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Abstract: Containers are environments that allow software developers to package applications, 
along with their libraries, dependencies, and all the resources necessary for their operation. Due 
to the advantages of containers, compared to virtual machines, their use has increased in recent 
years. However, the nature of containers to share both, the resources, and the kernel of the host 
system, produces a variety of security problems. This paper describes how application containers 
work, to latter present a review of the security risks to this technology, as well as the 
countermeasures to mitigate them. A classification has been made of the risks as well as the 
security mechanisms used in this environment. Finally, according to different works that were 
analysed, a relation of the risks and the corresponding mechanisms to counteract them is 
presented. 
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1 Introduction 
Virtualisation technologies are growing in popularity and 
are the pillars on which the cloud computing paradigm 
works. Such is the case of containers, which are a 
lightweight virtualisation technology that seeks to solve the 
problems caused by the use of virtual machines, thus 
generating a greater number of adherents to the use of 
container technologies (Pahl et al., 2019; Martin et al., 
2018). This is largely because containers are the standard 
method for microservices-based architecture deployments, 
allowing software to be developed in short periods, as well 
as to allow this software to be continually delivered and 
deployed, and thus generate cost savings (Sultan et al., 
2019; Combe et al., 2016). 

Therefore, it is important to describe the operation of 
containers, the risks when using them, and the existing 
security mechanisms, as well as the classification of the 
available literature for each of these areas. To achieve this, 
the present work is organised as follows: Section 2 
discusses the concept of containers. Section 3 presents a 
classification of the intrinsic risks to the use of containers 
and their ways of implementation. Section 4 shows the 
existing security mechanisms for each category described in 
section 3. Section 5 shows the results of the selected studies. 
Finally, Section 6 presents the conclusions of this work. 
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2 Containers 
Containers are a lightweight virtualisation technology or 
virtualisation at the operating system level. They are a 
response to the problems presented by solutions based on 
virtual machine technologies, such as lack of portability, 
slow provisioning of resources, and density of virtual 
machines. In the case of virtual machine technology, they 
use a hypervisor that is responsible for providing resource 
isolation for each virtual machine at the hardware levels, 
each of these machines includes a complete copy of the 
operating system with applications and data in addition to 
the host operating system (Pahl et al., 2019). In contrast, in 
container technology, they share the kernel and resources of 
the host operating system, allowing them to occupy fewer 
resources and start faster than a virtual machine since they 
are specific to a particular operating system family  
(Al-Dhuraibi et al., 2018). They are currently classified into 
operating system containers and application containers. For 
this investigation, only application containers are considered 
(Souppaya et al., 2017). 

2.1 Application containers 
Application containers, also known as application 
virtualisation, are intended to run one or more applications 
for each virtual instance. Currently, they are used to 
package an application or service with its dependencies, 
configuration files, and libraries, which are required for its 
operation (Pahl et al., 2019). In contrast to traditional 
application architectures, which are layered, and each  
layer has a server or virtual machine, container architectures 
usually have an application that is divided into components, 
each of these components has a role in specific and run in a 
separate container (Sultan et al., 2019). 

2.2 Components and phases involved in the process 
of developing a containerised application 

Containers share the kernel of the host operating system 
with the different containerised applications that are 
running. This allows them to have greater ease and agility of 
use, compared to virtual machines (Pahl et al., 2019). The 
components of the system and the kernel of the host 
machine take care of keeping each of the instances of the 
applications separately (Al-Dhuraibi et al., 2018). However, 
the shared use of the resources and kernel of the host system 
produces several security problems that we will discuss later 
in this work. 

2.2.1 Image creation 
During the first phase of the development of the 
containerised application, the application components are 
created and put into one or more images. The images are 
packages that include all the files necessary for the 
execution of a container (libraries, binaries, and 
configuration files, among others) (Pahl et al., 2019). The  
 

images use the concept of immutability, that is, they 
function as entities in which no modifications are made. 
Once an updated image is available, a new implementation 
of the container is implemented (Sultan et al., 2019). 

2.2.2 Image testing and accreditation 
The second phase consists of the process of testing and 
accreditation of images. This phase is generally managed by 
the developers who were responsible for packaging the 
application in the first phase. Immediately after performing 
the image assembly process, test automation tools are used, 
these tools perform tests to validate the operation of the 
final application. Finally, the security team oversees 
carrying out the accreditation of the images (Pittenger, 
2016). 

2.2.3 Image storage and retrieval 
Once the image has been created and the accreditation and 
testing process has been completed, a place is required to 
store and retrieve the images. It is here where the third 
phase of the cycle provides us with services that perform 
this task (Souppaya et al., 2017). Registries are services that 
provide developers with a simple way to store images. 
These services can be deployed and used on-site or obtained 
from a provider such as Amazon or Docker (Martin et al., 
2018). 

2.2.4 Management of container administrators 
In the last phase, the images are extracted from the registers, 
which can be carried out by a system administrator or by a 
trigger that is in an automation process (Martin et al., 2018). 
After the image was extracted, the orchestrator handles the 
deployment and management of container instances. This 
last phase is responsible for delivering a usable application, 
ready to respond to user requests (Sultan et al., 2019). 

2.3 Implementation of container administrators 
There are four main ways to implement containers. The first 
option is a local implementation. The second is a local 
implementation using a type 1 hypervisor that runs directly 
on the hardware (bare metal). The third option is to use a 
Type 2 hypervisor which runs on a host operating system. 
Finally, the last option is to use a cloud provider where we 
mount the container (Al-Dhuraibi et al., 2018). 

3 Intrinsic risks to the use of containers 
The main risks in using containers are circumscribed to the 
image, the orchestrator, the container, the host operating 
system, and the implementation. These risks occur in most 
container deployments, as they are intrinsic to the main 
components of this technology. 
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3.1 Image risks 
Images are static packages that contain all the files, 
libraries, and binaries necessary for the execution of a 
certain application (Pahl et al., 2019). These packages are 
generally built using updated components, which are free of 
vulnerabilities for a few days or weeks (Pittenger, 2016). 
Therefore, it is required to update the components of the 
images periodically, which in turn, maintains the integrity 
of the image. Otherwise, the images are left with outdated 
and vulnerable components (Souppaya et al., 2017). 

In addition to the risks of outdated and vulnerable 
components, malicious files may be intentionally or 
inadvertently included. This malicious program embedded 
in images can be obtained by using images for which its 
provenance is uncertain (Pittenger, 2016). Malicious files 
have the same capabilities as any other image component, 
so a malicious user can use it to attack other containers or 
hosts within their environment (Sultan et al., 2019). 

There are also risks of images with configuration flaws. 
For example, an image where passwords are stored in 
plaintext for connections to databases or SSH. This allows 
an attacker to analyse the image content and violate other 
services (Souppaya et al., 2017). 

3.2 Orchestrator risks 
Orchestrators were designed assuming that users that 
interact with them will be system administrators and 
therefore would have a complete control of the environment 
(Sultan et al., 2019). Since orchestrators provide their own 
authentication service, it can lead to inappropriate practices 
in account management. For example, using passwords 
without proper security policies, not setting an adequate 
access level, or leaving unused accounts in the orchestrator. 
This is caused by the fact that this service is separated from 
other existing authentication services, in other words, they 
are managed less rigorously (Souppaya et al., 2017). 

3.3 Container risks 
Because individual containers can access other containers 
and the host operating system over the network, it can lead 
to unlimited network access, exposing other resources in the 
environment (Sultan et al., 2019). This risk is due in part to 
the fact that operational tools and processes are not designed 
to analyse virtualised network traffic used in a containerised 
environment and poorly separated virtual networks. If a 
container is compromised, it can scan the network for 
vulnerabilities that can be exploited (Souppaya et al., 2017). 

3.4 Host operating system risks 
Containers provide software-level isolation, yet the use of 
shared kernel results in a larger attack surface compared to 
hypervisors (Martin et al., 2018). However, there are 
specific container operating systems that reduce the attack 
surface. For example, they remove libraries and package 

managers that generally allow database applications or web 
servers to run (Sultan et al., 2019). 

Although optimised operating systems are used in the 
container environment, these systems still provide basic 
libraries that are essential for the operation of the system. 
For example, primitive kernel libraries that are used to call 
or manage other processes (Souppaya et al., 2017). These 
libraries, like any other software component, are not 
vulnerability-free and as they are in the system architecture 
and the container manager, they have an impact on the host 
system and the containers it runs (Pittenger, 2016). 

3.5 Implementation risks 
Implementation risks are subject to the selected 
implementation mechanism. For example, if a local 
implementation is chosen, the containerised environment 
will have the inherent risks described previously. In this 
first implementation mechanism the user is responsible for 
implementing the appropriate security mechanisms to 
prevent attacks on each of the components of the 
containerised application or service. In the case of opting 
for a local implementation using type 1 or type 2 
hypervisors, the security of the containers can be improved 
as mentioned in Mavridis and Karatza (2018), however, this 
generates inherent risks to the use of hypervisors and 
virtualisation (Asvija et al., 2019). 

In addition to local implementations, an implementation 
with a cloud provider available on the market could be 
chosen. In this case, the provider is responsible for using the 
appropriate security mechanisms to guarantee full operation 
for the user. However, there are also security risks inherent 
in the PaaS service model (Kumar and Goyal, 2019). 

Table 1 A classification of the intrinsic risks to the use of 
containers 

Category Risks 

Outdated components 
Configuration flaws 

Malware 

Image risks 

Plaintext passwords 
Unlimited administrator access 

Unauthorised access 
Wrong separation of network traffic 

Orchestrator 
risks 

Trust in the orchestrator node 
Unlimited network access 

Insecure configurations in the container 
runtime environment 

Container risks 

Clandestine containers 
Shared kernel 

Insecure OS components 
Wrong user accesses 

OS risks 

Manipulation of the OS file system 
Password reset attacks 

Hypervisor vulnerabilities 
Implementation 
risks 

Intrinsic risks of PaaS 
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Table 1 groups the risks mentioned in each of the categories 
previously described. 

4 Security mechanisms 
There are two main groups of security mechanisms for the 
protection of containers. The first one is to use software, 
which is usually found in the features and modules of Linux 
operating systems. The second is based on hardware, which 
is usually on the host machine where the container is 
running. The following sections discuss both, software, and 
hardware-based solutions. 

4.1 Software-based solutions 
Software-based solutions implement security mechanisms to 
protect containers in two main ways. The fist is found by 
default in the kernel of the operating system and is known 
as Linux kernel features (LKF). They are made up of four 
main components: namespaces, CGroups, capabilities, and 
SecComp (Sultan et al., 2019). The second way is through 
additional modules known as Linux security modules 
(LSM), they are additional modules that users can load or 
configure for additional protection to the containerised 
environment, with SELinux and AppArmor being the most 
widely used in the literature (Souppaya et al., 2017). The 
following sections describe each of these features and 
modules. 

Namespaces 
Namespaces are responsible for isolating and virtualising 
the resources a container can interact with (Martin et al., 
2018). This includes file systems, network interfaces, 
hostname, user information, and processes (Sultan et al., 
2019). In other words, it guarantees that a container can 
only see the resources it is allowed to interact with, and it 
cannot see the processes that are being executed in other 
containers (Souppaya et al., 2017). Therefore, one container 
is prevented from gaining privileged access to sockets or 
interfaces of another container. 

CGroups 
This Linux feature establishes how many processing 
resources (CPU), memory, input/output (I/O), and 
bandwidth is assigned to each process. It is responsible for 
limiting how many resources a container can use, unlike 
namespaces that delimit which resources the containers can 
see (Martin et al., 2018). This ensures that a container does 
not completely consume the resources of a system and 
leaves other containers or processes without resources 
(Sultan et al., 2019). For example, if we have a host 
operating system with 16 GB of total memory and  
12 containers managed by the container manager, 1 GB can 
be allocated to each container, preventing it from interfering 
with the operations of other containers (Souppaya et al., 
2017). 

Capabilities 
Linux capabilities break down permissions by layers or 
easy-to-use levels, which prevents unnecessary permissions 
from being assigned. For example, let us assume that we 
have a web server inside a container, which requires  
binding to a specific port, generally TCP port 80. This 
action requires a superuser permission assignment. In this 
example, the CAP_NET_BIND_SERVICE capability can 
be assigned, allowing the container to bind to the specific 
port without assigning superuser permissions to the entire 
container. By having this capability enabled, attacks will be 
limited exclusively to the operating gateway (Sultan et al., 
2019). 

SecComp 
Secure computing profiles (SecComp) are a feature  
of the Linux kernel to filter out the system calls, reducing 
potential threats since most attacks take advantage of 
vulnerabilities that occur in system calls (Sultan et al., 
2019). Docker includes default profiles that eliminate 
unsafe and unnecessary system calls, and custom profiles 
can be created and executed to further limit the capabilities 
of the container (Souppaya et al., 2017). 

Linux security modules 
According to Sultan et al. (2019), LSMs have their origin  
in 2001, when the US National Security Agency (NSA) 
proposed the inclusion of the security enhancement module 
(SELinux), starting with kernel version 2.5. Subsequently, 
the development of modules that support multiple security 
schemes began. However, they are not widely accepted 
within the security community, as there is no agreement on 
what their correct implementation should be. For example, a 
user may decide not to implement any module, which 
causes the default Linux capabilities module to be loaded. 
Despite this, performing a proper configuration or using 
automation tools that perform the configuration ensures a 
better level of security. 

Mandatory access control 
Mandatory access control (MAC) determines access to 
resources through access policies. These policies are 
controlled by a system administrator and are used by 
technologies, such as SELinux and AppArmor, allowing 
MAC to provide isolation (Win et al., 2014). For example, 
one of these technologies can be used to limit container 
access to file directories, processes, and network sockets 
(Souppaya et al., 2017). Consequently, the ability of a 
container to affect other containers or host machines is 
limited. 

Decentralised Docker trust 
Decentralised Docker trust (DDT) is a solution that appears 
as an alternative to address the risks of DoS attacks. It 
greatly reduces DoS attacks, in addition to providing a 
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service to verify the signatures of Docker images. This 
solution runs within the same operating system where the 
Docker container is running and works through REST 
requests that receive metadata which is stored in a 
blockchain. After instructions are saved in a blockchain, the 
DDT interpreter updates its internal database of keys and 
signatures, allowing the user to verify the signatures of the 
images (Xu et al., 2017). 

Docker image vulnerability diagnostic system 
Image vulnerabilities are mainly caused by users failing to 
verify images that are downloaded or uploaded to the image 
repository. Docker image vulnerability diagnostic system 
(DIVDS) is an answer to this problem as it detects  
known vulnerabilities and evaluates images based on a 
vulnerability score. The solution proposed by Kwon and 
Lee (2020) uses two modules that are in charge of collecting 
vulnerability information from different sources and once 
this information is available, they are compared with the 
image metadata to determine the vulnerabilities that could 
exist in the image. 

PINE 
PINE is a proposal that seeks to solve the security challenge 
of how to contain the computing resources used by the 
services in the containers. In general, when you have a 
containerised environment with services that share the 
storage of the system, you can run into the problem of one 
service occupying or delaying the execution of other 
services. PINE avoids this problem, as storage resources are 
allocated to services adaptively depending on their 
performance behaviour (Li et al., 2019). 

X-Containers 
Traditional containerisation technology is based on the 
principle of unique concern, which tells us that containers 
should only be concerned with serving a single task. This 
same principle was taken for the development of the  
X-Containers solution, where each of the containers  
runs an operating system library (LibOS). Unlike traditional 
container technologies, LibOS in conjunction with 
exokernels allow the management of hardware resources in 
applications without going directly through the kernel, this 
is achieved with an abstraction of operating system libraries 
(Shen et al., 2019). 

ConPan 
Generally, for finding outdated or vulnerable content in 
Docker packages, professionals and researchers create 
scripts or do the work manually. ConPan is a tool that 
performs this work in an automated way. The interaction 
with the tool is made through CLI or API calls. Its objective 
is to help researchers and professionals seeking to analyse 
the content of Docker containers and obtain data on the 
software packages that are installed (Zerouali et al., 2019). 

4.2 Hardware-based solutions 
Hardware-based solutions implement two main security 
mechanisms. These mechanisms are classified into trusted 
platform module (TPM) and trusted execution technology 
(TXT) (Sultan et al., 2019). TPM is a chip that is installed 
on the host machine and performs certain cryptographic 
operations to protect a device against unauthorised 
modification of firmware and software. Regarding TXT 
technology, it works similarly to TPM, but it is exclusive to 
Intel processors. 

vTPM 
Due to the widespread use of cloud computing and 
virtualisation, researchers have had to look for alternatives 
to TPM modules. Unlike traditional environments, where 
TPMs are installed on the host machines, they cannot be 
installed on virtual machines. This fact originated the 
development of virtual modules TPM or also known as 
vTPM. The modules can work directly on the kernel of the 
operating system or in a dedicated container (Hosseinzadeh 
et al., 2016). 

Intel SGX 
Intel Software Guard Extensions (SGX) is a set of 
instructions that allows Intel hardware to provide 
confidentiality and integrity to application data and code 
when the underlying software (hypervisor or kernel) has 
been compromised. This technology was developed in 2015 
and is mainly responsible for container protection at the 
level of the cloud provider or host machine (Kumar and 
Goyal, 2019). 

Table 2 A classification of security mechanisms for 
containers 

Type Module Mechanism 

Namespaces 
CGroups 

Capabilities 

Linux kernel 
features (LKF) 

Seccomp 
SELinux Linux security 

modules (LSM) AppArmor 
Decentralised Docker  

trust (DDT) 
Docker image vulnerability 
diagnostic system (DIVDS) 

PINE 
X-Containers 

Software 

Other 

ConPan 
vTPM in the OS kernel vTPM 
vTPM in a dedicated 

container 

Hardware 

Trusted execution 
technology 

Intel SGX 
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Table 2 groups the main security mechanisms for containers 
already described. 

5 Review of risks and countermeasures 
This section shows the results of the literature review 
regarding security mechanisms in containers, associating the 
risks, and countermeasures already described in previous 
sections. In this review, studies that provided some 
validation, evaluation, solution, opinion, or experience in 
the context of containers, light virtualisation, virtualisation, 
or IaaS and PaaS as middleware to support the execution of 
containers, were selected. 

The results of this review are shown in Table 3. This 
table is organised as follows. The first column shows the 
reference and the year. Column two marks which security 
risks are taken into consideration and are arranged as 
follows: 

1 image 

2 orchestrator 

3 container 

4 operating system 

5 implementation. 

Column three describes which security mechanisms  
are used. Finally, column four indicates the type of 
contribution. 

Most of the selected studies contribute via a review or 
solution. Regarding review studies, it was found that many 
authors mention the security features that exist by default in 
the Linux kernel, such as namespaces, CGroups, SecComp, 
and capabilities. This is largely because Linux is a popular 
operating system on servers for its low cost and freedom of 
configuration. However, it was noticed that there are not 
many studies that cover these characteristics from a more 
general point of view or considering other operating 
systems such as Windows. 

Regarding the studies that provide a solution, it was 
found that most authors use features or modules of the 
Linux kernel. Also, the fact that some authors propose tests 
or use cases in controlled environments, can make the 
effectiveness in a business environment questionable. 

Finally, we can see that certain studies describe a more 
specific solution. For example, in Kwon and Lee (2020), a 
DIVDS is proposed to detect vulnerabilities and evaluates 
images using a score. 

Table 3 Summary of selected studies 

Type of risk 
References 

1 2 3 4 5 
Mechanisms Type of contribution 

Asvija et al. (2019)    X X vTPM, Intel SGX Review 
Azab and Domanska (2016) X  X   LKF Experience 
Bacis et al. (2015) X  X   LMS Proposal 
Bélair et al. (2019) X X X  X LKM, LSM, TPM Review 
Catuogno et al. (2018) X X    LKF, LSM Methodology 
Chelladhurai et al. (2016) X X    LKF, LSM Methodology 
Chen et al. (2019) X X X X  LKF, LSM Framework 
Combe et al. (2016) X X X X X LKF, LSM Review 
De Benedictis and Lioy (2019) X X X X X LKF, LSM, vTPM Solution 
Fernandez and Brito (2019) X X X  X Intel SGX Solution 
Garg and Garg (2019) X  X   LKF, LSM Experience 
Gomes et al. (2018) X  X   LKF Tool 
Gupta et al. (2019)   X X X LKF, LSM, TPM Review 
Hertz (2016) X  X   LKF, LSM Review 
Hosseinzadeh et al. (2016)   X X X vTPM Solution 
Huang et al. (2019) X X X   LKF Analysis 
Ibrahim and Hemayed (2019)    X X vTPM Systematic review 
Jian and Chen (2017) X  X   LKF Proposal 
Kehrer et al. (2019) X X X  X LKF Solution 
Kong et al. (2019)   X  X LKF Solution 
Kumar and Goyal (2019)   X X X Intel SGX, Hardware VM, vTPM Review 
Kwon and Lee (2020) X     DIVDS Solution 
Li et al. (2019)   X   Pine Solution 
Lin et al. (2018) X  X   LKF, LSM Systematic evaluation 
Loukidis-Andreou et al. (2018) X  X   LKF, LSM Solution 
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Table 3 Summary of selected studies (continued) 

Type of risk 
References 

1 2 3 4 5 
Mechanisms Type of contribution 

Manu et al. (2016a) X  X  X LKF, LSM, VM Study 
Manu et al. (2016b) X X X  X Heuristics Study 
Martin et al. (2018) X X X X X LKF, LSM Review 
Mavridis and Karatza (2018) X  X X X LKF, LSM Study 
Pittenger (2016) X  X X  LKF Opinion 
Raj et al. (2016) X  X   LKF, LSM Study 
Shen et al. (2019)  X  X X X-Containers Solution 
Souppaya et al. (2017) X X X X X LKF, LSM, TPM Review 
Sultan et al. (2019) X X X X X LKF, LSM, vTPM Review 
Tian et al. (2019)   X X  LKF, Intel SGX Evaluation 
Tosatto et al. (2015) X X X X X LKF, LSM Review 
Win et al. (2014)     X LSM, MAC Proposal 
Win et al. (2017) X     LKF, LSM Solution 
Xu et al. (2017) X     DDT Solution 
Yang et al. (2019)   X   LKF Experiment 
Zerouali et al. (2019) X  X   ConPan Tool 

 
6 Conclusions 
Container engines provide a good level of security by using 
predetermined security mechanisms that limit the use of 
resources and the scope of containers. However, as a result 
of specific configuration requirements of a production 
environment, this default configuration is usually modified. 
Most of the time, this can result in a less secure 
environment. 

It has been observed that the main challenges of this 
technology arise when a container environment requires a 
specific configuration. For example, a host machine with 
containers that store web services, database containers, or 
containers that have a complete application. 

Having a well-defined classification of security risks of 
container technology helps both developers and researchers 
to create more secure software execution environments by 
designing and implementing the appropriate mechanisms 
for each situation. Likewise, the proposed classification of 
existing security mechanisms presents researchers and 
developers with a general idea about various mechanisms 
that exist by default in the kernel of the operating system, 
the purpose of which is to reduce the risks previously 
described in this work. 

Future research work may focus on proposing solutions 
that automate the configuration process on different 
modules and avoid manual configuration by the user, which 
could guarantee more secure container environments. 
Another possible direction for future research may be the 
combination of containers with other virtualisation 
technologies such as hypervisors type 1 or type 2 and 
exokernels, which would help to eliminate several of the 
risks inherent to the use of containers. 
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