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Abstract Effective properties of fiber-reinforced composites can be estimated by applying the asymptotic
homogenization method. Analytical solutions are possible for infinite long circular fibers based on the elliptic
quasi-periodicWeierstrass Zeta function. This process leads to numerical convergences issues related to lattice
sums calculations. The lattice sums original series converge slowly, which make the calculation difficult. This
problem needs to be addressed because effective properties are highly sensitive to these values. Therefore, a
systematic review and analysis for the lattice sums are a necessity. In the present work, the Eisenstein–Rayleigh
lattices sums are reviewed and numerically implemented for fiber-reinforced composites with parallelogram
unit periodic cell whose fibers are centered, or not, at the coordinate origin. Numerical values are reported
and compared with available data in the literature obtaining good agreements. In this work, new Eisenstein–
Rayleigh lattice sums are obtained that are easy to implement and a set of tables with numerical values are
given.

Keywords Lattice sums ·Asymptotic homogenizationmethod ·EllipticWeierstrass function · Parallelogram
periodic unit cell

1 Introduction

The development of analytical mathematical models and numerical approaches to predict the effective prop-
erties (such as Young’s modulus, shear, conductivity, permittivity, piezoelectricity, magnetoelectric coupling
and others) of advance heterogeneous multiphase composites is still important for applications. Some of the
developed models are based on the Mori–Tanaka method [1–3], self-consistent schemes [4], eigenfunction
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expansion-variational method [5], the finite element [6,7] and the homogenization [8–12] methods. Funda-
mentally, the mathematical framework of these models is given by a set of partial differential equations with
rapidly oscillating coefficients and subject to boundary and interface conditions, which characterize the con-
stituent physical properties, phase distribution and shape of the composite materials. It is desirable to quickly
solve the resulting boundary-value problems.

For periodic composite structures, such as fiber-reinforced composites (FRCs), elliptical boundary-value
problems are often found, see, for instance, Refs. [13,14]. Solutions for these elliptical boundary-value prob-
lems have been implemented bymeans of the homogenizationmethods using differentmathematical techniques
[14–19]. A two-scale asymptotic expansion-based approach is developed in Refs. [9,20–25]. In these works,
the two-scale asymptotic homogenization method (AHM) based on complex potentials through doubly peri-
odic Weierstrass’ elliptic functions is applied to find exact analytical or semi-analytical solutions. Analytical
solutions are determined as a function of the quasi-periodic Weierstrass Zeta and Natanzon’s functions and
related ones, which require the lattice sums calculation at an origin-centered point inside of the periodic cell,
see Refs. [9,13,22,26–29].

The AHM application to calculate the effective properties of multiphase periodic FRCs with two or more
different fibers within a double periodic array is a goal to be solved. For example, the effective transverse
shear modulus is calculated by AHM for a hybrid unidirectional FRC with three isotropic phases; herein, one
fiber is assumed to be centered at the origin and other one is not; both are embedded in a matrix [30]. The
effective conductivity is estimated for a FRC with rectangular periodic array of unidirectional and perfectly
conducting cylinder pairs in a uniform host by Rylko [31]. Effective transport properties of multiphase FRCs
with a doubly periodic square, hexagonal and triangular arrays of fiber pairs via complex variable method
are reported in [32]. Mityushev calculated the effective conductivity of two-dimensional two-phase periodic
composite with a non-overlapping unidirectional and identical circular disk within amatrix bymeans of doubly
periodic elliptic functions using the Eisenstein series [33]. In particular, for this type of multiphase FRCs, to
find the solution via AHM through the doubly periodic Weierstrass’ elliptic functions by Laurent and Taylor
expansions requires calculating the lattice sums at any point z = z1 inside of the periodic cell Y. Therefore, to
calculate the lattice sums at any point z = z1 inside of the periodic cell Y is the aim of this work. The analysis
of the effect of multiples non-concentric fibers and its interaction on effective properties of periodic FRCs is
a topic that requires further attention.

In the classical work of Rayleigh, the conductivity of a periodic two-phase media reinforced by unidirec-
tional cylinders is analyzed and a well-established formulation to calculate the lattice sums is reported [34].
Since then, different procedures for evaluating the lattice sums have been implemented. For example, Berman
and Greengard proposed a renormalization method to calculate the lattice sums [35]. Huang presented two-
and three-dimensional integral formulations for the harmonic lattice sums [36]. C. B. Ling reported the eval-
uation of Weierstrass’ elliptic function at half periods for rectangular [37], rhombic [38] and parallelogram
[39] primitive periodic cells. Tables of lattice sums values relating to Weierstrass’ elliptic function are also
given by C. B. Ling [40]. Expressions for the doubly periodic Green’s tensors in elastostatic and elastody-
namic problems and the related lattice sums were calculated using the Fourier transform method as shown by
Movchan et al. [41]. In addition, Rayleigh’s identities through Lame potentials in terms of Bessel functions
were shown for static and dynamic problems [41]. Eisenstein-type sums have been very useful in the analysis
of effective properties of doubly periodic composites [42–45]. Explicit formulas for generalized Eisenstein
series are given in Ref. [46]. In addition, displaced lattices of high symmetry are also analyzed via geometric
multiset identities as function of origin-centered lattice sums. Recently, a review of some of the most important
analytic techniques to obtain the lattice sums is outlined in Borwein et al. [47]. Closed-form formulas for the
lattice sums of two-dimensional composites in terms of elliptic integrals for conductivity (S2) and for elasticity
(T2) are established in Yakubovich et al. [48].

The main contribution of this work is to systematize the Eisenstein–Rayleigh lattice sums calculations.
The computation of effective properties is highly sensitive to Eisenstein–Rayleigh lattice sums, so that reliable
numbers are of great importance. However, the available numerical data in the literature are somehow limited.
Therefore, it is necessary to compile these values and develop methods for the comparison and application
of them in composite materials. In this work, the analytical formulae of the Eisenstein–Rayleigh lattice sums
Sk+p and Ek+p are determined for parallelogram periodic cells whose fibers are centered, or not, at the
coordinate origin, respectively, following the procedure developed by Lord Rayleigh [34]. It generalizes the
well-established Rayleigh methodology obtained for square and rectangular periodic cells. In addition, an
alternativemethod is implemented to compute theEisenstein sums Ek+p by combining theRogosin’sEisenstein
series representation in the form of a power series [43] with Rayleigh’s procedure applied to the sum values
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Fig. 1 Heterogeneous periodical structure � (left), blow-up (middle) and parallelogram periodic unit cell Y of periods ω1 and
ω2, and principal angle θ (right)

Sk+p for parallelogram periodic cell. Tables of new Eisenstein–Rayleigh lattice sum values are reported for
square, rectangular and parallelogram periodic cells whose fibers are centered, or not, at the coordinate origin.
Finally, a wider variety of unit cells for periodic composite can be studied. Comparisons with other sum values
reported in literature are also analyzed.

2 Weierstrass elliptic functions in a linear elasticity problem of a heterogeneous structure

In linear elasticity, a static elliptic boundary value problem for a heterogeneous periodical structure � (Fig. 1)
can be stated by the equilibrium linear equation

σi j, j = 0, in �, (1)

with the boundary conditions

uk |∂�u
= g0, σi j n j

∣
∣
∂�σ

= T0, on ∂� = ∂�u ∪ ∂�σ , (2)

and perfect interface conditions

[[ uk ]] = 0, [[ σi j n j ]] = 0, on �, (3)

In Eqs. (1)–(3), σi j and uk are the stress and the displacement components, respectively. They are related
by Hooke’s law σi j = Ci jkl εkl and strain–displacement relation εkl = (uk,l + ul,k)/2 where Ci jkl is the
elastic stiffness coefficients with i, j, k, l = 1, 2, 3. The comma notation means partial differentiation, i.e.,
fi, j = ∂ fi/∂x j . Also, g0 and T0 are the prescribed displacement and stress on ∂� boundary of �, and �
denotes the interface matrix-fiber. The notation [[ f ]] = 0 represents the continuity of f across the interface
�. In addition, the elastic stiffness coefficients Ci jkl satisfy the following symmetries,

Ci jkl = C jikl = Ci jlk = Cikl j , (4)

and the positivity condition for all x ∈ �, i.e.,

∃η > 0, Ci jkl (x/ε) ai j akl ≥ ηai j akl , (5)

for any ai j symmetric 3 × 3 matrix.
Note that in Fig. 1 there are two coordinate systems representing two scales: the composite characteristic

size L and the size l of the periodic cell Y. Herein, the slow- and fast-scale relation y = x/ε is given by the
small parameter ε = l/L with ε << 1.

The asymptotic solution of the elliptic boundary value problem (Eqs. (1)–(3)) via two-scale asymptotic
homogenization method (AHM) has been used in Refs. [9,10,21], by posing the Ansatz:

uk (x) = u(0)
k (x, y) + εu(1)

k (x, y) + O
(

ε2
)

, (6)
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in powers of the small parameter ε. Upon the application of AHM, it is found that u(0)
k (x, y) ≡ u(0)

k (x),

i.e., it only depends on the slow variable x and u(1)
k (x, y) is a Y-periodic functions with respect to the fast

variable y. Also, the function u(1)
k (x, y) can be obtained by separating the variables x and y, as u(1)

k (x, y) =
pq Nk (y)

(

∂u(0)
p (x) /∂xq

)

where pq Nk (y) is the solution of the so-called local problems, defined as pqL.
Thus, substituting Eq. (6) into Eqs. (1)–(3), a set of recurrent problems defined by a set of differential

equations and interface conditions is obtained in relation to the power of ε parameter. Thisway, themathematical
statement of the so-called local problems pqL, the equivalent homogenized problem and analytical formulas
for the effective coefficients can be found, see Refs. [9,29], as follows:

pqL local problems,

(

C (γ )

i jkl pq N
(γ )

k,l

)

, j
= −

(

C (γ )

i j pq

)

, j
, in Y, (7)

[[ pq Nk ]] = 0, [[Ci jpq n j + Ci jkl pq Nk,l n j ]] = 0, on �, (8)
〈

pq Nk
〉 = 0. (9)

Homogenized problem on equivalent medium �̄,

C∗
i j pq

∂2u(0)
p (x)

∂y j∂yq
= 0, on �̄, (10)

u(0)
k

∣
∣
∣
∂�̄u

= ḡ0, σ̄i j n j
∣
∣
∂�̄σ

= T̄0, on ∂�̄ = ∂�̄ū ∪ ∂�̄σ̄ , (11)

and the effective coefficients

C∗
i j pq = 〈

Ci jpq + Ci jkl pq Nk,l
〉

, (12)

where ḡ0 and T̄0 are the average prescribed displacement and stress on ∂�̄ boundary of �̄, and 〈 f 〉 =
(1/ |Y|) ∫

Y
f (y) dY is the volume average per unit length in the periodic cell Y. The dependence of variable y

is omitted for simplicity.
The theoretical details and mathematical procedures for the deduction of this recurrent problems by AHM

are well described in Refs. [1,5–9] and for coupled field problems on multiphase composites are also reported
in Refs. [8,22,24,29,49–52]. Herein, these procedures are omitted.

Bymeans of complex variable theory, the pqL local problems are solved considering the complex-potential
method. The doubly periodic Weierstrass’ elliptic functions have been useful to develop analytical solutions
for this problem, mainly in heterogeneous multiphase elastic structures reinforced by unidirectional circular
fibers embedded in a matrix with parallelogram periodic cell Y, see, for instance, Refs. [26,53]. Commonly,
the double periodic solution pq Nk of the pqL local problems is found by means of complex potential as a
function of z = y1 + iy2 on Y, in terms of Laurent and Taylor expansions for pq Nk on �, which depend
on the double periodic elliptic Weierstrass function ℘ (ω1, ω2; z) with periods ω1 and ω2. This solution can
also be expressed in terms of the quasi-periodic Weierstrass Zeta function ζ (ω1, ω2; z), Natanzon’s function
Q (ω1, ω2; z) and its derivates [9,13,22,26–30].

There are multiphase periodic FRCs where the reinforcements may have a certain distribution where some
of them are not located at the coordinate origin, for instance, periodic cell cross section of diamond type with
periods ω1 and ω2 (see Fig. 1) [30,54]. This situation may require calculating the lattice sums at any point
z = z1 inside of the periodic cell Y to find the pqL local problems solution.

Then, the Weierstrass function ℘ (ω1, ω2; z − z1) and the quasi-periodic Weierstrass Zeta function
ζ (ω1, ω2; z − z1) with poles at z = z1 on the cell Y are written as follows:

℘ (ω1, ω2; z − z1) = 1

(z − z1)2
+

∑

s,t

′{ 1

(z − z1 − βst )
2 − 1

β2
st

}

, (13)

ζ(ω1, ω2; z − z1) = 1

z − z1
+

∑

s,t

′{ 1

z − z1 − βst
+ 1

βst
+ z − z1

β2
st

}

, (14)
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where βst = sω1 + tω2 with s, t ∈ Z represent the period lattice. The summation symbol
∑

s,t

′ means that

the summation does not include the point (s, t) = (0, 0). In addition, it is satisfied that ζ ′(ω1, ω2; z − z1) =
−℘(ω1, ω2; z − z1) for all z ∈ C and lim

z−z1→0

[

ζ(ω1, ω2; z − z1) − 1
z−z1

]

= 0.

From Eqs. (13) and (14), following the methodology developed in Ref. [28,43,55], we have that
℘(ω1, ω2; z), ζ(ω1, ω2; z) and its derivates at the point z = z1 are defined as functions of the Eisenstein–
Rayleigh lattice sums Sk+p and Ek+p (z − z1) for k + p ≥ 2, such as

Sk+p(ω1, ω2) =
∑

s,t

′ 1

β
(k+p)
st

for δ = 0, (15)

where Sk+p = 0 for k + p is an odd positive integer number, and

Ek+p(ω1, ω2; z − z1) =
∑

s,t

1

(z − z1 − βst )
(k+p)

, (16)

at any point z = z1.
Note that the lattice sums Ek+p defined here are different from those formulated in Ref. [32]. A generalized

formula that relates Ek+p as function of Sk+p is given in Eq. (47) of Ref. [43].
The lattice sums Sk+p and Ek+p (Eqs. (15) and (16)) are defined in terms of a bidimensional lattice with

periods ω1 and ω2. Herein, we assume that ω1 = α > 0 and ω2 = reiθ where r = |ω2| and θ the angle of
inclination of the cell Y (see Fig. 1). These lattice sums Sk+p and Ek+p, as well as some formulas for their
calculations, need to be determined in order to find the pq Nk local function as a solution of Eqs. (7)–(9), which
can be written in terms of the ℘ (z) and ζ (z) functions.

3 Computation of Eisenstein–Rayleigh lattice sums Sk+ p and Ek+ p

3.1 Lattice sums Sk+p for a parallelogram periodic cell whose fiber is centered at the origin

In this section, the lattice sums Sk+p (Eq. 15) evaluation is carried out following Rayleigh’s method [34] for
a parallelogram periodic cell (ω 1 = α and ω2 = reiθ ) with a fiber centered at the origin on Y. These lattices
sums are defined as a function of the principal periods ω1 and ω2 which depend on the angle θ of the unit cell,
see Fig. 1.

The sum of order k + p ≥ 2 can then be written for a parallelogram unit cell as follows:

Sk+p(1, τ ) =
∑

s,t

′ 1

(sω1 + tω2)
k+p

= ω
−(k+p)
1

∑

s,t

′ 1

(s + i tτ)k+p
, (17)

such that, Im τ > 0 and the period ratio τ = −iω2/ω1.
Regarding the sum

∑

s,t

′ 1
(s+i tτ)k+p in Eq. (17), it is convenient to analyze the following equation

sin (ξ − i tτπ) = 0, (18)

which leads to the lattice sums evaluation in a convenient way.
The zeroes of Eq. (18) are ξ − i tτπ = 2kπ , k ∈ Z. By means of Weierstrass factorization theorem, it

follows that

sin (ξ − i tτπ) = A

(

1 − ξ

i tτπ

) ∞
∏

m=1

(

1 − ξ

i tτπ + mπ

)(

1 − ξ

i tτπ − mπ

)

, (19)

where m is a natural number and A = −sin (i tτπ) when ξ = 0.
Next, Eq. (19) is divided by sin (iπ tτ); the logarithm properties and trigonometric identities are applied

to get:
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ln [cos (ξ) − sin (ξ) cot (iπ tτ)] = ln

(

1 − ξ

iπ tτ

)

+
∞
∑

m=1

[

ln

(

1 − ξ

iπ tτ + mπ

)

+ ln

(

1 − ξ

iπ tτ − mπ

)]

. (20)

An analogous expression to Eq. (20) is obtained by replacing t by -t . Then, the obtained formula is added to
Eq. (20), and after the use of logarithm and trigonometric properties like

cos2 (ξ) − sin2 (ξ) cot2 (iπ tτ) = 1 − sin2 (ξ)/sin2 (iπ tτ) ,

it leads to

ln

[

1 − sin2 (ξ)

sin2 (i tτπ)

]

=
∑

s∈Z
ln

[

1 − ξ2

(i tτπ + sπ)2

]

. (21)

Now, the left-hand and right-hand sides of Eq. (21) are expanded in Taylor power series of sin2 (ξ)/sin2 (i tτπ)
and ξ2/(i tτπ + sπ)2, respectively.

Thus,
∞
∑

m=1

sin2m (ξ)

m sin2m (i tτπ)
=

∞
∑

m=1

ξ2m

m π2m

∑

∀s∈Z

1

(i tτ + s)2m
. (22)

Note that, on the right-hand side of Eq. (22), the sums of Eq. (17) appear where 2m = k + p.
Subsequently, by developing the ξ power expansion for sin2m (ξ) on the left-hand side of Eq. (22) around

ξ = 0 and by matching the ξn coefficients, it is obtained that

ξ2 : π2

sin2 (i tτπ)
=

∑

∀s∈Z

1

(i tτ + s)2
, (23)

ξ4 : − 2π4

3sin2 (i tτπ)
+ π4

sin4 (i tτπ)
=

∑

∀s∈Z

1

(i tτ + s)4
, (24)

ξ6 : 2π6

15sin2 (i tτπ)
− π6

sin4 (i tτπ)
+ π6

sin6 (i tτπ)
=

∑

∀s∈Z

1

(i tτ + s)6
, (25)

and so on for the rest of ξn terms.
Now, in order to obtain the lattice sums Sk+p the case when s and t approach to zero in Eqs. (23)–(25) is

considered. Therefore, from Eq. (23), we have that

π2

sin2 (i tτπ)
=

s=−1
∑

−∞

1

(i tτ + s)2
+ 1

(i tτ)2
+

∞
∑

s=1

1

(i tτ + s)2
, (26)

and the limit value of Eq. (26) when t → 0 has the form:

lim
t→0

[
π2

sin2 (i tτπ)
− 1

(i tτ)2

]

= 2
∞
∑

s=1

1

s2
. (27)

Then, considering Eq. (17) for k + p = 2 and combining it with Eq. (23), it is obtained that

ω2
1S2 =

t=−1
∑

t=−∞

π2

sin2 (i tτπ)
+

[
s=+∞
∑

s=−∞
′ 1

(s + i tτ)2

]∣
∣
∣
∣
∣
t=0

+
t=+∞
∑

t=1

π2

sin2 (i tτπ)
. (28)

Next, the term (i tτ)−2 is added and subtracted in Eq. (28); after conveniently grouping and replacing Eqs.
(23) and (27), it can be written S2 as:

S2 = 2

ω2
1

∞
∑

t=1

π2

sin2 (i tτπ)
+ 2

ω2
1

∞
∑

s=1

1

s2
. (29)
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Analogously, the expression of the lattice sum S4, S6, and so on is found as follows:

S4 = 2π4

ω4
1

∞
∑

t=1

[

− 2

3sin2 (i tτπ)
+ 1

sin4 (i tτπ)

]

+ 2

ω4
1

∞
∑

s=1

1

s4
, (30)

S6 = 2π6

ω6
1

∞
∑

t=1

[

2

15sin2 (i tτπ)
+

3
∑

m=2

(−1)m+1

sin2m (i tτπ)

]

+ 2

ω6
1

∞
∑

s=1

1

s6
. (31)

In order to find the second sums of Eqs. (29)–(31), the Zeta Riemann function ζ(n) =
∞∑

s=1
s−n (n = 2, 4, and

6) is also computed. For that, the formula ζ (2p) = (−1)p−1 22p−1π2pB2p/ (2p)! is used, where B2p is the

Bernoulli numbers and p is a natural number. Therefore, ζ (2) = π2/6, ζ (4) = π4/90 and ζ (6) = π6/945.
Thus, the lattice sums can be computed as follows:

S2 = 2π2

ω2
1

[

1

6
+

∞
∑

t=1

1

sin2 (i tτπ)

]

, (32)

S4 = 2π4

ω4
1

⎡

⎣
1

90
+

∞
∑

t=1

(
1

sin4 (i tτπ)
− 2

3sin2 (i tτπ)

)
⎤

⎦ , (33)

S6 = 2π6

ω6
1

⎡

⎣
1

945
+

∞
∑

t=1

(

2

15sin2 (i tτπ)
+

3
∑

m=2

(−1)m+1

sin2m (i tτπ)

)⎤

⎦ . (34)

The lattice sums expressions (Eqs. (32)–(34)) respond to any 2D lattice of a parallelogram periodic cell with a
fiber centered at origin as function of the period ratio τ = −iω2/ω1. For example, τ = 1 for square periodic
cell (ω 1 = α, ω2 = αi and α �= 0) and τ = r/α for rectangular periodic cell (ω 1 = α, ω2 = ri , r �= α).
Details of the sums convergences analysis can be found in Ref. [34]. Representations of Eqs. (32)–(34) in
terms of hyperbolic function sum are reported in Refs. [37,47]. Both representations can be transformed into
each other applying the appropriate trigonometric identities. Also, the expressions of the sums S2, S4 and S6
in terms of powers of exponential functions eiπτ are given in Ref. [43].

Then, the remaining Sk+p are calculated based on the power series of the Weierstrass function ℘ (z), see,
for instance, Ref. [55,56]. The expression (z − βst )

−2 −β−2
st of ℘ (z) with βst non-null is developed in Taylor

expansion of z for this purpose, and therefore,

℘ (z) = z−2 +
∞
∑

k=2

ckz
2k−2, (35)

and ζ (z) = 1
z −

∞∑
k=2

ck
(2k−1) z

2k−1, where ck = (2k − 1) S2k (herein, S2k denotes Sk+p) satisfies the recursive

formula:

ck = 3

(2k + 1) (k − 3)

k−2
∑

m=2

cmck−m, for k ≥ 4 (36)

and thus, S2k = ck/(2k − 1), see Ref. [28].
From Eq. (36) an alternative recursion formula for the lattice higher-order sums is obtained as follows:

S2k = 3

(2k + 1) (2k − 1) (k − 3)

k−2
∑

m=2

(2m − 1) (2k − 2m − 1) S2mS2k−2m, for k ≥ 4. (37)

Equation (37) yields the following lattice sums
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S8 = 3
7 S

2
4 , S10 = 5

11 S4S6, S12 = 1
143

(

18S34 + 25S26
)

, S14 = 30
143 S

2
4 S6, S16 = 1

2431

(

99S44 + 300S4S26
)

,

and so on, as a combination of S4 and S6, see, for instance, Ref. [47,57]. In case of square periodic cell
(τ = 1), it is important to mention that the lattice sums S6 = S10 = S14 = · · · = 0, and hence, S8 = 3

7 S
2
4 ,

S12 = 18
143 S

3
4 , S16 = 99

2431 S
4
4 , and so on. These results are also stated in Ref. [34,47].

3.2 Lattice sums Ek+p for a parallelogram periodic cell with a fiber not centered at the origin

For some spatial fiber distribution of multiphase periodic composites, more than one fiber may be associated to
the unit cell. One of them is conveniently positioned at the coordinate origin as it always done for one fiber unit
cell. The second fiber and any other one cannot be positioned in the same coordinate component. Therefore,
the necessity of lattice sum arises for periodic composite with a fiber not centered at the origin. As follows,
the Eisenstein lattice sums at any point z = z1 (Eq. 16) inside of the periodic parallelogram cell Y need to be
calculated.

Let z−z1
ω 1

= a + ib ∈ C, the lattice sums Ek+p (Eq. 16) corresponding to a parallelogram cell Y are
rewritten as follows:

Ek+p = ω
−(k+p)
1

∑

s,t

1

(a + ib − s − i tτ)k+p
, with τ = −iω2/ω1. (38)

Regarding Eq. (38), there are different approaches for determine the Eisenstein lattice sums. In fact, a direct
inference of the above procedure can be generalized. It is convenient to analyze more general form of Eq. (18),
as follows:

sin (ξ − aπ − ibπ − i tπ) = 0. (39)

Then, by developing the same procedure previously shown for the calculation of the Sk+p, we can obtain:

E2 = 1

ω2
1 (a + ib)2

+ π2

ω2
1

+∞
∑

t=1

[
1

sin2 (aπ + iπb − i tτπ)
+ 1

sin2 (aπ + iπb + i tτπ)

]

+ 1

ω2
1

∞
∑

s=1

1

(a + ib + s)2
+ 1

ω2
1

∞
∑

s=1

1

(a + ib − s)2
, (40)

E4 = 1

ω4
1 (a + ib)4

+ π4

ω4
1

+∞
∑

t=1

[

− 2

3sin2 (aπ + iπb − i tτπ)
+ 1

sin4 (aπ + iπb − i tτπ)

]

+ 1

ω4
1

∞
∑

s=1

1

(a + ib + s)4

+ π4

ω4
1

+∞
∑

t=1

[

− 2

3sin2 (aπ + iπb + iπ tτ)
+ 1

sin4 (aπ + iπb + iπ tτ)

]

+ 1

ω4
1

∞
∑

s=1

1

(a + ib − s)4
, (41)

E6 = 1

ω6
1 (a + ib)6

+ π6

ω6
1

+∞
∑

t=1

[

2

15sin2 (aπ + iπb + i tτπ)
+

3
∑

m=2

(−1)m+1

sin2m (aπ + iπb + i tτπ)

]

+ 1

ω6
1

∞
∑

s=1

1

(a + ib + s)6

+ π6

ω6
1

+∞
∑

t=1

[

2

15sin2 (aπ + iπb − i tτπ)
+

3
∑

m=2

(−1)m+1

sin2m (aπ + iπb − i tτπ)

]

+ 1

ω6
1

∞
∑

s=1

1

(a + ib − s)6
.

(42)

The remaining Ek+p are calculated based on the same procedure.
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Table 1 Lattice sum values Sk+p for different rectangular cells with periods ω1 = 1, ω2 = ri and period ratio |τ | equal to 0.5,
0.7, 0.9, 1 and 1.1

Sk+p Period ratio |τ |
|τ | = 0.5 |τ | = 0.7 |τ | = 0.9 |τ | = 1 |τ | = 1.1

S2 −0.5920005108408 2.2823394084011 3.0105684953659 3.1415926535898 3.2109713046499
S4 34.663332023693 9.2894343371550 4.0410983423536 3.1512120021539 2.6868729667528
S6 −129.99100840070 −16.188098309315 −1.9805024643618 0 0.9792045710845
S8 514.94853727919 36.982967273277 6.9987753482455 4.2557730353652 3.0939798597715
S10 −2048.1461292219 −68.353761948997 −3.6379114662545 0 1.1959083140762
S12 8196.7447956950 146.71677417544 8.9925511016237 3.9388490128279 2.6092484985071
S14 −32767.185835505 −293.06205384126 −6.7851498442662 0 1.4830401783721
S16 131076.30157297 603.66650969680 12.816531763928 4.0156950330250 2.4403854774905
S18 −524288.25477502 −1226.1941945545 −11.309394623311 0 1.6378840498569
S20 2097155.5721637 2508.5806704183 18.445283742342 3.9960967531763 2.2964539312937

Table 2 As in Table 1 but for rectangular cells with period ratio |τ | equal to 1.5, 1.9, 2, 4 and 6
Sk+p Period ratio |τ |

|τ | = 1.5 |τ | = 2 |τ | = 4 |τ | = 6 |τ | = 8

S2 3.2834948124219 3.28959278129999 3.2898681327362 3.2898681336965 3.2898681336964
S4 2.2066015468913 2.1664582514808 2.1646464737404 2.1646464674223 2.1646464674223
S6 1.9517097194760 2.0311095062610 2.0346861114974 2.0346861239689 2.0346861239689
S8 2.0867530228898 2.0115177237468 2.0081547241186 2.0081547123959 2.0081547123959
S10 1.9575662209448 2.0001427043183 2.0019891438279 2.0019891502556 2.0019891502556
S12 2.0183484864025 2.0011583973865 2.0004921754135 2.0004921731066 2.0004921731066
S14 1.9936470698210 1.9999503073429 2.0001224956863 2.0001224962701 2.0001224962701
S16 2.0027530857222 2.0000656367946 2.0000305646286 2.0000305645188 2.0000305645188
S18 1.9986940518661 2.0000009718896 2.0000076345706 2.0000076345865 2.0000076345865
S20 2.0006244668488 2.0000034066807 2.0000019079259 2.0000019079241 2.0000019079241

An alternative method for computing the Eisenstein lattice sums (Ek+p (38)) is the suitable representation
given by Rogosin [43] due to Weil [57] in the form of power series is implemented, such as:

Ek+p = 1

(a + ib)k+p
+ (−1)k+p

∞
∑

m=1

(2m − 1)!
(k + p − 1)!(2m − k − p)! S2m(a + ib)2m−(k+p), (43)

for k + p ≥ 2, where S2m(m ≥ 1) are the corresponding lattice sums Sk+p for a parallelogram periodic cell,
see Eqs. (32)–(34) and (37). Construction of Eisenstein summation, convergence proof and properties are well
established by Weil [57]. Generalized Eisenstein lattice sums Ek+p formula and some properties are defined
in [43]. Equation (43) is based on the close relationship between the Eisenstein series and the Weierstrass
elliptic functions. Recently, an equivalent representation of the Eisenstein lattice sums Ek+p as a function
of Weierstrass elliptic ℘-function and its derivates is formulated in [32]. In his work, it is proposed that the
Weierstrass elliptic functions values are calculated viaMathematica software (Wolfram Research, Champaign,
IL).

In summary, the expressions here developed to compute the lattice sums Sk+p [Eqs. (32)–(34) and (37)] are

convergent and only few terms of the sums
+∞∑
t=1

1
sink+p(i tτπ)

are required to obtain good precision rounded-off to

14D (accuracy digits). Rayleigh’s methodology becomes cumbersome to calculate the Eisenstein lattice sum
Ek+p. However, the proposed alternative method to compute the sums Ek+p is easy to implement and rapidly
converges.

4 Numerical results

In this section, the numerical computations of the Eisenstein–Rayleigh lattice sums, Sk+p and Ek+p, are
tabulated for a FRC with square, rectangular or parallelogram periodic cell. The lattice sums S2, S4 and S6
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Table 3 Lattice sum values for different parallelogram unit cells with periodsω1 = 1,ω2 = eiθ considering θ equal to 10◦(170◦),
20◦(160◦), 30◦(150◦), 40◦(140◦) and 45◦(135◦)

Sk+p Principal angle θ◦

10◦(170◦) 20◦(160◦) 30◦(150◦) 40◦(140◦) 45◦(135◦)

S2
−70.721071334723
±15.660089765079i

−7.8140539240382
±6.1872961094248i

1.0894973681625
±2.9985771296784i

3.2223716658098
±1.3971670738117i

3.5648833303306
±0.8779996078278i

S4
2203.2753592696
∓801.92664866631i

113.98248849401
∓95.642664055996i

15.045542089697
∓26.059643326772i

1.6434502330263
∓9.3204694280084i ∓5.5422300524424i

S6
−62816.253571938
±36266.980909242i

−579.78914112903
±1004.2242501122i ±106.19578899462i

10.818316750821
±18.737874264795i

8.9604887255531
±8.9604887255531i

S8
1804858.2681100
∓1514455.9070984i

1647.6379266686
∓9344.2190188280i

−194.03000294816
∓336.06982329895i

−36.072952152859
∓13.12948084575i −13.164134551798

S10
−49690020.544949
±59218260.500523i

13618.578855759
±77234.798673701i

1257.9201745477
±726.26055139418i

87.465977007259
∓31.835012141655i

22.573222681514
∓22.573222681514i

S12
1271144178.81290
∓2201686301.4494i

−324865.35556693
∓562683.30146085i

−5401.2502431904
∓3.251656708(−12)i

−94.275482356322
±163.28992534921i ±49.501970065649i

S14
−28611736931.656
±78610101151.099i

4125794.4972519
±3461952.6409574i

17470.237783049
∓10086.446486850i

−70.602127897900
∓400.40456437369i

−57.741227596599
∓57.741227596599i

S16
478069237318.08
∓2711265374120.6i

−41958388.748949
∓15271604.582387i

−37633.564056908
±65183.245016462i

669.14100367519
±561.47596938945i 148.25104238393

S18
0.2173713235294
±90607381889123i

370192483.55066
∓6.9085104916(−7)i

2.334596002(−10)
∓280904.99449578i

−1856.2149569467
±2.400798514(−12)i

−172.12811215039
±172.12811215039i

S20
−51782207430978
∓29367149158297i

−2884109282.3785
±1049729931.1566i

524175.51553214
±907898.62498527i

3047.7897200719
∓2557.3992300182i

−2.2987666431(−13)
∓420.37634672695i

(n) at the end of the number represents the factor 10n

Table 4 As in Table 3 but for parallelogram unit cells with θ equal to 50◦(130◦), 60◦(120◦), 70◦(110◦), 75◦(105◦) and 80◦(100◦)

Sk+p Principal angle θ◦

50◦(130◦) 60◦(120◦) 70◦(110◦) 75◦(105◦) 80◦(100◦)

S2
3.6932285542562
±0.4860321476729i 3.6275987284684

3.4082755960930
∓0.1787578154579i

3.3012429523105
∓0.1822245070218i

3.2155753348186
∓0.1447228924140i

S4
−0.5290569122952
∓3.0004308482430i 0

1.3764654366096
±1.1549916401874i

2.0732516774552
±1.1969924140766i

2.6458145492337
±0.9629977413095i

S6
7.6088013435543
±4.3929435039114i 5.8630316934254

3.6598374207887
∓2.1130081200826i

2.3455048403593
∓2.3455048403593i

1.1464333070493
∓1.9856807352986i

S8
−3.7382931679889
±1.3606274401087i 0

0.2402791754049
±1.3626909191066i

1.2281064337345
±2.1271427403304i

2.6027014196441
±2.1839258012879i

S10
4.1614701175618
∓11.433545179736i 0

3.3991574671226
±0.5993631731304i

3.4865333390201
∓0.9342137925746i

2.2479345393507
∓1.8862410428798i

S12
8.5274660391398
±14.770004439608i 6.0096399716977

1.1959959364450
∓2.0715257275687i ∓0.1965309199381i

0.9452924457808
±1.6372945441035i

S14
−16.849484396800
∓2.9710187101821i 0

1.8399522981628
±2.1927697615375i

3.8523267306759
±1.0322278364655i

3.5834140494450
∓1.3042560510493i

S16
24.920796185129
∓20.911030887587i 0

3.3223934228808
∓1.2092523124504i

0.9564733963214
∓1.6566605185167i

0.1272384052495
±0.7216048544489i

S18 ±41.250108473341i 5.9997183563705 ∓0.1687033431809i
1.9594308960584
±1.9594308960584i 3.9791922542289

S20
−41.883373435003
∓35.144323201771i 0

3.6528485247371
±1.3295281332875i

3.0339788853664
∓1.7516685261819i

0.1229676598607
∓0.6973842537691i

for a periodic cell with a fiber centered at the coordinate origin are computed by means of Eqs. (32)–(34). For
calculating S2k when k ≥ 4, the recurrent relation (Eq. 37) is used. For periodic cell with a fiber not centered
at the coordinate origin, the Eisenstein lattice sums Ek+p are determined using Eq. (43).
a) Lattice sum Sk+p values for a rectangular periodic cell with a fiber center at the coordinate system origin.

In Tables 1 and 2, the lattice sum values (S2, S4, . . . , S20) rounded off to 14D (accuracy digits) are
reported for a periodic rectangular unit cell with different period ratio values |τ | between 0.5 and 8, such as
τ = −iω2/ω1, ω1 = 1, ω2 = ri with r > 0 and |τ | = r . The case of a square periodic unit cell is defined
when |τ | = 1. From Tables 1 and 2, it can be seen that the values of S6, S10, S12 and S14 sum are negative
when 0.5 ≤ |τ | < 1 and positive when |τ | ≥ 1. The remaining ones always are positive. In addition, when
|τ | > 6, the numerical values of the lattice sums become equal to those obtained when |τ | = 6 with more
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Table 5 Eisenstein lattice sum values Ek+p for different cells with a fiber centered at (0.5, 0.5), such as ω1 = 1, ω2 = ri and
period ratio |τ | equal to 0.9, 1.1 and 2 (rectangular cell) and |τ | = 1 (square cell)

Ek+p Period ratio |τ |
|τ | = 0.9 |τ | = 1 |τ | = 1.1 |τ | = 2

E1 −3.3529696258591i −3.1415926535898i −3.0227817691577i −2.881825103941i
E2 4.3213841547184 3.1415926535898 2.4397964938551 1.5707963267949
E3 2.8084062553741i 0 −1.9105115904585i −4.5067832278256i
E4 −18.487254018964 −15.756060010769 −12.839654244959 −7.8780300053847

E5
9.4146912488(−14)
+3.6813028973678i

−1.8207657604(−14)
+1.9095836024(−14)i 1.4733384142931i 7.7462430332096i

E6
−17.69488751798
−2.0072832285(−13)i 2.7533531011(−14)i

4.480948944906
−1.0658141036(−14)i 4.9639392322(−14)

E7
−1.9877433033(−12)
−29.221628105051i

8.5265128291(−14)
+8.3488771452(−14)i

−1.4210854715(−14)
+14.263704362333i

−4.6185277824(−14)
+15.977058073459i

E8
76.53263396019
−1.9791294974(−12)i 63.836595530477

42.691194928516
+1.3408990231(−13)i

31.918297765239
−5.5227413236(−13)i

E9
−1.3859136061(−11)
−55.123411272099i

3.2525093729(−12)
−4.6096459982(−12)i

4.2810199829(1)
−13.521920569148i

1.8864909634(−12)
−32.038195898431i

E10
154.41828430542
−2.2348345396(−10)i

−1.9707810679e(−14)
+2.1685764295(−11)i

−18.66234011688
+1.6342482922(−13)i

−2.3406465709(−14)
+3.6166625250(−12)i

Table 6 Eisenstein lattice sum values Ek+p for two different cells with a fiber centered at the points (0.1, 0.1) and (0.5, 0.75)

Ek+p Square periodic cell (|τ | = 1) Rectangular periodic cell with |τ | = 2

(0.1, 0.1) (0.5, 0.75) (0.1, 0.1) (0.5, 0.75)

E1
4.6921397552868
−5.3204582860048i

−3.05311331772(−14)
−4.1693430802293i

4.6754532421897
−5.3332093736681i

−3.0531133177(−14)
−4.1693430802293i

E2
3.1415926535898
−49.81116546459i

5.9893878632418
−1.7534418362(−11)i

3.2855334408299
−49.870125079501i

5.9893878632418
−1.7534418362(−11)i

E3
−250.94179221479
−250.94179221479i

3.0982647559(−09)
+10.560049969354i

−250.60768492433
−250.68881419613i

3.0982647559(−09)
+10.560049969354i

E4 −2496.9082649516
−7.6461227010079
+2.4829522882(−07)i

−2497.8616502243
+0.4048796339699i

−7.6461227010079
+2.482952288(−07)i

E5
−12499.703133992
+12499.703133992i

−5.8631649682(−06)
+30.072831361188i

−12500.865218075
+12498.85422431i

−5.8631649682(−06)
+30.072831361188i

E6 125001.77290522i
−57.66884328667
+0.0007111763363i

1.930713352707
+125000.83746035i

−57.66884328667
+0.0007111763363i

E7
624997.09342792
+624997.09342792i

−0.0861806864415
−14.130040958243i

624998.96204553
+624998.29547283i

−0.0861806864415
−14.130040958243i

E8 6250003.7399667
−177.15829539363
−4.9013487520216i

6250001.7494176
+1.4127715993652i

−177.15829539363
−4.9013487520216i

E9
31250001.279244
−31250001.279244i

168.86802446861
−217.32175501683i

31249998.952188
−31250002.34808i

68.86802446861
−217.32175501683i

E10 −312499995.82688i
−6666.1624713214
+2945.1966114423i

1.4358986015529
−312499997.87822i

−6666.1624713214
+2945.1966114423i

than 15D accuracy. This pattern is also reported in Table 1 of Ref. [37] for the S4 and S6 sums, which are
given for period ratios from 1 to infinity (as an infinite periodic rectangular cell). In Ling [40], calculations of
the Sk+p lattice values are determined using the Weierstrass elliptic function ℘(z) and its invariants through

the differential equation
[

℘′(z)
]2 = 4℘3(z) − 60S4℘(z) − 140S6 and relate equations, see, for instance, Ref.

[55,56]. Comparisons of herein reported Sk+p in Tables 1 and 2 with numerical values given in Table 1 of
Ling [40] show a good accuracy with more than 15 significant digits for rectangular periodic cells with |τ |
equal to 1, 1.5, 2, 4, and 6. In addition, validations with Table 1 of Huang [36] and Table 2 of Movchan [41]
for square periodic cell confirm good agreements. A numerical sensitivity analysis of the lattice sums Sk+p is
developed in Appendix A.
b) Lattice sum values for a parallelogram-like periodic cell with a fiber centered at the origin.

Tables 3 and 4 show the lattice sum (S2, S4, . . . , S20) with the same accuracy digits like in
Tables 1 and 2. Different periodic parallelogram unit cells, such as ω1 = 1, ω2 = eiθ with θ =
10◦, 20◦, 30◦, 40◦, 45◦, 50◦, 60◦, 70◦, 75◦ and 80◦, are considered. In addition, the corresponding lattice Sk+p
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Table 7 Eisenstein lattice sum values Ek+p for different parallelogram periodic cells with a fiber not centered at origin

Ek+p Parallelogram periodic cell with θ = 30◦ Parallelogram periodic cell with θ = 45◦

(0.1, 0.1) (0.3, 0.3) (0.1, 0.1) (0.4, 0.4)

E2
2.636054170888
−46.299351553886i

10.102065677404
−3.2846224150193i

3.8795269669671
−49.13921663826i

5.2651876212043
−5.637024372172i

E3
−260.14059748974
−244.9977378253i

−9.7871914911815
+3.0094760349739i

−251.31526656099
−248.34713210758i

5.7838420020419
+4.1290262804492i

E4
−2503.1216449943
−22.185877297831i

−33.479919438227
+17.042686439489i

−2501.6229203898
−3.764047365997i

−39.554502778408
+5.5561038055352i

E5
−12480.203217659
+12445.489704663

−69.298593417175
+88.61798546149i

−12500.706960134
+12491.94918873i

36.734996604983
−30.661268238055

E6
80.733006165107
+125005.72669426i

−82.101608236755
+194.81217957384i

7.9939296862416
+125004.55870927i

−12.072336649465
+179.39266925835i

E7
625131.05062393
+625216.68271936i

138.72936734259
+333.1027846571i

625008.44682638
+625002.53450649i

−205.95026609194
−195.29672084858i

E8
6249834.3975995
+394.48040077835i

539.99312744507
−136.23913140407i

6250002.4379098
+10.501699855019i

877.44383274042
−15.1333250199i

E9
31248938.675266
−31250040.008732i

1141.073006159
−2090.3668578129i

31249975.064456
−31249988.855107i

−1186.8853219427
+1176.3677538897i

E10
−1335.3292231479
−312501738.07563i

−791.07645035564
−6750.8916286593i

−15.919709490031
−312500011.33408i

14.817815564637
−4509.9946558579i

Ek+p Parallelogram periodic cell θ = 60◦ Parallelogram periodic cell θ = 75◦

(0.1, 0.1) (0.5, 0.5) (0.1, 0.1) (0.5, 0.5)

E2
3.6158726650842
−49.999999788461i −3.3131622532022

3.2248565420684
−50.053208516798i

1.6720672045178
+2.1203605876922i

E3
−249.88274465472
−250.11726592225i −23.228677538281i

−250.26370652566
−251.07194759216i

−6.6009767582429
−3.473981705185i

E4
−2499.9998413455
+1.1726063334629i

48.174163004682
−4.9054860358(−14)i

−2497.475469607
+1.6339688171064i

−13.01394288848
−13.487593657457i

E5
−12502.9331023
+12497.07007079i

1.4832579609(−13)
+161.22469871351i

−12502.088337517
+12500.075791157i

18.75328973994
−9.5395839517211i

E6
5.8630293173449
+124999.97778837i

−416.4477946155
+5.186961971(−13)i

1.2764656198932
+124998.21760516i

43.956737463734
+13.550107734193i

E7
625000.11108191
+625000.11103438i

−1.8989254613(−12)
−1119.0220981123i

625001.05484855
+624996.90893589i

19.994768148734
+104.03397675872i

E8
6249999.2067276
+0.0003733840704i

3134.6280134422
−5.1901611237(−12)i

6250001.915764
+4.6089259372612i

−104.34266980453
+111.88628353539i

E9
31250001.980847
−31250001.985514i

1.0350831303(−11)
+8447.8172792219i

31249996.105285
−31250002.098672i

−304.86505347155
−168.1306483165i

E10
0.0233365039036
−312499993.3894i

−23168.937030255
+5.4690474372(−11)i

2.5427532727064
−312500001.25923i

−38.434394046035
−629.34693717973i

values associate to the supplementary angle 180◦−θ are given. It is important to notice that for two supplemen-
tary angles, the corresponding Sk+p values are complex conjugate numbers, where the upper (lower) sing of
imaginary part corresponds to θ or (180◦ − θ) angle. To illustrate the accuracy and validate the present model,
the S4 and S6 values are compared with the result reported in Table 1 of Ling [39] and a exactly coincidence
is obtained for more than 15D.

c) Eisenstein lattice sum Ek+p values for different periodic cells with a fiber centered at the point (a, b).

In Tables 5, 6 and 7, the values of the Eisenstein lattice sums (Ek+p) are reported for different periodic
cells with a fiber centered at the point (a, b). Here, numerical computations are carried out by mean of Eq.
(43) and the corresponding lattice sums Sk+p using Eqs. (32)–(34) and (37) for parallelogram periodic cell.
It is important to note that good coincidences are obtained when the values of E2, E4 and E6 are compared
by the two different approaches: the first one using Eqs. (40–42) following the Rayleigh methodology herein
developed and the other one by Eq. (43) taken from [43] combining with the lattice sums Sk+p computed by
Eqs. (32)–(34) and (37). In addition, the center of the fiber depends on the limit of percolation for each cell
configuration.

d) Eisenstein lattice sum Ek+p values for four parallelogram periodic cells with a fiber centered at the point
(a, b).
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The lattice sum values Sk+p reported in Tables 1, 2, 3 and 4 have been applied to calculate the effective
elastic properties of multiphase FRCs with square, rectangular or parallelogram periodic cells under different
interface conditions as reported in Refs. [9,13,26,53,58,59]. In addition, they are used to solve transport
problems [23,42,44,45] and for coupled field problems [22,24,60]. On the other hand, the Ek+p sums have
been used to compute the effective conductivities on two-phase FRC in Refs. [32,33]. Former besides applying
theory to a unit cell of a single inclusion (centered at the origin) calculated conductivities for a unit cell with
two inclusions (one centered and one not at the origin) [32]. The latter use generalized Eisenstein–Rayleigh
sums to find the effective conductivity for three inclusions [33].

5 Conclusions

In this work, Rayleigh’s methodology for lattice sums calculation is extended for fiber-reinforced composites
with parallelogram periodic cells whose fiber is centered at the origin. New lattice sums are obtained which are
simple analytical formulas easy to implement numerically. Also, the Eisenstein lattice sums for parallelogram
periodic cells with a fiber not centered at the origin are implemented using two different approaches: the first
one follows Rayleigh’s methodology, and the other one combines Rogosin’s Eisenstein series representation in
the form of a power series [43] with Rayleigh’s procedure applied to the sum values Sk+p. Comparisons with
lattice sum values reported in the literature by other methods were performed when possible. Good agreement
is attained for all the performed comparisons. Lattice sums numerical values and easy-to-use formulae are
reported for a wide variety of cases.
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Appendix A

The numerical sensitivity of the lattice sums Sk+p when |τ | increases is performed through an analysis of the

numerical values of the infinite series G−n (τ ) =
+∞∑
t=1

1
sinn(i tτπ)

, n = k + p, (k + p = 2, 4, 6, . . .) which are

parts of the Sk+p expressions.
In Table 8, an analysis of the numerical sensitivity of theG−n (τ ) is reported for different |τ | values and numbers
of terms N of the sums. As it is observed, for a fixed |τ | only a few terms N are needed to obtain the sum value.
Also, as |τ | increases, the required number of terms is getting lower and the sums tend to cero. Then, |τ | → ∞
implies G−n

N (τ ) =
N∑

t=1

1
sink+p(i tτπ)

→ 0 for all values of N ≥ 1. Therefore, from Eqs. (32)–(34), it is observed

that the lattice sums Sk+p is a linear combination of the sums G−n (τ ) to any period ratio|τ |; thus, when |τ | →
∞ implies that S2 = 2π2

ω2
1

[

1
6 +

∞∑
t=1

1
sin2(i tτπ)

]

→ π2

3ω2
1
, S4 = 2π4

ω4
1

[

1
90 +

∞∑

t=1

(
1

sin4(i tτπ)
− 2

3sin2(i tτπ)

)
]

→

π4

45ω4
1
, and S6 = 2π6

ω6
1

[

1
945 +

∞∑

t=1

(

2
15sin2(i tτπ)

+
3∑

m=2

(−1)m+1

sin2m(i tτπ)

)]

→ 2π6

945ω6
1
.

For ω1 = 1, we have that S2 → π2

3 ≈ 3.289868133696453, S4 → π4

45 ≈ 2.164646467422276, and S6 →
2π6

945 ≈ 2.034686123968898, which are the values reported in Table 2 when |τ | ≥ 6. The remaining values of

Sk+p can be computed by the recursive formula Eq. (37). For these cases, a numerical precision of 1 × 10
−8

is considered.
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Table 8 Numerical values of the series G−n (τ ) for different period ratios |τ | and number of terms N of the sums. The (×10n)
under the |τ | is a factor that multiplies the sum value

N G−2
N (τ )

τ = 1
(×10−3)

τ = 1.1
(×10−3)

τ = 2
(×10−5)

τ = 4
(×10−11)

τ = 6
(×10−16)

1 −7.4977480097 −3.9929859616 −1.3949466718 −4.8646226839 −1.6964604732
2 −7.5116974764 −3.9969560931 −1.3949515364 −4.8646226839 −1.6964604732
3 −7.5117235260 −3.9969600484 −1.3949515364 −4.8646226839 −1.6964604732
4 −7.5117235747 −3.9969600523 −1.3949515364 −4.8646226839 −1.6964604732
> 5 −7.5117235748 −3.9969600523 −1.3949515364 −4.8646226839 −1.6964604732
Sum −7.5117235748 −3.9969600523 −1.3949515364 −4.8646226839 −1.6964604732

N G−4
N (τ )

τ = 1
(×10−5)

τ = 1.1
(×10−5)

τ = 2
(×10−10)

τ = 4
(×10−21)

τ = 6
(×10−32)

1 5.62162252172 1.59439368892 1.94587621711 2.36645538565 2.87797813715
2 5.62164198041 1.59439526511 1.94587621713 2.36645538565 2.87797813715
3 5.62164198048 1.59439526512 1.94587621713 2.36645538565 2.87797813715
> 4 5.62164198048 1.59439526512 1.94587621713 2.36645538565 2.87797813715
Sum 5.62164198048 1.59439526512 1.94587621713 2.36645538565 2.87797813715

N G−6
N (τ )

τ = 1
(×10−7)

τ = 1.1
(×10−8)

τ = 2
(×10−15)

τ = 4
(×10−31)

τ = 6
(×10−48)

1 −4.2149509073 −6.3663916171 −2.7143935528 −1.1511912549 −4.8823761524
2 −4.2149509344 −6.3663916233 −2.7143935528 −1.1511912549 −4.8823761524
> 3 −4.2149509344 −6.3663916233 −2.7143935528 −1.1511912549 −4.8823761524
Sum −4.2149509344 −6.3663916233 −2.7143935528 −1.1511912549 −4.8823761524
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