
Engineering Applications of Artificial Intelligence 108 (2022) 104556

O
m
G
U
3

A

K
S
M
F
U
P

1

u
t
r
w

t
f
d
m
m
a
E
a
o
b

t
o

h
R
A
0

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

utranking-based multi-objective PSO for scheduling unrelated parallel
achines with a freight industry-oriented application✩

ilberto Rivera, Raúl Porras, J. Patricia Sanchez-Solis ∗, Rogelio Florencia, Vicente García
niversidad Autónoma de Ciudad Juárez, División Multidisciplinaria de Ciudad Universitaria, Av. José de Jesús Macías Delgado #18100, Cd. Juárez, Chihuahua,
2000, Mexico

R T I C L E I N F O

eywords:
warm intelligence
ulti-objective optimisation

uzzy outranking
nrelated parallel machine scheduling
article swarm optimisation

A B S T R A C T

This paper presents Outranking-based Particle Swarm Optimisation (O-PSO) a novel metaheuristic to address
the multi-objective Unrelated Parallel Machine Scheduling Problem. It is a particle swarm optimisation
algorithm enriched with the preferences of the Decision Maker (DM), articulated in a fuzzy relational system
based on ELECTRE III. Unlike other multi-objective metaheuristics, O-PSO searches for the Region of Interest
(RoI) instead of approximating a sample of the complete Pareto frontier. The RoI is the subset consisting
of those Pareto-efficient solutions that satisfy the outranking relations, that is, they are the best solutions in
terms of the DM’s system of preferences. Therefore, O-PSO not only approximates the Pareto solutions but also
supports multicriteria decision analysis of the schedules. The efficiency of O-PSO is validated on a benchmark
of synthetic instances from the scientific literature, where the Wilcoxon rank-sum test provides statistical
evidence that O-PSO offers high-quality solutions when compared with two state-of-the-art metaheuristics;
specifically, O-PSO is capable of generating a greater proportion of solutions (on average, ranging from 7% to
14%) dominating those of the state-of-the-art algorithms, as well as finding more solutions (from 13% to 18%)
that satisfy the DM’s preferences. O-PSO is also applied to a real-world case study in the transport industry to
provide evidence for its applicability.
. Introduction

There are various problems in organisations that can be addressed
sing Artificial Intelligence (AI) models. However, organisations prefer
o address these issues through the skills they have gained from expe-
ience, designing strategies that allow them to generate solutions that
ill be acceptable in practice.

Clear examples are the heuristics used by companies in the cargo
ransport sector. The function of these companies is to deliver goods
rom the point of origin to the destination point. The Traffic Coor-
inator (TC) – called the Decision Maker (DM) in a broader sense –
akes the decisions about the planning of the deliveries of goods. The
ost common techniques are queuing-based policies, where the TC

ssigns the first requested trip to the first available operator (driver).
ven though this type of strategy is straightforward and can be quickly
pplied by the TC, they hardly evaluate the programmed schedule’s
verall impact on the goals of the organisation. These difficulties can
e addressed if they are modelled as a Scheduling Problem (SP).

An SP is a decision-making problem focused on allocating resources
o tasks in specific periods whose purpose is to optimise one or more
bjectives associated with productivity. These resources and tasks vary.

✩ This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
∗ Corresponding author.

E-mail address: julia.sanchez@uacj.mx (J.P. Sanchez-Solis).

For example, the resources may be workshop machines (e.g. Harbaoui
and Khalfallah, 2020), runways (e.g. Yin et al., 2020), operating the-
atres (e.g. Rivera et al., 2020), or processing units (e.g. Chang et al.,
2020). The tasks may be process operations (e.g. Harbaoui and Khalfal-
lah, 2020), take-offs and landings (e.g. Yin et al., 2020), surgeries (e.g.
Rivera et al., 2020), or computer programs (e.g. Chang et al., 2020).

Murakami and Morita (2010) identify the so-called ‘known un-
certainty’ in this problem, which refers to information about events
that have already happened in past schedules. Different proposals in
the literature have modelled the uncertainty in scheduling optimisa-
tion given the domain’s nature, including probabilistic models and
fuzzy systems (cf. Wojakowski and Warżołek, 2014). Here, we must
distinguish between two types of uncertainty:

• risk, which refers to events that jeopardise the schedule; con-
sequently, the DM should select the schedule with the most
advantageous trade-off between risks and benefits; this decision
depends on their degree of conservatism; and

• imprecision, which means that the information to characterise
the machines, jobs, and tasks may vary; the optimisation method
ttps://doi.org/10.1016/j.engappai.2021.104556
eceived 5 April 2021; Received in revised form 7 November 2021; Accepted 8 No
vailable online 8 December 2021
952-1976/© 2021 Elsevier Ltd. All rights reserved.
vember 2021

https://doi.org/10.1016/j.engappai.2021.104556
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2021.104556&domain=pdf
mailto:julia.sanchez@uacj.mx
https://doi.org/10.1016/j.engappai.2021.104556
Reviewer
Resaltado

G. Rivera, R. Porras, J.P. Sanchez-Solis et al. Engineering Applications of Artificial Intelligence 108 (2022) 104556

E
R
e
c
d
p

d
a
P
(
p
w

t
a
a
m
c
M
i
s
d
o
M
u
w
e
t
t
i

a
2
t
a
A
A
2
R
2
L

j
o
Z
B
e
o

s
a
t
a
a
o
c
t

t
m
s
S
b
t
i

2

i
t
w
G
D
T
i
s
t
w
N
a
c
w
e

r
f
e
r

O
e

2

s
f
a
f
i
a
s
i
o
r
N
Y

r
f
i
w
𝑖
e

should be robust and consistent when this kind of knowledge is
provided in advance by experience.

Although extensive scientific evidence (cf. Frausto-Solis et al., 2021;
zugwu, 2019; Akbar and Irohara, 2018; Fuchigami and Rangel, 2018;
amos-Figueroa et al., 2020) highlights the importance of solving SPs
fficiently, it remains challenging to put this into practice for real-world
ases. This difficulty is mainly because of two factors: (a) there are
ifferent variants of the problem, which derive from the organisation’s
articular needs, and (b) the number of objectives to be evaluated.

Regarding the first factor, variants of the SP may be classified into
ifferent categories, depending on the interaction between the tasks
nd the machines. We can mention Flow Shop, Open Shop, Identical
arallel Machines, and Unrelated Parallel Machine Scheduling Problem
UPMSP). In the latter, each machine has a different performance
arameter describing how it processes a task, and all machines may
ork simultaneously. The present paper focusses on the UPMSP.

Regarding the second factor, optimising time-related objectives is
he most popular goal in the SP literature. In this line, mono-objective
pproaches (e.g. Cheng et al., 2020; Kayvanfar et al., 2017; Shabtay
nd Zofi, 2018; Shahvari and Logendran, 2017) concentrate efforts on
inimising this objective, while other concerns are modelled as hard

onstraints. However, in the last decade, the idea of addressing the
ulti-Objective SP (MOSP) has become popular because, in practice,

t is desired to optimise schedules along different dimensions. Most
pecialised studies address the MOSP through the concept of Pareto
ominance and often provide large sets of solutions. Selecting only
ne final prescription – called the best compromise in the field of
ultiCriteria Decision Analysis (MCDA) – from many solutions eval-

ated according to several criteria may be extremely hard for a DM
ith regular cognitive capacities (cf. Cruz-Reyes et al., 2020; Fernandez
t al., 2019a). As far as we know, there are no proposals that model
he preferences of the DM for supporting a multicriteria decision on
he final prescription. In the present paper, we focus on addressing this
ssue in multi-objective UPMSP optimisation.

According to the literature, scheduling optimisation is computation-
lly complex, being an NP-hard problem (cf. Ezugwu, 2019; Meng et al.,
019). Consequently, the application of multi-objective metaheuris-
ic algorithms is booming. There is a wide variety of metaheuristics
pplied to multi-objective UPMSP, including Imperialist Competitive
lgorithms (e.g. Garavito-Hernández et al., 2019; Lei et al., 2020),
rtificial Immune System (e.g. Zhu and Tianyu, 2019; Manupati et al.,
017), Ant Colony Optimisation (e.g. Zhao et al., 2018; Afzalirad and
ezaeian, 2017), Tabu Search (e.g. Lin et al., 2016; Wang and Alidaee,
019), Genetic Algorithms (e.g. Meng et al., 2019), and hybrids (e.g.
u et al., 2018), to mention only a few.

On the other hand, only problems with a small number of ob-
ectives have been addressed in the literature: problems with two
bjectives (e.g. Zhu and Tianyu, 2019; Afzalirad and Rezaeian, 2017;
hou and Gu, 2021; Kurniawan, 2020; Tirkolaee et al., 2020; Yepes-
orrero et al., 2021), three objectives (e.g. Lin et al., 2016; Bitar
t al., 2021), four objectives (e.g. Manupati et al., 2017), and five
bjectives (e.g. Zhao et al., 2018) have been treated.

This paper introduces the Outranking-based Particle Swarm Optimi-
ation (O-PSO) algorithm, which addresses the multi-objective UPMSP
pplied to the transport industry where the resources are the opera-
ors and the tasks are the delivery of the freight. Compared to other
pproaches, O-PSO offers better results in terms of efficiency while
t the same time facilitating the decision-making process. The results
btained on synthetic instances and a real-world application in the
argo transport sector support these claims. The main contributions of
his proposal are the following:

(1) O-PSO is enriched with a relational system – built on the under-
lying principles of fuzzy outranking (i.e. ELECTRE III) – to reflect
the preferences of the DM;
2

(2) O-PSO is capable of generating non-dominated schedules and
supporting multicriteria analysis to select the best compromise;
and

(3) to the best of our knowledge, O-PSO is the first to address the
multi-objective UPMSP with a freight industry-oriented applica-
tion incorporating an a priori model of DM preferences.

The structure of this paper is as follows. In Section 2, we describe
he background, including the baseline algorithm and the preference
odel built on ELECTRE III. Section 3 introduces our proposal, pre-

enting the algorithm enriched with preferences to address the problem.
ection 4 presents the conducted computational experiments, including
oth synthetic and real-world instances and a non-parametric statistical
est to validate the results. Finally, in Section 5, we discuss some
nsights, and we make some recommendations for future research.

. Background

A recent review of the related literature on UPMSP can be found
n Ojstersek et al. (2020) and Ramos-Figueroa et al. (2020). Among
he studies that address the UPMSP from an exclusively Paretian view,
e must explicitly mention the Truncated Restarted Iterated Pareto
reedy (T-RIPG) by Yepes-Borrero et al. (2021) and the Evolutionary
iscrete Particle Swarm Optimisation (EDPSO) by Wang et al. (2018).
-RIPG seeks to minimise the makespan and the number of resources

n a bi-objective UPMSP that considers additional resources in the
etup of machines. EDPSO seeks to minimise the processing time and
he consumption of raw material to elaborate products in a real-
orld application. Both algorithms achieve a better performance than
SGA-II, a standard in the literature. Due to the lack of a qualified
nd widely-accepted benchmark for unrelated parallel machines, a
omprehensive data generation driver was developed to reflect the real-
orld conditions plausibly encountered in practice. The latter is also an
ssential contribution of Wang et al. (2018).

O-PSO (our proposal) is an extension of EDPSO, enriched with a
elational system of preferences built on the underlying principles of
uzzy outranking. The fuzzy outranking system also assembles indiffer-
nce thresholds connected to the imprecision, and veto thresholds for
isk-associated objectives to reflect the DM’s conservatism.

Accordingly, Section 2.1 presents PSO (the basis of EDPSO and
-PSO), and Section 2.2 presents the fuzzy relational system of pref-
rences.

.1. Particle Swarm Optimisation

Kennedy and Eberhart (1995) proposed the Particle Swarm Optimi-
ation (PSO) method by observing the behaviour of flocks in search of
ood, passing from one locality to another. During this activity, there is
lways a bird in the flock that has the best sense of smell for locating
ood. Once the source of food is found, the leading bird transmits that
nformation so that the rest of the flock can also locate the food. Flocks
re equivalent to clouds of particles, and the bird with the best sense of
mell is the particle with the best-known solution, which transmits the
nformation to the others to improve it together. PSO is still an object
f scientific interest, and several research studies in the literature have
ecently extended PSO to propose novel optimisation algorithms (e.g.
aderi et al., 2019, 2020, 2021; Zhang et al., 2021; Gilvaei et al., 2020;
an et al., 2020).

The basic PSO algorithm starts by generating a set of 𝑛 particles at
andom, which are moved around in the search space according to a
ew simple but effective formulae. Originally, the point of each particle
n an N-dimensional space represents a possible solution for a problem
ith N variables and a single objective function. The movement of the

th particle is guided by its own best-known position (P𝑖) as well as the
ntire swarm’s best-known position (G).

G. Rivera, R. Porras, J.P. Sanchez-Solis et al. Engineering Applications of Artificial Intelligence 108 (2022) 104556

w

𝑐

w
e
i

𝗣

w
i

𝗜

w
t
E
𝑝

o

𝑑

w

𝑑

t
w
l
c
a

According to Bai (2010), the position update in the 𝜄th iteration is
defined as

𝑋𝜄
𝑖,𝑗 = 𝑋𝜄−1

𝑖,𝑗 + ⃖⃖⃗V𝜄
𝑖,𝑗 ∀𝑖 ∈ {1, 2, 3,… , 𝑛}, 𝑗 ∈ {1, 2, 3,… ,N}, (1)

where 𝑋𝜄−1
𝑖,𝑗 is the coordinate of the 𝑖th particle along the 𝑗th dimension

in the previous iteration (𝜄−1), and 𝑉 𝜄
𝑖,𝑗 is the velocity of the movement

for the 𝑖th particle along the 𝑗th dimension in the 𝜄th iteration, which
is defined as

⃖⃖⃗V𝜄
𝑖,𝑗 = ⃖⃖⃗V𝜄−1

𝑖,𝑗 + 𝑐1𝑟𝑝(P𝑖,𝑗 −𝑋𝜄−1
𝑖,𝑗) + 𝑐2𝑟𝑔(G𝑑 −𝑋𝜄−1

𝑖,𝑗), (2)

where ⃖⃖⃗V𝜄−1
𝑖,𝑗 is the velocity along the 𝑗th dimension of the 𝑖th par-

ticle during the (𝜄 − 1)th iteration; P𝑖 and G are points (in the N-
dimensional hyperspace) representing, respectively, the best point in-
dividually known by particle 𝑖 and the best one collectively known by
the swarm; 𝑐1 and 𝑐2 are weight parameters balancing the orientation
between flying to P𝑖 and to G; and 𝑟𝑝 and 𝑟𝑔 are pseudorandom
numbers, 𝑟𝑝, 𝑟𝑔 ∼ U(0, 1).

On the one hand, the criterion for selecting P𝑖 and G is well-
defined for single-objective optimisation problems. On the other hand,
when there are multiple objective functions, the most relevant criterion
for selecting the best solutions is the concept of Pareto dominance.
There is a comprehensive discussion of this concept and its impact on
evolutionary optimisation in Coello Coello et al. (2007, Chap. 1). Here,
for the sake of simplicity, let 𝑓 (𝑋𝑖) = (𝑓1(𝑋𝑖), 𝑓2(𝑋𝑖), 𝑓3(𝑋𝑖),… , 𝑓𝑝(𝑋𝑖))
be the values of the multi-objective function for the 𝑖th particle in a
problem with 𝑝 minimising objectives. Given two particles (with indices
𝑖, 𝚥), 𝑋𝑖 dominates 𝑋𝚥 if 𝑋𝑖 is not worse than 𝑋𝚥 in any objective and 𝑋𝑖
is strictly better than 𝑋𝚥 at least in one objective. With more formality:

𝑋𝑖 ⪯ 𝑋𝚥 iff ∀𝑘 ∈ {1, 2, 3,… , 𝑝}, 𝑓𝑘(𝑋𝑖) ≤ 𝑓𝑘(𝑋𝚥) ∧
∃𝑘 ∈ {1, 2, 3,… , 𝑝} ∶ 𝑓𝑘(𝑋𝑖) < 𝑓𝑘(𝑋𝚥),

(3)

where ⪯ stands for the relation of Pareto dominance. In terms of
the computational complexity theory, the objective functions have to
be compared sequentially to determine the dominance relations be-
tween a pair of solutions. Hence the complexity function of a program
implementing Eq. (3) belongs to Θ(𝑝).

The Pareto set is then 𝑃𝑆 =
{

𝑋𝑖 ∶ ∄𝑋𝚥 ⪯ 𝑋𝑖
}

. Because the best
solution belongs to 𝑃𝑆, the multi-objective optimisation approaches
aim to approximate 𝑃𝑆. It is assumed that the DM can analyse a
posteriori the Pareto set and its multi-objective image to select the best
compromise solution — the prescription to be implemented, the true
solution to the problem.

In this paper, we present a PSO algorithm that searches for the
best compromise solution. The preferences of the DM are articulated,
focussing the computing power on identifying the best compromise
solution. This model is not only compatible with the notion of Pareto
efficiency but also contributes to support the multicriteria decision
analysis of the best schedules.

2.2. The ELECTRE III-based system of preferences

ELECTRE III was proposed for management problems where the
preferences are based on relations under the concept of fuzzy outrank-
ing (Roy and Vanderpooten, 1996), which can be defined as the degree
of truth of ‘‘𝑋𝑖 is at least as good as 𝑋𝚥’’, denoted by 𝜎(𝑋𝑖, 𝑋𝚥), where 𝑋𝑖
and 𝑋𝚥 are alternatives (in our case, schedules), with multiple criteria.
The two basic measures to calculate outranking are:

(1) the concordance index, which models the strength of a coalition
in favour of 𝜎(𝑋𝑖, 𝑋𝚥), and is denoted by 𝑐(𝑋𝑖, 𝑋𝚥); and

(2) the discordance index, which inversely measures the strength of

a coalition against 𝜎(𝑋𝑖, 𝑋𝚥), denoted by 𝑑(𝑋𝑖, 𝑋𝚥). o

3

Therefore, for ‘‘𝑋𝑖 is at least as good as 𝑋𝚥’’ to be true, the values
of 𝑐(𝑋𝑖, 𝑋𝚥) and 𝑑(𝑋𝑖, 𝑋𝚥) must be high. More precisely,

𝜎(𝑋𝑖, 𝑋𝚥) = 𝑐(𝑋𝑖, 𝑋𝚥) ⋅ 𝑑(𝑋𝑖, 𝑋𝚥). (4)

To estimate the concordance index, it is necessary to know how the
DM perceives the values of the criteria, expressed through the following
parameters:

(1) the weights of the objectives, denoted by 𝑊 =
(

𝑤1, 𝑤2,… , 𝑤𝑝
)

,
represent the importance that the DM attaches to each of the
objectives; here, 1 ≥ 𝑤𝑘 > 0 ∀𝑘 ∈ {1, 2, 3,… , 𝑝} and ∑𝑝

𝑘=1 𝑤𝑘 = 1,
where 𝑝 is the number of objectives; and

(2) the indifference thresholds, denoted by the 𝑝-dimensional vector
𝑈 =

(

𝑢1, 𝑢2,… , 𝑢𝑝
)

, indicate how small the differences must be
for the DM to take them as marginal on a practical level (because
of, for example, slight inaccuracies or uncertainties).

The concordance index is defined as

𝑐(𝑋𝑖, 𝑋𝚥) =
𝑝
∑

𝑘=1
𝑐𝑘(𝑋𝑖, 𝑋𝚥), (5)

here

𝑘(𝑋𝑖, 𝑋𝚥) =
{

𝑤𝑘 if 𝑋𝑖𝗣𝑘𝑋𝚥 ∨𝑋𝑖𝗜𝑘𝑋𝚥,
0 otherwise, (6)

here 𝑋𝑖𝗣𝑘𝑋𝚥 and 𝑋𝑖𝗜𝑘𝑋𝚥 are respectively the logical functions of pref-
rence and indifference when evaluating the 𝑘th objective. Preference
s defined as

𝑘 =
{(

𝑋𝑖, 𝑋𝚥
)

∶ 𝑓𝑘(𝑋𝑖) < 𝑓𝑘(𝑋𝚥) ∧ ¬𝑋𝑖𝗜𝑘𝑋𝚥
}

, (7)

here 𝑓𝑘 is the evaluation function for the 𝑘th objective. Indifference
s defined by

𝑘 =
{(

𝑋𝑖, 𝑋𝚥
)

∶ |𝑓𝑘(𝑋𝑖) − 𝑓𝑘(𝑋𝚥)| ≤ 𝑢𝑘
}

, (8)

here 𝑢𝑘 is the indifference threshold for the 𝑘th objective. Regarding
he complexity analysis of the concordance, a computer program of
q. (5) would belong to Θ(𝑝) because the function 𝑐𝑘 (Eq. (6)) is called
times, and its number of comparisons is constant.

The discordance index is calculated based on the two following sets
f parameters:

(a) pre-veto thresholds, denoted by the vector 𝑆 = (𝑠1, 𝑠2, 𝑠3,… , 𝑠𝑝),
indicating the magnitude of the differences when veto conditions
begin to be observed, 𝑠𝑘 ≥ 𝑢𝑘 ∀𝑘 ∈ {1, 2, 3,… , 𝑝}; and

(b) veto thresholds, denoted by the vector 𝑉 = (𝑣1, 𝑣2, 𝑣3,… , 𝑣𝑝),
which indicates the magnitude of the differences between alter-
natives for triggering a veto condition, 𝑣𝑘 ≥ 𝑠𝑘∀𝑘 ∈ {1, 2, 3,… ,
𝑝}.

Thus, 𝑑(𝑋𝑖, 𝑋𝚥) is denoted by

(𝑋𝑖, 𝑋𝚥) = min
𝑘∈{1,2,3,…,𝑝}

{

1 − 𝑑𝑘(𝑋𝑖, 𝑋𝚥)
}

, (9)

here 𝑑𝑘(𝑋𝑖, 𝑋𝚥) is defined as

𝑘(𝑋𝑖, 𝑋𝚥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if ∇𝑘(𝑋𝑖, 𝑋𝚥) < 𝑠𝑘,
∇𝑘(𝑋𝑖, 𝑋𝚥) − 𝑢𝑘

𝑣𝑘 − 𝑢𝑘
if 𝑠𝑘 ≤ ∇𝑘(𝑋𝑖, 𝑋𝚥) < 𝑣𝑘,

1 otherwise,

(10)

where ∇𝑘(𝑋𝑖, 𝑋𝚥) = 𝑓𝑘(𝑋𝑖) −𝑓𝑘(𝑋𝚥), 𝑣𝑘 and 𝑠𝑘 are the veto and pre-veto
hresholds respectively. The discordance produces a rejection effect
hen there is at least one difference against 𝑋𝑖 that exceeds 𝑣𝑘 regard-

ess of the value of the concordance coalition. On the computational
omplexity of the discordance, a program implementing Eq. (9) implies
complexity function in Θ(𝑝) because the function 𝑑𝑘 (whose number

f comparisons is constant, see Eq. (10)) is called 𝑝 times.

G. Rivera, R. Porras, J.P. Sanchez-Solis et al. Engineering Applications of Artificial Intelligence 108 (2022) 104556

o

𝑁

𝑆

c
w

f
𝑈
w
(
a
h
t
e
A
q
P
s

b
a

o
Θ

3
(

i
a
b
p

T
w
A
s
s
s
t
a
t
m
i
a
(

c
s
c
p

m
4
i
t
a

3

i
t

Table 1
Relational system of fuzzy preferences.

Object Definition

Strict preference
(

𝑋𝑖𝗣𝑋𝚥
)

𝗣 =
{

(

𝑋𝑖 , 𝑋𝚥
)

∶ 𝑋𝑖 ⪯ 𝑋𝚥 ∨

𝜎(𝑋𝑖 , 𝑋𝚥) ≥ 𝜆 ∧
(

𝜎(𝑋𝚥 , 𝑋𝑖) < 0.5 ∨

0.5 ≤ 𝜎(𝑋𝚥 , 𝑋𝑖) < 𝜆 ∧ 𝜎(𝑋𝑖 , 𝑋𝚥) − 𝜎(𝑋𝚥 , 𝑋𝑖) ≥ 𝛽
)}

Indifference
(𝑋𝑖𝗜𝑋𝚥)

𝗜 =
{

(

𝑋𝑖 , 𝑋𝚥
)

∶ 𝜎(𝑋𝑖 , 𝑋𝚥) ≥ 𝜆 ∧ 𝜎(𝑋𝚥 , 𝑋𝑖) ≥ 𝜆 ∧
|

|

|

𝜎(𝑋𝑖 , 𝑋𝚥) − 𝜎(𝑋𝚥 , 𝑋𝑖)
|

|

|

≤ 𝜖
}

Weak preference
(𝑋𝑖𝗤𝑋𝚥)

𝗤 =
{

(

𝑋𝑖 , 𝑋𝚥
)

∶ 𝜎(𝑋𝑖 , 𝑋𝚥) ≥ 𝜆 ∧ 𝜎(𝑋𝑖 , 𝑋𝚥) ≥ 𝜎(𝑋𝚥 , 𝑋𝑖) ∧

¬𝑋𝑖𝗣𝑋𝚥 ∧ ¬𝑋𝑖𝗜𝑋𝚥

}

Incomparability
(𝑋𝑖𝗥𝑋𝚥)

𝗥 =
{

(

𝑋𝑖 , 𝑋𝚥
)

∶ 𝜎(𝑋𝑖 , 𝑋𝚥) < 0.5 ∧ 𝜎(𝑋𝚥 , 𝑋𝑖) < 0.5
}

𝑘 − preference
(𝑋𝑖𝗞𝑋𝚥)

𝗞 =
{

(

𝑋𝑖 , 𝑋𝚥
)

∶ 0.5 ≤ 𝜎(𝑋𝑖 , 𝑋𝚥) < 𝜆 ∧

𝜎(𝑋𝑖 , 𝑋𝚥) − 𝜎(𝑋𝚥 , 𝑋𝑖) >
𝛽
2

}

Solutions strictly
outranking 𝑋𝑖

𝑆(𝑂,𝑋𝑖) =
{

𝑋𝑗 ∈ 𝑂 ∶ 𝑋𝚥𝗣𝑋𝑖
}

The non-strictly
outranked frontier 𝑁𝑆(𝑂) =

{

𝑋𝑖 ∈ 𝑂 ∶ 𝑆(𝑂,𝑋𝑖) = ∅
}

Solutions weakly
outranking 𝑋𝑖

𝑊 (𝑂,𝑋𝑖) =
{

𝑋𝑗 ∈ 𝑁𝑆(𝑂) ∶ 𝑋𝚥𝗤𝑋𝑖 ∨𝑋𝚥𝗞𝑋𝑖
}

The non-weakly
outranked frontier 𝑁𝑊 (𝑂) =

{

𝑋𝑖 ∈ 𝑁𝑆(𝑂) ∶ 𝑊 (𝑂,𝑋𝑖) = ∅
}

The net flow-score
of 𝑋𝑖

𝐹𝑛(𝑋𝑖) =
∑

𝑋𝚥∈𝑂

[

𝜎(𝑋𝑖 , 𝑋𝚥) − 𝜎(𝑋𝚥 , 𝑋𝑖)
]

Solutions with a
net flow-score
greater than 𝑋𝑖

𝐹 (𝑂,𝑋𝑖) =
{

𝑋𝚥 ∈ 𝑁𝑆(𝑂) ∶ 𝐹𝑛(𝑋𝚥) > 𝐹𝑛(𝑋𝑖)
}

The net-flow
non-outranked
frontier

𝑁𝐹 (𝑂) =
{

𝑋𝑖 ∈ 𝑁𝑆(𝑂) ∶ 𝐹 (𝑂,𝑋𝑖) = ∅
}

The best
compromise
from 𝑂

arg min
𝑋∗∈𝑂

{

(

|𝑆(𝑂,𝑋∗)|, |𝑊 (𝑂,𝑋∗)|, |𝐹 (𝑂,𝑋∗)|
)

}

The complexity of 𝜎 (Eq. (4)) is the sum of the complexity functions
f the concordance and discordance, and both are in Θ(𝑝); therefore, the

complexity of 𝜎 is also in Θ(𝑝).
Fernandez et al. (2015) proposed a relational system of preferences

based on fuzzy outranking to identify the best compromise in a set of
solutions 𝑂. Considering the parameters 𝜆, 𝛽 and 𝜖, with 0 ≤ 𝜖 ≤ 𝛽 ≤
𝜆 ≤ 1 and 𝜆 ≥ 0.5, Table 1 presents the mathematical objects of this
outranking-based system.

Strict preference models the situation when the DM justifiably
prefers 𝑋𝑖 over 𝑋𝚥. Indifference models the situation when the DM
perceives a high level of equivalence between 𝑋𝑖 and 𝑋𝚥; hence, there
is no preferred schedule. Weak preference models the situation when
the DM hesitates between 𝑋𝑖𝗣𝑋𝚥 and 𝑋𝑖𝗜𝑋𝚥. Incomparability models
the situation when the DM perceives a high degree of heterogeneity
between 𝑋𝑖 and 𝑋𝚥; hence, the DM cannot (or does not want to) set a
preference. The condition of 𝑘-preference occurs when the DM hesitates
between 𝑋𝑖𝗣𝑋𝚥 and 𝑋𝑖𝗥𝑋𝚥.

Let 𝑂 be the set of feasible schedules. The subset of solutions that
are not strictly outranked by any other schedule, 𝑁𝑆(𝑂), is known
as the non-strictly-outranked frontier. The subset of solutions that
are not weakly outranked by any other schedule, 𝑁𝑊 (𝑂), is the
non-weakly-outranked frontier.

Besides the strict and weak outranking preferences, the net-flow
score is used as a preferential measure. Consequently, 𝐹𝑛(𝑋𝑖) > 𝐹𝑛(𝑋𝚥)
denotes a preference of 𝑋𝑖 over 𝑋𝚥. Here, 𝑁𝐹 (𝑂) is the net-flow non-
outranked frontier. Note that 𝑁𝑊 (𝑂) ⊆ 𝑁𝑆(𝑂), 𝑁𝐹 (𝑂) ⊆ 𝑁𝑆(𝑂), and
𝑆(𝑂) is a subset of the Pareto-efficient solutions of 𝑂.
Hence, the best compromise solution, 𝑋∗, is the schedule whose sets

(𝑂,𝑋∗), 𝑊 (𝑂,𝑋∗), and 𝐹 (𝑂,𝑋∗) have the minimum cardinality, with
 H

4

a preemptive priority in favour of |𝑆(𝑂,𝑋∗)|. This definition of the best
ompromise is in compliance with the concept of Pareto dominance,
hich is a relevant property.

The strongest criticism of outranking models is the difficulty of
inding the values of the parameters (i.e. 𝜆, 𝛽, 𝜖, and the thresholds
, 𝑆 and 𝑉) that actually reflect the DM’s preferences. This difficulty
as solved in our work using a Preference Disaggregation Analysis

PDA) (Doumpos and Zopounidis, 2019). PDA has received increasing
ttention for addressing this challenging issue. Some recent studies
ave satisfactorily exploited and extended PDA to support a multicri-
eria analysis embedded in evolutionary optimisation (e.g. Cruz-Reyes
t al., 2018; Rangel-Valdez et al., 2015; Fernandez et al., 2020, 2019b;
lvarez et al., 2018a,b). For real-world problems, the DM often re-
uires a close interaction with a Decision Analyst (DA) to apply these
DA-based approaches adequately, e.g. to be able to reach acceptable
ettings even when the examples are noisy (Rangel-Valdez et al., 2018).

Regarding the complexity of the fuzzy system of preferences (Ta-
le 1), the most costly operations for calculating any relation between
pair of solutions are the outranking function 𝜎 (for 𝗜, 𝗪, 𝗥 and 𝗞) and

the Pareto dominance (included in the definition of 𝗣). Consequently, a
program to determine any of these relations between a pair of solutions
has a complexity function on the order of Θ(𝑝). These relations have
to be computed for all pairs (𝑋𝑖, 𝑋𝚥) ∈ 𝑂 × 𝑂. Hence, the complexity
f a computer program calculating the best compromise belongs to
(𝑝|𝑂|

2), where |𝑂| is the cardinality of the explored solution set.

. The Outranking-based Particle Swarm Optimisation algorithm
O-PSO)

O-PSO incorporates the fuzzy system of preferences of the DM
nto EDPSO to identify the best compromise solution in the swarm
nd guide the iterative process towards an approximation of the true
est compromise. In the following, the modelling of the particles is
resented.

Let 𝑁 be the number of tasks and 𝑀 the number of machines.
he vector 𝑋𝑖 =

(

𝑋𝑖,1, 𝑋𝑖,2, 𝑋𝑖,3,… , 𝑋𝑖,N
)

represents the 𝑖th particle,
here N = 𝑁 + 𝑀 − 1, and 𝑋𝑖,𝑙 ∈ {∗, 1, 2, 3,… , 𝑁} ∀𝑙 ∈ {1, 2, 3,… ,N}.
ccordingly, the tasks are indicated by indices (integers), and each
equence separated by asterisks represents the set of tasks on the
ame machine. For example, 𝑋𝑖 = (6, 2, 4, ∗, 9, 5, 1, 8, ∗, 3, 7) is a possible
chedule in an instance with nine tasks and three machines. Here,
asks 6, 2 and 4 are assigned to the first machine, tasks 9, 5, 1
nd 8 to the second one, and tasks 3 and 7 to the last one. Each
ask is assigned according to the parameters describing the perfor-
ance of each machine when processing the task. The whole swarm

s 𝑋 =
(

𝑋1, 𝑋2, 𝑋3,… , 𝑋𝑛
)

, where 𝑛 is the size of the swarm. In
ccordance with Section 2.1, the multi-objective return of 𝑋𝑖 is 𝑓 (𝑋𝑖) =
𝑓1(𝑋𝑖), 𝑓2(𝑋𝑖), 𝑓3(𝑋𝑖),… , 𝑓𝑝(𝑋𝑖)

)

considering 𝑝 objective functions. Be-
ause the way to calculate 𝑓𝑘(𝑋𝑖)∀𝑘 ∈ {1, 2, 3,… , 𝑝} depends on the
pecific application domain, these definitions are presented within the
ase studies. Additionally, all the functions, relations, and sets of the
reference system (Table 1) can be applied to the schedules of 𝑋.

The processes of O-PSO are described in Sections 3.1–3.5, and the
ain algorithm is presented in Section 3.6. Although Algorithms 1–
are structured in an original way in this paper, they are greatly

nspired by EDPSO. Lines written in blue in the algorithms highlight
he processes of O-PSO to enrich the solutions with the DM preferences,
nd lines in black are the processes that are analogous to EDPSO.

.1. Initial positions of the swarm

Three strategies are used to improve the quality and diversity of the
nitial solutions. The swarm’s size is denoted by 𝑛, and it is split into
hree sub-swarms, with sizes 𝑛1, 𝑛2, and 𝑛3 (𝑛 = 𝑛1 + 𝑛2 + 𝑛3).

The first sub-swarm contains 𝑛1 randomly generated schedules.

ere, 𝑛1 permutations of 𝑁 tasks are generated and, for each particle,

G. Rivera, R. Porras, J.P. Sanchez-Solis et al. Engineering Applications of Artificial Intelligence 108 (2022) 104556

g
f
o
a
m
(
h
h
s
c
t
t

E

w
u
p

t

P

w

3

t
i

V

w
t
a
r

p
e
b

G

w

𝛥

S

p

w
𝑐

u
t
i

V

w

𝑀 −1 asterisks are randomly inserted to differentiate task assignments
to machines. This strategy aims to improve the exploration of the search
space by improving the diversity. The computational complexity of
generating a random permutation of N items belongs to Θ(N).

Algorithm 1: Full greedy algorithm for initial population
Input: 𝑀 , 𝑁 , 𝑝, the objective functions 𝑓𝑘, and weights 𝑤𝑘
Output: 𝑋𝑖 ⊳generated schedule

1 Initialise: 𝑢𝑙 ← {1, 2, 3,… , 𝑁} ⊳the set of unscheduled tasks
2 𝑋 ← EmptySchedule() ⊳the schedule under construction
3 while 𝑢𝑙 ≠ ∅ do
4 Select a 𝑗 from 𝑢𝑙 at random
5 foreach ℎ ∈ {1, 2, 3,… ,𝑀} do
6 𝑋′

𝑖 ← 𝑋𝑖 ⊳𝑋′
𝑖 is a copy of 𝑋𝑖 before adding the 𝑗th task

7 Program task 𝑗 in schedule 𝑋′
𝑖 in machine ℎ

8 Ηℎ ←
𝑝
∑

𝑘=1

[

(𝑤𝑘)
𝑓𝑘(𝑋′

𝑖) − 𝑓𝑘(𝑋𝑖)
𝑓𝑘(𝑋𝑖)

]

⊳heuristic value

9 ℏ ← arg min
1≤ℎ≤𝑀

{

Ηℎ
}

10 Program task 𝑗 in schedule 𝑋𝑖 in machine ℏ
11 𝑢𝑙 ← 𝑢𝑙 ⧵ {𝑗}

The second sub-swarm is composed of 𝑛2 full greedy schedules
enerated by using Algorithm 1. First, a task is randomly selected
rom the set of unscheduled tasks (Line 4), and its effect on the
bjective functions is calculated for each machine (Lines 5–8). Here,
n heuristic value that considers the weights of the objectives (Ηℎ)
easures the impact of scheduling the 𝑗th task in the ℎth machine

Line 8). Subsequently, the task is assigned to the machine with the best
euristic value (Lines 9 and 10). The process is repeated until all tasks
ave been scheduled (Lines 3 and 11). This strategy aims to generate
olutions with an advantageous trade-off between the objectives. Ac-
ording to Algorithm 1, the most complex operation is to calculate Ηℎ;
herefore, the complexity function of the full greedy algorithm belongs
o Θ(𝑝𝑀𝑁).

Algorithm 2: Partial greedy algorithm for initial population
Input: 𝑀 , 𝑁 , 𝑝, 𝑘 (an objective index), and the objective

function 𝑓𝑘
Output: 𝑋𝑖 ⊳generated schedule

1 Initialise: 𝑢𝑙 ← {1, 2, 3,… , 𝑁} ⊳the set of unscheduled tasks
2 𝑋 ← EmptySchedule() ⊳the schedule under construction
3 while 𝑢𝑙 ≠ ∅ do
4 Select a 𝑗 from 𝑢𝑙 at random
5 foreach ℎ ∈ {1, 2, 3,… ,𝑀} do
6 𝑋′

𝑖 ← 𝑋𝑖 ⊳𝑋′
𝑖 is a copy of 𝑋𝑖 before adding the 𝑗th task

7 Program task 𝑗 in schedule 𝑋′
𝑖 in machine ℎ

8 η𝑘ℎ ←
𝑓𝑘(𝑋′

𝑖) − 𝑓𝑘(𝑋𝑖)
𝑓𝑘(𝑋𝑖)

⊳heuristic value for the 𝑘th objective

9 ℏ ← arg min
1≤ℎ≤𝑀

{

η𝑘ℎ
}

10 Program task 𝑗 in schedule 𝑋𝑖 in machine ℏ
11 𝑢𝑙 ← 𝑢𝑙 ⧵ {𝑗}

Finally, 𝑛3 partially greedy schedules – generated through Algorithm
2 – compose the third sub-swarm. Unlike the previous technique, this
approach considers each objective separately. The tasks are randomly
selected, one by one, from the set of unscheduled tasks (Line 4) and are
assigned to the machine with the best heuristic value η𝑘ℎ, which con-
siders one objective alone (Lines 5–10). This strategy aims to generate
extreme solutions in the search space. The complexity of Algorithm 2 is
in Θ(𝑁𝑀) because the heuristic value is calculated for each pair (task,
machine).
5

3.2. The update of the elitist set and the best schedules

An elitist set (E) is implemented to preserve the particles that
offer the best compromise in terms of the DM’s preferences during the
optimisation process. At the end of each iteration (including the initial
cloud), the elitist group up to the 𝜄th iteration is redefined as
𝜄 ← argmin

𝑥∈𝑂
{(|𝑆(𝑂, 𝑥)|, |𝑊 (𝑂, 𝑥)|, |𝐹 (𝑂, 𝑥)|)} (11)

here 𝑂 = E𝜄−1 ∪ 𝑋, with 𝑋 the current cloud, and E0 = ∅. O-PSO
pdates (at the end of each iteration) the global best schedule, G, by
icking randomly a solution from the elite group.

The best schedule known by the 𝑖th particle, P𝑖, is updated using
he concept of outranking in the following manner:

𝑖 =
{

P𝑖 if 𝜎
(

P𝑖, 𝑋𝑖
)

> 𝜎
(

𝑋𝑖,P𝑖
)

,
𝑋𝑖 otherwise, (12)

here 𝑋𝑖 is the current position of the 𝑖th particle.

.3. The calculation of the velocity

Because the solutions in the search space are discrete, the strategy
hat O-PSO uses for updating the velocity of the 𝑖th particle in the 𝜄th
teration is

⃖⃖⃗ 𝜄
𝑖 = 𝜇 × ⃖⃖⃗V𝜄−1

𝑖 + 𝑐1 × (P𝑖 −𝑋𝑖) + 𝑐2 × (G −𝑋𝑖), (13)

here 𝜇, 𝑐1 and 𝑐2 are weight parameters, ⃖⃖⃗V𝜄−1
𝑖 is the velocity in

he previous iteration, 𝑋𝑖 is the current particle’s position, and −, ×,
nd + represent the subtraction, selection, and the and-or operator,
espectively.

The subtraction operator (−) is used for learning from the best
articles (P𝑖 and G). This operator filters (in a binary vector) the
lements of the current particles that are equal to the elements of the
est ones. For example, the operation G −𝑋𝑖 can be represented as

−𝑋𝑖 = 𝛥G =
(

𝛥G
1 , 𝛥

G
2 , 𝛥

G
3 ,… , 𝛥G

N

)

, (14)

here N = 𝑁 +𝑀 − 1 is the size of the vectors, and

G
𝑗 =

{

1 if 𝑋𝑖,𝑗 = G𝑗 ,
0 otherwise. (15)

imilarly, P𝑖 −𝑋𝑖 = 𝛥P𝑖 =
(

𝛥P𝑖
1 , 𝛥P𝑖

2 , 𝛥P𝑖
3 ,… , 𝛥P𝑖

N

)

.
The selection operator (×) randomly takes a proportion of the binary

atterns in the vectors ⃖⃖⃗V𝜄−1
𝑖 , 𝛥G and 𝛥P𝑖 ; the weights 𝜇, 𝑐1 and 𝑐2 denote

these proportions. The non-selected patterns take the opposite binary
value. For instance,

𝑐2 × 𝛥G = 𝑐2𝛥G =
(

𝑐2𝛥G
1 ,

𝑐2𝛥G
2 ,

𝑐2𝛥G
3 ,… , 𝑐2𝛥G

N

)

, (16)

where

𝑐2𝛥G
𝑗 =

{

𝛥G
𝑗 if 𝑟 ≤ 𝑐2,

1 − 𝛥G
𝑗 otherwise, (17)

here 𝑟 is a pseudorandom number, 𝑟 ∼ U(0, 1). Analogously, 𝑐1×𝛥P𝑖 =
1𝛥P𝑖 =

(

𝑐1𝛥P𝑖
1 , 𝑐1𝛥P𝑖

2 , 𝑐1𝛥P𝑖
3 ,… , 𝑐2𝛥G

N

)

and 𝜇×⃖⃖⃗V𝜄−1
𝑖 = 𝜇 ⃖⃖⃗V𝜄−1

𝑖 =
(

𝜇 ⃖⃖⃗V𝜄−1
𝑖,1 ,

𝜇 ⃖⃖⃗V𝜄−1
𝑖,2 , 𝜇 ⃖⃖⃗V𝜄−1

𝑖,3 ,… , 𝜇 ⃖⃖⃗V𝜄−1
𝑖,N

)

.
The and-or operator (+) combines the three parts of Eq. (13),

pdating the velocities of the particles to obtain new velocities based on
he learned patterns. Each component of ⃖⃖⃗V𝜄

𝑖 =
(

⃖⃖⃗V𝜄
𝑖,1, ⃖⃖⃗V

𝜄
𝑖,2, ⃖⃖⃗V

𝜄
𝑖,3,… , ⃖⃖⃗V𝜄

𝑖,N

)

s defined as

⃖⃖⃗ 𝜄
𝑖,𝑗 =

{

𝑓AND(𝑖, 𝑗, 𝜄) if 𝑟 < 0.5,
𝑓OR(𝑖, 𝑗, 𝜄) otherwise ,

(18)

here 𝑟 is a pseudorandom number, 𝑟 ∼ U(0, 1), and

𝑓AND(𝑖, 𝑗, 𝜄) =

{

1 if 𝜇 ⃖⃖⃗V𝜄−1
𝑖,𝑗 = 1 ∧ 𝑐1𝛥P𝑖

𝑗 = 1 ∧ 𝑐2𝛥G
𝑗 = 1, (19)
0 otherwise,

G. Rivera, R. Porras, J.P. Sanchez-Solis et al. Engineering Applications of Artificial Intelligence 108 (2022) 104556

a

3

u

𝑋

w
𝑖
s

r
s
o

𝑋

s
c
w
o
p

3

o
t
𝛬
|

6
T
a
A
(

f
t
u

and

𝑓OR(𝑖, 𝑗, 𝜄) =

{

1 if 𝜇 ⃖⃖⃗V𝜄−1
𝑖,𝑗 = 1 ∨ 𝑐1𝛥P𝑖

𝑗 = 1 ∨ 𝑐2𝛥G
𝑗 = 1,

0 otherwise.
(20)

The parameters 𝜇, 𝑐1 and 𝑐2 are critical for keeping an appropriate
balance between exploitation and exploration (0 < 𝜇, 𝑐1, 𝑐2 ≤ 1). High
values of 𝑐2 intensify the search around the global best solution (G),
and high values of 𝑐1 around local optima (P𝑖). Low values of 𝜇 avoid
revisiting solution patterns recently generated by the same particle.

The complexity of a program that computes the velocity according
to Eq. (13) belongs to Θ(N) because it is only composed of non-nested
operations (−, × and +) that also belong to Θ(N) (See Eqs. (14), (16)
nd (18)).

.4. Updating the positions

To model the movement of the swarm in the 𝜄th iteration, O-PSO
ses the equation
𝜄
𝑖 = 𝑋𝜄−1

𝑖 ⊕ ⃖⃖⃗V𝜄
𝑖 ∀𝑖 ∈ {1, 2, 3,… , 𝑛} (21)

here 𝑛 is the size of the swarm, 𝑋𝜄−1
𝑖 is the previous position of the

th particle, ⃖⃖⃗V𝜄
𝑖 is its current velocity, and ⊕ is the map operator which

plits the particle indices into two subsets, C𝜄
𝑖 =

{

𝑗 ∈ {1, 2, 3,… ,N} ∶
⃖⃖⃗V𝜄
𝑖,𝑗 = 0

}

and its complement,
(

C𝜄
𝑖
)∁ = {1, 2, 3,… ,N} ⧵ C𝜄

𝑖. Let P𝜄
𝑖 be a

andom permutation of C𝜄
𝑖, and pop

(

P𝜄
𝑖
)

be a function that takes in
equence the elements from P𝜄

𝑖, following a queue policy. The position
f the 𝑖th particle in the 𝜄th iteration is

𝜄
𝑖,𝑗 =

⎧

⎪

⎨

⎪

⎩

𝑋𝜄−1
𝑖,𝑗 if 𝑗 ∈

(

C𝜄
𝑖
)∁ ,

𝑋𝜄−1
𝑖,pop

(

P𝜄
𝑖
) otherwise, ∀𝑗 ∈ {1, 2, 3,… ,N}. (22)

Analysing the computational complexity of Eq. (21), the three main
equential operations are: (a) the calculation of the velocity, with a
omplexity function in Θ(N); (b) the binary classification of the indices,
hose complexity is also Θ(N); and, (c) the generation of a permutation
f the indices in C𝜄

𝑖, whose complexity (worst case) is in O(N). Thus, a
rogram repositioning a particle belongs to Θ(N).

.5. The local search

Each iteration, O-PSO performs a local search, referred to as 𝛬-swap,
n the elite set. This search consists of exchanging the positions be-
ween pairs of components of the elite particles. Algorithm 3 describes
-swap. Here, the main loop depends on the cardinality of E. Although
E| ≪ N, assume that |E| = N, as the worst case. According to Lines
–12, six basic operations are repeated 𝛬 times, where 𝛬 = ⌊log2 N⌋.
hus, the complexity of the while-loop (Lines 6–12) is in O(log2 N),
nd the complexity of the for-loop (Lines 2–13) belongs to O

(

N log2 N
)

.
nother time consuming operation is to identify the best compromise

Line 15), which belongs to O(N2𝑝). Accordingly, the complexity of 𝛬-
swap involves two sequential parts: the first belonging to O

(

N log2 N
)

,
and the second one to O(N2𝑝). Therefore, the resulting time complexity
function is in O

(

N2𝑝
)

, where N = 𝑀 + 𝑁 − 1 (𝑀 is the number of
machines, and 𝑁 is the number of tasks); so, it is expressed in terms of
the input size.

3.6. The outranking-based particle swarm optimisation algorithm

Algorithm 4 presents an algorithmic outline of O-PSO. Line 1 ini-
tialises the main variables, and the initial positions are computed in
Lines 2–5 (𝑛1 random schedules, 𝑛2 full-greedy schedules, and 𝑛3 partial
greedy schedules). In Line 5, mod stands for the modulus operator (the
remainder after dividing one number by another), and is only used to

take the indices of the objectives sequentially.

6

Algorithm 3: The local search 𝛬-swap
Input: E ⊳original elite set
Output: E∗ ⊳improved elite set

1 Initialise: 𝛬 ← ⌊log2 N⌋, E′ ← ∅
2 foreach 𝑋𝑖 ∈ E do
3 𝑆1 ← ∅
4 𝑆2 ← ∅
5 𝑋′

𝑖 ← 𝑋𝑖 ⊳𝑋′
𝑖 is a copy of 𝑋𝑖

6 while |

|

𝑆1 ∪ 𝑆2
|

|

≤ 2𝛬 do
7 Select a 𝑗 ∈ {1, 2, 3,… ,N} ⧵

(

𝑆1 ∪ 𝑆2
)

at random
8 𝑆1 ← 𝑆1 ∪ {𝑗}
9 Select a 𝚥 ∈ {1, 2, 3,… ,N} ⧵

(

𝑆1 ∪ 𝑆2
)

at random
10 𝑆2 ← 𝑆2 ∪ {𝚥}
11 𝑋′

𝑖,𝚥 ← 𝑋𝑖,𝑗

12 𝑋′
𝑖,𝑗 ← 𝑋𝑖,𝚥

13 E′ ← 𝑋′
𝑖

14 𝑂 ← E ∪ E′

15 E∗ ← argmin
𝑥∈𝑂

{

(

|𝑆(𝑂, 𝑥)|, |𝑊 (𝑂, 𝑥)|, |𝐹 (𝑂, 𝑥)|
)

}

Algorithm 4: Outranking-based Particle Swarm Optimisation
Input: 𝑀 , 𝑁 , 𝑝, and 𝑓𝑘 ∀𝑘 ∈ {1, 2, 3,… , 𝑝} ⊳Data of the problem
Output: E ⊳An approximation of the best compromise

1 Initialise: 𝜄 ← 1, E ← ∅,
⃖⃖⃗V𝑖,𝑗 ← 0 ∀𝑖 ∈ {1, 2, 3,… , 𝑛}, 𝑗 ∈ {1, 2, 3,… ,N}
⊳Generating initial positions, Lines 2–5

2 Let 𝑋 be a set of 𝑛 ‘‘empty’’ particles
3 𝑋𝑖 ← generate_schedule_at_random(𝑁,𝑀) ∀𝑖 ∈

[

1, 𝑛1
]

4 𝑋𝑖 ← full_greedy(𝑁,𝑀) ∀𝑖 ∈
(

𝑛1, 𝑛1 + 𝑛2
]

⊳Algorithm 1
5 𝑋𝑖 ← partial_greedy(𝑁,𝑀, 1 + 𝑖mod𝑝) ∀𝑖 ∈

(

𝑛1 + 𝑛2, 𝑛
]

⊳Algorithm 2

6 E ← argmin
𝑥∈𝑋

{

(

|𝑆(𝑋, 𝑥)|, |𝑊 (𝑋, 𝑥)|, |𝐹 (𝑋, 𝑥)|
)

}

⊳The elite group

7 E ← 𝛬_swap(E) ⊳Algorithm 3, the local search
8 G ← select_at_ random(E) ⊳Updating the global best solution
9 P𝑖 ← 𝑋𝑖 ∀𝑖 ∈ {1, 2, 3,… , 𝑛} ⊳Updating the local best solutions

10 forall 1 ≤ 𝜄 ≤ 𝑖𝑡𝑒𝑟max do
⊳Updating velocities through Eq. (13)

11 ⃖⃖⃗V𝑖 ← 𝜇 × ⃖⃖⃗V𝑖 + 𝑐1 × (P𝑖 −𝑋𝑖) + 𝑐2 × (G−𝑋𝑖) ∀𝑖 ∈ {1, 2, 3,… , 𝑛}
12 𝑋𝑖 ← 𝑋𝑖 ⊕ ⃖⃖⃗V𝑖 ∀𝑖 ∈ {1, 2, 3,… , 𝑛} ⊳Updating positions through

Eq. (21)
13 𝑂 ← E ∪𝑋

14 E ← argmin
𝑥∈𝑂

{

(

|𝑆(𝑂, 𝑥)|, |𝑊 (𝑂, 𝑥)|, |𝐹 (𝑂, 𝑥)|
)

}

15 E ← 𝛬_swap(E) ⊳Algorithm 3, the local search
16 G ← select_at_ random(E) ⊳Updating the global best

solution
⊳Updating the local best solutions through Eq. (12)

17 P𝑖 ←

{

P𝑖 if 𝜎
(

P𝑖, 𝑋𝑖
)

> 𝜎
(

𝑋𝑖,P𝑖
)

,
𝑋𝑖 otherwise, ∀𝑖 ∈ {1, 2, 3,… , 𝑛}

Subsequently, Line 6 assesses the quality of the initial solutions,
identifying the elite set, which is submitted to the 𝛬-swap algorithm
(Line 7). Lines 8 and 9 identify the first leading particles, P𝑖, and G.

The main loop of O-PSO is presented in Lines 10–17. Here, the
irst step is to compute the velocity of each particle (Line 11) and, by
his means, relocate the swarm (Line 12). Accordingly, the elite set is
pdated (Lines 13 and 14), and 𝛬-swap tries to improve the quality of

this solution set (Line 15). Finally, the leading particles for the next

G. Rivera, R. Porras, J.P. Sanchez-Solis et al. Engineering Applications of Artificial Intelligence 108 (2022) 104556

s

t
a
f

4

a
a
p
t
c
r
c
m

4

t
D
(
a
s
n
r
t
o
f
o
t

P

iteration are identified in Lines 16 and 17. These steps are repeated
𝑖𝑡𝑒𝑟max times. At the end of this process, E contains the best compromise
olution(s).

Considering 𝑀 , 𝑁 , and 𝑝 as the parameters defining the input size,
he most complex operations are the full greedy algorithm, O(𝑀𝑁𝑝),
nd the local search, O(N2𝑝); considering N = 𝑀+𝑁−1, the complexity
unction of O-PSO belongs to O(N2𝑝).

. Experimental results

We implemented O-PSO, which was developed using Python 3.7, on
computer with an AMD FX-8800P R7 processor with 8 GB of RAM,

nd Microsoft Windows 10 as operating system1. In this section, we
resent the numerical results structured as follows: Section 4.1 presents
he application of the algorithm to a real-world case study of a freight
ompany. Section 4.2 analyses the impact on performance of incorpo-
ating the relational system of fuzzy outranking preferences. Section 4.3
ompares the efficiency of O-PSO with an relevant state-of-the-art
etaheuristic for multi-objective UPMSP optimisation.

.1. Real-world case study: Freight transport scheduling

Here, the traffic coordinator is responsible for programming the
ransportation schedule for a freight company every single day. This
M faces a reinterpretation of the multi-objective UPMSP. Analogously,

s)he has a set 𝑀 of truck operators (drivers) instead of machines and
set 𝑁 of cargo deliveries instead of tasks. Then, the question is ‘‘how

hould (s)he assign freights to truck operators in an optimal way?’’ The
otion of optimality strongly depends on the impact of the multicriteria
eturn of the schedules, which should be assessed by the DM to select
he best one. On the whole, the DM considers the skillfulness of each
perator at delivering each type of freight, which can possess different
eatures: weight, fragility, dimensions of the required truck, among
thers. The DM takes the following three criteria (𝑝 = 3) into account
o select the best schedule:

• Completion time: The estimated time required for the truck op-
erators to complete all the deliveries in parallel. The completion
time of a schedule 𝑋𝑖 is

𝑓1(𝑋𝑖) = max
1≤ℎ≤𝑀

{

tℎ(𝑋𝑖)
}

, (23)

where tℎ(𝑋𝑖) is the time the ℎth operator requires to complete
his/her assignments, hence,

tℎ(𝑋𝑖) =
𝑁
∑

𝓁=1
t𝓁ℎ(𝑋𝑖), (24)

where

t𝓁ℎ(𝑋𝑖) =
{

𝜏ℎ,𝓁 if 𝜑(𝑋𝑖,𝓁) = ℎ,
0 otherwise, (25)

where 𝜏ℎ,𝓁 is the time the ℎth operator requires to complete the
𝓁th delivery of freight (1 ≤ ℎ ≤ 𝑀 , 1 ≤ 𝓁 ≤ 𝑁), and 𝜑(𝑋𝑖,𝓁)
is a function that returns the index of the operator who has the
𝓁th freight delivery programmed in schedule 𝑋𝑖. In this study, the
matrix 𝜏 is approximated through linear regression on the data
from the latest year, provided by the company. The independent
variables are the type of truck, the volume of the load, and
the travel time calculated by the Google Maps API to visit the
following points in order: company (departure), origin (client),
destination (client), and company (return). The coefficients of the
linear function are calculated ad hoc for each operator.

1 The source code is available at: https://github.com/GibranPorras/O-
SO.git
7

• Delivery reliability: This second criterion is related with the cer-
tainty that the operators will deliver the products satisfactorily.
To assess this objective, the central tendency is calculated as
follows:

𝑓2(𝑋𝑖) = median
1≤𝓁≤𝑁

{

f
(

𝜑
(

𝑋𝑖,𝓁
))}

, (26)

where f
(

𝜑
(

𝑋𝑖,𝓁
))

is the number of times that the assigned
operator has completed satisfactorily deliveries of the 𝓁th type of
freight. This count is calculated by an SQL query on the database
of the latest year. The type of freight is the conjunction of the
client that requested the service, the type of truck, and the volume
of the load.

• Risk: The likelihood that a schedule will be interrupted, which is
estimated as follows:

𝑓3(𝑋𝑖) = max
1≤𝓁≤𝑁

{

r
(

𝜑
(

𝑋𝑖,𝓁
))}

, (27)

where r
(

𝜑
(

𝑋𝑖,𝓁
))

is the proportion of the assigned operator’s
deliveries of the 𝓁th type of freight that were not satisfactorily
completed.
These cases of unsatisfactory deliveries may be the consequence
of traffic offences, or clients’ complaints. Again, this proportion is
calculated by an SQL query on the database from the latest year.

The first and third objectives are minimising, and the second one is
maximising. For the sake of simplicity, the best compromise schedule
is obtained by applying the system of Table 1 to the Pareto frontier,
defined as

min
𝑋∈𝑅𝐹

{

(

𝑓1(𝑋),−𝑓2(𝑋), 𝑓3(𝑋)
)

}

, (28)

where 𝑅𝐹 is the combinatorial space of feasible solutions. The postulate
of economic rationality says that the DM should choose the 𝑋∗ with
the best balance between 𝑓1, 𝑓2, and 𝑓3, to achieve the organisation’s
goals. Because of its computational complexity, the task of identifying
the optimum is extremely difficult, even impossible for large scale
instances. So, O-PSO is an adequate algorithm to approximate 𝑋∗,
supporting the decision making about schedules.

To apply O-PSO, the first step is to find the parameter settings
for the outranking model. We used the PDA-based approach proposed
by Fernandez et al. (2019b) on a set of 10 archived schedules. The
DM expressed their preferences for each pair of these schedules. This
information about the preferences was used as input in the PDA to
find the parameter values. The parameter values suggested by the PDA
are the following: 𝑊 = (0.41, 0.23, 0.36), 𝑈 = (11, 2, 1), 𝑆 = (95, 17, 8),
𝑉 = (145, 25, 12), 𝜖 = 0.08, 𝛽 = 0.13, and 𝜆 = 0.67.

The parameter values for O-PSO, taken from Wang et al. (2018), are
𝜇 = 0.5, 𝑐1 = 0.5, 𝑐2 = 0.5, 𝑛 = 1000, and 𝑖𝑡𝑒𝑟max = 500. They are used for
all the experiments in this paper. To illustrate how O-PSO works, we
present a numerical example of a case study with 10 truck operators
and 30 types of freight. Fig. 1 plots the solutions of the last iteration of
O-PSO and the reference schedule.

In Fig. 1, the Region of Interest (RoI) obtained in this run is com-
posed of the solutions satisfying the system of preferences. According
to the outranking model, all the solutions in the RoI are indifferent
to each other. This means that these solutions are highly equivalent
(under the assumption that the model actually reflects the DM’s pref-
erences). This set of 5 solutions is presented to the DM. The best
compromise solution chosen is 𝑋∗

O-PSO, with the values of the objectives
𝑓 (𝑋∗

O-PSO) = (388,−474, 7). Then, the best compromise was compared
with the schedule obtained via the current policy, 𝑋∗

ref, which has the
image 𝑓 (𝑋∗

ref) = (720,−470, 8).
Let us compare both solutions taking each objective at a time in

order of importance (weight). The difference in completion time is (𝑓1)
332, which is greater than the veto threshold (𝑣1 = 145). Hence, as a
consequence of Eqs. (9) and (10), 𝜎

(

𝑋∗
ref, 𝑋

∗
O-PSO

)

= 0, which allows
∗ ∗
us to state this first remark: ‘‘𝑋ref is not as good as 𝑋O-PSO’’. Regarding

G. Rivera, R. Porras, J.P. Sanchez-Solis et al. Engineering Applications of Artificial Intelligence 108 (2022) 104556

T
R

t

Fig. 1. 3D representation of the results for one instance of the case study, with 𝑁 = 30 and 𝑀 = 10.
f
i

e

able 2
esults on instances of the real-world case study.
Instance 𝑁 𝑀 Runs with solutions in the A-RoI

1 30 10 10
2 30 8 12
3 25 7 9
4 30 8 10
5 26 7 11
6 28 6 12

the associated risk (𝑓3), the difference is just equal to the indifference
hreshold (𝑢3 = 1). Consequently, there is no important difference in

risk, considering the imprecision expressed by the DM in the fuzzy
outranking system. Finally, the difference in delivery reliability (𝑓2) is
4; this improvement is taken into account by the DM, although it is
still insufficient to veto schedule 𝑋∗

ref (recall the related indifference
and pre-veto thresholds, 𝑢2 = 2 and 𝑠2 = 17). According to Eqs. (5)–(8),
𝜎
(

𝑋∗
O-PSO, 𝑋

∗
ref

)

= 1, leading to this second remark: ‘‘𝑋∗
O-PSO is at least

as good as 𝑋∗
ref’’. In these circumstances, 𝑋∗

O-PSO is strictly preferred to
𝑋∗

ref (see Table 1).
It is worth stressing that any solution from the RoI also dominates

the reference schedule in the Paretian sense. This constitutes the most
important argument with which the DM can justify using O-PSO instead
of the current policy based on queues. Fig. 1 also presents the O-PSO
solutions that are better than the reference in terms of fuzzy relations.
Similar behaviour was observed in all the instances of this case study.

To validate the efficiency of O-PSO, the algorithm was run 30 times
over 6 instances of the case study, whose features are described in
Table 2. Because metaheuristic algorithms are stochastic approaches,
the results vary from run to run. We approximated the true RoI for each
instance by joining the 30 solution sets and applying the definition of
the best compromise. This approximate RoI (A-RoI) is used as a measure
of the O-PSO’s variability in efficiency.

Table 2 shows the data for 6 real-world instances as well as the
number of runs in which O-PSO generated solutions in the A-RoI. The
instances consist of the number of cargo deliveries (𝑁) and the number
of truck operators (𝑀). The data for each instance corresponds to a
different day of the week. This experiment indicates that the DM could
conduct a new execution of the algorithm if (s)he is not confident about
a single run. On average, we suggest up to 6 runs. More runs did not
contribute to making the A-RoI any denser. The run time of O-PSO
ranged from 36 s to 95 s on these instances, with a mean of 52 s.
8

4.2. On the impact of incorporating fuzzy outranking preferences

Here, the aim is to know how O-PSO gets the edge by increas-
ing the selective pressure towards the RoI. Unlike the majority of
multi-objective metaheuristics, O-PSO is not intended to approximate
uniformly distributed samples of the Pareto frontier. Hence, most met-
rics are not adequate to measure its performance (e.g. spread, spacing,
and hypervolume). Because the RoI is a subset of the Pareto frontier, O-
PSO would be competitive if it generates solutions that are close enough
to the true RoI for a wide range of input instances.

Wang et al. (2018) addressed a scheduling problem very similar
to this real-world case study (Section 4.1), providing a benchmark
for comparison. Their proposal outperforms other multi-objective al-
gorithms that are standard approaches for multi-objective optimisation
with 2–4 objective functions. These instances have two minimising
objectives: the completion time (as in Eq. (23)), and the total cost,
which is the number of containers of raw material required by the
schedule. This number is calculated as a function of the sum of the
consumption of each ℎth machine to process each 𝓁th task. With more
formality, 𝑓2(𝑋𝑖) is given by

𝑓2(𝑋𝑖) =
𝑀
∑

ℎ=1

⌈
∑𝑁

𝓁=1 c
𝓁
ℎ(𝑋𝑖)

C

⌉

, (29)

where C is the volume of raw material per container, and c𝓁ℎ(𝑋𝑖) is
defined as

c𝓁ℎ(𝑋𝑖) =
{

𝜛ℎ,𝓁 if 𝜑(𝑋𝑖,𝓁) = ℎ,
0 otherwise, (30)

where 𝜛ℎ,𝓁 is the quantity of raw material the ℎth machine consumes
or processing the 𝓁th task, and 𝜑(𝑋𝑖,𝓁) is the function that returns the
ndex of the machine that has the 𝓁th task programmed in schedule 𝑋𝑖.

Additionally, Wang et al. (2018) proposed 45 synthetic instances,
ach one having a combination of the following features:

• Number of machines 𝑀 : 5, 10 and 15.
• Number of tasks 𝑁 : 100, 200 and 500.
• Ranges for processing time and consumption of raw material:

– Class 1 (𝜏ℎ,𝓁 ∼ U(0, 25], 𝜛ℎ,𝓁 ∼ U(0, 25]),
– Class 2 (𝜏ℎ,𝓁 ∼ U(0, 50], 𝜛ℎ,𝓁 ∼ U(0, 50]),
– Class 3 (𝜏ℎ,𝓁 ∼ U(0, 100], 𝜛ℎ,𝓁 ∼ U(0, 100]),
– Class 4 (𝜏ℎ,𝓁 ∼ U(0, 200], 𝜛ℎ,𝓁 ∼ U(0, 200]), and
– Class 5 (𝜏 ∼ U(0, 500], 𝜛 ∼ U(0, 500]).
ℎ,𝓁 ℎ,𝓁

G. Rivera, R. Porras, J.P. Sanchez-Solis et al. Engineering Applications of Artificial Intelligence 108 (2022) 104556

c

h

Table 3
Coverage and approximation to the RoI for small-size instances. Comparison with
EDPSO.

Inst. 𝑁 𝑀 Class Coverage Solutions in the A-RoI

O-PSO over EDPSO O-PSO EDPSO
EDPSO over O-PSO

1 100 5 1 52% 49% 85% 90%
2 100 5 2 10% 51% 100% 85%
3 100 5 3 56% 53% 100% 100%
4 100 5 4 71% 33% 50% 0%
5 100 5 5 41% 64% 40% 0%
6 100 10 1 50% 45% 93% 85%
7 100 10 2 58% 44% 85% 73%
8 100 10 3 50% 50% 100% 100%
9 100 10 4 43% 67% 100% 95%

10 100 10 5 49% 51% 0% 45%
11 100 15 1 62% 48% 95% 100%
12 100 15 2 64% 43% 85% 50%
13 100 15 3 54% 55% 95% 100%
14 100 15 4 40% 61% 50% 73%
15 100 15 5 42% 68% 0% 30%

We generated 45 instances following these features, classified ac-
ording to the number of tasks as ‘small’, ‘medium’, and ‘large’2. In

Tables 3–5, we present the averages of 30 runs of O-PSO and EDPSO
for each instance size.

Here, the first measure of quality is coverage: the coverage of
an algorithm 𝐴 over another 𝐵 is the proportion of solutions from
𝐵 dominated by those from 𝐴. High values of coverage mean being
closer to the true Pareto frontier in that region. The second measure
is the proportion of solutions provided by runs that are in the A-RoI.
High values mean a better reaching of solutions according to the DM’s
preferences. We calculate the A-RoI per instance by combining the
solution sets from 30 runs of EDPSO, T-RIPG, and O-PSO; and then
selecting from this union those solutions satisfying the relational system
of fuzzy preferences.

A comparison between EDPSO and O-PSO leads us to appreciate
the impact of incorporating the DM preferences: Tables 3–5 present
these results, where values that are statistically significant are in dark
grey when the differences are in favour of O-PSO, and in light grey
when in favour of EDPSO. From here on, the term ‘significant’ implies
a Wilcoxon rank-sum test with a 0.95-confidence interval.

For the 100-size benchmark, the coverage measure in 6 instances
(1, 3, 6, 8, 10 and 13) was similar, in 6 instances (2, 5, 7, 9, 14 and
15) EDPSO was better, and in 3 (4, 11 and 12) O-PSO was better.
On the 15 small instances, the difference in coverage (in favour of
EDPSO) was statistically significant. However, finding a sample of the
Pareto frontier is only a step to solving this problem in practice. The
DM has to implement one solution according to their preferences: so
it is more important to find the best compromise solution than to
find many Pareto-efficient solutions without evidence that they match
the DM’s preferences. According to Table 3, the approximation to the
RoI was similar in 11 instances (1–3, 6–9, 11–13 and 15). In two
instances (10 and 14), EDPSO provided solutions that match the DM
preferences better than O-PSO; and O-PSO offered solutions that are
better – in terms of outranking relations – in two instances (4 and 5).
On the complete 100-size benchmark, there is no significant difference
in terms of approximation to the RoI. Consequently, at this scale, both
metaheuristics have the same efficiency in practice (with a plausible
trend favouring EDPSO).

Table 4 presents the results on the medium size benchmark. In
8 instances (18, 20–22, 25–27 and 30), O-PSO had better coverage;
in 6 instances (16, 17, 19, 23, 24 and 28), the coverage measures
were similar (non-significant differences); and, in only 1 instance (29),

2 The instances can be downloaded from:
ttps://github.com/GibranPorras/O-PSO/tree/main/instancias
9

Table 4
Coverage and approximation to the RoI for medium-size instances. Comparison with
EDPSO.

Inst. 𝑁 𝑀 Class Coverage Solutions in the A-RoI

O-PSO over EDPSO over O-PSO EDPSO
EDPSO O-PSO

16 200 5 1 53% 49% 90% 81%
17 200 5 2 55% 45% 80% 45%
18 200 5 3 61% 47% 87% 92%
19 200 5 4 47% 52% 45% 0%
20 200 5 5 76% 26% 50% 44%
21 200 10 1 65% 41% 96% 90%
22 200 10 2 63% 46% 84% 74%
23 200 10 3 50% 45% 93% 86%
24 200 10 4 57% 50% 60% 0%
25 200 10 5 76% 21% 75% 0%
26 200 15 1 59% 43% 100% 88%
27 200 15 2 67% 40% 92% 81%
28 200 15 3 51% 48% 81% 92%
29 200 15 4 38% 67% 86% 89%
30 200 15 5 61% 41% 45% 0%

Table 5
Coverage and approximation to the RoI for large-size instances. Comparison with
EDPSO.

Inst. 𝑁 𝑀 Class Coverage Solutions in the A-RoI

O-PSO over EDPSO over O-PSO EDPSO
EDPSO O-PSO

31 500 5 1 42% 52% 92% 94%
32 500 5 2 61% 40% 95% 30%
33 500 5 3 59% 34% 90% 50%
34 500 5 4 86% 15% 49% 0%
35 500 5 5 88% 12% 50% 0%
36 500 10 1 57% 28% 97% 89%
37 500 10 2 58% 49% 84% 91%
38 500 10 3 50% 45% 91% 85%
39 500 10 4 69% 33% 73% 38%
40 500 10 5 83% 17% 50% 0%
41 500 15 1 62% 41% 87% 96%
42 500 15 2 53% 47% 100% 0%
43 500 15 3 53% 40% 96% 72%
44 500 15 4 77% 26% 48% 43%
45 500 15 5 73% 27% 47% 0%

EDPSO was better. The difference in coverage was statistically signifi-
cant considering the 15 medium instances. In terms of preferences, both
algorithms provided similar solutions in 10 instances (16, 18, 20–23
and 26–29); in 5 instances (17, 19, 24, 25 and 30), O-PSO provided
solutions matching the DM’s preferences better than EDPSO; and, on
the complete 200-size benchmark, the difference in favour of O-PSO
was significant. Therefore, O-PSO behaves slightly better than EDPSO
at this scale (with this trend statistically tested).

Table 5 presents the results on the 500-size benchmark: here, O-
PSO clearly outperforms EDPSO. In 10/15 instances (32–36, 39–41, 44
and 45), O-PSO provided better coverage than EDPSO; and, in 8/15
instances (32–35, 39, 40, 42 and 45), O-PSO offered solutions matching
the DM’s preferences better than EDPSO. In the rest of the cases, the
measures of O-PSO were not inferior to those of EDPSO. On the 15 large
instances, the differences were significant in both quality measures.
Hence, we strongly suggest the outranking-based metaheuristic to treat
this kind of problem at such a scale.

Additionally, Fig. 2 plots the average time of both PSO algorithms
on the 45 instances: O-PSO always ran faster than EDPSO, and the
difference in run time was significant. On average, O-PSO only requires
75% of the time required by EDPSO. Even though both metaheuristics
have the same computational complexity in terms of big-O (cf. Wang
et al., 2018), O-PSO ran faster than EDPSO as a consequence of inten-
sifying the search towards a particular solution – the best compromise,
which belongs to a relatively small set of schedules (the RoI) – instead
of approximating a sample of the complete Pareto frontier. Hence,

G. Rivera, R. Porras, J.P. Sanchez-Solis et al. Engineering Applications of Artificial Intelligence 108 (2022) 104556

a
i

4

l
p
O
p
f
(
a
u
t
s
p
𝓁
w
t

b

c

Fig. 2. Average run time on the 45 synthetic instances.
T
C
T

lesser number of pair-wise comparisons per iteration are made to
dentify the efficient schedules.

.3. On the efficiency of O-PSO

Section 4.1 provides evidence in favour of O-PSO at the application
evel. However, more experiments are needed to validate the com-
etitiveness of this approach in terms of the state of the art. Here,
-PSO is compared with T-RIPG (Yepes-Borrero et al., 2021), a recently
ublished metaheuristic based on the iterated Pareto greedy algorithm
or treating a bi-objective UPMSP. According to Yepes-Borrero et al.
2021), T-RIPG performs better in terms of hypervolume than other
lgorithms facing similar multi-objective UPMSPs. Here, T-RIPG is
sed to solve the instances described in Section 4.2, approximating
he Pareto frontier with the right level of closeness according to the
pecialised literature. T-RIPG was run 30 times per instance with the
arameter setting reported by Yepes-Borrero et al. (2021) (𝑑 = 4, 𝑝 = 1,
= 50 and 𝑞 = 50). Both metaheuristic algorithms were set to stop

hen 500,000 evaluations of the multi-objective function are reached;
his setting places them on an equal footing.

Table 6 presents the results for the 100-size benchmark, which can
e summarised as follows:

• the coverage measure in 10 instances (1–3, 6, 8, 10, 11, and 13–
15) was statistically indistinguishable; in 3 instances (5, 7, and 9)
T-RIPG was better, and in 2 (4 and 12), O-PSO was better;

• on the 15 small instances, the difference in coverage was not
statistically significant;

• the approximation to the RoI was similar in 10 instances (1, 3,
6–9 and 11–14), O-PSO provided solutions that match the DM
preferences better than T-RIPG in 2 instances (2 and 4), and T-
RIPG offered solutions that are better – in terms of outranking –
in 3 instances (5, 10 and 15); and

• on the complete 100-size benchmark, there is no significant dif-
ference in terms of approximation to the RoI; consequently, at this
scale, both metaheuristics have a similar degree of efficiency.

Table 7 presents the results on the medium size benchmark, which
an be summarised in the following points:

• O-PSO had better coverage in 5 instances (20–22, 25, and 27),
the coverage measures were similar (non-significant differences)
in 8 instances (16–18, 23, 24, 26, 28, and 30), and T-RIPG was
better in only 2 instances (19 and 29);
10
able 6
overage and approximation to the RoI for small-size instances. Comparison with
-RIPG.
Inst. 𝑁 𝑀 Class Coverage Solutions in the A-RoI

O-PSO over T-RIPG O-PSO T-RIPG
T-RIPG over O-PSO

1 100 5 1 9% 12% 85% 79%
2 100 5 2 11% 8% 100% 43%
3 100 5 3 16% 10% 100% 100%
4 100 5 4 13% 0% 50% 19%
5 100 5 5 3% 9% 40% 62%
6 100 10 1 14% 10% 93% 95%
7 100 10 2 8% 16% 85% 74%
8 100 10 3 10% 10% 100% 100%
9 100 10 4 7% 20% 100% 91%

10 100 10 5 0% 0% 0% 26%
11 100 15 1 2% 5% 95% 87%
12 100 15 2 24% 7% 85% 68%
13 100 15 3 14% 10% 95% 100%
14 100 15 4 7% 3% 50% 52%
15 100 15 5 2% 0% 0% 41%

• the difference in coverage was statistically significant considering
the 15 medium instances;

• in terms of outranking, both algorithms provided similar solutions
in 9 instances (16, 20–24, and 27–29); O-PSO provided solutions
matching the DM’s preferences better than T-RIPG in 4 instances
(17, 18, 25, and 26), and T-RIPG outperformed O-PSO in 2
instances (19 and 30); and

• finally, on the complete 200-size benchmark, the difference in
favour of O-PSO was significant in the number of solutions be-
longing to the A-RoI; therefore, O-PSO behaves better than T-
RIPG at this scale.

Table 8 presents the results on the 500-size benchmark, from which
the following remarks can be made:

• in 8/15 instances (33–35, 38–40, 44, and 45), O-PSO provided
better coverage than T-RIPG;

• in 7/15 instances (32–35, 39, 40, and 45), O-PSO offered solu-
tions matching the DM’s preferences better than T-RIPG;

• on the 15 large instances, the differences were significant in both
quality measures; and

G. Rivera, R. Porras, J.P. Sanchez-Solis et al. Engineering Applications of Artificial Intelligence 108 (2022) 104556

5

b
o
p
P
p

t
t
O
c

f
b
w
P
P
s
e

a
p
o
i

m
a

Table 7
Coverage and approximation to the RoI for medium-size instances. Comparison with
T-RIPG.

Inst. 𝑁 𝑀 Class Coverage Solutions in the A-RoI

O-PSO over T-RIPG over O-PSO T-RIPG
T-RIPG O-PSO

16 200 5 1 13% 19% 90% 79%
17 200 5 2 15% 14% 80% 46%
18 200 5 3 21% 17% 87% 42%
19 200 5 4 9% 22% 45% 60%
20 200 5 5 36% 26% 50% 42%
21 200 10 1 25% 11% 96% 89%
22 200 10 2 23% 6% 84% 73%
23 200 10 3 12% 15% 93% 95%
24 200 10 4 17% 25% 60% 51%
25 200 10 5 28% 21% 75% 24%
26 200 15 1 19% 18% 100% 58%
27 200 15 2 27% 21% 92% 71%
28 200 15 3 11% 18% 81% 82%
29 200 15 4 0% 18% 86% 90%
30 200 15 5 24% 20% 45% 57%

Table 8
Coverage and approximation to the RoI for large-size instances. Comparison with
T-RIPG.

Inst. 𝑁 𝑀 Class Coverage Solutions in the A-RoI

O-PSO over T-RIPG over O-PSO T-RIPG
T-RIPG O-PSO

31 500 5 1 11% 7% 92% 89%
32 500 5 2 9% 6% 95% 35%
33 500 5 3 18% 0% 90% 66%
34 500 5 4 32% 0% 49% 17%
35 500 5 5 43% 11% 50% 15%
36 500 10 1 21% 8% 97% 83%
37 500 10 2 21% 11% 84% 81%
38 500 10 3 37% 6% 91% 76%
39 500 10 4 20% 0% 73% 28%
40 500 10 5 30% 0% 50% 20%
41 500 15 1 12% 7% 87% 96%
42 500 15 2 20% 13% 100% 94%
43 500 15 3 19% 7% 96% 72%
44 500 15 4 26% 0% 48% 43%
45 500 15 5 42% 0% 47% 14%

• O-PSO was capable of approximating the RoI at least as well as
the standard reported in the state-of-art literature for this kind of
multi-objective UPMSP.

. Conclusions and directions for future research

This paper has presented a metaheuristic, referred to as O-PSO,
ased on swarm intelligence to carry out multi-objective scheduling
ptimisation in unrelated parallel machines, which incorporates the
references of the DM. As far as we know, this is the first time that
SO has been enriched with a relational system of fuzzy outranking
references.

We presented the application of O-PSO to a real-world problem in
he freight industry with three objective functions, whose discrete op-
imisation model is also a contribution of this paper. In this case study,
-PSO showed that it was able to generating high-quality solutions
ompared with a widely used policy.

Also, an experiment with a benchmark of synthetic instances classi-
ied as small, medium, and large was conducted. The results are backed
y a series of statistical tests and comparisons with EDPSO and T-RIPG,
hich are the metaheuristics with the best results at approximating the
areto set for this kind of scheduling problem. For large instances, O-
SO often finds schedules that outrank those from EDPSO and T-RIPG
o it becomes more suitable as the input size increases, which gives
vidence of its scalability. In addition, O-PSO ran faster than EDPSO
11
because it searches for the RoI rather than approximating a sample
of the entire Pareto frontier. These results show the efficiency of our
proposal. The better performance of our approach can be attributed to
its use of the relational system of fuzzy outranking preferences.

The following are the advantages of O-PSO: (i) it supports the
nalysis of non-dominated schedules by incorporating the underlying
rinciples of the European School of MultiCriteria Decision Analysis. In
ther words, it uses fuzzy outranking to consider the DM preferences
nstead of exclusively using Pareto dominance; (ii) the system makes

selective pressure towards solutions that belong to a region of the
efficient frontier according to the preferences (the RoI), preventing
searching the entire Pareto frontier; (iii) an a posteriori decision analysis
of the schedules is no longer required; and, (iv) the system deals with
any number of objectives because they are always mapped into three
objectives when defining the best compromise solution.

The advantages of our approach are not restricted to the domain of
the freight industry; therefore, O-PSO could be adapted and applied to
other real-world multi-objective UPMSPs such as energy systems (e.g.
Zhou and Gu, 2021; Zhu and Tianyu, 2019), health systems (e.g.
Pouria et al., 2021), textile industry (e.g. Kim and Kim, 2020), plastic
processing plants (e.g. Fanjul-Peyro, 2020), automotive industry (e.g.
Åblad et al., 2021), cloud computing (e.g. Bhardwaj et al., 2020), and
aircraft industry (e.g. Kianpour et al., 2021), to mention only a few.
Contrastingly, O-PSO requires close interaction with the DM to infer the
parameter values for the outranking model. We suggest that a decision
analyst support the DM during this challenging task, which is still an
open field for research within the area of MCDA.

As future research, we will develop a mathematical programming
method based on outranking relations to reschedule parts of the plan-
ning that could be dynamically interrupted, where the aim is to min-
imise the changes to the overall timetable. Since programme inter-
ruptions are common in this domain, it is important to address this
issue. For this purpose, the parameter values and the known data about
outranking relations will also be used to reschedule. In addition, we will
conduct a study to determine how the number of objective functions
affects the performance of O-PSO.

CRediT authorship contribution statement

Gilberto Rivera: Conceptualization, Methodology, Validation, For-
al analysis, Supervision. Raúl Porras: Software, Validation, Project

dministration, Writing - original draft. J. Patricia Sanchez-Solis: Con-
ceptualization, Investigation, Validation, Writing - original draft. Ro-
gelio Florencia: Conceptualization, Validation, Investigation. Vicente
García: Software, Validation, Resources.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

Åblad, E., Strömberg, A., Spensieri, D., 2021. Exact makespan minimization of unrelated
parallel machines. Open J. Math. Optim. 2, 1–15. http://dx.doi.org/10.5802/ojmo.
4.

Afzalirad, M., Rezaeian, J., 2017. A realistic variant of bi-objective unrelated parallel
machine scheduling problem: NSGA-II and MOACO approaches. Appl. Soft Comput.
50, 109–123. http://dx.doi.org/10.1016/j.asoc.2016.10.039.

Akbar, M., Irohara, T., 2018. Scheduling for sustainable manufacturing: A review. J.
Cleaner Prod. 205, 866–883. http://dx.doi.org/10.1016/j.jclepro.2018.09.100.

Alvarez, P.A., Leyva López, J., López Parra, P., 2018a. A new disaggregation preference
method for new products design. In: 13th International FLINS Conference, Belfast,
Northern Ireland, UK. World Scientific, http://dx.doi.org/10.1142/9789813273238_
0128.

Alvarez, P.A., Pereira, J., Arroyo, M., Leyva López, J.C., 2018b. Disaggregating
preferences for a supplier development problem in the mexican aerospace industry.
In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, pp.
1–7. http://dx.doi.org/10.1109/FUZZ-IEEE.2018.8491496.

http://dx.doi.org/10.5802/ojmo.4
http://dx.doi.org/10.5802/ojmo.4
http://dx.doi.org/10.5802/ojmo.4
http://dx.doi.org/10.1016/j.asoc.2016.10.039
http://dx.doi.org/10.1016/j.jclepro.2018.09.100
http://dx.doi.org/10.1142/9789813273238_0128
http://dx.doi.org/10.1142/9789813273238_0128
http://dx.doi.org/10.1142/9789813273238_0128
http://dx.doi.org/10.1109/FUZZ-IEEE.2018.8491496

G. Rivera, R. Porras, J.P. Sanchez-Solis et al. Engineering Applications of Artificial Intelligence 108 (2022) 104556

M

M

N

N

N

O

P

R

R

R

R

R

S

S

Bai, Q., 2010. Analysis of particle swarm optimization algorithm. Comput. Inf. Sci. 3
(1), 180.

Bhardwaj, K.A., Gajpal, Y., Surti, C., Gill, S.S., 2020. Heart: Unrelated parallel machines
problem with precedence constraints for task scheduling in cloud computing using
heuristic and meta-heuristic algorithms. Softw. - Pract. Exp. 50 (12), 2231–2251.
http://dx.doi.org/10.1002/spe.2890.

Bitar, A., Dauzère-Pérès, S., Yugma, C., 2021. Unrelated parallel machine scheduling
with new criteria: Complexity and models. Comput. Oper. Res. 132, 105291.
http://dx.doi.org/10.1016/j.cor.2021.105291.

Chang, Y.-M., Liao, W.-C., Wang, S.-C., Yang, C.-C., Hwang, Y.-S., 2020. A framework
for scheduling dependent programs on GPU architectures. J. Syst. Archit. 106,
101712. http://dx.doi.org/10.1016/j.sysarc.2020.101712.

Cheng, C.-Y., Pourhejazy, P., Ying, K.-C., Li, S.-F., Chang, C.-W., 2020. Learning-
based metaheuristic for scheduling unrelated parallel machines with uncertain
setup times. IEEE Access 8, 74065–74082. http://dx.doi.org/10.1109/ACCESS.
2020.2988274.

Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A., et al., 2007. Evolutionary
Algorithms for Solving Multi-Objective Problems, Vol. 5. Springer, http://dx.doi.
org/10.1007/978-0-387-36797-2.

Cruz-Reyes, L., Fernandez, E., Sanchez-Solis, J.P., Coello Coello, C.A., Gomez, C., 2020.
Hybrid evolutionary multi-objective optimisation using outranking-based ordinal
classification methods. Swarm Evol. Comput. 54, 100652. http://dx.doi.org/10.
1016/j.swevo.2020.100652.

Cruz-Reyes, L., Perez-Villafuerte, M., Rangel, N., Fernandez, E., Gomez, C., Sanchez-
Solis, P., 2018. Performance analysis of an a priori strategy to elicitate and
incorporate preferences in multi-objective optimization evolutionary algorithms.
In: Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical
Aspects and Real Applications. Springer, pp. 401–414. http://dx.doi.org/10.1007/
978-3-319-71008-2_29.

Doumpos, M., Zopounidis, C., 2019. Preference disaggregation for multicriteria decision
aiding: An overview and perspectives. In: New Perspectives in Multiple Criteria
Decision Making. Springer, pp. 115–130. http://dx.doi.org/10.1007/978-3-030-
11482-4_4.

Ezugwu, A.E., 2019. Enhanced symbiotic organisms search algorithm for unrelated
parallel machines manufacturing scheduling with setup times. Knowl.-Based Syst.
172, 15–32. http://dx.doi.org/10.1016/j.knosys.2019.02.005.

Fanjul-Peyro, L., 2020. Models and an exact method for the unrelated parallel machine
scheduling problem with setups and resources. Expert Syst. Appl.: X 5, 100022.
http://dx.doi.org/10.1016/j.eswax.2020.100022.

Fernandez, E., Gomez, C., Rivera, G., Cruz-Reyes, L., 2015. Hybrid metaheuristic
approach for handling many objectives and decisions on partial support in project
portfolio optimisation. Inform. Sci. 315, 102–122. http://dx.doi.org/10.1016/j.ins.
2015.03.064.

Fernandez, E., Gomez-Santillan, C., Rangel-Valdez, N., Cruz-Reyes, L., Balderas, F.,
2019a. An interval-based evolutionary approach to portfolio optimization of new
product development projects. Math. Probl. Eng. 2019, http://dx.doi.org/10.1155/
2019/4065424.

Fernandez, E., Navarro, J., Solares, E., Coello Coello, C.A., 2020. Using evolutionary
computation to infer the decision maker’s preference model in presence of imperfect
knowledge: A case study in portfolio optimization. Swarm Evol. Comput. 54,
100648. http://dx.doi.org/10.1016/j.swevo.2020.100648.

Fernandez, E., Rangel-Valdez, N., Cruz-Reyes, L., Gomez-Santillan, C., Rivera-Zarate, G.,
Sanchez-Solis, P., 2019b. Inferring parameters of a relational system of preferences
from assignment examples using an evolutionary algorithm. Technol. Econ. Dev.
Econ. 2019, 693–715. http://dx.doi.org/10.3846/tede.2019.9475.

Frausto-Solis, J., Hernández-Ramírez, L., Castilla-Valdez, G., González-Barbosa, J.,
Sánchez-Hernández, J., 2021. Chaotic multi-objective simulated annealing and
threshold accepting for job shop scheduling problem. Math. Comput. Appl. 26,
1–34. http://dx.doi.org/10.3390/mca26010008.

Fuchigami, H.Y., Rangel, S., 2018. A survey of case studies in production scheduling:
Analysis and perspectives. J. Comput. Sci. 25, 425–436. http://dx.doi.org/10.1016/
j.jocs.2017.06.004.

Garavito-Hernández, E.A., Peña Tibaduiza, E., Perez-Figueredo, L.E., Moratto-
Chimenty, E., 2019. A meta-heuristic based on the imperialist competitive algorithm
(ICA) for solving hybrid flow shop (HFS) scheduling problem with unrelated
parallel machines. J. Ind. Prod. Eng. 36 (6), 362–370. http://dx.doi.org/10.1080/
21681015.2019.1647299.

Gilvaei, M.N., Jafari, H., Ghadi, M.J., Li, L., 2020. A novel hybrid optimization approach
for reactive power dispatch problem considering voltage stability index. Eng. Appl.
Artif. Intell. 96, 103963. http://dx.doi.org/10.1016/j.engappai.2020.103963.

Harbaoui, H., Khalfallah, S., 2020. Tabu-search optimization approach for no-wait
hybrid flow-shop scheduling with dedicated machines. Procedia Comput. Sci. 176,
706–712. http://dx.doi.org/10.1016/j.procs.2020.09.043.

Kayvanfar, V., Zandieh, M., Teymourian, E., 2017. An intelligent water drop algorithm
to identical parallel machine scheduling with controllable processing times: a just-
in-time approach. Comput. Appl. Math. 36 (1), 159–184. http://dx.doi.org/10.
1007/s40314-015-0218-3.

Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings
of ICNN’95-International Conference on Neural Networks, Vol. 4. IEEE, pp.
1942–1948. http://dx.doi.org/10.1109/ICNN.1995.488968.
12
Kianpour, P., Gupta, D., Krishnan, K., Gopalakrishnan, B., 2021. Optimising unrelated
parallel machine scheduling in job shops with maximum allowable tardiness limit.
Int. J. Ind. Syst. Eng. 37 (3), 359–381. http://dx.doi.org/10.1504/IJISE.2021.
113443.

Kim, Y.-H., Kim, R.-S., 2020. Insertion of new idle time for unrelated parallel machine
scheduling with job splitting and machine breakdowns. Comput. Ind. Eng. 147,
106630. http://dx.doi.org/10.1016/j.cie.2020.106630.

Kurniawan, B., 2020. Mathematical models of energy-conscious bi-objective unrelated
parallel machine scheduling. J. Tek. Ind. 21 (2), 115–125. http://dx.doi.org/10.
22219/JTIUMM.Vol21.No2.115-125.

Lei, D., Yuan, Y., Cai, J., Bai, D., 2020. An imperialist competitive algorithm with
memory for distributed unrelated parallel machines scheduling. Int. J. Prod. Res.
58 (2), 597–614. http://dx.doi.org/10.1080/00207543.2019.1598596.

Lin, S.-W., Ying, K.-C., Wu, W.-J., Chiang, Y.-I., 2016. Multi-objective unrelated parallel
machine scheduling: a tabu-enhanced iterated Pareto greedy algorithm. Int. J. Prod.
Res. 54 (4), 1110–1121. http://dx.doi.org/10.1080/00207543.2015.1047981.

Lu, S., Liu, X., Pei, J., Thai, M.T., Pardalos, P.M., 2018. A hybrid ABC-TS algorithm
for the unrelated parallel-batching machines scheduling problem with deteriorating
jobs and maintenance activity. Appl. Soft Comput. 66, 168–182. http://dx.doi.org/
10.1016/j.asoc.2018.02.018.

Manupati, V., Rajyalakshmi, G., Chan, F.T., Thakkar, J., 2017. A hybrid multi-objective
evolutionary algorithm approach for handling sequence-and machine-dependent
set-up times in unrelated parallel machine scheduling problem. Sādhanā 42 (3),
391–403. http://dx.doi.org/10.1007/s12046-017-0611-2.

eng, L., Zhang, C., Shao, X., Ren, Y., Ren, C., 2019. Mathematical modelling
and optimisation of energy-conscious hybrid flow shop scheduling problem with
unrelated parallel machines. Int. J. Prod. Res. 57 (4), 1119–1145. http://dx.doi.
org/10.1080/00207543.2018.1501166.

urakami, K., Morita, H., 2010. A method for generating robust schedule under
uncertainty in processing time. Int. J. Biomed. Soft Comput. Hum. Sci.: Off. J.
Biomed. Fuzzy Syst. Assoc. 15 (1), 45–50. http://dx.doi.org/10.24466/ijbschs.15.
1_45.

aderi, E., Pourakbari-Kasmaei, M., Abdi, H., 2019. An efficient particle swarm
optimization algorithm to solve optimal power flow problem integrated with FACTS
devices. Appl. Soft Comput. 80, 243–262. http://dx.doi.org/10.1016/j.asoc.2019.
04.012.

aderi, E., Pourakbari-Kasmaei, M., Cerna, F., Lehtonen, M., 2021. A novel hybrid self-
adaptive heuristic algorithm to handle single- and multi-objective optimal power
flow problems. Int. J. Electr. Power Energy Syst. 125, 106492. http://dx.doi.org/
10.1016/j.ijepes.2020.106492.

aderi, E., Pourakbari-Kasmaei, M., Lehtonen, M., 2020. Transmission expansion
planning integrated with wind farms: A review, comparative study, and a novel
profound search approach. Int. J. Electr. Power Energy Syst. 115, 105460. http:
//dx.doi.org/10.1016/j.ijepes.2019.105460.

jstersek, R., Brezocnik, M., Buchmeister, B., 2020. Multi-objective optimization of
production scheduling with evolutionary computation: a review. Int. J. Ind. Eng.
Comput. 11 (3), 359–376. http://dx.doi.org/10.5267/j.ijiec.2020.1.003.

ouria, K., Vahid, K., Majid, R., Frank, W., 2021. A bi-objective home health care
routing and scheduling model with considering nurse downgrading costs. Int. J.
Environ. Res. Public Health 18 (3), http://dx.doi.org/10.3390/ijerph18030900.

amos-Figueroa, O., Quiroz-Castellanos, M., Carmona-Arroyo, G., Vázquez, B.,
Kharel, R., 2020. Parallel-machine scheduling problem: An experimental study of
instances difficulty and algorithms performance. In: Recent Advances of Hybrid
Intelligent Systems Based on Soft Computing. Springer, pp. 13–49. http://dx.doi.
org/10.1007/978-3-030-58728-4_2.

angel-Valdez, N., Fernandez, E., Cruz-Reyes, L., Gomez-Santillan, C., Rivera, G.,
Florencia, R., 2018. Robustness analysis of an outranking model parameters’
elicitation method in the presence of noisy examples. Math. Probl. Eng. 2018,
http://dx.doi.org/10.1155/2018/2157937.

angel-Valdez, N., Fernández, E., Cruz-Reyes, L., Santillán, C.G., Hernández-López, R.I.,
2015. Multiobjective optimization approach for preference-disaggregation analysis
under effects of intensity. In: Mexican International Conference on Artificial
Intelligence. Springer, pp. 451–462. http://dx.doi.org/10.1007/978-3-319-27101-
9_34.

ivera, G., Cisneros, L., Sánchez-Solís, P., Rangel-Valdez, N., Rodas-Osollo, J., 2020.
Genetic algorithm for scheduling optimization considering heterogeneous con-
tainers: A real-world case study. Axioms 9 (1), 27. http://dx.doi.org/10.3390/
axioms9010027.

oy, B., Vanderpooten, D., 1996. The European school of MCDA: Emergence, basic
features and current works. J. Multi-Criteria Decis. Anal. 5 (1), 22–38. http://dx.
doi.org/10.1002/(SICI)1099-1360(199603)5:1<22::AID-MCDA93>3.0.CO;2-F.

habtay, D., Zofi, M., 2018. Single machine scheduling with controllable processing
times and an unavailability period to minimize the makespan. Int. J. Prod. Econ.
198, 191–200. http://dx.doi.org/10.1016/j.ijpe.2017.12.025.

hahvari, O., Logendran, R., 2017. An enhanced tabu search algorithm to minimize
a bi-criteria objective in batching and scheduling problems on unrelated-parallel
machines with desired lower bounds on batch sizes. Comput. Oper. Res. 77,
154–176. http://dx.doi.org/10.1016/j.cor.2016.07.021.

http://refhub.elsevier.com/S0952-1976(21)00398-5/sb6
http://refhub.elsevier.com/S0952-1976(21)00398-5/sb6
http://refhub.elsevier.com/S0952-1976(21)00398-5/sb6
http://dx.doi.org/10.1002/spe.2890
http://dx.doi.org/10.1016/j.cor.2021.105291
http://dx.doi.org/10.1016/j.sysarc.2020.101712
http://dx.doi.org/10.1109/ACCESS.2020.2988274
http://dx.doi.org/10.1109/ACCESS.2020.2988274
http://dx.doi.org/10.1109/ACCESS.2020.2988274
http://dx.doi.org/10.1007/978-0-387-36797-2
http://dx.doi.org/10.1007/978-0-387-36797-2
http://dx.doi.org/10.1007/978-0-387-36797-2
http://dx.doi.org/10.1016/j.swevo.2020.100652
http://dx.doi.org/10.1016/j.swevo.2020.100652
http://dx.doi.org/10.1016/j.swevo.2020.100652
http://dx.doi.org/10.1007/978-3-319-71008-2_29
http://dx.doi.org/10.1007/978-3-319-71008-2_29
http://dx.doi.org/10.1007/978-3-319-71008-2_29
http://dx.doi.org/10.1007/978-3-030-11482-4_4
http://dx.doi.org/10.1007/978-3-030-11482-4_4
http://dx.doi.org/10.1007/978-3-030-11482-4_4
http://dx.doi.org/10.1016/j.knosys.2019.02.005
http://dx.doi.org/10.1016/j.eswax.2020.100022
http://dx.doi.org/10.1016/j.ins.2015.03.064
http://dx.doi.org/10.1016/j.ins.2015.03.064
http://dx.doi.org/10.1016/j.ins.2015.03.064
http://dx.doi.org/10.1155/2019/4065424
http://dx.doi.org/10.1155/2019/4065424
http://dx.doi.org/10.1155/2019/4065424
http://dx.doi.org/10.1016/j.swevo.2020.100648
http://dx.doi.org/10.3846/tede.2019.9475
http://dx.doi.org/10.3390/mca26010008
http://dx.doi.org/10.1016/j.jocs.2017.06.004
http://dx.doi.org/10.1016/j.jocs.2017.06.004
http://dx.doi.org/10.1016/j.jocs.2017.06.004
http://dx.doi.org/10.1080/21681015.2019.1647299
http://dx.doi.org/10.1080/21681015.2019.1647299
http://dx.doi.org/10.1080/21681015.2019.1647299
http://dx.doi.org/10.1016/j.engappai.2020.103963
http://dx.doi.org/10.1016/j.procs.2020.09.043
http://dx.doi.org/10.1007/s40314-015-0218-3
http://dx.doi.org/10.1007/s40314-015-0218-3
http://dx.doi.org/10.1007/s40314-015-0218-3
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1504/IJISE.2021.113443
http://dx.doi.org/10.1504/IJISE.2021.113443
http://dx.doi.org/10.1504/IJISE.2021.113443
http://dx.doi.org/10.1016/j.cie.2020.106630
http://dx.doi.org/10.22219/JTIUMM.Vol21.No2.115-125
http://dx.doi.org/10.22219/JTIUMM.Vol21.No2.115-125
http://dx.doi.org/10.22219/JTIUMM.Vol21.No2.115-125
http://dx.doi.org/10.1080/00207543.2019.1598596
http://dx.doi.org/10.1080/00207543.2015.1047981
http://dx.doi.org/10.1016/j.asoc.2018.02.018
http://dx.doi.org/10.1016/j.asoc.2018.02.018
http://dx.doi.org/10.1016/j.asoc.2018.02.018
http://dx.doi.org/10.1007/s12046-017-0611-2
http://dx.doi.org/10.1080/00207543.2018.1501166
http://dx.doi.org/10.1080/00207543.2018.1501166
http://dx.doi.org/10.1080/00207543.2018.1501166
http://dx.doi.org/10.24466/ijbschs.15.1_45
http://dx.doi.org/10.24466/ijbschs.15.1_45
http://dx.doi.org/10.24466/ijbschs.15.1_45
http://dx.doi.org/10.1016/j.asoc.2019.04.012
http://dx.doi.org/10.1016/j.asoc.2019.04.012
http://dx.doi.org/10.1016/j.asoc.2019.04.012
http://dx.doi.org/10.1016/j.ijepes.2020.106492
http://dx.doi.org/10.1016/j.ijepes.2020.106492
http://dx.doi.org/10.1016/j.ijepes.2020.106492
http://dx.doi.org/10.1016/j.ijepes.2019.105460
http://dx.doi.org/10.1016/j.ijepes.2019.105460
http://dx.doi.org/10.1016/j.ijepes.2019.105460
http://dx.doi.org/10.5267/j.ijiec.2020.1.003
http://dx.doi.org/10.3390/ijerph18030900
http://dx.doi.org/10.1007/978-3-030-58728-4_2
http://dx.doi.org/10.1007/978-3-030-58728-4_2
http://dx.doi.org/10.1007/978-3-030-58728-4_2
http://dx.doi.org/10.1155/2018/2157937
http://dx.doi.org/10.1007/978-3-319-27101-9_34
http://dx.doi.org/10.1007/978-3-319-27101-9_34
http://dx.doi.org/10.1007/978-3-319-27101-9_34
http://dx.doi.org/10.3390/axioms9010027
http://dx.doi.org/10.3390/axioms9010027
http://dx.doi.org/10.3390/axioms9010027
http://dx.doi.org/10.1002/(SICI)1099-1360(199603)5:1<22::AID-MCDA93>3.0.CO;2-F
http://dx.doi.org/10.1002/(SICI)1099-1360(199603)5:1<22::AID-MCDA93>3.0.CO;2-F
http://dx.doi.org/10.1002/(SICI)1099-1360(199603)5:1<22::AID-MCDA93>3.0.CO;2-F
http://dx.doi.org/10.1016/j.ijpe.2017.12.025
http://dx.doi.org/10.1016/j.cor.2016.07.021

G. Rivera, R. Porras, J.P. Sanchez-Solis et al. Engineering Applications of Artificial Intelligence 108 (2022) 104556
Tirkolaee, E., Aydın, N., Ranjbar-Bourani, M., Weber, G., 2020. A robust bi-objective
mathematical model for disaster rescue units allocation and scheduling with
learning effect. Comput. Ind. Eng. 149, 106790. http://dx.doi.org/10.1016/j.cie.
2020.106790.

Wang, H., Alidaee, B., 2019. Effective heuristic for large-scale unrelated parallel
machines scheduling problems. Omega 83, 261–274. http://dx.doi.org/10.1016/
j.omega.2018.07.005.

Wang, M.-Z., Zhang, L.-L., Choi, T.-M., 2018. Bi-objective optimal scheduling with raw
material’s shelf-life constraints in unrelated parallel machines production. IEEE
Trans. Syst. Man Cybern.: Syst. 50 (11), 4598–4610. http://dx.doi.org/10.1109/
TSMC.2018.2855700.

Wojakowski, P., Warżołek, D., 2014. The classification of scheduling problems under
production uncertainty. Res. Logist. Prod. 4 (3), 245–255.

Yan, W., Li, M.-J., Zhong, Y.-C., Qu, C.-Y., Li, G.-X., 2020. A novel k-MPSO clustering al-
gorithm for the construction of typical driving cycles. IEEE Access 8, 64028–64036.
http://dx.doi.org/10.1109/ACCESS.2020.2985207.

Yepes-Borrero, J., Perea, F., Ruiz, R., Villa, F., 2021. Bi-objective parallel machine
scheduling with additional resources during setups. European J. Oper. Res. 292
(2), 443–455. http://dx.doi.org/10.1016/j.ejor.2020.10.052.
13
Yin, J., Ma, Y., Hu, Y., Han, K., Yin, S., Xie, H., 2020. Delay, throughput and emission
tradeoffs in airport runway scheduling with uncertainty considerations. Netw. Spat.
Econ. 21, 85–122. http://dx.doi.org/10.1007/s11067-020-09508-3.

Zhang, X., Sun, W., Xue, M., Lin, A., 2021. Probability-optimal leader comprehensive
learning particle swarm optimization with Bayesian iteration. Appl. Soft Comput.
103, 107132. http://dx.doi.org/10.1016/j.asoc.2021.107132.

Zhao, B., Gao, J., Chen, K., Guo, K., 2018. Two-generation Pareto ant colony algorithm
for multi-objective job shop scheduling problem with alternative process plans and
unrelated parallel machines. J. Intell. Manuf. 29 (1), 93–108. http://dx.doi.org/10.
1007/s10845-015-1091-z.

Zhou, B., Gu, J., 2021. Energy-awareness scheduling of unrelated parallel machine
scheduling problems with multiple resource constraints. Int. J. Oper. Res. 41 (2),
196–217. http://dx.doi.org/10.1504/IJOR.2021.115623.

Zhu, W., Tianyu, L., 2019. A novel multi-objective scheduling method for energy based
unrelated parallel machines with auxiliary resource constraints. IEEE Access 7,
168688–168699. http://dx.doi.org/10.1109/ACCESS.2019.2954601.

http://dx.doi.org/10.1016/j.cie.2020.106790
http://dx.doi.org/10.1016/j.cie.2020.106790
http://dx.doi.org/10.1016/j.cie.2020.106790
http://dx.doi.org/10.1016/j.omega.2018.07.005
http://dx.doi.org/10.1016/j.omega.2018.07.005
http://dx.doi.org/10.1016/j.omega.2018.07.005
http://dx.doi.org/10.1109/TSMC.2018.2855700
http://dx.doi.org/10.1109/TSMC.2018.2855700
http://dx.doi.org/10.1109/TSMC.2018.2855700
http://refhub.elsevier.com/S0952-1976(21)00398-5/sb52
http://refhub.elsevier.com/S0952-1976(21)00398-5/sb52
http://refhub.elsevier.com/S0952-1976(21)00398-5/sb52
http://dx.doi.org/10.1109/ACCESS.2020.2985207
http://dx.doi.org/10.1016/j.ejor.2020.10.052
http://dx.doi.org/10.1007/s11067-020-09508-3
http://dx.doi.org/10.1016/j.asoc.2021.107132
http://dx.doi.org/10.1007/s10845-015-1091-z
http://dx.doi.org/10.1007/s10845-015-1091-z
http://dx.doi.org/10.1007/s10845-015-1091-z
http://dx.doi.org/10.1504/IJOR.2021.115623
http://dx.doi.org/10.1109/ACCESS.2019.2954601

	Outranking-based multi-objective PSO for scheduling unrelated parallel machines with a freight industry-oriented application
	Introduction
	Background
	Particle Swarm Optimisation
	The ELECTRE III-based system of preferences

	The Outranking-based Particle Swarm Optimisation algorithm (O-PSO)
	Initial positions of the swarm
	The update of the elitist set and the best schedules
	The calculation of the velocity
	Updating the positions
	The local search
	The outranking-based particle swarm optimisation algorithm

	Experimental results
	Real-world case study: Freight transport scheduling
	On the impact of incorporating fuzzy outranking preferences
	On the efficiency of O-PSO

	Conclusions and directions for future research
	CRediT authorship contribution statement
	Declaration of competing interest
	References

