MEMORIAS III CONGRESO LATINOAMERICANO DE ASTROBIOLOGÍA MÉXICO, 2021

CONTENIDO

INFORMACIÓN DEL CONGRESO
Congreso Latinoamericano de Astrobiología
Antecedentes del CLA
Objetivo
III Congreso Latinoamericano de Astrobiología
Dr. Rafael Navarro González (1959-2021)
Comité Organizador
Comité Científico (en orden alfabético por apellido)
Comité Local (en orden alfabético por apellido)
Colaboradoras
Comité Editorial
Agradecimientos
Personal de apoyo4
PROGRAMA5
CONFERENCIAS INVITADAS
INV-01. CUANTIFICACIÓN DE LA HABITABILIDAD EN CUERPOS PLANETARIOS TIPO ROCOSO8
INV-02. A BUSCA POR PLANETAS HABITÁVEIS9
INV-03. ¿Y LA QUÍMICA PREBIÓTICA CÓMO VA?10
INV-04. RESPOSTA METABÓLICA DE MICRORGANISMOS EXTREMÓFILOS A CONDIÇÕES AMBIENTAIS SIMULADAS: ESTUDO DE RESISTÊNCIA E DA GERAÇÃO DE BIOASSINATURAS11
INV-05. MATERIAL EXTRATERRESTRE Y LA EVOLUCIÓN TEMPRANA DE LA VIDA EN LA TIERRA12
INV-06. 12.8 KA: EVIDENCIAS DE IMPACTO CÓSMICO EN EL SITIO PILAUCO (40°11'50''S), NORPATAGONIA CHILENA13
INV-07. MICROORGANISMOS EXTREMOFILOS DE LA ANTÁRTICA, UN ECOSISTEMA ANÁLOGO A MARTE14
INV-08. APLICAÇÃO DE TÉCNICAS SÍNCROTRON NA AVALIAÇÃO DE BIOGENICIDADE NO REGISTRO GEOLÓGICO15
INV-09A. ASTROBIOLOGIA: UNA VISIÓN TRANSDISCIPLINARIA DE LA VIDA EN EL UNIVERSO16
INV-09B. LA NATURALEZA TRANSDICIPLINAR DE LA ASTROBIOLOGÍA COMO EJE TRANSVERSAL DE LOS PROCESOS EDUCATIVOS DEL PLANETARIO DE BOGOTÁ

	09C. VIDA EN TUNEL UNIVERSO, ACERCANDO LA ASTROBIOLOGIA POR IO DE EXPERIENCIAS EDUCATIVAS INTERACTIVAS18
	BUCIONES ORALES
SO	1. DETECCIÓN DE MOLÉCULAS PREBIÓTICAS EN EL ESPACIO CON ALMA 20
	2. EL FRÍO ENTORNO DE LA ESTRELLA VEGA
	3. ASTROBIOLOGÍA EN EL SISTEMA SOLAR: PREDICCIONES SOBRE EL TENIDO MOLECULAR EN EL AMBIENTE DE ENCÉLADO PARA EL GTM22
	4. SAINT-EX: RESULTADOS CIENTÍFICOS Y OBSERVACIONES DESDE SAN RO MÁRTIR23
SO CO	5. EFECTO DE LA RADIACIÓN ULTRAVIOLETA DE UNA FULGURACIÓN RE LA QUÍMICA DEL OXÍGENO EN ATMÓSFERAS CON BAJAS CENTRACIONES DE O2 DE PLANETAS POTENCIALMENTE HABITABLES EDEDOR DE ENANAS M24
	6. PERDA ATMOSFÉRICA DE PLANETAS AO REDOR DE ESTRELAS ANÃS MELHAS DEVIDO A RADIAÇÃO XUV PROVENIENTE DE FLARES25
	7. EL DESIERTO DE ATACAMA COMO AMBIENTE ANÁLOGO A PLANETAS ROCOSOS26
	8. LOS AMBIENTES ANÁLOGOS DAN UNA PAUTA PARA APROXIMAR N HABITABLE ES EL OCÉANO DE ENCÉLADO27
	9. TERMÓLISIS DEL ÁCIDO FÓRMICO SIMULANDO UN AMBIENTE ROTERMAL Y SU IMPORTANCIA PREBIÓTICA28
	0. MODELO NUMÉRICO SOBRE LA DESCOMPOSICIÓN POR RADIACIÓN DE ITOSINA: SISTEMA DE INTERÉS PREBIÓTICO29
	1. LA RIQUEZA INTRÓNICA DEL GENOMA ES UN PRERREQUISITO EN LA LUCIÓN DE LA MULTICELULARIDAD COMPLEJA TERRESTRE30
	2. MICROORGANISMOS DE SITIOS HIDROTERMALES DEL ESTRECHO DE NSFIELD, ANTARTICA Y SU IMPLICANCIA EN ASTROBIOLOGIA31
	3. ESTIMACIONES DE VIDA EN EL UNIVERSO: RESIGNIFICANDO LA ORTANCIA DE PARÁMETROS ASTROQUÍMICOS Y ASTROBIOLÓGICOS32
SO	4. MCROORGANISMOS EXTREMÓFILOS DE LA REGIÓN HÍPER ÁRIDA DEL ERTO DE ATACAMA AL SUR DEL PERÚ33
SO MI	5. ENRIQUECIMIENTOS DE METALES COMO BIOSEÑAL DE TAPETES ROBIANOS EN SEDIMENTOS DE CUATRO CIÉNEGAS, MÉXICO34
	6. RESISTÊNCIA DE MICROORGANISMOS HALOFÍLICOS A SAIS DE CLORATO NO CONTEXTO MARCIANO35
AC	7. CARACTERIZACIÓN DE BACTERIAS PSICRÓFILAS CULTIVABLES CON IVIDAD DE SOLUBILIZACIÓN DE FOSFATO Y FIJACIÓN DE NITRÓGENO, SENTES EN SEDIMENTOS DEL NEVADO DEL RUIZ (CALDAS, COLOMBIA) 36

	SO-18. EVALUACIÓN DE LA POSIBLE FORMACIÓN DE UN SISTEMA HIDROTERMAL EN EL NOEICO EN EL CRÁTER HELLAS, MARTE, A PARTIR DEL ESTUDIO DE SU ENTORNO MINERAL Y GEOLÓGICO37
	SO-19. EXTREMÓFILOS: MODELOS EN ASTROBIOLOGÍA DE POTENCIAL VIDA EN OTROS PLANETAS
	SO-20. CITLALMITL: LA MÁQUINA QUE CREA METEORITOS39
	SO-21. APLICAÇÃO DA ESPECTROSCOPIA RAMAN NA IDENTIFICAÇÃO DE MATERIAIS CARBONOSOS NO METEORITO CONDRITO CARBONÁCEO ALLENDE
	SO-22. SIMULAÇÃO DE CHAMINÉ ALCALINA EM AMBIENTE PRÉ BIÓTICO41
	SO-23. PRODUCCIÓN DE PERCLORATOS Y NITRATOS POR DESCARGAS ELÉCTRICAS EN TORBELLINOS DE ARENA EN MARTE
	SO-24. DEGRADACIÓN RADIOLÍTICA DEL CARBONO PRESENTE EN UN SUELO DEL DESIERTO DE MOJAVE Y SUS IMPLICACIONES EN LA BÚSQUEDA DE COMPUESTOS ORGÁNICOS EN MARTE
	SO-25. ESTUDIO PETROGRÁFICO DE DOS CONDRITOS CO3 DEL DESIERTO DE ATACAMA, CHILE
	SO-26. "ASTROBIOLOGÍA", MUESTRA EDUCATIVA INTERACTIVA45
	SO-27. POTENCIALIDADES DA OBRA CINEMATOGRÁFICA CONTATO DE CARL SAGAN COMO MEIO DE POPULARIZAR OS CONCEITOS DE ASTROBIOLOGIA46
	SO-28. CRATERA DE IMPACTO DE COLÔNIA-SP: UM PATRIMÔNIO GEOLÓGICO COM RELEVÂNCIA PARA ASTROBIOLOGIA47
	SO-29. INSERCIÓN DE LA ASTROBIOLOGÍA EN LAS LICENCIATURAS EN FÍSICA EN BRASIL
	SO-30. ASTROBIOLOGÍA Y EXPLORACIÓN DEL UNIVERSO EN LA FORMACIÓN INTEGRAL DE LOS COLEGIOS OFICIALES DE BOGOTÁ, COLOMBIA
CO	NTRIBUCIONES EN CARTEL50
	C1-01. LA CONFIABILIDAD DE LA RELACIÓN TITIUS-BODE Y SUS IMPLICACIONES PARA LA BÚSQUEDA DE EXOPLANETAS
	C1-02. POSSÍVEIS PLANETAS HABITÁVEIS EM ZONA DE HABITABILIDADE DE SISTEMAS DE ESTRELAS BINÁRIAS
	C1-03. DETECCIÓN DE UN PATRÓN QUÍMICO PECULIAR EN EL SISTEMA BINARIO WASP-160: ¿HUELLAS DE FORMACIÓN Y EVOLUCIÓN PLANETARIA? 53
	C1-04. CARACTERIZACIÓN FOTOMÉTRICA DE ENANAS ULTRA FRÍAS: EXPLORANDO LOS AMBIENTES EXOPLANETARIOS
	C1-05. MUESTRA DE ENANAS BLANCAS PARA BUSCAR EXOPLANETAS TRANSITANTES DESDE EL OAN-SPM

C1-06. CONCENTRACIÓN DE ÓXIDO NITROSO (N ₂ O) COMO POSIBLE SEÑAL DE VIDA EN EXOPLANETAS
C1-07. ANÁLISIS DEL FACTOR K EN LA FUNCIÓN DE HABITABILIDAD "COBB- DOUGLAS" PARA EXOPLANETAS A PARTIR DEL TEOREMA DE BUCKINGHAM 57
C1-08. FORMAÇÃO DE MUNDOS SUPERHABITÁVEIS NA ZONA HABITÁVEL DE ESTRELAS ANÃS LARANJAS
C1-09. FOTOSÍNTESIS OXIGÉNICA COMO PRODUCTORA DE OXÍGENO MOLECULAR EN PLANETAS ROCOSOS DE SISTEMAS ESTELARES CON ESTRELLAS TIPO M
C1-10. CONTENIDO MOLECULAR DE REGIONES H II ULTRACOMPACTAS60
C1-11. IMPORTANCIA DE LA RADIACIÓN UV DE ESTRELLAS CON DISTINTOS TIPOS ESPECTRALES EN LA FORMACIÓN DE ADENINA SOBRE UN PLANETA POTENCIALMENTE HABITABLE CON ATMÓSFERA DE CO_2 61
C1-12. EFECTOS DE UNA FULGURACIÓN DE UNA ESTRELLA ENANA M EN LA QUÍMICA ATMOSFÉRICA DE UN PLANETA TIPO TIERRA DURANTE EL ARQUEANO
C1-13. PRESENCIA DE AGUA EN EXOLUNAS DE PLANETAS ERRANTES63
C1-14. ESTUDIO PROTEÓMICO DE <i>Salinibacter ruber</i> Y LA HABITABILIDAD DEL OCÉANO DEL SATÉLITE EUROPA64
C1-15. MICROORGANISMOS EXTREMOS EN AMBIENTES PLANETARIOS, ¿LÍMITE DE VIDA EN EL UNIVERSO?65
C1-16. COMPARACIÓN DE LAS PROPIEDADES ESPECTROSCÓPICAS Y TERMODINÁMICAS DE LOS ESTEREOISÓMEROS DE CLOROFILAS Y BACTERIOCLOROFILAS CON UNA PERSPECTIVA EVOLUTIVA
C1-17. EL FUTURO DE LA ASTROBOTÁNICA EN LA ESTACIÓN ESPACIAL INTERNACIONAL
C1-18. FUENTES PROTÉICAS ALTERNATIVAS PARA LA ALIMENTACIÓN HUMANA EN MARTE
C1-19. ESTUDIO DE LA DIVERSIDAD MICROBIANA EN LAS VENTILAS HIDROTERMALES DE CUENCA PESCADERO EN EL GOLFO DE CALIFORNIA69
C2-01. EL MOTIVO DE LAS FERREDOXINAS UNIDO A UN GRUPO Fe ₄ S ₄ COMO MODELO DE UNA PROTOFERREDOXINA PREBIÓTICA70
C2-02. ALDEHÍDOS EN SIMULACIONES EXPERIMENTALES DE QUÍMICA PREBIÓTICA71
C2-03. SIMULACIÓN COMPUTACIONAL DE LA FOSFORILACIÓN DE LA RIBOSA EN PRESENCIA DE WHITLOCKITA COMO MINERAL PRIMITIVO EN LA TIERRA PRIMITIVA
C2-04. ESTUDIO DE LA SECCIÓN TRANSVERSAL PARA MEDIR LA CAPACIDAD DISIPATIVA DE PROTEÍNAS ANTENA

C2-05. ¿CUALES FACTORES TERRESTRES O EXTRATERRESTRES PUDIERON CONTRIBUIR A LA RESISTENCIA A LA RADIACIÓN DE <i>Deinococcus radiodurans</i> ?74
C2-06. TARDÍGRADOS; MIL AMBIENTES PARA SOBREVIVIR75
C2-07. LA QUIRALIDAD EN DISTINTOS ASPECTOS DE LAS CIENCIAS NATURALES: UN ACERCAMIENTO A DISTINTAS ESCALAS
C2-08. INCIDENCIA COMPARTIDA DE DODECÁMEROS Y PÉPTIDOS COMO ELEMENTOS DE ESTUDIO EN AMBIENTES Y CONDICIONES TEMPRANAS77
C2-09. DIVERSIDAD GENÓMICA DE BACTERIAS XERÓFILAS DE SEDIMENTOS DESÉRTICOS DE TIERRA CALIENTE, MICHOACÁN78
C2-10. ESTRATEGIAS DE HALOTOLERANCIA EN BACTERIAS79
C2-11. IMPLICACIONES ASTROBIOLÓGICAS DE LA FORMACIÓN DE COMPUESTOS DE FÓSFORO A PARTIR DE LA ABLACIÓN LÁSER SIMULANDO RELÁMPAGOS VOLCÁNICOS80
C2-12. AUTOENSAMBLAMIENTO Y ESTABILIDAD DE HISTIDINA EN SUPERFICIES MINERALES COMO MODELO PREBIÓTICO DE EVOLUCIÓN QUÍMICA: UNA APROXIMACIÓN EXPERIMENTAL Y COMPUTACIONAL81
C2-13. ESTABILIDAD DEL ÁCIDO α-CETOGLUTÁRICO EN UN SISTEMA SIMULADO HIDROTERMAL, GENERADO POR IMPACTO: IMPLICACIONES EN EVOLUCIÓN QUÍMICA82
C2-14. BACTERIAS QUE RESPIRAN ARSÉNICO AISLADAS EN XICHU, MEXICO 83
C2-15. PREDICCIÓN BIOINFORMÁTICA DE ELEMENTOS ESTRUCTURALES DE ADHERENCIA EN BACTERIAS ACIDÓFILAS84
C2-16. MODELADO POR HOMOLOGÍA Y PERFIL COMPARATIVO DE SUPERÓXIDO DISMUTASA ENTRE EXTREMÓFILOS: METHYLOBACTERIUM COMO ORGANISMO MODELO
C2-18. TARDIGRADOS: UN NUEVO REGISTRO PARA BAJA CALIFORNIA86
C2-19. VIABILIDAD DE LAS MICROESPORAS DE DORADILLA (Selaginella lepidophylla, Hook. & Grev.) BAJO CONDICIONES EXTREMAS DE TEMPERATURA Y RADIACIÓN UV ANÁLOGAS A MARTE
C2-20. TARDÍGRADOS DE LA SIERRA DE SAN MIGUELITO Y SIERRA DE ÁLVAREZ ALEDAÑAS A LA ZONA URBANA DE SAN LUIS POTOSÍ, MÉXICO88
C2-21. TIPOS DE ALIMENTACIÓN EN ORGANISMOS DEL FILO TARDIGRADA89
C2-22. EXPLORANDO LA DIVERSIDAD MICROBIANA Y VIRAL EN GLACIAR UNION, ANTARTICA90
C3-01. ESTUDIO DE MICROBIALITAS MEXICANAS COMO POSIBLES ANÁLOGOS PARA LA BÚSQUEDA DE VIDA ANTIGUA EN MARTE91
ESTROMATOLITOS CLAVE PARA LA BÚSQUEDA DE VIDA ANTIGUA EN MARTE

C3-03. TOLERANCIA DE <i>Bacillus pumilus</i> A PERCLORATOS: IMPLICACIONES EN LA HABITABILIDAD DE MARTE93
C3-04. RESPOSTA DE HALÓFILOS DA LAGOA VERMELHA, BRASIL, AO VERÃO SIMULADO DE MARTE94
C3-05. ESTUDIO GEOQUÍMICO DE LAS TECTITAS Y MICROESFERAS COMO INDICADORES DE IMPACTO METEORÍTICO Y SU COMPARACIÓN CON OTROS VIDRIOS NATURALES
C3-06. INCLUSIONES FLUIDAS EN CRISTALES DE HALITA96
C3-07. ESTUDIO DE LOS BIOMINERALES DE AMBIENTES EXTREMOS CON ESPECTROMICROSCOPÍA FTIR ACOPLADA A LUZ DE SINCROTRÓN97
C3-08. MICROORGANISMOS PRESENTES EN DIFERENTES TIPOS DE CAVERNAS EN SUDAMÉRICA Y POSIBLES ESTRATEGIAS DE SUPERVIVENCIA98
C3-09. COMPARACIÓN DEL MÉTODO ESPECTROFOTOMÉTRICO DE NITRACIÓN CON LA CUANTIFICACIÓN DE NITRATO POR CROMATOGRAFÍA DE IONES EN MUESTRAS DE SUELO DEL DESIERTO DE ATACAMA99
C3-10. PICO DE ORIZABA COMO MODELO PARA LA TERRAFORMACIÓN EN MARTE
C3-11. IMPORTANCIA DE LA ENERGÍA DE ONDAS DE CHOQUE, DEBIDAS A LA INTERACCIÓN DE ASTEROIDES CON LA ATMÓSFERA TERRESTRE PRIMITIVA, EN LA PRODUCCIÓN DE COMPUESTOS ORGÁNICOS DE INTERÉS ASTROBIOLÓGICO
C3-12. POTENCIALIDADES DA ESPECTROSCOPIA RAMAN NA IDENTIFICAÇÃO NÃO DESTRUTIVA DE MINERAIS ESSENCIAIS EM METEORITOS MARCIANOS
C3-13. TERRAFORMACIÓN DE MARTE: PRIMERA ETAPA
C3-14. ANÁLISIS HISTÓRICO DE LAS CAÍDAS DE METEORITOS104
C3-15. DESARROLLO DE LAS CIENCIAS PLANETARIAS Y DE LA ASTROBIOLOGÍA EN AMÉRICA DEL SUR: EL CASO PARTICULAR DE LA PUNA DE ATACAMA
C3-16. EVALUANDO LA MINERÍA ESPACIAL
C3-17. BIOMAS BRASILEIROS DO CERRADO E DA CAATINGA COMO POTENCIAIS AMBIENTES TERRESTRES ANÁLOGOS À MARTE107
C3-18. ESTUDIO DE MICROMETEORITOS EXPERIMENTALES: PETROLOGÍA, HISTORIAS TÉRMICAS Y CONSERVACIÓN DE LA MATERIA ORGÁNICA108
C3-19. DISEÑO DE CORONÓGRAFO PARA ESTACIÓN DE MONITOREO DE BÓLIDOS
C3-20. SISTEMA DE SOPORTE Y CONTROL DE LA RED MEXICANA DE METEOROS
C4-01. PROPUESTA DE UNA NUEVA DEFINICIÓN DEL TÉRMINO METEOROIDE

C4-02. ASTROBIOLOGÍA PARA AFICIONADOS: UNA MANERA DE CONOCER MUNDOS POSIBLES112
C4-03. APROXIMACIONES AL IMPACTO DE LAS TECNOLOGÍAS EMERGENTES EN LA CONCEPCIÓN DE LO VIVO113
C4-04. ECOLOGIA PROFUNDA E SUA RELAÇÃO ASTROBIOLÓGICA: CONCEPÇÕES GERAIS DE UM NOVO PARADIGMA114
C4-05. UMA PROPOSTA DE CONSTRUÇÃO DE QUESTÕES INTERDISCIPLINARES PARA PROVAS DE PROCESSOS AVALIATIVOS DO ENSINO MÉDIO NO BRASIL UTILIZANDO CONCEITOS DE ASTROBIOLOGIA
C4-06. ASTROBIOLOGÍA EN LA EDUCACIÓN SECUNDARIA: UN DIAGNÓSTICO DE CONOCIMIENTOS PREVIOS116
C4-07. A IMPORTÂNCIA DA COLEÇÃO DE METEORITOS BRASILEIROS DO MUSEU NACIONAL DO RIO DE JANEIRO PARA A POPULARIZAÇÃO DA ASTROBIOLOGIA117
C4-08. MÉTODOS DE DETECCIÓN DE EXOPLANETAS COMO CONTEXTUALIZACIÓN DE LA ENSEÑANZA DE LA FÍSICA118
C4-09. ALGUNAS CONSIDERACIONES PARA LA IMPLEMENTACIÓN DE LA ASTROBIOLOGÍA COMO RECURSO DIDÁCTICO EN LA ENSEÑANZA DE LAS CIENCIAS EN LA EDUCACIÓN SECUNDARIA
C4-10. CICLO DE CONFERENCIAS: ASTROBIOLOGÍA: EN BUSCA DEL ORIGEN, EVOLUCIÓN Y DESTINO DE LA VIDA EN EL UNIVERSO120
C4-11. ANÁLISIS ENTRE LOS DIFERENTES SUBSISTEMAS DE BACHILLERATO SOBRE LA ENSEÑANZA DEL TEMA ORIGEN DE LA VIDA Y ASTROBIOLOGÍA 121
C4-12. LA DIVULGACIÓN CIENTÍFICA DE LA ASTRONOMÍA EN ESTUDIANTES DE NIVEL MEDIO SUPERIOR DE LA CARRERA DISEÑO GRÁFICO DIGITAL EN TALLER DE VIDEO122
C4-13. DISEÑO E IMPLEMENTACIÓN DE LA RUTA TEMÁTICA DEL PLANETARIO DE BOGOTÁ "EN BUSCA DE VIDA EN EL UNIVERSO"123
C4-14. ORÍGENES: LA VIDA Y LO VIVO EN EL COSMOS, ESTRATEGIA DE COMUNICACIÓN VIRTUAL PARA LA DIVULGACIÓN DE LA ASTROBIOLOGÍA DEL PLANETARIO DE BOGOTÁ COLOMBIA124
C4-15. ASTROBIOMOOC: CURSO EN LINEA DE ASTROBIOLOGÍA125
C4-16. VEGETALES ESPACIALES: EL FUTURO DE LA ASTROBOTÁNICA EN LA ESTACIÓN ESPACIAL INTERNACIONAL126
C4-17. PROPUESTA EDUCATIVA PARA PRIMARIA EN UN CONTEXTO MARCIANO127
C4-18. MANUAL DE PRÁCTICAS PARA LA ASIGNATURA DE BÚSQUEDA DE VIDA EN MARTE128
Participantes

INFORMACIÓN DEL CONGRESO

Congreso Latinoamericano de Astrobiología

Antecedentes del CLA

En 2016 la Sociedad Científica de Astrobiología del Perú estableció el Congreso Latinoamericano de Astrobiología con la misión de formar a la próxima generación de investigadores en Astrobiología de América Latina. La segunda edición de este evento fue realizada en 2018 con sede en Bogotá, Colombia y se presentó como una oportunidad para crear lazos y compartir experiencias entre distintas instituciones, centros de investigación y estudiantes interesados en la materia.

Objetivo

El Congreso Latinoamericano de Astrobiología (CLA) está dirigido a estudiantes de licenciatura y posgrado, así como personas dedicadas a la investigación, docencia y comunicación de la astrobiología y ciencias afines a ella como, por ejemplo, química, bioquímica, biología, astrofísica, geofísica y geología. Será llevado a cabo de manera virtual y tendrá como objetivo dar a conocer las investigaciones que se realizan en estos temas en nuestra región, así como brindar un espacio de intercambio de ideas para quienes ya están involucrados o se interesan en la astrobiología.

III Congreso Latinoamericano de Astrobiología

Esta edición del CLA es organizada por la Sociedad Mexicana de Astrobiología y está dedicada a la memoria de Rafael Navarro-González, a quien perdimos inesperadamente el 28 de enero de 2021, en reconocimiento a sus contribuciones a la astrobiología y su labor en la formación de decenas de estudiantes que hoy en día continúan con su legado.

Dr. Rafael Navarro González (1959-2021)

Rafael Navarro-González fue un pionero de la astrobiología en México. Fundó el primer Laboratorio dedicado a las ciencias planetarias y a la astrobiología en el Instituto de Ciencias Nucleares de la UNAM. Contribuyó al conocimiento sobre la habitabilidad y propiedades de algunos de los cuerpos del sistema solar como los satélites Europa, Titán y especialmente del planeta Marte.

Su investigación sobre la posible oxidación de materia orgánica durante las mediciones realizadas en Marte por la sonda Viking, resultaron en un cambio en la estrategia de la NASA para buscar compuestos de carbono en ese planeta. Por ello, Navarro-González fue invitado a participar en la misión Mars Science Laboratory (MSL) cuyas contribuciones más relevantes son la detección de metano y de materia orgánica en el planeta rojo. Una colina ubicada en el Monte Sharp al noroeste del cráter Gale, el principal lugar de operaciones del rover Curiosity, ha sido nombrada "Montaña de Rafael Navarro" por el equipo científico y técnico responsable de la misión.

Comité Organizador

Comité Científico (en orden alfabético por apellido)

- Rolando Cárdenas (Universidad Central "Marta Abreu" de las Villas Cuba)
- Leticia Carigi (Instituto de Astronomía, UNAM/SOMA México)
- María Angélica Leal (Profesora Universidad de La Sabana. Investigadora GCPA)
- Giovanni Leone (Universidad de Atacama)
- Sandra I. Ramírez Jiménez (Centro de Investigaciones Químicas, UAEM/SOMA -México)
- Lien Rodríguez (Universidad de Concepción)
- Antígona Segura (Instituto de Ciencias Nucleares, UNAM/SOMA México)
- Jimena Sánchez Nieves (Profesora Asociada D.E. Departamento de Biología -Universidad Nacional de Colombia. Directora GCPA)
- Gonzalo Tancredi (UdelaR Uruguay)
- David Tovar Rodríguez (Profesor Universidad de La Sabana. Investigador GCPA)
- Julio Valdivia (Universidad de Ingeniería y Tecnología de Perú)
- Millarca Valenzuela (Universidad Católica del Norte, Antofagasta, Chile / Instituto Milenio de Astrofísica MAS)

Comité Local (en orden alfabético por apellido)

- Guadalupe Cordero
- Sonia Cornejo
- Guadalupe Guillén
- Sandra I. Ramírez Jiménez
- Antígona Segura
- Pedro Valdés Sada

Colaboradoras

- Ximena Abrevaya (IAFE UBA CONICET)
- Cecilia Demergasso (Universidad Católica del Norte)

Comité Editorial

- Leticia Carigi
- Sandra I. Ramírez Jiménez
- Millarca Valenzuela

Agradecimientos

El III Congreso Latinoamericano de Astrobiología fue organizado por la Sociedad Mexicana de Astrobiología A. C. quien agradece profundamente el apoyo institucional y financiero de las siguientes corporaciones e individuos:

- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México
- <u>Instituto de Astronomía</u>, Universidad Nacional Autónoma de México
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos
- MeetAnyway
- Jimena Sánchez Jiménez
- Pedro Valdés Sada

Personal de apoyo

- Diseño de carteles: María Fernanda Carranza
- Apoyo técnico para el sitio web: Aline Guevara Villegas
- Apoyo técnico durante el congreso: Edna Galindo Dellavalle

PROGRAMA

CARTELES C4	DESCANSO	Modera: JIMIENA SANCHEZ INV-4 Dr. Fabio Rodrigues	CARTELES C1	13:10- 13:20 13:20- 13:30	12:10- 12:20 12:20- 12:30	11:10- 11:20 11:20- 11:30
		מיין יין איין איין איין איין איין איין א		13:00- 13:10	12:00- 12:10	11:00- 11:10
Dr. Douglas Galante	GONZÁLEZ	CLUCATION	OLD CARGO	12:50- 14:00	11:50- 12:00	10:50- 11:00
Modera: DAVID TOVAR	HOMENAJE AL	DESCO	DESCONNISCO	12:40- 12:50	11:40- 11:50	10:40- 10:50
			SO-04 Gómez Maqueo Chew	12:30- 12:40	11:30- 11:40	10:30- 10:40
COCANO	DESCANSO	CARTELES C2	SO-03 Chin Canche	12:20- 12:30	11:20- 11:30	10:20- 10:30
			SO-02 Chávez Dagostino	12:10- 12:20	11:10- 11:20	10:10- 10:20
SO-30 Valbuena Suárez	SO-23 Martínez Pabello	SO-12 Amenabar	SO-01 Villicaña Pedroza	12:00- 12:10	11:00- 11:10	10:00- 10:10
SO-29 Nunes Rosa	SO-22 De Borges	SO-11 Lozada Chávez		11:50- 11:00	10:50- 11:00	9:50- 10:00
SO-28 Marins de Souza	SO-21 Peters Donato	SO-10 Paredes Arriaga	<i>Modera: LETICIA CARIGI</i> INV-1 Dr. Rolando Cárdenas	11:40- 11:50	10:40- 10:50	9:40- 9:50
SO-27 Yatti	SO-20 Hérnandez Reséndiz	SO-09 González López		11:30- 11:40	10:30- 10:40	9:30- 9:40
<i>Modera: LIEN RODRÍGUEZ</i> INV-7 Dra. Rosa Acevedo Barrios	Modera: MILLARCA VALENZUELA INV-5 Dra. Ma. Eugenia Varela	<i>Modera: SANDRA RAMÍREZ</i> INV-3 Dra. Alicia Negrón	INAUGURACIÓN DEL CONGRESO	11:00- 11:30	10:00- 10:30	9:00- 9:30
Viernes 6 de agosto	Jueves 5 de agosto	Miércoles 4 de agosto	Martes 3 de agosto	GMT-3	Hora GMT-4	GMT-5

12:50- : 13:00	12:40- : 12:50	12:30- : 12:40	12:20 12:20 12:30		11:40- : 11:50 11:50- : 12:00	11:30- : 11:40	GMT-5 (
13:50- 14:00	13:40- 13:50	13:30- 13:40	13:20 13:20 13:20- 13:30	13:00- 13:10	12:40- 12:50 12:50- 13:00	12:30- 12:40	Hora GMT-4
14:50- 16:00	14:40- 14:50	14:30- 14:40	14:10- 14:20 14:20- 14:30	14:00- 14:10	13:40- 13:50 13:50- 15:00	13:30- 13:40	GMT-3
S0-08 Montoya Lorenzana	SO-07 Molina Molina	SO-06 Neves Ribeiro	DESCANSO SO-05 Ramos		Modera: GONZALO TANCREDI INV-2 Dr. Luan Ghezzi		Martes 3 de agosto
SO-19 Alvarado Sánchez	SO-18 Blamey	SO-17 Bolaños Sierra	DESCANSO Modera: MA. ANGÉLICA LEAL SO-16 Almeida Vicenzi	SO-15 Ceja González	SO-13 Pelegrin Ramírez SO-14 Díaz Cárdenas		Miércoles 4 de agosto
SO-26 Hayashida Soiza	SO-25 Aravena González	SO-24 Rojas Vivas	CARTELES C3		INV-6 Dr. Mario Pino Quivira	Modera: IIIIIO VAI DIVIA	Jueves 5 de agosto
CLAUSURA DEL CONGRESO			B: Dra. María Angélica Leal C: Dr. Sergio Vásquez	INV-9 A: Dra. Guadalupe Cordero	DESCANSO		Viernes 6 de agosto

C3-03. TOLERANCIA DE *Bacillus pumilus* A PERCLORATOS: IMPLICACIONES EN LA HABITABILIDAD DE MARTE

Marisela Aguirre R.¹, Pável U. Martínez P.², Víctor A. López R.¹, Sandra I. Ramírez J.³

¹Instituto de Ciencias Biomédicas, UACJ; ²Instituto de Geología, UNAM;

³Centro de Investigaciones Químicas, UAEM

marisela.aguirre@uacj.mx

En 2009 la misión *Phoenix* identificó al ion perclorato (ClO₄) en el ártico marciano en concentraciones de ~0.6 % p/v (~0.23 M) (1). El orbitador *Mars Reconnaissance* y el robot *Curiosity* también observaron la presencia de este oxianión en 2013 y 2015, haciendo suponer que se encuentra distribuido globalmente en el planeta (2, 3). El carácter higroscópico de las sales de perclorato puede facilitar la existencia de agua líquida por cortos periodos de tiempo sobre la superficie de Marte, aún en sus actuales condiciones de presión y temperatura, haciendo factible la existencia de algún nicho habitable. Recientemente el radar *MARSIS* del orbitador *Mars Express*, evidenció la presencia de cuerpos masivos de agua en el subsuelo de Marte (4), adelantando que es probable la existencia de salmueras con concentraciones importantes de percloratos.

Algunas especies del género *Bacillus* pueden crecer en presencia de distintas sales de perclorato (5) convirtiéndose en candidatas ideales para investigar su supervivencia bajo condiciones similares a las de la superficie de Marte. En el presente proyecto de investigación se determinó si *B. pumilus* crece en medios ricos suplementados con acetato de sodio (CH₃COONa) como donador de electrones y perclorato de magnesio (Mg(ClO₄)₂) como aceptor final en anaerobiosis. La cepa H2 de *B. pumilus* se cultivó en 8.0 mL de caldo nutritivo suplementado con distintas concentraciones de Mg(ClO₄)₂ y de CH₃COONa en anaerobiosis, condición alcanzada al desplazar el oxígeno molecular (O₂) con un flujo de nitrógeno molecular (N₂) ultrapuro. El crecimiento bacteriano se determinó por espectrofotometría mediante cambios en la densidad óptica a 630 nm (DO_{630nm}) durante 48 horas. Además, se determinó la concentración de cloruros (Cl⁻) por titulación con nitrato de plata (AgNO₃).

B. pumilus mostró cambios moderados en la DO_{630nm} indicativo de su tolerancia a las condiciones de anaerobiosis y a la presencia de ClO₄⁻. Sin embargo, la adición de CH₃COONa no favorece la tolerancia ni la metabolización de ClO₄⁻. Tampoco se detectaron cambios en la concentración de Cl⁻ en las distintas condiciones ensayadas. La tolerancia de B. pumilus a altas concentraciones de ClO₄⁻ puede relacionarse con la potencial habitabilidad de la superficie del planeta Marte.

Agradecimientos: Proyecto CONACYT número 377887.

Referencias

- 1. M. H. Hecht et al., Science 325, 64-67 (2009).
- 2. D. Glavin et al., J. Geophys. Res. Planets 118, 1955–1973 (2013).
- 3. L. Ojha et al., Nature Geosciences 8, 829-832 (2015).
- 4. R. Orosei et al., Science 361, 490-493 (2018).
- 5. A. A. Smith et al., Astrobiology 17, 253-265 (2017).

Gestión

La Sociedad Mexicana de Astrobiología

otorga la presente constancia a

Marisela Aguirre R., Pável U. Martínez P., Víctor A. López R. y Sandra I. Ramirez

por la presentación en cartel

TOLERANCIA DE BACILLUS PUMILUS A PERCLORATOS: IMPLICACIONES EN LA HABITABILIDAD DE MARTE

en el III Congreso de Astrobiología

llevado a cabo de forma virtual del 3 al 6 de agosto de 2021

Sociedad Mexicana de Astrobiología Dra. Antígona Segura Peralta Presidenta

La **Sociedad Mexicana de Astrobiología** otorga la presente constancia a:

Marisela Aguirre

Universidad Autónoma de Ciudad Juárez

llevado a cabo de forma virtual del 3 al 6 de agosto de 2021 por su asistencia al **III Congreso de Astrobiología**

A a SHARM

Dra. Antígona Segura Peralta
Presidenta
Sociedad Mexicana de Astrobiología

