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Abstract In this work, a 3D semi-analytical finite element method (SAFEM) is developed to calculate the
effective properties of piezoelectric fiber-reinforced composites (PFRC). Here, the calculations are imple-
mented in one-eighth of the unit cell to simplify the method. The prediction of the effective properties for
periodic PFRC made of piezoceramic unidirectional fibers (PZT) with square and hexagonal space arrange-
ments in a soft non-piezoelectric matrix (polymer) is reported as a way to validate the 3D approach. The limit
case, when short fibers become long ones, allows us to compare with results reported in the literature. For
the analysis of effective properties as a function of fiber relative length, two cases are considered: (i) constant
volume fraction and (ii) constant fiber radius. The constant volume fraction case is of special interest because
according to the Voigt–Reuss–Hill approximation, the effective properties should remain constant. Then, in
order to analyze this case, mechanical and electric fields are also shown. The obtained results show a physically
congruent behavior. Good coincidences are obtained by comparing with asymptotic homogenization and the
representative volume element methods. The 3D SAFEM is also implemented to study the bone piezoelectric
behavior with attention to the role of the mineralized phase on the effective d∗

333 piezoelectric coefficient.

Keywords Piezoelectric short-fiber-reinforced composites · Effective properties · Bone piezoelectricity ·
Finite element method · Asymptotic homogenization method

1 Introduction

Piezoelectric composite materials (PCM) have been receiving significant attention due to their wide variety of
applications as sensors and actuators for measure strain or voltage, vibration control for mechanic structures,
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noise or flow control, detection of ultrasonic waves, energy harvesters, and so on [1–3]. High piezoelectric
performances, large figures of merits, and considerable anisotropy put piezoelectric materials in the applied
field of energy harvesting devices [4]. 3D printing of piezoelectric materials is a field that is gaining more
relevance in a nonstop manner [5]. The properties, connectivity patterns, and symmetry of the electroceramics
composite are explored by Newnham [6]. Also, the fundamental ideas underlying the electroceramics com-
posites are reviewed. Some applications of PCM are reported in Ref. [7]. Besides, the search for lead-free
piezoelectric ceramics [8] and the increasing demand for smart materials [9] have also boosted the search for
better electroceramics.

From the side of natural materials, the bone piezoelectric behavior has been part of the research activities
for a long time [10] and it is still an issue [11]. Bone generation is a topic that covers piezoelectric bioceramics
as in Refs. [12–14]. Miara et al. [15] studied piezomaterials for bone regeneration based on a homogenization
approach. Bersani et al. [16] presented an overview of recent trends related tomathematical modeling of several
enzymatic mechanisms. Also, they illustrated the application to bone and piezoelectricity. More recently,
Mohammadkhah et al. [17] developed a review on bone piezoelectricity computer modeling and its key role
in bone adaptation and regeneration.

In these searching scenarios, modeling and simulation are expected to play an effective supporting role. In
piezoelectric composites, the a priori estimation of the percentage of their phases and constituent parameters
allows better control of the effective properties, and hence, a better design of piezoelectric devices. In this sense,
several theoretical 2D and 3D models have been developed to estimate the effective piezoelectric coefficients
[18–24]. An analytical Hamiltonian-based method to obtain exact solutions for a piezoelectric fiber-reinforced
composite (PFRC) cylindrical shells based on the Reissner’s shell theory is proposed by Zhou et al. [25]. The
piezoelectric effective moduli of PFRC with a micromechanics approach based on the Mori–Tanaka model is
investigated by Hasanzadeh et al. [26]. The generalized eigenstrain concept is applied to calculate the effective
electroelastic coefficient of PFRC with ring-shaped cross section under antiplane shear coupled with in-plane
electric load [27].

Several authors have developed models to describe the structure–properties relationship for 3D representa-
tive elements. For example, the three-cell model and the finite element method (FEM) are applied to estimate
the effective mechanical properties of a braided piezoelectric ceramic composite [28]. FEM is used to calcu-
late the effective properties of a three-phase magneto-electro-elastic fiber-reinforced composite (FRC) [29].
Multilayered piezoelectric systems are studied using finite element analysis [30]. Zhang et al. developed a
3D approach based on the scaled boundary FEM that can provide an effective elastic coefficient where fibers
are treated as truss element, i.e., the fiber is embedded in the matrix element using new nodes in a line inter-
section with further scaling [31]. This method is efficient for considering a wide orientation distribution of
fiber inclusions. A micromechanical model applying finite element with asymptotic volume segmentation for
electromechanical properties of PFRC actuator is given by Dubey and Panda [32]. Analytical and numerical
approaches to estimate piezoelectric coefficients for macro-reinforced composite are reported in Ref. [33]. All
the above-mentioned 3D models are fully based in 3D finite element analysis, anyway, they may have some
limitations for considering specific types of inclusions.

Further development in 3D unit cell for effective properties estimations is needed to contribute to the search
of electroceramics with improved performance and to better understand of the bone piezoelectric behavior.
Herein, a semi-analytical finite element approach (SAFEM) developed in Refs. [34,35] for periodic and elastic
FRCwith long and unidirectional fibers is extended to consider 3D composite structures. Besides, piezoelectric
behavior is added to the model. A combination of the asymptotic homogenization method (AHM) with FEM
offers several advantages. From one side, the rigorous mathematical basement of AHM [36,37] warranties
the accuracy of the problem statements reducing to zero some consideration that may limit the validity of the
model in some situations. From the other side, the FEM is applied at a proceeding step where the problem is
stated and almost any kind of unit cell can be considered. For SAFEM, the boundary conditions resulted from
a rigorous mathematical procedure rather than a set of hypothetical statements. Then, it is to be expected that
the possible limitations must be related to the mesh quality or computer capacities. Therefore, a validation
process needs to be developed to investigate the capabilities of the SAFEM approach.

In the present work, a 3D piezoelectric short FRC is studied considering that this kind of structure is of
interest [38,39]. Section 2 is devoted to the piezoelectric composite problem statement. Initially, the AHM
procedure for 3D problems is presented until the statement of the nine local problems. Then, these local prob-
lems are accommodated in such a way to facilitate the FEM implementation, which is developed using the
commercial software ANSYS, Inc. (Canonsburg, PA, USA). The effective properties are also accommodated
to directly connect them to the ANSYS parameters. In Sect. 3, the effect of fiber length on the effective elastic,
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piezoelectric, and dielectric properties of PFRC is analyzed. As a limit case toward a long fiber, comparisons
with literature reported coincident and expected values. Further analysis is developed to understand the proper-
ties behavior and significant insight into the composite behavior is gained. Finally, due to 3D SAFEM capacity,
as a second case of application, the analysis developed by Penta et al. [40] is extended to bone piezoelectric
behavior.

2 Fundamental equation of piezoelectric composites: method of solution

A piezoelectric composite material (PCM) is considered which occupies a volume � ⊂ �3 limited by the
surface S. The electromechanical coupling equations for this heterogeneous PCM � are described by a fun-
damental partial differential equations system, for a quasi-static approximation. Thus, the stress equilibrium
and Gauss’s law are assumed considering the absences of body forces and electric charge, as follows:

σi j, j = 0, Di,i = 0, in �, (1)

with i, j, k, l = 1, 2, 3 and the linear coupled constitutive equations have the form:

σi j = Ci jklεkl − eki j Ek, (2)

Di = eiklεkl + κik Ek, (3)

where εkl = (uk,l + ul,k)/2 and Ek = ϕ,k , and the symmetric properties Ci jkl = Ckli j = C jikl = Ci jlk ,
eki j = ek ji , κik = κki , and σi j = σ j i are satisfied.

In Eqs. (1)–(3), σi j and εkl are the stress and deformation tensors, Di and Ek are the electric displacements
and field vectors, and Ci jkl , eki j and κi j are the stiffness, piezoelectric (relating stress to the electric field), and
permittivity tensors, respectively. Also, the summation by repeated Latin indices is assumed and the comma
notation indicates the partial derivate relative to the x j component.

The system [Eq. (1)] together with the conditions on the surface S, boundary of the medium �,

ui = ūi , σi j n j = t̄i , ϕ = ϕ̄ and Dini = Q̄, on S (4)

define the fundamental linear electromechanical coupling problem of a heterogeneous medium� as a function
of unknown ui and ϕ. Here, the bar symbol over the function represents the prescribed values of displacement
ui , tractions ti , electric potential ϕ, and electric charge Q on S.

The three-dimensional heterogeneous piezoelectric structure � ⊂ �3 is defined by a two-phase FRC
with doubly periodicity fiber distribution in the coordinate system {O ; x1, x2, x3}; see Figs. 1 and 2. The
reinforcements (fibers) are short cylinders unidirectionally orientated with equal radii and material proper-
ties. They are periodically embedded without overlapping in a homogeneous matrix. Fibers and matrix are
transversely isotropic materials; therefore, there are only ten independent material coefficients, 5 elastic, 3
piezoelectric, and 2 dielectric constants. The Ox3-axis of transverse symmetry of each phase coincides with
the fiber reinforcement direction.

Two different periodic unit cells are considered. Figure 1 displays a space square fiber distribution in
Ox1x2-plane and the unit cell is defined as a cubic matrix with a centered short cylinder (fiber) of radius R
and length h, 0 < h < 1 at the Cartesian system of coordinates {O ; y1, y2, y3}. Similarly, Fig. 2 shows a
space hexagonal fiber distribution in Ox1x2-plane where the unit cell is a parallelepiped with a centered short
fiber, as in Fig. 1. The periodic unit cell cross section Y represents a square and hexagonal fiber arrangement,
respectively. The regions occupied by the matrix S1 and fiber S2 satisfy Y = S1 ∪ S2 and S1 ∩ S2 = ∅. The
interface between fiber and matrix is defined by � = {

z : z = Reiθ , 0 ≤ θ ≤ 2π
}
and it is assumed to behave

as a perfect contact, that is, mechanical displacements and tractions, quasi-static electric potential and normal
electric displacement remain continuous across the interface �, see, for instance, Ref. [41].

2.1 Asymptotic homogenization method: local problems and effective properties

The well-known two-scale asymptotic homogenization method (AHM) reported in Refs. [36,37,42] is applied
to find an asymptotic solution for the problem described by Eqs. (1)–(4). Then, displacements ui and electric
potential ϕ are found posing the Ansatz:

ui (x) = u(0)
i (x, y) + ε u(1)

i (x, y) + O(ε2), (5)
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Fig. 1 Periodic structure of composite (left), the unit cell for a space square fiber distribution in Oy1y2-plane (middle), and
one-eighth of the unit cell (right)

Fig. 2 Periodic structure of composite (left), the unit cell for a space hexagonal fiber distribution in Oy1y2-plane (middle), and
one-eighth of the unit cell (right)

ϕ(x) = ϕ(0)(x, y) + ε ϕ(1)(x, y) + O(ε2), (6)

where the terms u(0)
i (x, y) ≡ u(0)

i (x) and ϕ(0)(x, y) ≡ ϕ(0)(x) are independent of y. The first-order terms

u(1)
i (x, y) and ϕ(1)(x, y) are Y-periodic functions of y which represent a correction of u(0)

i (x) and ϕ(0)(x),
respectively. They can be written as:

u(1)i (x, y) = pq L
(1)
i (y)u(0)p,q(x) + p P

(1)
k (y) ϕ

(0)
,p (x), (7)

ϕ(1)(x, y) = pqM
(1)(y)u(0)p,q(x) + pQ

(1)(y) ϕ
(0)
,p (x), (8)

where pq L
(1)
i (y), pqM (1)(y), p P

(1)
k (y), and pQ(1)(y) are the so-called periodic local functions, which are

independent of x on the cell Y. Herein, the global x = (x1, x2, x3) and local y = (y1, y2, y3) scales satisfy
that x = εy where ε = l/L is the ratio between the unit cell length (l) and the characteristic macroscopic
dimension of the composite (L). It must be fulfilled that ε << 1.

Following the methodology developed in Refs. [41,43], it is possible to obtain two fundamental set of
homogenized mathematical problems over the unit cell Y, denoted as pqL and pI with p, q = 1, 2, 3, and
the corresponding effective properties, defined below.

Hence, the mathematical statement of the local problems over Y can be stated as:
pqL problems
(
Ci jpq + Ci jkl pq Lk,l + eli j pqM,l

)
, j = 0,

(
eipq + eikl pq Lk,l − κil pqM,l

)
,i = 0, on Y (9)
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Table 1 Local problems and associated effective properties

11L 22L 33L 23L 13L 12L 1I 2I 3I
C∗
1111 C∗

2211 C∗
3311 0 0 0 0 0 e∗

311
C∗
1122 C∗

2222 C∗
3322 0 0 0 0 0 e∗

322
C∗
1133 C∗

2233 C∗
3333 0 0 0 0 0 e∗

333
0 0 0 C∗

2323 0 0 0 e∗
223 0

0 0 0 0 C∗
1313 0 e∗

113 0 0
0 0 0 0 0 C∗

1212 0 0 0
0 0 0 0 e∗

113 0 κ∗
11 0 0

0 0 0 e∗
223 0 0 0 κ∗

22 0
e∗
311 e∗

322 e∗
333 0 0 0 0 0 κ∗

33

pq L
(1)
k = pq L

(2)
k , pqM

(1) = pqM
(2), on � (10)

[
C (1)
i j pq + C (1)

i jkl pq L
(1)
k,l + e(1)

li j pqM
(1)
,l

]
n(1)
j

∣∣∣
�

= −
[
C (2)
i j pq + C (2)

i jkl pq L
(2)
k,l + e(2)

li j pqM
(2)
,l

]
n(2)
j

∣∣∣
�

,

[
e(1)
i pq + e(1)

ikl pq L
(1)
k,l − κ

(1)
il pqM

(1)
,l

]
n(1)
i

∣∣∣
�

= −
[
e(2)
i pq + e(2)

ikl pq L
(2)
k,l − κ

(2)
il pqM

(2)
,l

]
n(2)
i

∣∣∣
�

,

on �

(11)
〈
pq Lk

〉 = 0,
〈
pqM

〉 = 0, (12)

where pq Lk (displacements) and pqM (electric potential) are local functions that need found in Y.

pI problems

(
epi j + Ci jkl p Pk,l + eli j pQ,l

)
, j = 0,

(−κi p + eikl p Pk,l − κil pQ,l
)
,i = 0, on Y (13)

p P
(1)
k = p P

(2)
k , pQ

(1) = pQ
(2), on � (14)

[
e(1)
pi j + C (1)

i jkl p P
(1)
,l + e(1)

li j pQ
(1)
,l

]
n(1)
j

∣∣∣
�

= −
[
e(2)
pi j + C (2)

i jkl p P
(2)
,l + e(2)

li j pQ
(2)
,l

]
n(2)
j

∣∣∣
�

,

[
−κ

(1)
i p + e(1)

ikl p P
(1)
,l − κ

(1)
il pQ

(1)
,l

]
n(1)
i

∣∣∣
�

= −
[
−κ

(2)
i p + e(2)

ikl p P
(2)
,l − κ

(2)
il pQ

(2)
,l

]
n(2)
i

∣∣∣
�

,

on � (15)

〈
p Pk

〉 = 0,
〈
pQ

〉 = 0, (16)

where p Pk (displacements) and pQ (electric potential) are local functions that need to be found in Y.

In both pqL and pI problems, 〈 f 〉 = |Y|-1 ∫

Y
f (y) dY represents the volume average per unit length in

Y and the comma notation indicates the partial derivate relative to the y j component. Also, all local functions
and coefficients are dependent of the local variable y. Once the above local problem solutions are found, the
effective coefficients can be calculated following the formulae:

Associated with the local problems pqL

C∗
i j pq = 〈

Ci jpq + Ci jkl pq Lk,l + eli j pqM,l
〉
, e∗

i pq = 〈
eipq + eikl pq Lk,l − κil pqM,l

〉
, (17)

Associated with the local problems pI

e∗
pi j = 〈

epi j + Ci jkl p Pk,l + eli j pQ,l
〉
, κ∗

i p = 〈
κi p − eikl p Pk,l + κlk pQ,l

〉
. (18)

Notice that effective coefficients [Eqs. (17) and (18)] depend on the local functions linked to the correspond-
ing local problem. These local functions are calculated using the semi-analytical approach describes in the
following sections. More details about AHM procedure can be found in Refs. [44,45]. In Table 1 is illustrated
the relation between effective properties and local problems.
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Table 2 Local problems and transformation conditions

Local problem Transformation conditions

pqL pq Lk = pq L̂k − ypδkq , pqM = pq M̂

pI p Pk = p P̂k , pQ = p Q̂ − yp

2.2 Semi-analytical approach (SAFEM)

In this work, the semi-analytical solution of the homogenized local problems pqL [Eqs. (9)–(12)] and pI
[Eqs. (13)–(16)] and the associate effective coefficients [Eqs. (17)–(18)] are found using FEM implemented by
ANSYS, Inc. (Canonsburg, PA, USA). First, the homogenized local problems are transformed into equivalent
ones in one-eighth of the cell Y (Figs. 1 and 2), and then their solutions are implemented using ANSYS.
The local problem transformations are possible considering that periodic unit cell and/or constituent material
coefficients satisfy some spatial symmetry conditions, like in the present work, i.e., the unit cell is divided by
three perpendicular mirrors. Second, the piezoelectric effective moduli are calculated. This solution procedure
is similar to the methodology developed in Refs. [34,35] for a 2D problem, in which the semi-analytical
solution of local boundary problems is calculated by FEM through minimum potential energy principle for
elastic composites. Herein, SAFEM is expanded to consider piezoelectric behaviors in 3D problems.

Local problems in an eighth of Y and boundary conditions

The boundary value problems over one-eighth of the unit cell Y concerning to the homogenized local problems
pqL [Eqs. (9)–(12)] and pI [Eqs. (13)–(16)] take place assuming that constituent properties are even functions
with respect to the yi and replacing the local function transformation conditions given in Table 2 into Eqs.
(9) and (13), see Refs. [34]. The “caret” symbol over the local functions represents the equivalent pseudo-
displacements and pseudo-electric potential local function in one-eighth of periodic unit cell Y.

Therefore, the boundary value problems over one-eighth of Y are defined as follows:
pqL problems

pq σ̂i j, j = 0, pq D̂i,i = 0, on Sα, (19)

where pq σ̂i j = Ci jkl pq L̂k,l + eli j pq M̂,l and pq D̂i = eikl pq L̂k,l − κil pq M̂,l .
pI problems

pσ̂i j, j = 0, p D̂i,i = 0, on Sα, (20)

where pσ̂i j = Ci jkl p P̂k,l + eli j p Q̂,l and p D̂i = eikl p P̂k,l − κil p Q̂,l .
The pqL [Eq. (19)] and pI [Eq. (20)] problems are subject to boundary conditions, which are summarized

in Table 3. Here, dh = {0, lh} where lh is the periodic unit cell length in the yh-direction. Also, the boundaries
on one-eighth of Y are defined as

{
y1 = d1, y2, y3

} ≡
{
(y1, y2, y3) ∈ R

3
∣∣∣ y1 = {

0, l1
}
, 0 ≤ y2 ≤ l2, 0 ≤ y3 ≤ l3

}
,

{
y1, y2 = d2, y3

} ≡
{
(y1, y2, y3) ∈ R

3
∣∣∣ 0 ≤ y1 ≤ l2, y2 = {

0, l2
}
, 0 ≤ y3 ≤ l3

}
, and

{
y1, y2, y3 = d3

} ≡
{
(y1, y2, y3) ∈ R

3
∣∣∣ 0 ≤ y1 ≤ l2, 0 ≤ y2 ≤ l2, y3 = {

0, l3
}}

.

Thus, the corresponding piezoelectric effective moduli over one-eighth of Y [Eqs. (17) and (18)] are rewritten
as:

Associated with the pqL problem,

C∗
i j pq = 8

〈
pq σ̂i j

〉
, e∗

i pq = 8
〈
pq D̂i

〉
. (21)

Associated with the pI problem,

e∗
pi j = 8

〈
pσ̂i j

〉
, κ∗

i p = 8
〈
p D̂i

〉
. (22)
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Table 3 Local problems and boundary conditions

Local problem Boundary conditions Boundary regions

11L
11σ̂12 = 0, 11σ̂13 = 0, 11 L̂1 = d1, 11 D̂1 = 0,

11σ̂21 = 0, 11σ̂23 = 0, 11 L̂2 = 0, 11 D̂2 = 0,

11σ̂31 = 0, 11σ̂32 = 0, 11 L̂3 = 0, 11M̂ = 0,

in
{
y1 = dh, y2, y3

}

in
{
y1, y2 = dh, y3

}

in
{
y1, y2, y3 = dh

}

22L
22σ̂12 = 0, 22σ̂13 = 0, 22 L̂1 = 0, 22 D̂1 = 0,

22σ̂21 = 0, 22σ̂23 = 0, 22 L̂2 = y2, 22 D̂2 = 0,

22σ̂31 = 0, 22σ̂32 = 0, 22 L̂3 = 0, 22 M̂ = 0,

in
{
y1 = dh, y2, y3

}

in
{
y1, y2 = dh, y3

}

in
{
y1, y2, y3 = dh

}

33L
33σ̂12 = 0, 33σ̂13 = 0, 33 L̂1 = 0, 33 D̂1 = 0,

33σ̂21 = 0, 33σ̂23 = 0, 33 L̂2 = 0, 33 D̂2 = 0,

33σ̂31 = 0, 33σ̂32 = 0, 33 L̂3 = y3, 33M̂ = 0,

in
{
y1 = dh, y2, y3

}

in
{
y1, y2 = dh, y3

}

in
{
y1, y2, y3 = dh

}

13L
13σ̂11 = 0, 13 L̂2 = 0, 13 L̂3 = y1, 13M̂ = 0,

13σ̂21 = 0, 13σ̂23 = 0, 13 L̂2 = 0, 13 D̂2 = 0,

13σ̂33 = 0, 13 L̂1 = 0, 13 L̂2 = 0, 13 D̂3 = 0,

in
{
y1 = dh, y2, y3

}

in
{
y1, y2 = dh, y3

}

in
{
y1, y2, y3 = dh

}

23L
23σ̂12 = 0, 23σ̂13 = 0, 23 L̂1 = 0, 23 D̂1 = 0,

23σ̂22 = 0, 23 L̂1 = 0, 23 L̂3 = y2, 23M̂ = 0,

23σ̂33 = 0, 23 L̂1 = 0, 23 L̂2 = 0, 23 D̂3 = 0,

in
{
y1 = dh, y2, y3

}

in
{
y1, y2 = dh, y3

}

in
{
y1, y2, y3 = dh

}

12L
12σ̂11 = 0, 12 L̂2 = y1, 12 L̂3 = 0, 12 M̂ = 0,

12σ̂22 = 0, 12 L̂1 = 0, 12 L̂3 = 0, 12 M̂ = 0,

12σ̂31 = 0, 12σ̂32 = 0, 12 L̂3 = 0, 12 M̂ = 0,

in
{
y1 = dh, y2, y3

}

in
{
y1, y2 = dh, y3

}

in
{
y1, y2, y3 = dh

}

1I
1σ̂11 = 0, 1 P̂2 = 0, 1 P̂3 = 0, 1 Q̂ = y1,

1σ̂21 = 0, 1σ̂23 = 0, 1 P̂2 = 0, 1 D̂2 = 0,

1σ̂33 = 0, 1 P̂1 = 0, 1 P̂2 = 0, 1 D̂3 = 0,

in
{
y1 = dh, y2, y3

}

in
{
y1, y2 = dh, y3

}

in
{
y1, y2, y3 = dh

}

2I
2σ̂12 = 0, 2σ̂13 = 0, 2 P̂1 = 0, 2 D̂1 = 0,

2σ̂22 = 0, 2 P̂1 = 0, 2 P̂3 = 0, 2 Q̂ = y2,

2σ̂33 = 0, 2 P̂1 = 0, 2 P̂2 = 0, 2 D̂3 = 0,

in
{
y1 = dh, y2, y3

}

in
{
y1, y2 = dh, y3

}

in
{
y1, y2, y3 = dh

}

3I
3σ̂12 = 0, 3σ̂13 = 0, 3 P̂1 = 0, 3 D̂1 = 0,

3σ̂21 = 0, 3σ̂23 = 0, 3 P̂2 = 0, 3 D̂2 = 0,

3σ̂31 = 0, 3σ̂32 = 0, 3 P̂3 = 0, 3 Q̂ = y3,

in
{
y1 = dh, y2, y3

}

in
{
y1, y2 = dh, y3

}

in
{
y1, y2, y3 = dh

}

According to the effective coefficient formulations, the pseudo-local functions (pseudo-displacement and
pseudo-electrical potential) need to be found for each local boundary problem over one-eighth of Y. The whole
set of piezoelectric effective moduli is determined through the solutions of all local problems.

ANSYS numerical implementation

The numerical solution of the pqL and pI local problems [Eqs. (19) and (20)] subject to boundaries conditions
(Table 3) is solved by finite element method implemented via ANSYS. The ANSYS software (Canonsburg,
PA, USA) is considered because it is highly trustable and efficient. The piezoelectric behavior can be described
with the element “solid98” of the ANSYS library. This is a 3D tetrahedral element with 10 nodes. The square
unit cell of Fig. 1 is meshed as shown in Fig. 3 for a set of different relative fiber lengths. Analogously, the
hexagonal unit cell of Fig. 2 is also meshed, but it is not shown here for simplicity.

For the numerical implementation of the and pI local problems [Eqs. (19) and (20)] under the bound-
aries conditions of Table 3, the ANSYS coordinate system is taken as shown in Fig. 1. ANSYS mechanical

displacements and electrical potential are considered as pq L̂k and pq M̂
(
p P̂k and p Q̂

)
for the pqL

(
pI

)

problems. The F σ̂i j with i j = 11, 22, 33 corresponds to ANSYS X, Y and Z stress components, as well
as i j = 12, 13, 23 to the shear stresses XY, YZ and XZ. The ANSYS electrical displacement is F D̂i with
i = 1, 2, 3. The F pre-index (pq and p) is used to identify the corresponding pqL and pI local problems to
solve.

Hence, the boundary conditions resumed in Table 3 are directly implemented in ANSYS for each local
problem. The symmetry mirror used to define the eighth unit cell is taken as ANSYS boundary planes of
symmetry. The null conditions listed in Table 3 are not necessary to specify because they are the default
conditions. Then, for each local problem, the no-null conditions must be set up. For example:
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Fig. 3 Finite element mesh for one-eighth of the periodic unit cell with different relative fiber lengths

For the 11L problem, 11 L̂1 = d1 in
{
y1 = dh, y2, y3

}
, or, for the local 1I problem, 1 Q̂ = y1 in{

y1 = dh, y2, y3
}
.

At this point, all is set to run the program.Once, the solution is done, the final step is to calculate the effective
properties [Eqs. (21) and (22)]. The volume average values require for these equations can be calculated by
ANSYS using the Element table option.

3 Analysis of results

A herein 3D SAFEM model for estimating the effective piezoelectric behavior can be useful in the design
and optimization of a variety of devices, as well as to permit more realistic analysis in the biomechanics
field. In Sect. 3.1, the analysis of a short-fiber-reinforced composite shows how piezoelectric properties can be
manipulated taking advantages of the possibilities offered by a 3D structure. Therefore, in Sect. 3.2, the herein
developed 3D SAFEM model is applied to contribute to the understanding of the bone piezoelectric behavior
and to better address the key issues that need to be investigated.

3.1 Short piezoelectric fiber

The numerical simulations were conducted for different cases of 3D two-phase short FRC (fiber/matrix) by
SAFEM. Herein, composites with square and hexagonal spatial fiber distributions are considered, as can be
seen in Figs. 1 and 2. Besides, the effect of fiber length on the effective piezoelectric properties is analyzed
under a constant fiber volume fraction or constant fiber radius. For calculations, the elastic, piezoelectric, and
dielectric properties of constituent materials for fibers (PZT-5) and matrix (epoxy polymer) are taken from
Ref. [18] and reported in Table 4.

Six elastic C∗
1111, C

∗
1122, C

∗
1133, C

∗
3333, C

∗
1313 and C∗

1212, three piezoelectric e∗
311, e

∗
113 and e∗

333, and two
dielectric κ∗

11 and κ∗
33, effective coefficients are calculated using SAFEM numerical implementation. It can be

noticed that the composite effective properties have a tetragonal class symmetry, which is different from the
constituent’s symmetry group. The SAFEM numerical results are compared with results obtained by AHM
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Table 4 Elastic, piezoelectric, and dielectric properties for the constituent materials with C1212 = (C1111 − C1122) /2

Constituent Materials Elastic (GPa) Piezoelectric (C/m2) Dielectric (nF/m)

C1111 C1122 C1133 C3333 C1313 e113 e133 e333 κ11 κ33

PZT-5 121 75.4 75.2 111 21.1 12.3 −5.4 15.8 8.11 7.35
Epoxy 3.86 2.57 2.57 3.86 0.64 0 0 0 0.07965 0.07965

Fig. 4 Effective elastic coefficients C∗
1111, C

∗
1122 and C∗

1212 of a two-phase FRC with square periodic fiber distribution cell as a
function of fiber relative length for different fiber volume fractions (left) and radius (right)

with the analytical formulae of Ref. [41] and those reported by Ref. [18] using the representative volume
element method (RVEM). Herein, it must be recalled that, in principle, the AHM implementation is possible
for cases where a periodic heterogeneous structure is identified. FRC in the direction of long fibers is not
a heterogeneous structure. On the other side, short and x3-oriented FRC is a 3D periodic structure. As the
fiber length increases, a long fiber is obtained as a limit case. Comparisons between SAFEM and the AHM
analytical solution [41] are only possible for this limit case, i.e., fiber relative length close to 1.0 as much as
possible. More AHM details can be found in Ref. [41]. The fiber relative length (FRL) runs from 0.0 to 1.0.
As FRL tends to 1.0, the short fiber tends to the long fiber.

Figures 4, 5, 6 and 7 show the effective moduli C∗
1111, C

∗
1122, and C∗

1212 (Fig. 4), C
∗
3333, C

∗
1313, and C∗

1133
(Fig. 5), e∗

311, e
∗
113, and e∗

333 (Fig. 6), κ∗
11 and κ∗

33 (Fig. 7) of a two-phase FRC as a function of the fiber
relative length (FRL) for different fiber volume fractions (left) and fiber radius (right) with square periodic
fiber distribution cell. In all the mentioned figures, the void symbols for FRL equal to 1.0 represent the values
obtained by the AHMwith analytically solved local problems, for long fibers. The void symbols with the same
shape of solid symbols represent the same fiber volume fraction (left) or the same fiber radius (right). The same
legend is used for all the figures. It is to be expected that SAFEM numerical results for the limit case of FRL
tending to “1.0” should be equal to the AHM results for long fibers along the x3-direction. As can be observed
in Figs. 4, 5, 6, and 7, these expected behaviors are obtained, as FRL tends to 1.0, the SAFEM values tend to
those obtained by AHM. It should also be noted the numerical difference between C∗

1212 and C∗
1313, which,

together with the rest properties values, lead us to conclude that the FRC presents tetragonal symmetry.
From Fig. 4, it can be noticed that C∗

1111, C
∗
1122, and C∗

1212 properties decrease as FRL increases under a
constant fiber volume fraction and increases under a constant fiber radius. This is an expected result because
an increase in FRL means a decrease in the fiber radius under a constant volume fraction which leads to
the above-mentioned properties decrease. On the other hand, an increase in the FRL with a constant radius
implies an increase in the fiber volume fraction, and therefore, C∗

1111, C
∗
1122, and C∗

1212 increases. The shear
in Ox1x2-plane decreases for the constant fiber volume fraction and increases for the constant fiber radius as
FRL increases.
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Fig. 5 Effective elastic coefficients C∗
3333, C

∗
1313 and C∗

1133 of a two-phase FRC with square periodic fiber distribution cell as a
function of fiber relative length for different fiber volume fractions (left) and radius (right)

Fig. 6 Effective piezoelectric coefficients e∗
311, e

∗
113 and e

∗
333 of a two-phase FRC with square periodic fiber distribution cell as a

function of fiber relative length for different fiber volume fractions (left) and radius (right)

In Fig. 5, it can be observed that the effective coefficient C∗
3333, C

∗
1313, and C∗

1133 increases with the
FRL enlargement under both conditions: constant fiber radius and constant fiber volume fraction. A plausible
explanation for the C∗

3333 and C
∗
1133 properties behavior is due to the fact that mechanical properties along the

fiber direction mainly depend on the fiber length. Let us try to understand this behavior considering the serial
connection of two elastic elements. One element can be the portion of the unit cell with fiber, and the other
one is the rest of the unit cell fully occupied by the matrix. For the present case, the portion with the fiber
is always harder than the other one no matter what the fiber radius is. As the FRL increases, the first portion
also increase always leading to an increase in the elastic effective properties C∗

3333 and C∗
1133. Also, it can

be observed that the shear effective coefficient C∗
1313 increases for the two herein studied situations (constant

fiber radius and constant fiber volume fraction). For these two cases, the Ox1x3-plane and Ox2x3-plane fiber
axial cross section areas experiment a grow, which is the phase with higher elastic properties. For constant
fiber volume (fiber radius), the axial cross section area grows directly proportional to the square root of FRL
(linearly proportional to FRL). Therefore, the effective shear elasticity C∗

1313 always increases.
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Fig. 7 Effective dielectric coefficients κ∗
11 and κ∗

33 of a two-phase FRC with square periodic fiber distribution cell as a function
of fiber relative length for different fiber volume fractions (left) and radius (right)

Figure 6 reports the effective piezoelectric coefficients as a function of FRL for different fiber volume
fractions and fiber radius. For all the cases considering constant fiber radius, the piezoelectric coefficient
increases with the FRL enlargement. This is an expected result because the increase in FRL is equivalent to the
increase in the piezoelectric phase volume fraction. On the other side, the constant fiber volume fraction cases
imply that the piezoelectric volume fraction phase remains constant. As the FRL increases, e∗

311 and e
∗
333 also

increase. A reasonable explanation can be found in the fact that e∗
311 and e

∗
333 connect electric and mechanical

magnitudes of the x3-direction with the x1- and x3-directions, respectively. Hence, the fiber x3-direction is
always involved, and we can talk again about two elements connected in series, as the FRL increase, the
element volume with piezoelectric properties increases making this effect more dominant. The situation is
different for e∗

113 as this property connects magnitudes of the x1-direction with the Ox1x3-plane, and the final
result is the decrease in the piezoelectric property e∗

311 with the FRL increase.
Finally, Fig. 7 shows the dependences of the dielectric effective coefficient κ∗

11 and κ∗
33 on the FRL. A

similar behavior to the piezoelectric one can be observed. For the constant radius, the dielectric properties
increase with the FRL growth. It is worthily to observe that the dielectric property κ∗

33 slowly increases as
FRL grows, but as FRL approaches to “1.0,” i.e., fiber percolation, the effective properties abruptly increase.
This situation is also observed for e∗

333, C
∗
3333, C

∗
1313 and C∗

1133; and it is related to the fiber percolation, i.e.,
the transition from short fiber to long fiber composite. For a constant volume fraction, the dielectric property
κ∗
33 increases because it involves the component “3”, on the other side, κ∗

11 decreases as the aligned fiber
x3-direction is not directly connected with this property.

Figures 8, 9, 10 and 11 display the effective moduliC∗
1111,C

∗
1122 andC

∗
1212 (Fig. 8),C

∗
3333,C

∗
1313 andC

∗
1133

(Fig. 9), e∗
311, e

∗
113 and e∗

333 (Fig. 10), κ
∗
11 and κ∗

33 (Fig. 11) of a two-phase FRC as a function of the FRL, for
different fiber volume fractions (left) and fiber radius (right) with hexagonal periodic fiber distribution cell. The
behavior described by these results are similar to those reports in Figs. 4, 5, 6, and 7 for square periodic fiber
distribution. However, hexagonal symmetry has a higher fiber concentration which leads to higher effective
properties. It is also worthily to mention that, and, for this reason, the numerical difficulties are also higher
and considering this kind of fiber distribution can be seen as a contribution to the model validation.

A general comparison between the square (Figs. 4, 5, 6, 7) and hexagonal (Figs. 8, 9, 10, 11) spatial fiber
distributions shows that the convergence of the short fiber SAFEM results toward the AHM analytical solution
for long fiber, as the relative fiber length tends to “1.0,” it is more successful for square symmetry than for
hexagonal symmetry. The fiber hexagonal accommodation is more compact and near the percolation thematrix
volume fraction is lower than the one of square fiber distribution. The composite matrix has to deal with higher
gradient values for several physical magnitudes such as stress, strain, electric field, and electric displacements.
Having the focus on the numerical quality of the results, it can be observed in Figs. 8, 9, 10, and 11, that the
SAFEM predictions is good enough and trustable.

In Figs. 4, 5, 6, 7, 8, 9, 10, and 11, it can be observed awide range of property that a short FRC permits, and it
is of interest regarding possible applications. Fiber volume fraction, radius, and length offer good possibilities
for property design and figures of merit can be computed with the help of a micromechanical model, like
the one developed herein. Results of model implementations can be valuable for specific applications, such
as piezoelectric composite transducers [46]. Further improvement in piezoelectric transducers must consider
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Fig. 8 Effective elastic coefficients C∗
1111, C

∗
1122, and C∗

1212 of a two-phase FRC with hexagonal periodic fiber distribution cell
as a function of fiber relative length for different fiber volume fractions (left) and radius (right)

Fig. 9 Effective elastic coefficients C∗
3333, C

∗
1313, and C∗

1133 of a two-phase FRC with hexagonal periodic fiber distribution cell
as a function of fiber relative length for different fiber volume fractions (left) and radius (right)

both mechanical and electrical properties, see, for instance, Gripp and Rade [47]. This kind of properties plays
a key role in the electromechanical energy conversion efficiency, as can be seen in Refs. [48,49]. 3D structures
are gaining space in the development of piezoelectric sensors and transducers, as it is reported in Refs. [50–52].

Tables 5 and 6 show numerical comparisons for the elastic, piezoelectric, and dielectric effective properties
calculated by SAFEM herein implemented with AHM analytical solution [41] and RVEM [18] for a two-phase
FRC with square fiber spatial distribution, for the limit case of the relative fiber length equal to 1.0. It can be
observed that the three different models predict results very close to each other. It can be noticed that, as a
general tendency, SAFEM predictions are closer to RVEM values than AHM predictions.

It can be reported that, for the numerical comparisons, the SAFEM predictions can be considered as having
good quality inside of a desired range. At least two digits coincidences can always be seen comparing SAFEM
with either AHM [41] or RVEM [18]. Then, the percentage error is almost always less than 3%. Three cases are
worthily to mention because of high relative errors. For C∗

1111, and C∗
1122 with fiber volume fraction equal to

0.667, the relative error comparing with AHM is relatively high and equal to 18.75% and 22.19%, respectively.
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Fig. 10 Effective piezoelectric coefficients e∗
311, e

∗
113, and e∗

333 of a two-phase FRC with hexagonal periodic fiber distribution
cell as a function of fiber relative length for different fiber volume fractions (left) and radius (right)

Fig. 11 Effective dielectric coefficients κ∗
11 and κ∗

33 of a two-phase FRCwith hexagonal periodic cell as a function of fiber relative
length for different fiber volume fractions (left) and radius (right)

However, the relative error comparing with RVEM is quite low and equal to 2.06% and 0.5%, respectively.
The third case is the relative errors of e∗

113 for fiber volume fraction equal to 0.556 which has the values of
0.93% for comparison with AHM and 72.98% for RVEM. Hence, the SAFEM numbers are always close to,
at least, one of the two methods taken as reference for comparisons. Numerical precision is always an issue
even for numerical implementation of analytical formulae. It is to be expected limitations in this sense for all
approximations herein considered.

The monotone behavior for the constant fiber radius can be predicted with the Voigt–Reuss–Hill (VRH)
average. The advantage of SAFEM lies in the fact that the constituent interaction is considered, then properties
estimation is more realistic. In fact, most of the dependencies for the constant radius does not follow the straight
line predicted by VRH average. The difference between VRH and SAFEM becomes even more physically
interesting when the constant fiber volume cases are studied. According to VRH average, each property value
should remain constant with the increase in the relative fiber length because of the constant volume fraction
condition, i.e., as the fiber length increases, the radius decreases in such a way that the volume fraction remains
constant. It must be noticed that the interaction area between phases decreases with fiber length inside the
working range of Figs. 4, 5, 6, 7, 8, 9, 10, and 11. As it is reported herein, property values change according
to SAFEM. For some properties, the values increase, for other ones, the values decrease with the increase in
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Table 5 Comparison of the SAFEM effective elastic properties with the AHM [41] and RVEM [18] solutions for a two-phase
FRC with square fiber spatial distribution

FVF C∗
1111 (GPa) C∗

1122 (GPa) C∗
1133 (GPa)

SAFEM AHM RVEM SAFEM AHM RVEM SAFEM AHM RVEM

0.111 4.4688 4.4516 4.4651 2.8826 2.9002 2.8773 2.9223 2.9224 2.9261
0.222 5.2893 5.2042 5.2558 3.2340 3.3193 3.2301 3.3703 3.3706 3.3700
0.333 6.4382 6.1985 6.4418 3.6298 3.8644 3.6244 3.9609 3.9613 3.9548
0.444 8.1333 7.5820 8.1395 4.0846 4.5934 4.0751 4.7829 4.7832 4.7750
0.556 10.922 9.6729 10.930 4.6795 5.6174 4.6572 6.0610 6.0604 6.0548
0.667 16.149 13.121 16.139 5.8230 7.1149 5.7907 8.5091 8.5048 8.5097

FVF C∗
3333 (GPa) C∗

1313 (GPa) C∗
1212 (GPa)

SAFEM AHM RVEM SAFEM AHM RVEM SAFEM AHM RVEM

0.111 9.8573 9.8575 9.5794 0.7942 0.7941 0.7919 0.7563 0.7620 0.7498
0.222 15.928 15.928 16.004 0.9907 0.9904 0.9532 0.8807 0.8872 0.8800
0.333 22.108 22.108 21.963 1.2521 1.2521 1.1934 1.0288 1.0349 1.0196
0.444 28.464 28.464 28.388 1.6240 1.6239 1.5722 1.2277 1.2290 1.2248
0.556 35.230 35.142 35.164 2.2361 2.2261 1.9123 1.5439 2.0278 1.5428
0.667 42.822 42.316 42.757 3.4491 3.4485 2.5159 2.1887 3.0029 2.1236

Table 6 Comparison of the SAFEM effective piezoelectric and dielectric properties with the AHM [41] and RVEM [18] solutions
for a two-phase FRC with square fiber spatial distribution

FVF −e∗
311 (C/m2) e∗

113 (C/m2) e∗
333 (C/m2)

SAFEM AHM RVEM SAFEM AHM RVEM SAFEM AHM RVEM

0.111 0.0262 0.0262 0.0261 0.0011 0.0011 0.0011 2.1921 2.1921 2.1956
0.222 0.0595 0.0595 0.0604 0.0028 0.0028 0.0026 4.3788 4.3788 4.3735
0.333 0.1034 0.1033 0.1031 0.0057 0.0057 0.0052 6.5573 6.5574 6.5515
0.444 0.1645 0.1633 0.1647 0.0111 0.0111 0.0096 8.7227 8.7236 8.7119
0.556 0.2597 0.2519 0.2594 0.0107 0.0108 0.0185 10.883 10.888 10.890
0.667 0.4416 0.3924 0.4407 0.0309 0.0306 0.0439 12.956 12.993 12.963

FVF κ∗
11 (nF/m) κ∗

33 (nF/m)

SAFEM AHM RVEM SAFEM AHM RVEM

0.111 0.09931 0.09908 0.10095 0.91924 0.91925 0.86729
0.222 0.12453 0.12391 0.12470 1.75844 1.75844 1.75592
0.333 0.15835 0.15713 0.15677 2.59703 2.59703 2.57346
0.444 0.20703 0.20460 0.20546 3.43464 3.43464 3.39098
0.556 0.28704 0.28196 0.28741 4.27701 4.25575 4.27251
0.667 0.44183 0.44140 0.44893 5.10833 5.09092 5.10427

FRL. Therefore, it cannot be established a universal relation connecting the interphase area with the monotonic
behavior of the elastic, piezoelectric, or dielectric properties.

The explanation of this behavior can be found in the constituent interaction that can be described by
SAFEM as it includes the governing equations for the mechanical equilibrium and the Gauss electric field
divergence. As explained above, SAFEM is based on AHM where asymptotic expansions [Eqs. (5) and (6)]
are proposed for each physical variable starting from Eqs. (7) and (8). Similar expansions are part of the
SAFEM implementation for the mechanical stresses and strains, as well as the electric field and the electric
displacements. For all cases, the term of null order of the asymptotic expansion is defined as the pseudo-
magnitude [Eqs. (5) and (6)], for example, pseudo-stress and pseudo-electric field displacement. They are a
good approximation to analyze the just mentioned physical magnitudes.

The effective elastic property C∗
1133 is calculated as:

C∗
1133 = 8

〈
33σ̂11

〉
, (23)

According to Eq. (23), the effective elastic property C∗
1133 describes the stress response σ11 along the

x1-direction due to an imposed displacement in the x3-direction: u3 (see Table 3 for the local problem 33L).
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Fig. 12 The σ11 pseudo-stress field for the relative fiber length equal to 0.3 (upper), 0.4 (middle) and 0.49 (lower) according to
Local problem 33L. Fiber is along y3-direction as seen in Fig. 3



1972 L. E. Barraza de León et al.

The stress σ11, which is perpendicular to the fiber direction, increases as the fiber length does. From Fig. 12, it
can be observed that cross section perpendicular x1-direction occupied by the ceramic fiber increases with the
fiber length. Therefore, the higher presence of a harder material on this cross section requires a higher stress
response resulting in a higher elastic constant for the composite.

The effective elastic C∗
1111 and piezoelectric e∗

311 properties can be calculated by the expressions:

C∗
1111 = 8

〈
11σ̂11

〉
, (24)

e∗
311 = 8

〈
11 D̂3

〉
. (25)

Figure 13 shows the D3 pseudo-electric field displacement, and the σ11 mechanical pseudo-stress fields
according to the boundary conditions stated in the local problem 11L (see Table 3). For lower relative fiber
length, fiber is closer to each other, this causes a high concentration of stress in the matrix between fibers. As
fiber gets longer, they get more separated which implies a lower concentration in the matrix between fibers, and
hence, a decrease for the stress in the composite. The result is the decrease in C∗

1111 as the relative fiber length
increases. Regarding the displacement electric field, as expected, the higher concentration zone is located in the
fiber. In this case, the fiber length increase implies a decrease in the displacement electric field, and therefore,
a decrease in e∗

311 coefficient is induced.
The effective piezoelectric e∗

311 and dielectric κ∗
33 properties are calculated by the expressions:

e∗
311 = 8

〈
3σ̂11

〉
, (26)

κ∗
33 = 8

〈
3 D̂3

〉
. (27)

From Fig. 14, it can be observed that the σ11 mechanical pseudo-stress and the D3 pseudo-electric dis-
placement field increase as the fiber length increases as a result of the applied electric field in the x3-direction
(see Table 3 for the local problem 3I). The electric displacement increases resulting in an increase in the
effective dielectric property as well. Special attention deserves the rapid increase near the full fiber length or
fiber contact, it can be noticed that the representative volume of analysis can be divided into three sections
according to the electric field distribution, i.e., the fiber with the highest electric field values, thematrix between
fibers with the lowest electric field values and the part of the matrix with no fibers with an intermediate value
for the electric field. As the fiber length increases, the section with intermediate values tends to decrease, and
when this part is close to disappear, the dielectric constant in the fiber direction increases abruptly.

3.2 Bone piezoelectric behavior

Recently, the stiffening of aged bone tissue has been explained based on a micromechanical approach applied
to a mineralized collagen fibril described as a fused hydroxyapatite mineral structure in a softer matrix by
Penta et al. [40]. In that work, the main difference of the developed approach in comparison with previous ones
lies in the fact that the authors not only consider the increase in mineral volume fraction, but also, they account
for extrafibrillar mineral deposition. The result is the formation of a continuous mineral form that has been
studied through an innovative multiscale framework based on 3D asymptotic homogenization. Experimental
evidence of such bone structure has been reported in Refs. [40,53,54]. Tiburtius et al. [55] applied a multiscale
micromechanics homogenization focused on musculoskeletal mineralized tissue (MMTs).

The herein developed 3D SAFEM approach for piezoelectric properties can be also applied to study the
bone piezoelectric properties. For the calculations, we follow the scheme proposed by Penta et al. [40] where
the mineralized collage fibril (MCF) and the extrafibrillar space (ES) conform the mineralized collagen fibril
bundle (MCFB), which form part of the mineralized turkey leg tendon (MTLT). A complete description of this
multiscale scheme can be found in Refs. [40] and [55]. Bone constituent materials are taken as hydroxyapatite
(HA) P63 from Ref. [56] for the mineralized phase and collagen from Ref. [40]. The material constituent data
is reported in Table 7. The MCFB volume fraction can be estimated to be around 80% in the MTLT according
to the data reported in Refs. [57] and [58]. The fused hydroxyapatite piezoelectric properties are expected
to have lower values than the crystal properties reported in Ref. [56], then, for the constituent piezoelectric
properties we consider the half of the ones reported in Table 7. The finding of the exact piezoelectric properties
for the fused HA in MCFB is out of the scope of the present work and, to our acknowledgment, it has not been
reported yet. Further research is necessary in this area.
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Fig. 13 The D3 pseudo-electric field displacement (left), and σ11 mechanical pseudo-stress (right) for the relative fiber length
equal to 0.3 (upper), 0.4 (middle) and 0.49 (lower) according to Local problem 11L. Fiber is along y3-direction as seen in Fig. 3

Table 7 Elastic, piezoelectric, and dielectric properties for bone constituent materials

Constituent Materials Elastic (GPa) Piezoelectric (C/m2) Dielectric (nF/m)

C1111 C1122 C1133 C3333 C1313 e113 e133 e123 e333 κ11 κ33

HA P63 138 45.9 69.1 172.8 51.4 0.28 2.4 − 0.65 − 0.47 6.446 3.914
Collagen 6.7 2.8 2.8 6.7 3.8 0.0 0.0 0.0 0.0 2.656 2.656
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Fig. 14 The σ11 mechanical pseudo-stress (upper) and D3 pseudo-electric displacement (lower) fields for the relative fiber length
equal to 0.3 (upper), 0.4 (middle) and 0.49 (lower) according to Local problem 3I . Fiber is along y3-direction as seen in Fig. 3

Figure 15 illustrates the dependence of the effective C∗
3333 elastic and d

∗
333 piezoelectric coefficients on the

HA volume fraction in the MCFB. The ratio ax/az is a description for the extrafibrillar mineral deposition in
the MCFB where az and ax are related to the fibril transverse dimension and the cross section of the bridges
between fibrils, respectively. ax/az less than one means that the bridges are smaller than the fibril cross section
dimension (see, for instance, Fig. 7(a) in Ref. [40]). The C∗

3333 effective values are quite similar to those
reported by Penta et al. [40] and inside the range of the experimental data that run from around 20 to 80 GPa
for a HA volume fraction in MCBF between 0.35 and 0.41 (see, for instance, Fig. 9(a) in Ref. [40]). Totally
matching results between the present model and those reported by Penta et al. [40] are not obtained because,
here, different constituent properties are considered for HA in order to consider the piezoelectric effect, as can
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Fig. 15 Dependence of the effective C∗
3333 elastic and d

∗
333 piezoelectric coefficient on the hydroxyapatite (HA) volume fraction

in the mineralized collagen fibril bundle (MCFB)

be seen in Table 7. The d∗
333 effective coefficient is calculated according to the relation d

∗
333 = e∗

3 j j S
∗
33 j j where

S∗
i jkl = (C∗

i jkl)
−1 is the effective compliance elastic matrix.

The effective piezoelectric coefficient (d∗
333) in Fig. 15 is obtained in the range between 7.0 and 9.0 pC/N.

Halperin et al. [59] studied the bone piezoelectric coefficient with the help of piezoresponse force microscopy
(PFM) and obtained values between 7.66 and 8.72 pC/N. This congruent result for the bone piezoelectric
behavior is obtained under the assumption that the fused HA has lower piezoelectric properties than crystal
HA. Direct experimental evidence for this consideration is not available, but the bone structure characterization
reported in Refs. [54] and [53] suggest the above mentioned assumption. Lees et al. [57] and Alexander et al.
[58] have shown that, at least, a crystal-oriented structure is not present. This is a key issue that needs to be
addressed for better understanding the bone piezoelectric behavior where the aid of the 3D micromechanical
description should be a useful tool.

4 Conclusions

A3D semi-analytical approach (SAFEM) for piezoelectricmaterials to calculate composite effective properties
has been stated. Validations are developed using comparisons with numerical results reported in the literature,
for limit cases. SAFEM is based on the local problems derived from the asymptotic homogenization method
(AHM) and solving them by finite element analysis (FEA).

Short-fiber-reinforced composites are studied as a function of the fiber relative length (FRL) that runs
from nearly zero to one. As the FRL tends to one, the short fiber composite tends to the long fiber-reinforced
composite. For this limit case, comparisons between the AHM and FEM show good coincidences.

The constant fiber volume fraction herein studied is of interest because according to Voigt–Reuss–Hill
approximation, effective properties only depend on fiber volume fraction. Through SAFEM, phases interac-
tion is considered because the stress equilibrium and Gauss law are included. Herein, piezoelectric effective
properties are obtained as a function of the fiber volume fraction and different behaviors are observed. The
increasing or decreasing behaviors of the effective properties depend on the physical magnitudes distribu-
tions that result from certain local problems developed for the properties estimations. In general, the effective
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properties increments are observed for those cases where the fiber direction is involved in one of the physical
magnitudes connected by the specific property; for example, C∗

3333, C
∗
1313, C

∗
1133, e

∗
311, e

∗
333, and κ∗

33. When
constant fiber radius is analyzed, the monotone behavior coincides with the Voigt–Reuss–Hill averages, but
with different slopes as result of phase interaction. It should be mentioned that C∗

3333, C
∗
1313, C

∗
1133, e

∗
311, e

∗
113,

e∗
333, and κ∗

33 (properties connected with the x3-fiber direction) tends to slowly increase with the FRL incre-
ment and when the fiber percolation is close, the properties abruptly increase. In resume, the 3D structure of
Short-fiber-reinforced composite offers the possibility to manipulate properties inside of a considerable range
of values.

Finally, the herein developedmodel allows us to analyze the bone piezoelectric behavior. It must be noticed
that it is possible to explain the experimental measured d∗

333 piezoelectric coefficient if the constituent miner-
alized phase is considered to have piezoelectric coefficients lower than the one reported for the hydroxyapatite
(HA) in the literature. It is congruent to suppose that fused HA of the mineralized phase in bone has a lower
piezoelectric coefficient than the crystalline HA reported in the literature.
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