

VOLUME 105

NOVEMBER 2021

NUMBER 5 SUPPLEMENT

2021 Annual Meeting November 17-21 | VIRTUAL MEETING

PROGRAM BOOK

astmh.org | ajtmh.org

#TropMed21 #IamTropMed

Supplement to

The American Journal of Tropical Medicine and Hygiene

177

DETECTION OF ANTIBODIES TO LOKERN, MAIN DRAIN, ST. LOUIS ENCEPHALITIS AND WEST NILE VIRUSES IN VERTEBRATE ANIMALS IN CHIHUAHUA, GUERRERO AND MICHOACÁN, **MEXICO**

S. Viridiana Laredo-Tiscareno¹, Javier A. Garza-Hernandez², Carlos A. Rodríguez-Alarcón², Jaime R. Adame-Gallegos³, Diana M. Beristain-Ruiz², Ignacio N. Barajas López⁴, Rodolfo González-Peña³, David Baylon Jaquez⁵, Adriana Camacho Perea⁴, Alfonso Vega Durán², Ezequiel Rubio Tabares², Ramón Rivera-Barreno⁵, Carolina Montelongo-Ponce², Chandra S. Tangudu¹, Bradley Blitvich¹

¹Iowa State University, Ames, IA, United States, ²Universidad Autónoma de Ciudad Juárez, Juarez, Mexico, ³Universidad Autónoma de Chihuahua, Chihuahua, Mexico, ⁴Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico, ⁵Universidad Autónoma de Ciudad Juárez, Juárez, Mexico

178

DETAILED VIRAL SHEDDING KINETICS PRIOR TO SYMPTOM **ONSET IN PATIENTS WITH SARS-COV-2 INFECTION**

Seongman Bae, Jiwon Jung, Eun Ok Kim, Joon Seo Lim, Heungsup Sung, Sung-Cheol Yun, Sung-Han Kim

Asan Medical Center, Seoul, Republic of Korea

RHABDOMYOLYSIS AS PRESENTING FEATURE OF COVID-19: CASE SERIES AND LITERATURE REVIEW

Hendrik Sy¹, Christian Olivo Freites², Patricia Miguez Arosemana¹, Gustavo Contreras3, Alejandro Prigollini1, Georgina Osorio1

¹Icahn School of Medicine at Mount Sinai, Mount Sinai Morningside - West Hospitals, New York, NY, United States, New York, NY, United States, ²University of California Los Angeles, Los Angeles, CA, United States, 3Stanford University, Stanford, CA, United States

180

MOLECULAR BARRIERS TO SARS-COV-2 REPLICATION IN BAT

Sophie-Marie Aicher¹, Felix Streicher¹, Maxime Chazal¹, Delphine Planas², Dongsheng Luo³, Julian Buchrieser², Jordi Serra-Cobo⁴, Dominique Pontier⁵, Olivier Schwartz², Jiri Pikula⁶, Laurent Dacheux³, Nolwenn Jouvenet¹

Virus Signaling and Sensing Unit, Institut Pasteur Paris, Paris, France, 2 Virus and Immunity Unit, Institut Pasteur Paris, Paris, France, 3Lyssavirus Epidemiology and Neuropathology Unit, Institut Pasteur Paris, Paris, France, Department of Evolutionary Biology, Ecology and Environmental Sciences, Biodiversity Research Institute (IRBIO), University of Barcelona, Barcelona, Spain, 5University Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Villeurbanne, France, ⁶Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic

181

SEROPREVALENCE OF RIFT VALLEY FEVER VIRUS IN URBAN KENYA: A POTENTIAL PUBLIC HEALTH BURDEN HIDING IN **PLAIN SIGHT**

Keli N. Gerken¹, Eleonora Migliore¹, Said Malumbo², Karren N. Shaita³, Gladys Agola³, Eduardo Fabre¹, Francis Mutuku⁴, Bryson Ndenga³, A. Desiree LaBeaud¹ ¹Stanford University School of Medicine, Stanford, CA, United States, ²Vector borne Disease Unit, Msambweni Hospital, Msambweni, Kenya, ³Kenya Medical Research Institute (KEMRI), Kisumu, Kenya, 4Technical University of Mombasa, Mombasa, Kenya

182

PREVALENCE AND VERTICAL TRANSMISSION OF SARS-COV-2 INFECTION AMONG PARTURIENTS FROM LUANDA, ANGOLA

Cruz Sebastião¹, Paolo Parimbelli², Augusto Bambi², Eden Bernardo², Joaquim Mauito², Mateus Cristovão², Jeffrey Ernesto², Emanuel Junior², Herio Tiberio², Paulo André², Paulo Bumba², Lelo Cambungo², Amadeu Catanha², Anabela Mateus¹, Janete António³, Francisco Manuel³, Luzia Quipungo³, Manuela Mendes², António Mateus³, Zinga David³, Joana Morais³, Jocelyne Neto de Vasconcelos¹, Miguel Brito⁴ ¹Centro de Investigação em Saúde de Angola, Caxito, Angola, ²Maternidade Lucrécia Paim, Ministério da Saúde, Luanda, Angola, Luanda, Angola, ³Instituto Nacional de Investigação em Saúde, Luanda, Angola, ⁴Health and Technology Research Center, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal, Lisboa, Portugal

183

KNOWLEDGE, ATTITUDES, AND PRACTICES REGARDING SARS-COV-2 IN A UNIVERSITY COMMUNITY, MASSACHUSETTS, USA AND THE OPTIMIZATION OF COVID-19 RESPONSE PLANNING: A QUALITATIVE STUDY

Teah R. Snyder, Johanna Ravenhurst, Kate Wallace, Eva Chow, Sarah Goff, Sheila Pennell, Andrew A. Lover

University of Massachusetts Amherst, Amherst, MA, United States

Malaria – Biology and Pathogenesis

184

THREE YEARS OF INSECTICIDE RESISTANCE MONITORING IN FIVE SENTINEL SITES IN CAMEROON: CONTRIBUTION TO **VECTOR CONTROL DECISION MAKING**

Etienne Fondjo¹, Jean-Claude Toto², Magellan Tchouakui³, Elysee Ekoko Wolfang², Salemon Patchoke⁴, Benjamin Menze⁵, Boris Njeambosay⁶, Raymond Tabue⁴, Elysee Mandeng², Emmanuel Elanga⁵, Cyrille Ndo⁵, Billy Tene³, Elysee Nchoutpouen², Edmond Kopya², Dorothy Achu⁴, Kelley Ambrose⁷, Judith Hedje⁸, Jose Tchofa⁹, Jenney Carlson¹⁰, Sarah Zohdy¹¹, Joseph Chabi¹²

¹Vectorlink Cameroon, Yaounde, Cameroon, ²Organization for the Coordination of Endemic Diseases in Central Africa, Yaounde, Cameroon, 3Center for Research on Infectious Diseases, Yaounde, Cameroon, ⁴National Malaria Control Programme, Yaounde, Cameroon, 5Centre for Research in Infectious Diseases, Yaounde, Cameroon, ⁶Biotechnology Center, Yaounde, Cameroon, ⁷Abt associates, Yaounde, Cameroon, 8Centers for Disease Control and Prevention, Yaounde, Cameroon, 9President's Malaria Initiative , Agency for International Development, Yaounde, Cameroon, 10 President's Malaria Initiative, Agency for International Development, Washington, DC, United States, 11 Centers for Disease Control and Prevention, Atlanta, GA. United States, ¹²President's Malaria Initiative ,Vectorlink project, Abidjan, Côte D'Ivoire

185

BIOMARKERS OF ACUTE KIDNEY INJURY AND PERSISTENT KIDNEY DISEASE IN CHILDREN WITH SEVERE MALARIA

Andrea L. Conroy¹, Ruth Namazzi², Anthony Batte², Dibyadyuti Datta¹, John Ssenkusu³, Robert O. Opoka², Chandy C. John¹

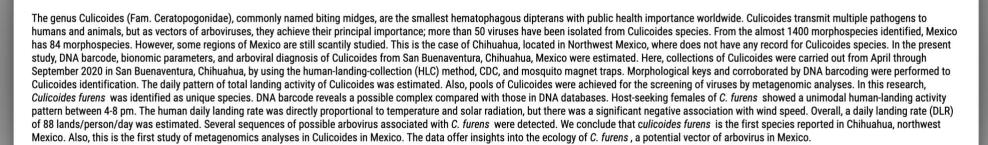
¹Indiana University School of Medicine, Indianapolis, IN, United States, ²Makerere University, Kampala, Uganda, 3 Makerere University School of Public Health, Kampala, Uganda

186

STUDIES OF THE PARASITE-MIDGUT INTERACTION REVEAL PLASMODIUM PROTEINS IMPORTANT FOR MALARIA TRANSMISSION TO MOSQUITOES

Guodong Niu, Yingjun Cui, Xiaohong Wang, Jun Li Florida International University, Miami, FL, United States

(ACMCIP Abstract)



VIRTUAL ABSTRACT

Posters by Session Poster Directory with Tonics How to Navigate the Poster Hall Playlist

×

Abstract details

First record of the genus Culicoides (Diptera: Ceratopogonidae) in Chihuahua, Northwest Mexico: A study of DNA barcode, human-landing rate, arbovirus detection, and public health importance of Culicoides furens

Javier A. Garza-Hernandez¹, Stephanie V. Laredo-Tiscareño^{1,2}, Carlos A. Rodríguez-Alarcón¹, Jaime R. Adame-Gallegos³, Rodolfo González-Peña³, Ezequiel Rubio-Tabarez¹, Bradley J.

¹Universidad Autonoma de Ciudad Juarez, Cd. Juarez, Mexico, ²Iowa State University, Ames, IA, United States, ³Universidad Autonoma de Chihuahua, Chihuahua, Mexico

BACKGROUND

The genus Culicoides (Fam. Ceratopogonidae), commonly named biting midges, are the smallest hematophagous dipterans with public health importance worldwide. Culicoides transmit multiple pathogens to humans and animals, but as vectors of arboviruses, they achieve their principal importance; more than 50 viruses have been isolated from Culicoides species. From the almost 1400 phospecies identified, Mexico has 84 morphospecies. However, some regions of Mexico are still scantily studied. This is the case of Chihuahua, located in Northwest Mexico, where does not have any record for Culicoides species. In the present study, DNA barcode, bionomic parameters, and arboviral diagnosis of coides from San Buenaventura, Chihuahua, Mexico were estimated.

METHODS

Collection of biting midges: The sampling plot was 5 m from the riverbanks of the Santa María river (29°51'09'N, 107°29'20'W, 1540 masl; (Fig. 1). It is a semi-naturalized area, 3 km downstream from a small dam that marks the end of the urbanized area of the city. The banks of the river are partially vegetated with typical species of riverside groves such as Populus spp., Salix spp. and Quercus spp. and other shrub species such as Tamarix spp., and mainly surrounded by imigated lands in the San Buenaventura, such as wainut and corn. Collection were carried out from April through September 2020 in San Buenaventura, Chiua

Identification of biting midges: Morphological keys were used to identify the biting midges. Then, the species were corroborated by DNA barcoding using specific primers (LCOI490 and HCO2198) to amplify the cytochrome oxidase ubunit I (Folmer et al., 1994). PCR reactions were performed in a total volume of

wear cologne or any lotion that could influence the host-seeking lowa state University (Ames, Iowa, USA). behavior of biting midges. The biting midges were collected when them were exposed on skin. Hostseeking females were captured while they were landing or attempting to feed on the human were killed and maintained at -80°C until identification or molecular analysis. Sampling was carried out between 7:00 am to 8:00 pm for 10 consecutive days. To determine the daily patterns of human-landing activity, the human-landing rate per hour was calculated as the total number of flies caught during each sampling period divided by the number of fly collectors, and it was expressed as the number of lands/person/hour. A GLIMMIX model was used to fit the human-landing rate during the 12 days to a negative binomial distribution, and the least square means (LSM) of the sampling periods were compared (Ruiz-Arrondo e al. 2017). Also, climatic variables were register to find which of

Human-landing-collection: Four collectors of flies were situated Metagenomic analysis: Pools of Culicoides were achieved for the screening of 10 meters apart; collectors were under the shadow of a tree to viruses by metagenomic analyses. Firstly, Qiagen RNA mini kit was used to catch wild hostseeking females of biting midges and mosquito perform the RNA extraction. Then, RNA concentration was quantified. RNA species (Fig. 1). The fly collectors were not smokers and did not samples with >100 ng/uL were sent to new generation sequencing at DNA facility

RESULTS

collector by using a manual aspirator (Bioquip cat. 1135A). Then Culicoides species: Culicoides furens (Fig. 2) was the specie identified. This is

Human-landing-collection: Host-seeking females of C. furens showed a unimodal human-landing activity pattern between 4-8 pm. The human daily landing rate was directly proportional with temperature (P < 0.001) and solar radiation (P < 0.001), but there was a significant negative association with wind speed (P < 0.001). Overall, a daily landing rate (DLR) of 88 lands/person/

