
Int. J. Security and Networks, Vol. X, No. Y, 200x 1

Copyright © 20XX Inderscience Enterprises Ltd.

A review of security risks and countermeasures in
containers

Samuel Martínez-Magdaleno*,
Victor Morales-Rocha and Ramón Parra
National Laboratory of Information Technology,
Autonomous University of Ciudad Juarez,
Av. Del Charro 450 Nte, Cd. Juárez, Chihuahua, México
Email: al182948@alumnos.uacj.mx
Email: victor.morales@uacj.mx
Email: rparra@uacj.mx
*Corresponding author

Abstract: Containers are environments that allow software developers to package applications,
along with their libraries, dependencies, and all the resources necessary for their operation. Due
to the advantages of containers, compared to virtual machines, their use has increased in recent
years. However, the nature of containers to share both, the resources, and the kernel of the host
system, produces a variety of security problems. This paper describes how application containers
work, to latter present a review of the security risks to this technology, as well as the
countermeasures to mitigate them. A classification has been made of the risks as well as the
security mechanisms used in this environment. Finally, according to different works that were
analysed, a relation of the risks and the corresponding mechanisms to counteract them is
presented.

Keywords: containers; container security; container risk; application containers.

Reference to this paper should be made as follows: Martínez-Magdaleno, S., Morales-Rocha, V.
and Parra, R. (xxxx) ‘A review of security risks and countermeasures in containers’, Int. J.
Security and Networks, Vol. X, No. Y, pp.xxx–xxx.

Biographical notes: Samuel Martínez-Magdaleno is currently pursuing his MS in Applied
Computing at the Autonomous University of Ciudad Juarez. He received his BS in Computer
Systems Engineering from the Technological Institute of Ciudad Juarez in 2017. His research
interests include cloud computing and container technologies.

Victor Morales-Rocha is currently a Professor at the Autonomous University of Ciudad Juarez.
He received his PhD from the Polytechnic University of Catalonia in 2009. His main area of
interest is information security.

Ramón Parra is currently a full time Professor at the Autonomous University of Ciudad Juarez.
He earned his PhD in Electrical Engineering at New Mexico State University in 1986. His main
area of interest is cloud computing.

1 Introduction
Virtualisation technologies are growing in popularity and
are the pillars on which the cloud computing paradigm
works. Such is the case of containers, which are a
lightweight virtualisation technology that seeks to solve the
problems caused by the use of virtual machines, thus
generating a greater number of adherents to the use of
container technologies (Pahl et al., 2019; Martin et al.,
2018). This is largely because containers are the standard
method for microservices-based architecture deployments,
allowing software to be developed in short periods, as well
as to allow this software to be continually delivered and
deployed, and thus generate cost savings (Sultan et al.,
2019; Combe et al., 2016).

Therefore, it is important to describe the operation of
containers, the risks when using them, and the existing
security mechanisms, as well as the classification of the
available literature for each of these areas. To achieve this,
the present work is organised as follows: Section 2
discusses the concept of containers. Section 3 presents a
classification of the intrinsic risks to the use of containers
and their ways of implementation. Section 4 shows the
existing security mechanisms for each category described in
section 3. Section 5 shows the results of the selected studies.
Finally, Section 6 presents the conclusions of this work.

2 S. Martínez-Magdaleno et al.

2 Containers
Containers are a lightweight virtualisation technology or
virtualisation at the operating system level. They are a
response to the problems presented by solutions based on
virtual machine technologies, such as lack of portability,
slow provisioning of resources, and density of virtual
machines. In the case of virtual machine technology, they
use a hypervisor that is responsible for providing resource
isolation for each virtual machine at the hardware levels,
each of these machines includes a complete copy of the
operating system with applications and data in addition to
the host operating system (Pahl et al., 2019). In contrast, in
container technology, they share the kernel and resources of
the host operating system, allowing them to occupy fewer
resources and start faster than a virtual machine since they
are specific to a particular operating system family
(Al-Dhuraibi et al., 2018). They are currently classified into
operating system containers and application containers. For
this investigation, only application containers are considered
(Souppaya et al., 2017).

2.1 Application containers
Application containers, also known as application
virtualisation, are intended to run one or more applications
for each virtual instance. Currently, they are used to
package an application or service with its dependencies,
configuration files, and libraries, which are required for its
operation (Pahl et al., 2019). In contrast to traditional
application architectures, which are layered, and each
layer has a server or virtual machine, container architectures
usually have an application that is divided into components,
each of these components has a role in specific and run in a
separate container (Sultan et al., 2019).

2.2 Components and phases involved in the process
of developing a containerised application

Containers share the kernel of the host operating system
with the different containerised applications that are
running. This allows them to have greater ease and agility of
use, compared to virtual machines (Pahl et al., 2019). The
components of the system and the kernel of the host
machine take care of keeping each of the instances of the
applications separately (Al-Dhuraibi et al., 2018). However,
the shared use of the resources and kernel of the host system
produces several security problems that we will discuss later
in this work.

2.2.1 Image creation
During the first phase of the development of the
containerised application, the application components are
created and put into one or more images. The images are
packages that include all the files necessary for the
execution of a container (libraries, binaries, and
configuration files, among others) (Pahl et al., 2019). The

images use the concept of immutability, that is, they
function as entities in which no modifications are made.
Once an updated image is available, a new implementation
of the container is implemented (Sultan et al., 2019).

2.2.2 Image testing and accreditation
The second phase consists of the process of testing and
accreditation of images. This phase is generally managed by
the developers who were responsible for packaging the
application in the first phase. Immediately after performing
the image assembly process, test automation tools are used,
these tools perform tests to validate the operation of the
final application. Finally, the security team oversees
carrying out the accreditation of the images (Pittenger,
2016).

2.2.3 Image storage and retrieval
Once the image has been created and the accreditation and
testing process has been completed, a place is required to
store and retrieve the images. It is here where the third
phase of the cycle provides us with services that perform
this task (Souppaya et al., 2017). Registries are services that
provide developers with a simple way to store images.
These services can be deployed and used on-site or obtained
from a provider such as Amazon or Docker (Martin et al.,
2018).

2.2.4 Management of container administrators
In the last phase, the images are extracted from the registers,
which can be carried out by a system administrator or by a
trigger that is in an automation process (Martin et al., 2018).
After the image was extracted, the orchestrator handles the
deployment and management of container instances. This
last phase is responsible for delivering a usable application,
ready to respond to user requests (Sultan et al., 2019).

2.3 Implementation of container administrators
There are four main ways to implement containers. The first
option is a local implementation. The second is a local
implementation using a type 1 hypervisor that runs directly
on the hardware (bare metal). The third option is to use a
Type 2 hypervisor which runs on a host operating system.
Finally, the last option is to use a cloud provider where we
mount the container (Al-Dhuraibi et al., 2018).

3 Intrinsic risks to the use of containers
The main risks in using containers are circumscribed to the
image, the orchestrator, the container, the host operating
system, and the implementation. These risks occur in most
container deployments, as they are intrinsic to the main
components of this technology.

 A review of security risks and countermeasures in containers 3

3.1 Image risks
Images are static packages that contain all the files,
libraries, and binaries necessary for the execution of a
certain application (Pahl et al., 2019). These packages are
generally built using updated components, which are free of
vulnerabilities for a few days or weeks (Pittenger, 2016).
Therefore, it is required to update the components of the
images periodically, which in turn, maintains the integrity
of the image. Otherwise, the images are left with outdated
and vulnerable components (Souppaya et al., 2017).

In addition to the risks of outdated and vulnerable
components, malicious files may be intentionally or
inadvertently included. This malicious program embedded
in images can be obtained by using images for which its
provenance is uncertain (Pittenger, 2016). Malicious files
have the same capabilities as any other image component,
so a malicious user can use it to attack other containers or
hosts within their environment (Sultan et al., 2019).

There are also risks of images with configuration flaws.
For example, an image where passwords are stored in
plaintext for connections to databases or SSH. This allows
an attacker to analyse the image content and violate other
services (Souppaya et al., 2017).

3.2 Orchestrator risks
Orchestrators were designed assuming that users that
interact with them will be system administrators and
therefore would have a complete control of the environment
(Sultan et al., 2019). Since orchestrators provide their own
authentication service, it can lead to inappropriate practices
in account management. For example, using passwords
without proper security policies, not setting an adequate
access level, or leaving unused accounts in the orchestrator.
This is caused by the fact that this service is separated from
other existing authentication services, in other words, they
are managed less rigorously (Souppaya et al., 2017).

3.3 Container risks
Because individual containers can access other containers
and the host operating system over the network, it can lead
to unlimited network access, exposing other resources in the
environment (Sultan et al., 2019). This risk is due in part to
the fact that operational tools and processes are not designed
to analyse virtualised network traffic used in a containerised
environment and poorly separated virtual networks. If a
container is compromised, it can scan the network for
vulnerabilities that can be exploited (Souppaya et al., 2017).

3.4 Host operating system risks
Containers provide software-level isolation, yet the use of
shared kernel results in a larger attack surface compared to
hypervisors (Martin et al., 2018). However, there are
specific container operating systems that reduce the attack
surface. For example, they remove libraries and package

managers that generally allow database applications or web
servers to run (Sultan et al., 2019).

Although optimised operating systems are used in the
container environment, these systems still provide basic
libraries that are essential for the operation of the system.
For example, primitive kernel libraries that are used to call
or manage other processes (Souppaya et al., 2017). These
libraries, like any other software component, are not
vulnerability-free and as they are in the system architecture
and the container manager, they have an impact on the host
system and the containers it runs (Pittenger, 2016).

3.5 Implementation risks
Implementation risks are subject to the selected
implementation mechanism. For example, if a local
implementation is chosen, the containerised environment
will have the inherent risks described previously. In this
first implementation mechanism the user is responsible for
implementing the appropriate security mechanisms to
prevent attacks on each of the components of the
containerised application or service. In the case of opting
for a local implementation using type 1 or type 2
hypervisors, the security of the containers can be improved
as mentioned in Mavridis and Karatza (2018), however, this
generates inherent risks to the use of hypervisors and
virtualisation (Asvija et al., 2019).

In addition to local implementations, an implementation
with a cloud provider available on the market could be
chosen. In this case, the provider is responsible for using the
appropriate security mechanisms to guarantee full operation
for the user. However, there are also security risks inherent
in the PaaS service model (Kumar and Goyal, 2019).

Table 1 A classification of the intrinsic risks to the use of
containers

Category Risks

Outdated components
Configuration flaws

Malware

Image risks

Plaintext passwords
Unlimited administrator access

Unauthorised access
Wrong separation of network traffic

Orchestrator
risks

Trust in the orchestrator node
Unlimited network access

Insecure configurations in the container
runtime environment

Container risks

Clandestine containers
Shared kernel

Insecure OS components
Wrong user accesses

OS risks

Manipulation of the OS file system
Password reset attacks

Hypervisor vulnerabilities
Implementation
risks

Intrinsic risks of PaaS

4 S. Martínez-Magdaleno et al.

Table 1 groups the risks mentioned in each of the categories
previously described.

4 Security mechanisms
There are two main groups of security mechanisms for the
protection of containers. The first one is to use software,
which is usually found in the features and modules of Linux
operating systems. The second is based on hardware, which
is usually on the host machine where the container is
running. The following sections discuss both, software, and
hardware-based solutions.

4.1 Software-based solutions
Software-based solutions implement security mechanisms to
protect containers in two main ways. The fist is found by
default in the kernel of the operating system and is known
as Linux kernel features (LKF). They are made up of four
main components: namespaces, CGroups, capabilities, and
SecComp (Sultan et al., 2019). The second way is through
additional modules known as Linux security modules
(LSM), they are additional modules that users can load or
configure for additional protection to the containerised
environment, with SELinux and AppArmor being the most
widely used in the literature (Souppaya et al., 2017). The
following sections describe each of these features and
modules.

Namespaces
Namespaces are responsible for isolating and virtualising
the resources a container can interact with (Martin et al.,
2018). This includes file systems, network interfaces,
hostname, user information, and processes (Sultan et al.,
2019). In other words, it guarantees that a container can
only see the resources it is allowed to interact with, and it
cannot see the processes that are being executed in other
containers (Souppaya et al., 2017). Therefore, one container
is prevented from gaining privileged access to sockets or
interfaces of another container.

CGroups
This Linux feature establishes how many processing
resources (CPU), memory, input/output (I/O), and
bandwidth is assigned to each process. It is responsible for
limiting how many resources a container can use, unlike
namespaces that delimit which resources the containers can
see (Martin et al., 2018). This ensures that a container does
not completely consume the resources of a system and
leaves other containers or processes without resources
(Sultan et al., 2019). For example, if we have a host
operating system with 16 GB of total memory and
12 containers managed by the container manager, 1 GB can
be allocated to each container, preventing it from interfering
with the operations of other containers (Souppaya et al.,
2017).

Capabilities
Linux capabilities break down permissions by layers or
easy-to-use levels, which prevents unnecessary permissions
from being assigned. For example, let us assume that we
have a web server inside a container, which requires
binding to a specific port, generally TCP port 80. This
action requires a superuser permission assignment. In this
example, the CAP_NET_BIND_SERVICE capability can
be assigned, allowing the container to bind to the specific
port without assigning superuser permissions to the entire
container. By having this capability enabled, attacks will be
limited exclusively to the operating gateway (Sultan et al.,
2019).

SecComp
Secure computing profiles (SecComp) are a feature
of the Linux kernel to filter out the system calls, reducing
potential threats since most attacks take advantage of
vulnerabilities that occur in system calls (Sultan et al.,
2019). Docker includes default profiles that eliminate
unsafe and unnecessary system calls, and custom profiles
can be created and executed to further limit the capabilities
of the container (Souppaya et al., 2017).

Linux security modules
According to Sultan et al. (2019), LSMs have their origin
in 2001, when the US National Security Agency (NSA)
proposed the inclusion of the security enhancement module
(SELinux), starting with kernel version 2.5. Subsequently,
the development of modules that support multiple security
schemes began. However, they are not widely accepted
within the security community, as there is no agreement on
what their correct implementation should be. For example, a
user may decide not to implement any module, which
causes the default Linux capabilities module to be loaded.
Despite this, performing a proper configuration or using
automation tools that perform the configuration ensures a
better level of security.

Mandatory access control
Mandatory access control (MAC) determines access to
resources through access policies. These policies are
controlled by a system administrator and are used by
technologies, such as SELinux and AppArmor, allowing
MAC to provide isolation (Win et al., 2014). For example,
one of these technologies can be used to limit container
access to file directories, processes, and network sockets
(Souppaya et al., 2017). Consequently, the ability of a
container to affect other containers or host machines is
limited.

Decentralised Docker trust
Decentralised Docker trust (DDT) is a solution that appears
as an alternative to address the risks of DoS attacks. It
greatly reduces DoS attacks, in addition to providing a

 A review of security risks and countermeasures in containers 5

service to verify the signatures of Docker images. This
solution runs within the same operating system where the
Docker container is running and works through REST
requests that receive metadata which is stored in a
blockchain. After instructions are saved in a blockchain, the
DDT interpreter updates its internal database of keys and
signatures, allowing the user to verify the signatures of the
images (Xu et al., 2017).

Docker image vulnerability diagnostic system
Image vulnerabilities are mainly caused by users failing to
verify images that are downloaded or uploaded to the image
repository. Docker image vulnerability diagnostic system
(DIVDS) is an answer to this problem as it detects
known vulnerabilities and evaluates images based on a
vulnerability score. The solution proposed by Kwon and
Lee (2020) uses two modules that are in charge of collecting
vulnerability information from different sources and once
this information is available, they are compared with the
image metadata to determine the vulnerabilities that could
exist in the image.

PINE
PINE is a proposal that seeks to solve the security challenge
of how to contain the computing resources used by the
services in the containers. In general, when you have a
containerised environment with services that share the
storage of the system, you can run into the problem of one
service occupying or delaying the execution of other
services. PINE avoids this problem, as storage resources are
allocated to services adaptively depending on their
performance behaviour (Li et al., 2019).

X-Containers
Traditional containerisation technology is based on the
principle of unique concern, which tells us that containers
should only be concerned with serving a single task. This
same principle was taken for the development of the
X-Containers solution, where each of the containers
runs an operating system library (LibOS). Unlike traditional
container technologies, LibOS in conjunction with
exokernels allow the management of hardware resources in
applications without going directly through the kernel, this
is achieved with an abstraction of operating system libraries
(Shen et al., 2019).

ConPan
Generally, for finding outdated or vulnerable content in
Docker packages, professionals and researchers create
scripts or do the work manually. ConPan is a tool that
performs this work in an automated way. The interaction
with the tool is made through CLI or API calls. Its objective
is to help researchers and professionals seeking to analyse
the content of Docker containers and obtain data on the
software packages that are installed (Zerouali et al., 2019).

4.2 Hardware-based solutions
Hardware-based solutions implement two main security
mechanisms. These mechanisms are classified into trusted
platform module (TPM) and trusted execution technology
(TXT) (Sultan et al., 2019). TPM is a chip that is installed
on the host machine and performs certain cryptographic
operations to protect a device against unauthorised
modification of firmware and software. Regarding TXT
technology, it works similarly to TPM, but it is exclusive to
Intel processors.

vTPM
Due to the widespread use of cloud computing and
virtualisation, researchers have had to look for alternatives
to TPM modules. Unlike traditional environments, where
TPMs are installed on the host machines, they cannot be
installed on virtual machines. This fact originated the
development of virtual modules TPM or also known as
vTPM. The modules can work directly on the kernel of the
operating system or in a dedicated container (Hosseinzadeh
et al., 2016).

Intel SGX
Intel Software Guard Extensions (SGX) is a set of
instructions that allows Intel hardware to provide
confidentiality and integrity to application data and code
when the underlying software (hypervisor or kernel) has
been compromised. This technology was developed in 2015
and is mainly responsible for container protection at the
level of the cloud provider or host machine (Kumar and
Goyal, 2019).

Table 2 A classification of security mechanisms for
containers

Type Module Mechanism

Namespaces
CGroups

Capabilities

Linux kernel
features (LKF)

Seccomp
SELinux Linux security

modules (LSM) AppArmor
Decentralised Docker

trust (DDT)
Docker image vulnerability
diagnostic system (DIVDS)

PINE
X-Containers

Software

Other

ConPan
vTPM in the OS kernel vTPM
vTPM in a dedicated

container

Hardware

Trusted execution
technology

Intel SGX

6 S. Martínez-Magdaleno et al.

Table 2 groups the main security mechanisms for containers
already described.

5 Review of risks and countermeasures
This section shows the results of the literature review
regarding security mechanisms in containers, associating the
risks, and countermeasures already described in previous
sections. In this review, studies that provided some
validation, evaluation, solution, opinion, or experience in
the context of containers, light virtualisation, virtualisation,
or IaaS and PaaS as middleware to support the execution of
containers, were selected.

The results of this review are shown in Table 3. This
table is organised as follows. The first column shows the
reference and the year. Column two marks which security
risks are taken into consideration and are arranged as
follows:

1 image

2 orchestrator

3 container

4 operating system

5 implementation.

Column three describes which security mechanisms
are used. Finally, column four indicates the type of
contribution.

Most of the selected studies contribute via a review or
solution. Regarding review studies, it was found that many
authors mention the security features that exist by default in
the Linux kernel, such as namespaces, CGroups, SecComp,
and capabilities. This is largely because Linux is a popular
operating system on servers for its low cost and freedom of
configuration. However, it was noticed that there are not
many studies that cover these characteristics from a more
general point of view or considering other operating
systems such as Windows.

Regarding the studies that provide a solution, it was
found that most authors use features or modules of the
Linux kernel. Also, the fact that some authors propose tests
or use cases in controlled environments, can make the
effectiveness in a business environment questionable.

Finally, we can see that certain studies describe a more
specific solution. For example, in Kwon and Lee (2020), a
DIVDS is proposed to detect vulnerabilities and evaluates
images using a score.

Table 3 Summary of selected studies

Type of risk
References

1 2 3 4 5
Mechanisms Type of contribution

Asvija et al. (2019) X X vTPM, Intel SGX Review
Azab and Domanska (2016) X X LKF Experience
Bacis et al. (2015) X X LMS Proposal
Bélair et al. (2019) X X X X LKM, LSM, TPM Review
Catuogno et al. (2018) X X LKF, LSM Methodology
Chelladhurai et al. (2016) X X LKF, LSM Methodology
Chen et al. (2019) X X X X LKF, LSM Framework
Combe et al. (2016) X X X X X LKF, LSM Review
De Benedictis and Lioy (2019) X X X X X LKF, LSM, vTPM Solution
Fernandez and Brito (2019) X X X X Intel SGX Solution
Garg and Garg (2019) X X LKF, LSM Experience
Gomes et al. (2018) X X LKF Tool
Gupta et al. (2019) X X X LKF, LSM, TPM Review
Hertz (2016) X X LKF, LSM Review
Hosseinzadeh et al. (2016) X X X vTPM Solution
Huang et al. (2019) X X X LKF Analysis
Ibrahim and Hemayed (2019) X X vTPM Systematic review
Jian and Chen (2017) X X LKF Proposal
Kehrer et al. (2019) X X X X LKF Solution
Kong et al. (2019) X X LKF Solution
Kumar and Goyal (2019) X X X Intel SGX, Hardware VM, vTPM Review
Kwon and Lee (2020) X DIVDS Solution
Li et al. (2019) X Pine Solution
Lin et al. (2018) X X LKF, LSM Systematic evaluation
Loukidis-Andreou et al. (2018) X X LKF, LSM Solution

 A review of security risks and countermeasures in containers 7

Table 3 Summary of selected studies (continued)

Type of risk
References

1 2 3 4 5
Mechanisms Type of contribution

Manu et al. (2016a) X X X LKF, LSM, VM Study
Manu et al. (2016b) X X X X Heuristics Study
Martin et al. (2018) X X X X X LKF, LSM Review
Mavridis and Karatza (2018) X X X X LKF, LSM Study
Pittenger (2016) X X X LKF Opinion
Raj et al. (2016) X X LKF, LSM Study
Shen et al. (2019) X X X X-Containers Solution
Souppaya et al. (2017) X X X X X LKF, LSM, TPM Review
Sultan et al. (2019) X X X X X LKF, LSM, vTPM Review
Tian et al. (2019) X X LKF, Intel SGX Evaluation
Tosatto et al. (2015) X X X X X LKF, LSM Review
Win et al. (2014) X LSM, MAC Proposal
Win et al. (2017) X LKF, LSM Solution
Xu et al. (2017) X DDT Solution
Yang et al. (2019) X LKF Experiment
Zerouali et al. (2019) X X ConPan Tool

6 Conclusions
Container engines provide a good level of security by using
predetermined security mechanisms that limit the use of
resources and the scope of containers. However, as a result
of specific configuration requirements of a production
environment, this default configuration is usually modified.
Most of the time, this can result in a less secure
environment.

It has been observed that the main challenges of this
technology arise when a container environment requires a
specific configuration. For example, a host machine with
containers that store web services, database containers, or
containers that have a complete application.

Having a well-defined classification of security risks of
container technology helps both developers and researchers
to create more secure software execution environments by
designing and implementing the appropriate mechanisms
for each situation. Likewise, the proposed classification of
existing security mechanisms presents researchers and
developers with a general idea about various mechanisms
that exist by default in the kernel of the operating system,
the purpose of which is to reduce the risks previously
described in this work.

Future research work may focus on proposing solutions
that automate the configuration process on different
modules and avoid manual configuration by the user, which
could guarantee more secure container environments.
Another possible direction for future research may be the
combination of containers with other virtualisation
technologies such as hypervisors type 1 or type 2 and
exokernels, which would help to eliminate several of the
risks inherent to the use of containers.

References
Al-Dhuraibi, Y., Paraiso, F., Djarallah, N. and Merle, P. (2018)

‘Elasticity in cloud computing: state of the art and research
challenges’, IEEE Transactions on Services Computing,
Vol. 11, No. 2, pp.430–477.

Asvija, B., Eswari, R. and Bijoy, M. (2019) ‘Security in
hardware-assisted virtualization for cloud computing –
state of the art issues and challenges’, Computer Networks,
Vol. 151, pp.68–92.

Azab, A. and Domanska, D. (2016) ‘Software provisioning inside
a secure environment as Docker containers using STROLL
file-system’, IEEE/ACM International Symposium on Cluster,
Cloud, and Grid Computing, pp.674–683.

Bacis, E., Mutti, S., Capelli, S. and Paraboschi, S. (2015)
‘Docker policy modules: mandatory access control for
Docker containers’, IEEE Conference on Communications
and Network Security (CNS), pp.749–750.

Bélair, M., Laniepce, S. and Menaud, J. (2019) ‘Leveraging kernel
security mechanisms to improve container security: a survey’,
ARES ‘19: Proceedings of the 14th International Conference
on Availability, Reliability, and Security, pp.1–6.

Catuogno, L., Galdi, C. and Pasquino, N. (2018) ‘An effective
methodology for measuring software resource usage’, IEEE
Transactions on Instrumentation and Measurement, Vol. 67,
No. 10, pp.2487–2494.

Chelladhurai, J., Chelliah, P. and Kumar, S. (2016) ‘Securing
Docker containers from denial of service (DoS) attacks’,
IEEE International Conference on Services Computing,
pp.856–859.

Chen, J. et al. (2019) ‘A container-based DoS attack-resilient
control framework for real-time UAV systems’, 2019 Design,
Automation & Test in Europe Conference & Exhibition
(DATE), pp.1222–1227.

Combe, T., Martin, A. and Di Pietro, R. (2016) ‘To Docker or not
to Docker: a security perspective’, IEEE Cloud Computing,
Vol. 3, No. 5, pp.54–62.

8 S. Martínez-Magdaleno et al.

De Benedictis, M. and Lioy, A. (2019) ‘Integrity verification of
Docker containers for a lightweight cloud environment’,
Future Generation Computer Systems, Vol. 97, pp.236–246.

Fernandez, G. and Brito, A. (2019) ‘Secure container orchestration
in the cloud: policies and implementation’, Proceedings of the
34th ACM/SIGAPP Symposium on Applied Computing,
pp.138–145.

Garg, S. and Garg, S. (2019) ‘Automated cloud infrastructure,
continuous integration, and continuous delivery using Docker
with robust container security’, IEEE Conference on
Multimedia Information Processing and Retrieval (MIPR),
pp.467–470.

Gomes, J. et al. (2018) ‘Enabling rootless Linux containers
in multi-user environments: the udocker tool’, Computer
Physics Communications, Vol. 232, pp.84–97.

Gupta, R., Gupta, P. and Singh, J. (2019) Security and
Cryptography, Elsevier, Cambridge.

Hertz, J. (2016) Abusing Privileged and Unprivileged Linux
Containers, pp.1–53, NCC Group Publication, United Arab
Emirates.

Hosseinzadeh, S., Laurén, S. and Leppänen, V. (2016) ‘Security in
container-based virtualization through vTPM’, IEEE/ACM
9th International Conference on Utility and Cloud
Computing, pp.214–219.

Huang, D., Cui, H., Wen, S. and Huang, C. (2019) ‘Security
analysis and threats detection techniques on Docker
container’, IEEE 5th International Conference on Computer
and Communications, pp.1214–1220.

Ibrahim, F. and Hemayed, E. (2019) ‘Trusted cloud computing
architectures for infrastructure as a service: survey and
systematic literature review’, Computers & Security, Vol. 82,
pp.196–226.

Jian, Z. and Chen, L. (2017) ‘A defense method against Docker
escape attack’, ICCSP ‘17: Proceedings of the 2017
International Conference on Cryptography, Security, and
Privacy, pp.142–146.

Kehrer, S., Riebandt, F. and Blochinger, W. (2019)
‘Container-based module isolation for cloud services’, IEEE
International Conference on Service-Oriented System
Engineering (SOSE), pp.177–186.

Kong, T. et al. (2019) ‘A secure container deployment strategy by
genetic algorithm to defend against co-resident attacks in
cloud computing’, IEEE 21st International Conference on
High Performance Computing and Communications,
pp.1825–1832.

Kumar, R. and Goyal, R. (2019) ‘On cloud security requirements,
threats, vulnerabilities, and countermeasures: a survey’,
Computer Science Review, Vol. 33, pp.1–48.

Kwon, S. and Lee, J. (2020) ‘DIVDS: Docker image vulnerability
diagnostic system’, IEEE Access, Vol. 8, pp.42666–42673.

Li, Y. et al. (2019) ‘PINE: optimizing performance isolation
in container environments’, IEEE Access, Vol. 7,
pp.30410–30422.

Lin, X. et al. (2018) ‘A measurement study on Linux container
security: attacks and countermeasures’, Association for
Computing Machinery, pp.418–429.

Loukidis-Andreou, F., Giannakopoulos, I., Doka, K. and
Koziris, N. (2018) ‘Docker-sec: a fully automated
container security enhancement mechanism’, IEEE 38th
International Conference on Distributed Computing Systems,
pp.1561–1564.

Manu, A. et al. (2016a) ‘A study, analysis and deep dive on cloud
PAAS security in terms of Docker container security’,
International Conference on Circuit, Power and Computing
Technologies [ICCPCT], pp.1–13.

Manu, A. et al. (2016b) ‘Docker container security via
heuristics-based multilateral security-conceptual and
pragmatic study’, International Conference on Circuit, Power
and Computing Technologies [ICCPCT], pp.1–14.

Martin, A., Raponib, S., Combea, T. and Di Pietro, R. (2018)
‘Docker ecosystem – vulnerability analysis’, Computer
Communications, Vol. 122, pp.30–43.

Mavridis, I. and Karatza, H. (2018) ‘Combining containers and
virtual machines to enhance isolation and extend functionality
on cloud computing’, Future Generation Computer Systems,
Vol. 94, pp.674–696.

Pahl, C., Brogi, A., Soldani, J. and Jamshidi, P. (2019) ‘Cloud
container technologies: a state-of-the-art review’, IEEE
Transactions on Cloud Computing, Vol. 7, No. 3, pp.677–
692.

Pittenger, M. (2016) ‘Addressing the security challenges of using
containers’, Network Security, Vol. 2016, No. 12, pp.5–8.

Raj, A., Pai, S., Kumar, A. and Gopal, A. (2016) ‘Enhancing
security of Docker using Linux hardening techniques’,
2nd International Conference on Applied and Theoretical
Computing and Communication Technology (iCATccT),
pp.94–99.

Shen, Z. et al. (2019) ‘X-containers: breaking down barriers to
improve performance and isolation of cloud-native
containers’, ASPLOS ‘19: Proceedings of the Twenty-Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems,
pp.121–135.

Souppaya, M., Morello, J. and Scarfone, K. (2017) ‘Application
container security guide’, NIST, pp.800–190.

Sultan, S., Ahmad, I. and Dimitriou, T. (2019) ‘Container security:
issues, challenges, and the road ahead’, IEEE Access, Vol. 7,
pp.52976–52996.

Tian, D. et al. (2019) ‘A practical Intel SGX setting for Linux
containers in the cloud’, Ninth ACM Conference on Data and
Application Security and Privacy, pp.255–266.

Tosatto, A., Ruiu, P. and Attanasio, A. (2015) ‘Container-based
orchestration in the cloud: state of the art and challenges’,
Ninth International Conference on Complex, Intelligent, and
Software Intensive Systems, pp.70–75.

Win, T., Tianfield, H. and Mair, Q. (2014) ‘Virtualization security
combining mandatory access control and virtual machine
introspection’, IEEE/ACM 7th International Conference on
Utility and Cloud Computing, pp.1004–1009.

Win, T., Tso, F., Mair, Q. and Tianfield, H. (2017) ‘PROTECT:
container process isolation using system call interception’,
14th International Symposium on Pervasive Systems,
Algorithms and Networks, pp.191–196.

Xu, Q. et al. (2017) ‘Blockchain-based decentralized content
trust for Docker images’, Multimed Tools, Vol. 77,
pp.18223–18248.

Yang, T. et al. (2019) ‘Docker’s security analysis of using control
group to enhance container resistance to pressure’, 10th
International Conference on Information Technology in
Medicine and Education (ITME), pp.655–660.

Zerouali, A. et al. (2019) ‘ConPan: a tool to analyze packages in
software containers’, IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR),
pp.592–596.

