFG 3 2–5 2, 4–7 7, 8, 9 9 
5 1, 2, 4–6, 9 1, 2, 4–6, 8, 9 7 7 
10 1, 5–7, 9 1, 3, 5–9   

≺C -HyperACO DTLZ 3 1, 2, 5, 6, 8, 9 2–6, 8, 9 3 7 
5 2, 4–6, 8, 9 2, 4–6, 8, 9 3, 7 1, 7 
10 1, 3, 4, 7, 9 1–4, 6, 7, 9 8 8 

WFG 3 1, 2, 4, 5, 8 1, 2–8 3, 7 3, 9 
5 1, 2, 4, 5, 8, 9 1, 2, 4–6, 8, 9 3, 7 3 
10 1, 5–7, 9 1, 3–9 2  

≺W -HyperACO DTLZ 3 2, 4, 5, 7–9 2, 4–6, 8, 9 3 1, 7 
5 1, 3–6, 8, 9 1–4, 6–9   
10 1, 3–5, 7, 9 1–7, 9 6, 8 8 

WFG 3 1, 3, 5, 6, 8 1, 2, 4–6 7 3, 9 
5 1, 2, 4, 5, 7, 9 1–4, 6–9 8  
10 3, 5–7, 9 3–9 2   

* According to a Friedman’s non-parametric test for statistical significance, and a Nemenyi Post-hoc analysis (both with a 0.95-confidence interval) 

Table 5 
Borda scores of the reference MOEAs and HyperACO.  

Version of 
HyperACO 

Number of 
Objectives 

The Borda score of 
(a) 
HyperACO 

(b) RVEA- 
iGNG 

(c) AR- 
MOEA 

≺E -HyperACO 3 31.5 32.0 44.5 
5 26.0 41.0 41.0 
10 23.5 37.0 47.5 

≺C -HyperACO 3 26.5 39.5 42.0 
5 26.5 40.5 41.0 
10 25.0 34.0 49.0 

≺W -HyperACO 3 28.0 39.5 40.5 
5 22.0 41.5 44.5 
10 25.0 36.0 47.0  
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5.3. A comparison with a posteriori MOEAs 

This subsection aims to validate the efficiency of HyperACO in 
comparison with two state-of-the-art MOEAs: RVGEA-iGNG2 and AR- 
MOEA3. The parameter values of these MOEAs were taken from Liu et al. 
[39] and Tian et al. [40]. 

Table 4 presents the results obtained by Hyper-ACO, RVGEA-iGNG, 
and AR-MOEA in addressing the DTLZ and WFG test suites. Here, the 
first column indicates the version of Hyper-ACO being considered (≺E , 
≺C or ≺W ); the second column indicates the benchmark, the third 
column presents the number of objective functions; the fourth and fifth 
columns indicate the problems in which HyperACO significantly out-
performed the reference MOEAs (RVEA-iGNG in the fourth column, and 
AR-MOEA in the fifth one); and, lastly, the sixth and seventh columns 
indicate the problems in which the reference MOEAs significantly out-
performed HyperACO (RVEA-iGNG in the sixth column, and AR-MOEA 
in the seventh one). 

According to Table 4, the following remarks may be drafted:  

• In comparison with RVEA-iGNG and AR-MOEA, HyperACO reached 
the highest performance when the relation ≺W was considered.  

• Although the choice between HyperACO, RVEA-iGNG, and AR- 
MOEA depends on the properties of the problem, the number of 
objectives, and the order relation, HyperACO composed MOEAs that 
were statistically better on a regular basis.  

• The results on some problems are particularly encouraging: DTLZ4 
and DTLZ9. Regardless of the number of objectives, HyperACO al-
ways composed MOEAs that RVEA-iGNG and AR-MOEA were not 
able to outperform.  

• DTLZ8 is still a challenging problem for HyperACO. In 10-objective 
problems, none of the versions of HyperACO was able to outper-
form the reference MOEAs. 

• Considering the Euclidean distance and m = 10, HyperACO consis-
tently outperformed both algorithms in the 18 problems.  

• For the 10-objective problems, the results of HyperACO were 
consistently and statistically better than AR-MOEA and RVEA-iGNG 
on DTLZ1, DTLZ3, DTLZ4, DTLZ7, DTLZ9, WFG5–7, and WFG9. 
Some relevant properties of these problems are:  
○ DTLZ1: linear, separable, many-to-one, and multimodal.  
○ DTLZ3: concave, separable, many-to-one, and multimodal.  
○ DTLZ4: concave, separable, many-to-one, and uni-modal.  
○ DTLZ7: mixed (concave/convex), disconnected, separable, and 

multimodal.  
○ DTLZ9: side constrained, and partially degenerate. With m > 3, 

some inconsistencies make it difficult to analyze this problem (cf. 
[49]).  

○ WFG5: concave, separable, many-to-one, and deceptive.  
○ WFG6: concave, non-separable, many-to-one, and uni-modal.  
○ WFG7: concave, separable, biased, many-to-one, and uni-modal.  
○ WFG9: concave, non-separable, biased, many-to-one, and 

deceptive.  
• As can be seen, it is difficult to reach a generalization based on the 

geometry of the Pareto front. As a note, DTLZ7 is considered one of 
the most challenging problems in DTLZ; whereas WFG5, WFG6, and 
WFG9 were presented by Huband et al. [42] in the top five of the 
most challenging problems in WFG. 

Furthermore, Table 5 presents a ranking of the three algorithms 
based on their Borda scores. Here, the metaheuristics are sorted ac-
cording to the conducted tests for statistical significance (Friedman) and 

Table A1 
A numeric example of the calculation of σ(x, y) in the framework of the IOA.  

Element Description 

x, y A solution x has an image f(x) = 〈f1(x), f2(x), f3(x), …, fm(x)〉, where 
fk(x) is the value of the kth objective of x. Analogously, f(y) = 〈f1(y),
f2(y), f3(y), …, fm(y)〉.  

Example: 
f(x) = 〈0.40, 0.50, 0.60〉
f(y) = 〈0.56, 0.70, 0.54〉
Here, m = 3.

Ω Ω = {δk(x,y) : δk(x,y)> 0 ∀k ∈ {1, 2, 3, …, m}}, where m is the number 
of objectives and δk(x, y) is the credibility degree of the statement “x 
outranks y with respect to objective k”. This index is calculated using δk(x,
y) = Poss(fk(y) ≥ fk(x)).  
Example: 
δ1(x,y) = 1, δ2(x,y) = 1, δ3(x,y) = 0 
∴Ω = {1, 1}

w, v, λ,
β 

Preference model parameters. The DM’s value system, denoted as w, v, λ,
β, consists of the weight vector w, the veto threshold vector v, the interval 
number λ that reflects a majority threshold, and the overall credibility 
threshold b. All these parameters are interval numbers. Note that 
∑m

k=1wk ≤ 1 and 
∑m

k=1wk ≥ 1 in a feasible preference system, as well as β 
> 0.5 and λ > 0.5.  
Example: 
w = 〈w1, w2, w3〉, w1 = [0.35, 0.45], w2 = [0.30, 0.35], w3 = [0.20, 0.
25]
v = 〈v1, v2, v3〉, v1 = [0.05, 0.1], v2 = [0.03, 0.08], v3 = [0.07, 0.1]
λ = [0.65, 0.75]
β = [0.51, 0.55]

C(xSγy) C(xSγy) = {k ∈ {1, 2, 3, …,m} : δk(x, y) ≥ γ} is the set of the objectives 
in the concordance coalition.  
Example: 
Let’s consider γ ∈ Ω 
C(xSγy) = {1, 2}

D(xSγy) D(xSγy) = {1, 2, 3,…, m}\C(xSγy) is the set of the objectives in the 
discordance coalition.  
Example: 
D(xSγy) = {3}

c(x,y, γ) The concordance index according to γ, defined as c(x,y, γ) =
[
c(x, y),

c(x, y)
]
, where: 

c(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

∑

k∈C(xSγ y)
wk if

∑

k∈C(xSγ y)
wk +

∑

k∈D(xSγ y)
wk ≥ 1,

1 −
∑

k∈D(xSγ y)
wk otherwise.

c(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

∑

k∈C(xSγ y)
wk if

∑

k∈C(xSγ y)
wk +

∑

k∈D(xSγ y)
wk ≤ 1,

1 −
∑

k∈D(xSγ y)
wk otherwise.

Example: 
c(x, y) = 0.75 ∵ w1 + w2 + w3 = 0.90 

c(x, y) = 0.80 ∵ w1 + w2 + w3 = 1.00 
∴ c(x,y, γ) = [0.75, 0.80]

dk(x,y) It is the credibility degree of the assertion “the kth objective alone vetoes 
the assertion x outranks y”; dk(x,y) = Poss(fk(x) ≥ fk(y) + vk), where vk is 
the veto threshold associated with the kth objective.  
Example: 
d1(x,y) = Poss(f1(x) ≥ f1(y) + v1) = Poss(0.40 ≥ 0.56 + [0.05, 0.10]) =

0 
d2(x,y) = Poss(f2(x) ≥ f2(y) + v2) = Poss(0.50 ≥ 0.70 + [0.03, 0.08]) =

0 
d3(x,y) = Poss(f3(x) ≥ f3(y) + v3) = Poss(0.60 ≥ 0.54 + [0.07, 0.10])
d3(x,y) = Poss(0.60 ≥ [0.61, 0.64]) = 0 

σγ σγ = min
{

γ, Poss(c(x,y, γ) ≥ λ), 1 − max
k∈D(xSγ y)

{dk(x,y)}
}

Example: 
Poss(c(x,y, γ) ≥ λ) = Poss([0.75, 0.80] ≥ [0.65, 0.75]) = 1 
σγ = min{1, 1, 1} = 1 

σ(x,y) The credibility index of the assertion “x is at least as good as y”,  
σ(x,y) = max

γ∈Ω
{σγ}

Example: 
σ(x,y) = max{1, 1} = 1 
Please, note that Ω = {1, 1} in our example.  2 Source code taken from https://github.com/BIMK/PlatEMO/tree/master/ 

PlatEMO/Algorithms/Multi-objective%20optimization/RVEA-iGNG  
3 Source code taken from https://github.com/BIMK/PlatEMO/tree/master/ 

PlatEMO/Algorithms/Multi-objective%20optimization/AR-MOEA 
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the post-hoc analysis (Nemenyi) for each input instance. Then, the best 
metaheuristic gets the first position, and the worst one obtains the third 
position; the position is averaged if a draw occurs. In this context, the 
Borda score is the cumulative sum of those positions over every single 
instance. Hence, a general ranking of the metaheuristics can be proposed 
by following the Borda scores. Such a ranking would describe the 
average performance of the algorithms. 

In Table 5, the first column presents the version of Hyper-ACO; the 
second column indicates the number of objective functions; the third, 
fourth, and fifth columns indicate the Borda score obtained by each al-
gorithm taking the 18 problems. 

The following points may summarize the information presented in 
Table 5:  

• HyperACO got the best Borda scores when ≺W is considered. This 
insight is in line with the remarks raised in Table 4. 

• The Borda scores of HyperACO correlate with the number of objec-
tives. HyperACO became better positioned as m increased. This 
correlation is particularly strong considering ≺E and ≺C .  

• For a given real-world problem—where the properties of the Pareto 
frontier are unknown—we suggest using HyperACO to compose an 
ad hoc MOEA to address that problem. HyperACO always got the best 

Borda scores regardless of the number of objective functions and the 
distance-based relation. 

6. Conclusions and directions for future research 

This paper has introduced HyperACO, a hyper-heuristic using ACO as 
the high-level heuristic. The low-level heuristics are taken from the 
evolutionary algorithms proposed by Zhang and Li [3] and Fernández 
et al. [15], named MOEA/D and MOEA/D/O, respectively. MOEA/D is 
an a posteriori algorithm based on decomposition, which is quite popular 
and is still being studied, extended, and applied. MOEA/D/O is indeed a 
recent extension of MOEA/D, which incorporates the DM’s preferences 
through the interval outranking approach, becoming an a priori version 
of MOEA/D. Fernández et al. [15] explored six preference relations to 
increase the selective pressure towards the RoI, giving rise to six variants 
of MOEA/D/O. However, the performance of these variants is sensitive 
to the properties of the problem, the number of objective functions, and 
the parameters of the preference model. In these circumstances, the DM 
should conduct previous exhaustive experimentation to determine the 
best variant to treat a given problem. HyperACO mitigates this draw-
back by sequencing the seven low-level heuristics to compose ad hoc 
MOEAs. 

Table B1 
Ranking of HyperACO, MOEA/D and the six variants of MOEA/D/O according to their closeness to the A-RoI in the DTLZ test suite.  

Problem Ranking ≺E ≺C ≺W 

m = 3 m = 5 m = 10 m = 3 m = 5 m = 10 m = 3 m = 5 m = 10 

DTLZ1 1st H 1, 2, 4, 6, H H H H H H 1–6, H H  
2nd 3 0, 3, 5 2, 6 0 6 2, 6 0, 3 0 2, 6  
3rd 1, 2, 4–6  0, 1 6 1, 2, 4 0, 1 1, 2, 4–6  0, 1, 3–5  
4th 0  4 2 0, 3, 5 4     
5th   3, 5 1  3, 5     
6th    3–5      

DTLZ2 1st H H H H H H 1–6, H H H  
2nd 5 2, 3 2, 6 0 0 0 0 2 0  
3rd 3 1, 4–6 0 2 1–6 2, 6  0, 3, 5 2, 6  
4th 1, 2, 4, 6 0 1, 3–5 1, 6  1, 3–5  1, 4, 6 1, 3–5  
5th 0   3–5      

DTLZ3 1st H H H H 6, H H H H H  
2nd 0, 2 6 0, 2, 6 0 0–2, 4 0, 2, 6 5 1, 2, 4, 6 0, 2, 6  
3rd 6 0–2, 4 1 2 3, 5 1 1–4, 6 0, 3, 5 1, 3–5  
4th 1, 3–5 3, 5 3–5 1, 3–6  3–5 0   

DTLZ4 1st H H H H H H H 1–6, H H  
2nd 3, 5 3, 5 3, 5 0 0 5 1, 4 0 5  
3rd 1, 2, 4, 6 4, 1 1, 2, 4 1, 4 6 3 0  1, 3, 4  
4th 0 2, 6 0, 6 2, 3, 5, 6 2 1, 2, 4, 6 2, 3, 5, 6  2, 6  
5th  0   1, 3–5 0   0  
6th          

DTLZ5 1st 0–6, H 0–6, H 0–6, H 0, H 0, H 0–6, H 0, H 1–6, H H  
2nd    1–6 1–6  6 0 0–6  
3rd       1–5   

DTLZ6 1st 1–6, H H H H H H H H H  
2nd 0 1 0 0 0 0 0 0 0  
3rd  6 1, 6 1–6 1, 6 1, 6 1–6 1, 6 1, 6  
4th  2–5 2–5  2–5 2–5  2–5 4  
5th  0       2, 3, 5 

DTLZ7 1st H H H H H H H H H  
2nd 0, 1, 4 1 1, 3, 5 1, 4 0, 2, 6 1, 3–5 1, 4 2, 4, 6 1, 3–5  
3rd 6 3–5 2, 4, 6 0 1, 4 2, 6 0 1, 3, 5 2, 6  
4th 2, 3, 5 2, 6 0 6 3, 5 0 6, 2 0 0  
5th  0  2   3, 5    
6th    3, 5      

DTLZ8 1st 0–6, H H H 0–6, H 1–6, H 1–6, H 0–6, H H 1–6, H  
2nd  0 4  0 0  2–5 0  
3rd  6 1, 3     1, 6   
4th  1 2, 5, 6     0   
5th  2 0        
6th  3–5        

DTLZ9 1st H H H 0, 2, 6, H H H 0, 2, 6, H H H  
2nd 3, 5 2 1, 2, 4, 6 1, 3–5 6 2 1, 3–5 2, 6 2  
3rd 0–2, 4, 6 6 3  2 1, 6  1, 3–5 1, 6  
4th  1, 3–5 0, 5  1, 3–5 4  0 3, 4  
5th  0   0 0, 3, 5   0, 5  
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As far as we know, there is no single way of embedding a preference 
model in MOEAs that always leads to higher performance, even within 
the framework of the outranking approach alone. This fact emphasizes 
the contribution of this paper. Our proposed hyper-heuristic is appealing 
to address real-world problems because it can offer competitive MOEAs 
especially designed to treat a particular problem without the need to 
conduct formal analyses on its properties (e.g., the geometry of the 
Pareto frontier). Additionally, those analyses are often challenging and 
time-consuming. 

We developed three versions of HyperACO by using the Euclidean 
distance, the Chebyshev distance, and a weighted distance, each of 
which reflects a different perspective of the DM about the closeness to 
the RoI. According to the numeric results, HyperACO regularly 
composed MOEAs providing solutions with the best approximation to 
the RoI compared with both a priori MOEAs and a posteriori MOEAs. This 
conclusion is supported by statical tests for significance on the results 
obtained by addressing the DTLZ and WFG test suites with ten synthetic 
DMs and three different numbers of objectives. According to these re-
sults, the advantages of HyperACO became more pronounced as the 
number of objectives increased. 

A promising direction for future research is to develop a strategy for 
tuning the control parameters in an adaptive way, considering a global 

setting involving the parameters of both the high-level heuristic and the 
low-level heuristics combinedly. Additionally, we are going to conduct 
further experimentation to validate the contribution of this approach in 
more challenging benchmarks; expressly, the LZ/UF and MaOP test 
suites [43,44]. 

It is important to note that HyperACO was designed to address 
strategic decision problems, where even a slight improvement is sig-
nificant for organizations, and they would be prepared to spend the 
computing time needed for such an improvement (for operational de-
cision problems, where the decision maker is often limited in time, we 
suggest using any of the state-of-the-art algorithms). Fortunately, 
several programming techniques can make HyperACO much faster, 
especially parallelization, cloud computing, and distributed computing, 
which would be another direction for future research. 

Lastly, as the low-level heuristics are based on outranking, Hyper-
ACO demands that the DM’s preferences be non-compensatory about the 
criteria of the underlying problem (that the low-level heuristics 
address). Although this is the scope of our current proposal, HyperACO 
is not necessarily limited to outranking. A proper direction for future 
research is adding low-level heuristics considering other multi-criteria 
preference models (e.g., value functions, distances to the ideal solu-
tion). It is only natural then that, as future research, we are going to 

Table B2 
Ranking of HyperACO, MOEA/D and the six variants of MOEA/D/O according to their closeness to the A-RoI in the WFG test suite.  

Problem Ranking ≺E ≺C ≺W 

m = 3 m = 5 m = 10 m = 3 m = 5 m = 10 m = 3 m = 5 m = 10 

WFG1 1st H H H 0, 2, 6, H H H 0, 2, 6, H H H  
2nd 3, 5 2 1, 2, 4, 6 1, 3–5 6 2 1, 3–5 2, 6 2  
3rd 0–2, 4, 6 6 3  2 1, 6  1, 3–5 1, 6  
4th  1, 3–5 0, 5  1, 3–5 4  0 3, 4  
5th  0   0 0, 3, 5   0, 5 

WFG2 1st 0–6, H H H 0–6, H 1–6, H 1–6, H 0–6, H H 1–6, H  
2nd  0 4  0 0  2–5 0  
3rd  6 1, 3     1, 6   
4th  1 2, 5, 6     0   
5th  2 0        
6th  3–5        

WFG3 1st H 1, 2, 4, 6, H H H H H H 1–6, H H  
2nd 3 0, 3, 5 2, 6 0 6 2, 6 0, 3 0 2, 6  
3rd 1, 2, 4–6  0, 1 6 1, 2, 4 0, 1 1, 2, 4–6  0, 1, 3–5  
4th 0  4 2 0, 3, 5 4     
5th   3, 5 1  3, 5     
6th    3–5      

WFG4 1st 1–6, H H H H H H H H H  
2nd 0 1 0 0 0 0 0 0 0  
3rd  6 1, 6 1–6 1, 6 1, 6 1–6 1, 6 1, 6  
4th  2–5 2–5  2–5 2–5  2–5 4  
5th  0       2, 3, 5 

WFG5 1st H H H H 6, H H H H H  
2nd 0, 2 6 0, 2, 6 0 0–2, 4 0, 2, 6 5 1, 2, 4, 6 0, 2, 6  
3rd 6 0–2, 4 1 2 3, 5 1 1–4, 6 0, 3, 5 1, 3–5  
4th 1, 3–5 3, 5 3–5 1, 3–6  3–5 0   

WFG6 1st H H H H H H H 1–6, H H  
2nd 3, 5 3, 5 3, 5 0 0 5 1, 4 0 5  
3rd 1, 2, 4, 6 4, 1 1, 2, 4 1, 4 6 3 0  1, 3, 4  
4th 0 2, 6 0, 6 2, 3, 5, 6 2 1, 2, 4, 6 2, 3, 5, 6  2, 6  
5th  0   1, 3–5 0   0  
6th          

WFG7 1st 0–6, H 0–6, H 0–6, H 0, H 0, H 0–6, H 0, H 1–6, H H  
2nd    1–6 1–6  6 0 0–6  
3rd       1–5   

WFG8 1st H H H H H H 1–6, H H H  
2nd 5 2, 3 2, 6 0 0 0 0 2 0  
3rd 3 1, 4–6 0 2 1–6 2, 6  0, 3, 5 2, 6  
4th 1, 2, 4, 6 0 1, 3–5 1, 6  1, 3–5  1, 4, 6 1, 3–5  
5th 0   3–5      

WFG9 1st H H H H H H H H H  
2nd 0, 1, 4 1 1, 3, 5 1, 4 0, 2, 6 1, 3–5 1, 4 2, 4, 6 1, 3–5  
3rd 6 3–5 2, 4, 6 0 1, 4 2, 6 0 1, 3, 5 2, 6  
4th 2, 3, 5 2, 6 0 6 3, 5 0 6, 2 0 0  
5th  0  2   3, 5    
6th    3, 5       
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study the identification of the RoI under a broader range of preference 
models. A hyper-heuristic with such a breakthrough could become the 
most comprehensive optimization method to treat real-world MaOPs 
with a priori preference incorporation. 
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Appendix A 

Table A.1 develops a numeric example of the calculation of σ(x, y) through IOA. Table A.1 extends Table 1 to give the reader a closer look at the 
function; these extensions are shadowed in gray. 

Appendix B 

This appendix presents the results of HyperACO compared to MOEA/D and the six variants of MOEA/D/O. For every single run, the performance of 
the algorithms is evaluated through the four indicators described in Subsection 5.3. The order relations ≺E , ≺C and ≺W are used to compare the 
results of the algorithms. Then, the Friedman non-parametric test is complemented with Nemenyi Post-hoc analysis (both with a 0.95-confidence 
interval) to determine significant differences and set an order among the results. Tables B.1 and B.2 structure these results. Here, the first column 
indicates the problem addressed, and the second column refers to the ranking obtained by the statistical tests. Then, the results are grouped by order 
relation (Columns 3–5 for ≺E , Columns 6–8 for ≺C , and Columns 9–11 for ≺W ) and presented incrementally by number of objectives (m). The 
numbers shown in Tables B.1 ad B.2 indicate the variant of MOEA/D/O (See Table 2); additionally, “0” means the original MOEA/D [3], and “H” 
stands for HyperACO. As can be observed, Table 3 is indeed a summary of Tables B.1 and B.2. 
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