
Expert Systems With Applications 181 (2021) 115147

Available online 19 May 2021
0957-4174/© 2021 Elsevier Ltd. All rights reserved.

Auto-adaptive multilayer perceptron for univariate time
series classification

Felipe Arias del Campo , María Cristina Guevara Neri , Osslan Osiris Vergara Villegas *,
Vianey Guadalupe Cruz Sánchez , Humberto de Jesús Ochoa Domínguez ,
Vicente García Jiménez
Universidad Autónoma de Ciudad Juárez, Instituto de Ingeniería y Tecnología, Avenida del Charro 450 Norte, Partido Romero, P.C. 32310 Ciudad Juárez, Chihuahua,
Mexico

A R T I C L E I N F O

Keywords:
Time series
Time series classification
Multilayer perceptron
UCR data set

A B S T R A C T

Time Series Classification (TSC) is an intricate problem that has encountered applications in various science
fields. Accordingly, many researchers have presented interesting proposals to tackle the TSC problem. Never-
theless, most methods are hand-crafted to classify specific Time Series (TS) and are computationally expensive
even for small data sets. In this paper, we propose a new approach to the Multilayer Perceptron (MLP) for TSC.
The main novelty is that the hyperparameters related to batch size and the number of neurons in the hidden
layers are auto-adapted according to the TS nature. We carried out an empirical study on 61 benchmark data sets
from the University of California, Riverside (UCR). The experimental evaluation revealed that our proposal is
competitive when we compare the accuracy versus 14 state-of-the-art methods. A non-parametric statistical test
verifies that the proposed MLP ranked in fourth place and can be executed on standard computer equipment,
making it simple, accessible, and competitive.

1. Introduction

Data classification refers to the activity of categorizing and orga-
nizing information for better analysis and decision-making. The aim is to
generate a map from the input data to the desired output for a given
training set (Li et al., 2021). The common data classification procedures
are known as supervised and unsupervised.

In supervised classification, a prediction model is developed by
learning from labeled data (training); hence, it is possible to make
predictions for unlabeled examples (Uddin, Khan, Hossain, & Ali, 2019).
Conversely, in unsupervised classification, the data is no tagged; hence,
no training phase is required. The prediction model uses clustering to
define the number of classes (Kucuk & Avdan, 2020).

Because many practical situations can be expressed as associations
between two variables, supervised data classification has numerous
applications, where the most common is image classification (Rawat &
Wang, 2017). However, there are data known as Time Series (TS) whose
characteristics make them unique. TS is a finite sequence of real values
extracted from successive observations over a regular time interval. TS

can be univariate, where at each time instant, only one real value is
taken, or multivariate, where many real values are obtained simulta-
neously (Lahreche & Boucheham, 2021).

Time Series Classification (TSC) is different from traditional classi-
fication because the attributes are ordered. TSC implies learning a
function that maps a series into a class from a predefined class set. The
research in TSC has been of particular interest in various fields,
including classification of weather readings (Soares, Costa, & Leite,
2018), biomedical signals (Azami, Fernández, & Escudero, 2017),
financial records (Chang, Zhipeng, & Yuanjie, 2019), and psychological
signals (Jebb, Tay, Wang, & Huang, 2015).

Different methods of grouping TSC algorithms have been proposed in
the literature (Bagnall, Lines, Bostrom, Large, & Keogh, 2017). Never-
theless, in this paper, TSC techniques are grouped into three categories
according to the 14 baseline algorithms employed for comparisons (i)
based on features (Hu et al., 2018; Kenji & Uchida, 2020), (ii) based on
ensembles (Bagnall, Lines, Hills, & Bostrom, 2015; Wei, Petitjean, &
Webb, 2020), and (iii) based on deep learning (Chen & Shi, 2019; Liu,
Hsaio, & Tu, 2019).

* Corresponding author.
E-mail addresses: al171515@alumnos.uacj.mx (F. Arias del Campo), al171517@alumnos.uacj.mx (M.C. Guevara Neri), overgara@uacj.mx (O.O. Vergara

Villegas), vianey.cruz@uacj.mx (V.G. Cruz Sánchez), hochoa@uacj.mx (H.J. Ochoa Domínguez), vicente.jimenez@uacj.mx (V. García Jiménez).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2021.115147
Received 18 January 2021; Received in revised form 29 April 2021; Accepted 29 April 2021

mailto:al171517@alumnos.uacj.mx
mailto:al171517@alumnos.uacj.mx
mailto:overgara@uacj.mx
mailto:vianey.cruz@uacj.mx
mailto:hochoa@uacj.mx
mailto:vicente.jimenez@uacj.mx
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2021.115147
https://doi.org/10.1016/j.eswa.2021.115147
https://doi.org/10.1016/j.eswa.2021.115147
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2021.115147&domain=pdf

Expert Systems With Applications 181 (2021) 115147

2

In feature-based methods, a discriminatory feature of the TS is cho-
sen before the classification phase. The selected feature represents
global or local patterns, which are passed through classifiers (Schäfer &
Leser, 2020). The idea underlying these methods is the dimensionality
reduction by using a set of features to represent the whole TS. The four
algorithms selected in this category were: Word ExtrAction for time
SEries cLassification (WEASEL) (Schäfer & Leser, 2017), Time Series
Forest (TSF) (Deng, Runger, Tuv, & Vladimir, 2013), the CAnonical
Time-series CHaracteristics (Catch22) (Lubba et al., 2019), and Shapelet
Transform Classifier (STC) (Zhao, Pan, & Tao, 2020).

Conversely, ensemble-based approaches utilize a combination of
different classifiers integrated to achieve greater classification accuracy.
Seven algorithms were selected in this category, including the HIerar-
chical VotE Collective Of Transformation-based Ensembles (HIVE-
COTE) (Lines, Taylor, & Bagnall, 2018), the Bag Of Symbolic Fourier
approximation Symbols (BOSS) (Schäfer, 2015), Contract BOSS (cBOSS)
(Middlehurst, Vickers, & Bagnall, 2019), Spatial BOSS (sBOSS) (Large,
Bagnall, Malinowski, & Tavenard, 2019), Random Interval Spectral
Ensemble (RISE) (Flynn, Large, & Bagnall, 2019), Proximity Forest (PF)
(Lucas et al., 2019) and Time Series Combination of Heterogeneous and
Integrated Embeddings Forest (TS-CHIEF) (Shifaz, Pelletier, Petitjean, &
Webb, 2020).

In the last decade, the use of deep learning for TSC has grown
considerably (Fawaz, Forestier, Weber, Idoumghar, & Muller, 2019).
Deep neural networks are based on learning by transforming the raw
input data into a more abstract representation, suitable for classification
(LeCun, Bengio, & Hinton, 2015). A wide variety of deep neural network
architectures, such as Convolutional Neural Network (CNN) models
(Chen & Shi, 2019; Liu et al., 2019), and Residual Neural Network
(ResNet) (Xiaowu, Zidong, Qi, & Weiguo, 2019), are commonly
employed for TSC. The three selected methods in this category were: the
ResNet (Xiaowu et al., 2019), the Inception Time (Fawaz et al., 2020),
and the RandOm Convolutional KErnel Transform (ROCKET) (Demp-
ster, Petitjean, & Webb, 2020).

In summary, numerous methods have attempted to solve the TSC
problem. However, as a result of the literature review: (i) the methods
have not yet achieved an entirely successful performance (Dau et al.,
2018), (ii) classifiers are hand-crafted to solve specific problems. Hence,
when the length or nature of the TS changes, the algorithm must be
redesigned (Bagnall et al., 2017); (iii) computer equipment with high
processing power (clusters) and a large amount of memory are needed to
perform TSC even for small data sets (Dempster et al., 2020), (iv) recent
algorithms are becoming more complex and challenging to understand,
and (v) when the hyperparameters in an Artificial Neural Network
(ANN) model have been fixedly adjusted to process the TS specific
characteristics, they cannot be reused for a TS with different properties.

In machine learning, classification methods predict a class, while
regression methods are designed to predict continuous numeric outputs.
Although new algorithms for classification and regression have been
developed, the Multilayer Perceptron (MLP) has remained a topic of
interest for the scientific community. Multilayer perceptrons are often
used due to their flexibility and the capability to fit a wide range of
smooth, non-linear functions with high accuracy levels.

Recent examples on the use of the MLP for classification, include the
detection of melanoma (Sánchez, Rodríguez, Salazar, Avecilla, & Pérez,
2020), liner surface defects in solid rocket motors (Simoes, Parquet, &
Parquet, 2020), neonatal sleep-wake classification (Farooq et al., 2020),
and thyroid disease diagnosis (Hosseinzadeh et al., 2021). On the other
hand, MLP has been recently used as a regression method to predict the
viscosity of a nanofluid (Hemmati, Varamesh, Husein, & Karan, 2018),
the thermal conductivity of carbon dioxide (Nait, Jahanbani, & Zeraibi,
2020), and the solubility of carbon dioxide in crude oil (Mahdaviara
et al., 2021).

The classification problem has been solved using robust methods
including Least Square Support Vector Machines (LS-SVM) (Singh et al.,
2020), Support Vector Machines (SVM) (Singh, Chandra, Kumar, Dass,

& Bhatnagar, 2020), CNN’s (Tang et al., 2020), and genetic algorithms
(Ahn & Hur, 2020). However, we choose the MLP based on two main
reasons. First, the implementation of most TSC techniques requires an
advanced level of understanding of mathematical procedures. Second,
the machine learning solutions implemented to solve the TSC problem
require Graphics Processing Unit (GPU) cards to work around the
intensive mathematical processing needed for training. In contrast, the
MLP has the advantages that it does not require deep mathematical
knowledge, the model complexity is lower than other methods, for
example, the SVM (Zanaty, 2012), and finally, the MLP is more used
than the SVM (Hesami, Naderi, Tohidfar, & Yoosefzadeh-Najafabadi,
2020).

In this work, we propose an alternative MLP for univariate TSC for
one, two, and three layers. The input data do not require many cycles of
mathematical processing, and the hyperparameters are dynamically
adjusted depending on the size of the training set and the number of
measurements in the TS. In summary, the contributions of this paper are
as follows:

1. We explain how to auto-adapt the proposed MLP for univariate TSC.
2. We describe how to dynamically auto-adapt the MLP hyper-

parameters regarding batch size and the number of neurons in the
hidden layer according to the TS nature.

3. We use 61 univariate UCR data sets to benchmark our MLP against
14 state-of-the-art methods.

The rest of the paper is organized as follows. A review of the works
for hyperparameters optimization with different algorithms is presented
in Section 2. Section 3 describes the materials used for the experiments.
Section 4 shows the proposed MLP classifier architecture. The details of
the experiments conducted and the corresponding results are presented
in Section 5. Finally, Section 6 offers the concluding remarks.

2. Literature review

In the literature, many papers have addressed the problem of neural
networks hyperparameter optimization. After the perusal conducted to
analyze the newest papers (2016–2021), at least four main research
branches were detected: (i) the search-based methods (grid (Pontes,
Amorim, Balestrassi, Paiva, & Ferreira, 2016), random (Liashchynskyi &
Liashchynskyi, 2019) and dynamic encoding (Yoo, 2019)); (ii) the
sampling-based methods (genetic algorithms (Cui & Bai, 2019) and
Bayes (Theckel, Rana, Gupta, & Venkatesh, 2020)); (iii) the model-based
methods (reinforcement learning (Wu, Chen, & Liu, 2020)), and (iv) the
auto-adaptive methods (apoptosis (Siegel, Daily, & Vishnu, 2010), batch
size (Devarakonda, Naumov, & Garland, 2017), number of neurons
(Garro, Sossa, & Vazquez, 2009), number of connections (Garro, Sossa,
& Vazquez, 2011), and our proposal).

The search-based methods employ brute-force or a simple rule to
select the best from a given subset of hyperparameter values. These
methods are the most frequently used due to their simplicity. However,
they tend to be inefficient because they take a long time to execute and
yield high variance during calculation.

Pontes et al. (2016) proposed combining the design of experiments
and focused grid search on tuning the hyperparameters of an MLP to
predict average surface roughness. The learning rate, number of epochs,
and neurons in hidden layers were optimized. Two data sets were
employed for experimentation, and no information about the equipment
utilized was offered. The results revealed a reduction of the prediction
error between 71.5% and 82.3% compared to techniques currently used.
A comparison between genetic algorithm and grid and random searches
for neural networks hyperparameter optimization was presented by
Liashchynskyi and Liashchynskyi (2019). The hyperparameters opti-
mized were the number of convolutional and dense layers. The experi-
ments used the CIFAR-10 data set in a powerful computer with Nvidia
Tesla K80 GPU. The best results were obtained with the genetic

F. Arias del Campo et al.

Expert Systems With Applications 181 (2021) 115147

3

algorithm. Although, it took more time to compute the solution.
Yoo (2019) used a univariate Dynamic Encoding Algorithm for

Searches (uDEAS) for hyperparameter optimization. The proposal was
tested with an autoencoder and a CNN using the MNIST data set. The
learning rate, batch size, number of hidden layers, number of filters, and
the first and second convolution layers were optimized. The authors
argued that few computational resources were employed to achieve fast
convergence. However, no detail about the equipment used for testing
was offered.

Sampling-based methods utilize a policy to guide the sampling pro-
cess. The policy is updated by considering the evaluation of a new
sample. These methods are better because they make smarter decisions
than search-based algorithms. However, it is hard to determine the
representation and size of the initial population, and there is no correct
way to choose a prior.

Cui and Bai (2019) optimized the CNN hyperparameters by
combining multiscale and multilevel evolutionary optimization with
Gaussian process Bayesian optimization. The optimized hyper-
parameters were the size of layers and kernels, learning rate, mo-
mentum, weight decay, and dropout. The experiments were conducted
with powerful workstations on three data sets: CIFAR-10, CIFAR-100,
and ILSVRC-2012. Experimental results showed good performance and
adaptability to optimize the hyperparameters with various numerical
types.

Theckel et al., 2020 developed a framework for hyperparameter
optimization of an MLP and a CNN based on Bayes theory. The opti-
mization was performed on a small subset of training data and then with
the whole data using directional derivative signs. The letter recognition,
MNIST, adult income prediction, vehicle, and CIFAR-10 data sets were
used to conduct the experiments. The hyperparameters tuned were the
number of neurons, batch size, dropout, dropout weight, mini-batch
size, learning rate, and momentum. No information about the compu-
tational resources to conduct the tests was offered. The results obtained
outperformed standard Bayesian optimization.

The model-based methods allow learning a model of the environ-
ment to determine the search strategy by trial and error. However, these
methods need feedback about the agent’s action and require a lot of data
and computation.

A model that applies reinforcement learning to adjust the hyper-
parameters of a CNN was presented by Wu et al. (2020). The optimi-
zation was treated as a Markov decision problem, and reinforcement
learning was employed to select the hyperparameters sequentially. The
batch size, convolutional stride, kernel channel, pooling stride, kernel
type, fully connected layers nodes, and learning rate were optimized. A
total of 101 data sets from the OpenML and UCI were employed for
experimentation. The proposal achieved an accuracy of 86.1% for the
101 tasks. Unfortunately, no information about the equipment for
experimentation was offered.

The auto-adaptive methods refer to auto-adapt the hyperparameters
according to the features or nature of the data set to classify.

An approach to adaptively remove unnecessary neurons of CNNs was
proposed by Siegel et al. (2010). The process of neuron pruning was
called apoptosis, and after removal, it is not required to retrain the
model. The data sets used were Higgs Bosson, Imagenet, and MNIST. The
approach reduced the overall training time by 2-3x, obtaining a
competitive accuracy. However, it must be executed in a supercomputer
or similar large-scale system.

Devarakonda et al. (2017) presented an approach for AlexNet,
ResNet, and VGG networks in which the batch size was doubled every
20-epoch, and the learning rate was adapted with a decay of 0.75. The
data sets employed were CIFAR-10, CIFAR-100, and ImageNet. The
batch size dimension increased to 524,288. Therefore, a powerful and
expensive four NVIDIA Tesla P100 GPUs were needed. The running
times of adaptive batch sizes were reduced with less than a 1% accuracy
difference compared to fixed batch size.

Garro et al. (2009) implemented Particle Swarm Optimization (PSO)

to find the best topology, the number of neurons, the transfer function
for each neuron, and the synaptic weights of an ANN. Four data sets
were used to evaluate the algorithm’s accuracy: XOR, iris plant, wine,
and breast cancer. The performance was compared against the Back-
Propagation (BP) algorithm in an ANN composed of three layers, with a
learning rate of 0.1, the same data sets, and the same number of epochs.
The proposed algorithm performed better than the BP.

Garro et al. (2011) presented an Artificial Bee Colony (ABC) method
that minimizes the number of connections and maximizes the accuracy
in an ANN. The proposal evolved the synaptic weights, the ANN’s ar-
chitecture, and simultaneously the transfer functions of each neuron.
The algorithm performance was evaluated with four data sets: iris plant,
wine, breast cancer, and a real object recognition problem. The exper-
iments were validated with two different fitness functions, the Mean
Square Error (MSE) and the Classification ERror (CER). The experiments
proved that the proposal provided a good optimization, given that it is
possible to find the optimal values to construct an ANN automatically.

As aforementioned, several methods have been proposed to solve the
task of neural networks hyperparameters optimization. Most of the
methods were global optimizers that can deal with multi-objective,
constrained, and high-dimensional problems. The algorithms reviewed
were tested with various data sets, but there were no references about its
performance on TS. Moreover, all the works analyzed proposed using
very deep networks to solve specific problems, requiring considerable
time and computer resources (e.g., GPUs, RAM, storage space) to be
executed, and the number of optimized hyperparameters varied from
two to nine.

Regarding auto-adaptive methods, four methodologies were detec-
ted. Neuron pruning and PSO were used to adapt the network topology.
Another method doubled the batch size and decreased the learning rate
by 0.75 every 20 epochs. Finally, ABC was used to minimize the number
of connections in an ANN. In contrast, our proposal considers the nature
of the TS to adapt the number of neurons in the hidden layers and the
batch size. Moreover, only standard computer equipment is needed to
conduct the experiments, and the accuracy obtained is competitive with
14 state-of-the-art methods.

3. Materials

In this section, we describe the materials used to conduct the ex-
periments. First, we detail the computer equipment’s characteristics.
Then, we describe the software employed to implement the tests.
Finally, we present the selected TS data sets.

3.1. Computer equipment

To evaluate the performance of the proposed method on a com-
mercial computer, we used an Intel i7-4790 K 64-bit desktop computer
with Windows 10. The computer included 20 GB of Random-Access
Memory (RAM) and a Graphics Processing Unit (GPU) NVIDIA
GeForce RTX 2070 with 8 GB of RAM.

3.2. Software

Different development tools can be used to implement Artificial
Neural Networks (ANNs) models, including Caffe, Theano, Microsoft
Cognitive Toolkit, Torch, and TensorFlow, to name a few. In this work,
we used the TensorFlow 2.0 open-source software.

Also, to use the GPU’s computing capacity, it was required to install
additional drivers provided by the manufacturer NVIDIA, version 10.1
of Compute Unified Device Architecture (CUDA).

3.3. UCR data set

In this work, we selected the univariate subset of the TS data set
published by the University of California, Riverside (UCR) (Dau et al.,

F. Arias del Campo et al.

Expert Systems With Applications 181 (2021) 115147

4

2018). Because it is used for benchmarking purposes in other works
(Bagnall et al., 2015; Bagnall et al., 2017; Abanda, Mori, & Lozano,
2019; Kenji & Uchida, 2020; Wei et al., 2020; Schäfer & Leser, 2020).
The UCR data set contains 128 different TS, from which 108 have re-
ported classification accuracy results using the 14 algorithms mentioned
in Section 1.

The length of the UCR TS ranges from 24 to 2709. The training sets
go from 16 to 8926, and the number of classes from 2 to 60. The UCR TS
included audio, images, motion, ECG, HAR, spectrum, simulated sen-
sors, traffic, EEG, financial, hemodynamics, and APG. From the 108
series, 47 were left out of this study because they did not comply with
the inclusion criteria: (i) the amount of data in the series required more
RAM than the memory available, or (ii) the time required to train the
MLP exceeded the 15 min that were arbitrarily defined as the limit to
perform the training.

The 61 selected series have different characteristics in terms of the
number of samples in the training and validation sets, the number of
samples per series, and the range of values between the measurements.

Fig. 1 shows an example of three series randomly selected from the
data set. The plots exhibit the diversity of values, the shape of graphs,
and the number of samples. Note that the Symbols TS has a slight vari-
ation between two consecutive measurements; hence, the plot is a
smooth curve. The Earthquakes TS has high and low values alternated
very frequently. Unlike the other two series, ECG200 TS has only 96
measurements in terms of the amount of data, representing almost a
quarter of Symbols and a fifth of Earthquakes.

4. The proposed MLP architecture

The proposed model for UCR TSC is an MLP with one, two, and three
layers. This section describes the structure of a traditional MLP and of-
fers a detailed explanation of our proposal.

4.1. Multilayer perceptron

Due to its reliable performance, the MLP is one of the most frequently
employed ANN (Nait, 2020). MLP evolves the simple perceptron and is
part of the family of the feed-forward neural networks. Incorporating
one or more hidden layers, the MLP can represent non-linear functions
(Hemmati, Nait, Reza, Dai, & Zhang, 2020).

The traditional MLP is composed of one input layer (which receives
the input data), l hidden layers (responsible for learning non-linear
features), and one output layer (which provides the output). One hid-
den layer is sufficient to make an MLP an universal approximator
(Guliyev & Smailov, 2018). The MLP receives a data vector as input, and
the output is a vector that defines the class to which the input data be-
longs (Seo & Cho, 2020).

Fig. 2 shows the general concept of an MLP made of l hidden layers.
Each layer has a certain number of identical elements known as neurons.
Each neuron of one layer is connected to the neurons of the next layer
without feedback.

For the sake of clarity on how an MLP works, consider wij as the
weight between the input neuron i and the hidden neuron j; and wjk as
the weight between the hidden neuron j and the output neuron k.

All the layers have multiple neurons where addition and multipli-
cation operations are conducted. When an input pattern (x1, x2,…xn) is
presented, it is passed using wij weights from the input to the hidden
layer. The product is applied to all the elements of the input vector for
each neuron. The values obtained are added up (dot product) to get an
output Oj; this process is shown in Eq. (1).

Oj = f

(
∑n[0]

i=1
wijxi + bj

)

(1)

where n[0] is the number of features in the input pattern, b is known as
the bias that allows the shifting of linear combinations to either right or

Fig. 1. The plot of three TS from the UCR data set.

Fig. 2. The proposed MLP architecture.

F. Arias del Campo et al.

Expert Systems With Applications 181 (2021) 115147

5

left, and f(.) is the activation function that determines whether the
output of the neuron is activated or not.

Common activation functions employed in MLP are the sigmoid, the
hyperbolic tangent, tan-sigmoid and log-sigmoid (Nait, Abdelfetah, &
Ouaer, 2021). However, we used the Rectified Linear Unit (ReLU) to
overcome the numerical problems related to the sigmoid such as the
vanishing gradient.

Each neuron activation function’s resulting values form the layer’s
output vector and become the input to the next layer in the model, where
the same process is repeated. An MLP can contain any number of layers,
and each layer can have a different number of neurons. Each neuron
connects to all the neurons in the next layer, creating a dense connec-
tion. The layers in this model are also known as dense layers or fully
connected layers.

The lth layer’s output is computed by performing the dot product of
the previously hidden layer’s outputs and the actual hidden layer
weights plus the actual bias. The result is the input to the activation
function f(.) as shown in Eq. (2).

Ŷ k = f

(
∑n[l− 1]

j=1
wjkOj + bk

)

(2)

where n[l− 1] is the number of hidden neurons in the previous layer.
The softmax activation function was used in the output layer. Thus,

the MLP output is a probability vector (the sum of probabilities is equal
to 1.0) of the same length as the total number of classes (Li et al., 2019).
Once the probability vector is obtained, the highest value is located, and
its position indicates the class to which the input belongs.

Only the vector element representing the correct class has a value of
1, and the remaining elements have a value of 0. Thus, the input string
has a probability of 100% belonging to the specific class and 0% to the
other classes.

The training process of the model is performed by comparing the last
output vector against an expected vector. The expected vector is an array
of dimensions equal to the number of classes of the series. All the
computations until this step are known as the forward phase. After this
point, the backward propagation phase starts.

The difference between the output and the desired vectors represents
the model error, and it is used to adjust the values of the previous layer
weights. The goal is to minimize the mean squared error between the
obtained output and the desired output. The error is computed using Eq.
(3).

Ep =
1
2
∑m

k=1

(
dk − Ŷ k

)2
(3)

where m is the number of examples in the data set, dk is the desired
output for the kth input example.

The gradient of the error is multiplied by the learning rate (η), and
the result is used to update each neuron’s weight in the corresponding
layer under training. When the model is created, the weights are
randomly initialized with a small value. The gradient is progressively
backward passed to each layer, starting at the last layer until reaching
the first layer to adjust the weights.

The gradient is a vector equal to the partial derivative of Ep regarding
each weight and takes the direction of the fastest error increase, while
the opposite direction determines the fastest error decrease. The error is
reduced by adjusting each weight in the direction shown in Eq. (4).

− η ∂Ep

∂wij

(4)

The weights are updated using Eq. (5).

wij := wij − η ∂Ep

∂wij
(5)

The backpropagation process is performed starting from the last

layer to the first one. That is why it is called backpropagation (short of
backward propagation of error).

4.2. The proposed hyperparameter optimization method

As well as other neural networks, MLP has hyperparameters such as
the number of hidden layers, the number of neurons in each hidden
layer, type of activation function, batch size, dropout, and learning rate,
which must be tuned.

Hyperparameter optimization is a challenging task that is frequently
solved by experimented designers or by computational brute force. In
this work, we propose a way to determine the number of hidden layers
and the number of neurons in the MLP, and the batch size according to
the TS nature. We have not considered the last layer of the MLP as part of
the model; therefore, the value l was used to define the number of layers.

The proposed l-layer model is shown in Fig. 2. However, we
experimented with one, two, and three layers to find the optimal number
of layers. For a four-layer model, the memory requirements exceeded the
RAM available in the GPU for larger TS. We also observed that the TS
that could be tested with four layers showed a lower accuracy than that
obtained for the model with three layers. The learning process of the
network is supervised. The data set consists of 2-tuples, each with the
values of the series (input vector) and the probability of the class this
vector belongs to (output vector).

In the training stage, groups of one or more pairs of the training set
are presented (input vector and expected vector); this group is called a
batch. Once the whole batch has been presented to the model, the error
is calculated, and the weights are updated.

The selection of the batch size hyperparameter influences the dy-
namics of the learning algorithm in two ways: (i) a large batch reduces
the training time, and because the error is calculated using multiple
pairs, the training is more efficient, and (ii) a small batch increases the
training time, and because few elements are used to calculate the error,
some noise is added to the process of weight updating. A small-batch can
lead to the model working better for generalization (it can classify values
that were not included in the training set) (Dostal et al., 2020; Kandel &
Castelli, 2020).

An epoch occurs when all batches in the training set have been used.
The training cycle consists of running several training epochs until the
error obtained falls below an acceptable value or the maximum number
of allowed epochs is reached. However, the epoch can also be defined as
processing a defined number of batches and not necessarily all of them.
For the experiments conducted, an epoch was considered as using all the
batches.

Because the TS used to evaluate the model has different lengths, both
in measurements and in the number of samples, the batch size selection
could not be fixed for all the TS. It is also not recommended to set the
batch to the size of the entire training data set.

It was discovered through the diverse experiments that the different
TS data sets required different hyperparameters. That means there was
no general solution to the TSC problem. Therefore, a large number of
experiments were executed to evaluate different hyperparameters and
the model performance. As a result, Eqs. (6) and (7) were proposed to
calculate the batch length and the hidden layer size, respectively.

The equations were designed to involve the TS data sets attributes
found to be distinctive, such as the size of the training set or the time
series length. By including those attributes as variables in the equations,
the MLP hyperparameters could be adjusted automatically for each TS
data set.

Eq. (6) depicts the proposed adaptive calculation of the batch size
concerning the size of the training set.

Batchsize = ⌊
Size of the training set

Divisor
⌋ (6)

where the way to compute the Divisor is explained in this section. The

F. Arias del Campo et al.

Expert Systems With Applications 181 (2021) 115147

6

floor function ⌊.⌋ returns the largest integer that is smaller than, or equal
to, the result of the division. The minimum value that Divisor can take is
one since the division by zero results in an undefined value.

On the other hand, establishing the number of neurons in the hidden
layers is crucial because it affects the neural network’s capability for
generalization and the training time. If a reduced number of neurons is
used, it might result in underfitting, meaning the neural network is
incapable of learning the data variability. Conversely, if many neurons
are used, it might result in overfitting, meaning that the neural network
learns the detail and noise in the training data. Hence, during the vali-
dation stage, the network will not identify the new examples. Conse-
quently, the generalization capabilities will be impaired. Moreover,
many neurons in the hidden layers increase the time, making impossible
the training of the network in standard computer equipment (Aalst et al.,
2010).

Neural networks have been studied for several years. However, there
is no fully valid method to determine the number of neurons in the
hidden layers. Therefore, a trial and error method is usually employed to

identify the suitable number of neurons in each hidden layer (Nait et al.,
2021). Considering this, we propose the Eq. (7) to determine the number
of neurons in hidden layers adaptively.

Neurons = TSLength ∗ LayerIndex ∗ Multiplier (7)

where TSLength is the number of points measured in each TS, LayerIndex
is an index assigned from the last to the first hidden layer. In the three-
layer model, the assigned sequential values are 3, 2, 1. The Multiplier
factor is computed later in this section.

In Eq. (6), a Divisor value of 24, and in Eq. (7), a Multiplier value of 9
were obtained after running several training cycles. For the sake of
clarity on how these values were obtained, consider the information of
the three TS shown in Table 1. The three TS selected represents the
different shapes included in the data sets. Beef has a reduced number of
training sets while FiftyWords has a larger number. PhalangesOutli-
nesCorrect has more classes to differentiate, and the training set size is
between the size of the other two TS.

Each TS is used to train the MLP by changing the Divisor from 1 to 54
in steps of one. The training time and loss values were collected by
averaging ten cycles (to improve the repeatability), as it is shown in
Fig. 3. The solid line represents the loss values and the dotted line the
time. Notice that TS shares the same type of marker for loss and time.

The solid vertical line in Fig. 3 shows the value of 24 for the Divisor. It
establishes a trade-off between loss and time for the three TS.Beef is the
shortest TS with 30 training sets. Therefore, when the Divisor goes higher
than 15, the effective batch size is always one. Moreover, this value does
not introduce an adverse effect on loss and time. The changes are only

Table 1
The TS characteristics used to explain how the Divisor and Multiplier values were
calculated.

Data set No. of
training sets

No. of
test sets

No. of
classes

Data
points

Beef 30 30 5 470
FiftyWords 1800 858 2 80
PhalangesOutlinesCorrect 455 455 50 270

Fig. 3. The loss and time obtained by averaging ten training cycles for three TS with values from 1 to 54 for the Divisor.

F. Arias del Campo et al.

Expert Systems With Applications 181 (2021) 115147

7

attributed to the random nature of the MLP initialization and the
numeric resolution.

Small values of Divisor yield a significant loss variation for the Fif-
tyWords TS. For instance, a maximum loss of 1.83 is obtained with a
Divisor of four, while a Divisor of five gives a loss of 1.00. The variation
decreases when the Divisor increases, with a stable value of 17. It is
worth emphasizing that the variation shown was due to the MLP
randomness. Hence, a Divisor value of 24 is appropriate because it is big
enough to allow TS with a larger number of training sets to reach its
stability while keeping the trade-off between low loss and low time.
PhalangesOutlinesCorrect showed a smooth loss. The Divisor value of 24 is
appropriate because it does not adversely affect the loss, and the highest
values are already achieved. Moreover, the training time of 17 s is equal
to the Beef and about one-fourth of FiftyWords.

Fig. 4 shows the results of the training loss (solid line), validation loss
(dashed line), and time (dotted line). The experiment was carried out
with Multiplier values ranging from 1 to 21 in steps of one. Unlike the
Divisor experiment, the validation loss was also included because the
training and validation loss curves do not follow the same pattern.

The solid vertical line in Fig. 4 shows the results with the proposed
Multiplier value of nine. For larger values, the training loss decreases,
and the validation loss reaches a steady level, as observed in FiftyWords
TS. Low validation loss is needed to ensure generalization capability. At
this point, the trade-off between validation loss and time is obtained for

the three TS. It is also important to highlight that the training time is
often increased as the Multiplier goes up. Therefore, it is desired to use
the lowest Multiplier value that produces the smallest loss.

The box and whisker plot of Fig. 5 shows that when the Multiplier

Fig. 4. Training loss, validation loss and time obtained for the three TS with Multiplier values from 1 to 21.

Fig. 5. Box and whisker plot for the validation loss using different values
for Multiplier.

F. Arias del Campo et al.

Expert Systems With Applications 181 (2021) 115147

8

factor increases, the validation loss decreases. Also, the interval between
the maximum and the minimum decreases as the Multiplier factor in-
creases, and after it reaches 12 the spread increases again. It can be
observed that the Multiplier factors of 9 and 11 exhibit the least spread of
the quartiles as well as the least loss. However, a Multiplier factor of 9
was selected because, according to Eq. (7), a Multiplier factor of 11 would
increase the number of neurons.

In the literature, underfitting is less discussed than overfitting
because this problem can be alleviated by increasing the model’s
complexity. Contrarily, methods such as cross-validation, feature
removal, data augmentation, early stopping, and ensembling have been
proposed to prevent overfitting. However, the most widely used method
is regularization, which performs slight modifications to the network’s
weights to find the best generalization (Nusrat & Jang, 2018).

Table 2
Test results part I: Average accuracy of the classifiers over 61 UCR data sets (Continued in Table 3).

Reported methods

Data set TS-Chief Rocket Inception S-Boss ResNet Hive-Cote Proximity Boss

Time v1.0 Forest

Adiac 0.780 0.772 0.822 0.743 0.815 0.796 0.722 0.749
ArrowHead 0.881 0.859 0.880 0.888 0.859 0.876 0.884 0.869
Beef 0.632 0.760 0.682 0.656 0.677 0.736 0.594 0.612
BeetleFly 0.958 0.885 0.893 0.937 0.853 0.963 0.860 0.943
BirdChicken 0.963 0.882 0.952 0.968 0.945 0.940 0.903 0.983
Car 0.879 0.912 0.901 0.859 0.908 0.869 0.806 0.848
CBF 0.998 0.996 0.996 0.999 0.988 0.998 0.994 0.999
ChlorineConcentration 0.661 0.796 0.864 0.659 0.841 0.734 0.631 0.658
Coffee 0.990 1.000 0.999 0.981 0.996 0.993 0.992 0.986
CricketX 0.830 0.839 0.853 0.784 0.808 0.816 0.800 0.762
CricketY 0.817 0.845 0.860 0.771 0.810 0.810 0.800 0.750
CricketZ 0.838 0.853 0.861 0.787 0.813 0.834 0.803 0.769
DiatomSizeReduction 0.946 0.958 0.951 0.945 0.306 0.914 0.957 0.945
DistalPhalanxOutlineAgeGroup 0.828 0.812 0.766 0.821 0.776 0.824 0.802 0.821
DistalPhalanxOutlineCorrect 0.819 0.824 0.815 0.811 0.809 0.824 0.823 0.812
DistalPhalanxTW 0.692 0.701 0.665 0.670 0.667 0.696 0.692 0.671
Earthquakes 0.748 0.748 0.731 0.747 0.717 0.747 0.750 0.746
ECG200 0.855 0.899 0.897 0.872 0.884 0.859 0.873 0.878
ECG5000 0.948 0.947 0.942 0.941 0.937 0.946 0.940 0.940
ECGFiveDays 0.994 0.996 0.996 0.992 0.951 0.994 0.883 0.992
FaceAll 0.983 0.988 0.983 0.975 0.982 0.980 0.977 0.970
FaceFour 1.000 0.931 0.939 0.982 0.925 0.973 0.945 0.995
FacesUCR 0.973 0.971 0.977 0.957 0.964 0.961 0.956 0.951
FiftyWords 0.843 0.825 0.827 0.765 0.724 0.772 0.826 0.706
Fish 0.982 0.974 0.973 0.971 0.970 0.979 0.934 0.970
GunPoint 1.000 0.992 0.995 0.997 0.991 0.998 0.991 0.996
Ham 0.805 0.855 0.850 0.835 0.807 0.840 0.783 0.837
Herring 0.597 0.625 0.625 0.608 0.597 0.612 0.574 0.596
InsectWingbeatSound 0.632 0.657 0.627 0.519 0.491 0.640 0.607 0.512
ItalyPowerDemand 0.962 0.962 0.960 0.868 0.957 0.958 0.956 0.871
Lightning2 0.769 0.777 0.817 0.808 0.801 0.773 0.849 0.819
Lightning7 0.794 0.798 0.821 0.681 0.810 0.758 0.792 0.671
Meat 0.984 0.989 0.984 0.984 0.994 0.986 0.987 0.981
MedicalImages 0.799 0.805 0.796 0.717 0.792 0.740 0.771 0.716
MiddlePhalanxOutlineAgeGroup 0.694 0.711 0.594 0.659 0.597 0.698 0.659 0.656
MiddlePhalanxOutlineCorrect 0.806 0.834 0.834 0.807 0.824 0.813 0.824 0.810
MiddlePhalanxTW 0.573 0.590 0.527 0.542 0.531 0.584 0.549 0.532
OliveOil 0.917 0.902 0.874 0.874 0.862 0.883 0.879 0.876
OSULeaf 0.974 0.939 0.952 0.977 0.975 0.975 0.859 0.969
PhalangesOutlinesCorrect 0.825 0.845 0.861 0.819 0.848 0.826 0.829 0.817
Plane 1.000 1.000 0.997 0.998 1.000 1.000 1.000 0.998
ProximalPhalanxOutlineAgeGroup 0.846 0.852 0.822 0.833 0.817 0.856 0.840 0.828
ProximalPhalanxOutlineCorrect 0.875 0.899 0.906 0.866 0.906 0.885 0.866 0.866
ProximalPhalanxTW 0.811 0.804 0.782 0.775 0.789 0.816 0.791 0.769
ShapeletSim 1.000 0.998 0.924 1.000 0.727 1.000 0.789 1.000
SonyAIBORobotSurface1 0.890 0.958 0.954 0.895 0.960 0.826 0.920 0.898
SonyAIBORobotSurface2 0.901 0.935 0.951 0.884 0.969 0.937 0.899 0.879
Strawberry 0.974 0.979 0.975 0.966 0.975 0.975 0.960 0.970
SwedishLeaf 0.962 0.963 0.970 0.925 0.959 0.949 0.953 0.920
Symbols 0.971 0.969 0.970 0.964 0.947 0.969 0.967 0.963
SyntheticControl 0.999 0.998 0.996 0.965 0.994 0.994 0.998 0.967
ToeSegmentation1 0.960 0.933 0.953 0.920 0.954 0.960 0.836 0.925
ToeSegmentation2 0.963 0.933 0.964 0.963 0.953 0.968 0.886 0.962
Trace 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
UWaveGestureLibraryX 0.847 0.857 0.834 0.788 0.790 0.833 0.831 0.753
UWaveGestureLibraryY 0.788 0.784 0.771 0.715 0.676 0.755 0.767 0.662
UWaveGestureLibraryZ 0.791 0.796 0.773 0.736 0.751 0.775 0.767 0.695
Wafer 0.999 0.999 0.999 0.999 0.999 1.000 0.996 0.999
Wine 0.898 0.914 0.887 0.894 0.856 0.892 0.856 0.893
WordSynonyms 0.794 0.764 0.752 0.738 0.613 0.693 0.778 0.658
Yoga 0.873 0.914 0.912 0.915 0.877 0.912 0.887 0.910

Number of times the method wins 15 13 11 6 5 4 4 3

F. Arias del Campo et al.

Expert Systems With Applications 181 (2021) 115147

9

A common technique employed for regularization is the dropout.
Dropout consists of randomly ignoring some neurons in the layer and
retaining the rest with a certain probability that needs to be optimized.
The dropout value for each layer was calculated depending on the layer
position. By observing the MLP from the input to the output (backward),
the first layer has a dropout of 0.3. Then, the dropout was divided by two
on each inner layer. In this way, the model with one layer uses a dropout
of 0.3. The model with two layers uses a dropout of 0.3 and 0.15 for the

last and penultimate layers, respectively. Finally, with three layers, the
values used were 0.3, 0.15, and 0.075.

5. Experiments and results

To conduct the experiments, we used 61 TS from the UCR repository.
We discarded the other sets due to the length and amount of data, the
memory requirements, and the TS that requires more than 15 min to

Table 3
Test results part II (Continued from Table 2).

Reported methods Proposed methods

Data set cBoss STC Weasel Catch22 TSF Rise 1MLP 2MLP 3MLP

Adiac 0.746 0.793 0.799 0.685 0.712 0.758 0.524 0.691 0.739
ArrowHead 0.878 0.807 0.848 0.750 0.797 0.828 0.809 0.838 0.841
Beef 0.571 0.736 0.740 0.473 0.689 0.742 0.880 0.900 0.860
BeetleFly 0.975 0.933 0.887 0.840 0.833 0.872 0.860 0.850 0.900
BirdChicken 0.977 0.870 0.865 0.893 0.815 0.868 0.840 0.765 0.770
Car 0.843 0.858 0.834 0.746 0.766 0.753 0.872 0.882 0.873
CBF 0.998 0.985 0.980 0.954 0.972 0.949 0.888 0.891 0.899
ChlorineConcentration 0.665 0.735 0.755 0.598 0.723 0.765 0.487 0.753 0.785
Coffee 0.990 0.989 0.989 0.980 0.987 0.985 1.000 1.000 1.000
CricketX 0.764 0.792 0.776 0.609 0.693 0.706 0.544 0.574 0.588
CricketY 0.751 0.778 0.780 0.591 0.686 0.709 0.601 0.628 0.625
CricketZ 0.772 0.807 0.790 0.628 0.706 0.722 0.561 0.594 0.595
DiatomSizeReduction 0.884 0.859 0.908 0.925 0.942 0.932 0.965 0.972 0.966
DistalPhalanxOutlineAgeGroup 0.806 0.796 0.793 0.783 0.809 0.822 0.736 0.767 0.765
DistalPhalanxOutlineCorrect 0.780 0.827 0.819 0.812 0.806 0.811 0.746 0.789 0.786
DistalPhalanxTW 0.673 0.690 0.679 0.681 0.691 0.694 0.646 0.684 0.711
Earthquakes 0.747 0.742 0.747 0.739 0.747 0.748 0.750 0.743 0.745
ECG200 0.830 0.839 0.859 0.789 0.860 0.851 0.890 0.915 0.920
ECG5000 0.943 0.942 0.946 0.936 0.943 0.937 0.936 0.939 0.941
ECGFiveDays 0.984 0.978 0.994 0.816 0.952 0.973 0.958 0.974 0.977
FaceAll 0.969 0.954 0.973 0.811 0.950 0.965 0.837 0.869 0.877
FaceFour 0.997 0.656 0.981 0.680 0.907 0.877 0.847 0.835 0.839
FacesUCR 0.952 0.910 0.956 0.709 0.904 0.892 0.790 0.806 0.810
FiftyWords 0.718 0.737 0.777 0.598 0.722 0.667 0.697 0.711 0.709
Fish 0.974 0.950 0.951 0.773 0.830 0.859 0.892 0.878 0.870
GunPoint 1.000 0.986 0.993 0.943 0.955 0.981 0.908 0.949 0.951
Ham 0.811 0.811 0.821 0.694 0.799 0.820 0.769 0.758 0.750
Herring 0.574 0.633 0.602 0.556 0.604 0.598 0.728 0.719 0.722
InsectWingbeatSound 0.539 0.629 0.619 0.559 0.603 0.636 0.654 0.651 0.645
ItalyPowerDemand 0.926 0.954 0.947 0.877 0.959 0.945 0.967 0.973 0.974
Lightning2 0.797 0.658 0.627 0.745 0.764 0.682 0.734 0.738 0.725
Lightning7 0.720 0.743 0.713 0.646 0.721 0.698 0.671 0.677 0.660
Meat 0.977 0.968 0.977 0.943 0.984 0.987 0.945 0.947 0.910
MedicalImages 0.690 0.710 0.709 0.757 0.746 0.667 0.632 0.706 0.738
MiddlePhalanxOutlineAgeGroup 0.677 0.668 0.660 0.688 0.660 0.700 0.629 0.646 0.649
MiddlePhalanxOutlineCorrect 0.772 0.832 0.828 0.773 0.800 0.805 0.750 0.848 0.846
MiddlePhalanxTW 0.567 0.579 0.554 0.557 0.569 0.585 0.490 0.531 0.623
OliveOil 0.874 0.879 0.913 0.746 0.893 0.893 0.850 0.807 0.487
OSULeaf 0.960 0.956 0.852 0.724 0.643 0.654 0.575 0.568 0.583
PhalangesOutlinesCorrect 0.779 0.834 0.822 0.792 0.806 0.813 0.670 0.753 0.802
Plane 1.000 0.999 0.995 0.988 0.996 0.997 0.974 0.975 0.981
ProximalPhalanxOutlineAgeGroup 0.850 0.846 0.845 0.858 0.845 0.857 0.855 0.856 0.863
ProximalPhalanxOutlineCorrect 0.865 0.895 0.876 0.834 0.849 0.874 0.734 0.869 0.884
ProximalPhalanxTW 0.795 0.808 0.801 0.786 0.802 0.813 0.744 0.777 0.838
ShapeletSim 0.985 1.000 0.997 0.994 0.514 0.768 0.534 0.526 0.537
SonyAIBORobotSurface1 0.623 0.801 0.909 0.883 0.864 0.867 0.798 0.825 0.766
SonyAIBORobotSurface2 0.876 0.937 0.935 0.902 0.874 0.912 0.826 0.828 0.839
Strawberry 0.972 0.972 0.979 0.923 0.967 0.973 0.932 0.966 0.968
SwedishLeaf 0.911 0.934 0.958 0.880 0.898 0.923 0.787 0.874 0.890
Symbols 0.963 0.901 0.953 0.948 0.878 0.913 0.884 0.897 0.879
SyntheticControl 0.951 0.992 0.987 0.967 0.992 0.678 0.933 0.971 0.974
ToeSegmentation1 0.952 0.953 0.943 0.813 0.667 0.880 0.618 0.619 0.614
ToeSegmentation2 0.965 0.945 0.928 0.835 0.803 0.912 0.745 0.779 0.775
Trace 1.000 1.000 1.000 1.000 0.992 0.983 0.671 0.846 0.846
UWaveGestureLibraryX 0.774 0.820 0.818 0.769 0.800 0.634 0.741 0.779 0.774
UWaveGestureLibraryY 0.694 0.745 0.726 0.704 0.722 0.668 0.690 0.703 0.698
UWaveGestureLibraryZ 0.711 0.772 0.755 0.706 0.733 0.664 0.686 0.721 0.719
Wafer 0.999 1.000 1.000 0.997 0.997 0.995 0.995 0.995 0.996
Wine 0.878 0.886 0.930 0.700 0.862 0.871 0.724 0.680 0.667
WordSynonyms 0.668 0.623 0.713 0.544 0.648 0.592 0.587 0.591 0.595
Yoga 0.912 0.880 0.892 0.804 0.866 0.837 0.832 0.857 0.855

Number of times the method wins 3 3 2 0 0 0 2 4 7

F. Arias del Campo et al.

Expert Systems With Applications 181 (2021) 115147

10

train.
The configuration parameters to train the three MLP models are 4500

for the maximum number of epochs and a learning rate of 0.0001.
Moreover, we configured a stopping point to prevent the training cycle
from being extended to the maximum number of epochs and reduce
overfitting. The stopping point occurs every time the loss value is less
than 0.0008, with a patience factor of 35.

We added a function to increase the efficiency of the training cycle
when the curve reaches a stagnation point. The function reduced the
learning rate by 20% when the variation of the accuracy of the evalu-
ation is lower than 0.01. This function is called Reduce Learning Rate In
Plateau. We also added a waiting period of 9 cycles to avoid excessive
adjustments. This occurs before applying the reduction again if the curve
remained unchanged.

We used the 61 TS to independently train each of the three proposed
models and the validation sets to measure the accuracy. Some validation
sets were much larger than the training sets.

We executed ten times the training and validation cycles to obtain
the average accuracy. We used the average because it gives more
consistent and reproducible values. The difference between distinct
cycles for the same series could become significant due to the random
initialization of the weights. For example, for the Strawberry series, the
highest value was 89.46%, and the lowest was 77.02%.

5.1. Results

A benchmark was conducted between the results obtained with the
proposed MLP and 14 state-of-the-art algorithms. The website in Bag-
nall, Lines, Vickers, and Keogh, 2020 maintains a comprehensive re-
pository for research into TSC, including Critical Difference Diagram
(CDD) and the file with a collection of accuracy obtained with 14 al-
gorithms on the UCR data set.

A summary of the accuracy is shown in Tables 2 and 3. The last three
columns in Table 3 contain the values obtained by the MLP with one,
two, and three layers, respectively. Boldface numbers represent the
highest values obtained for each TS.

For the sake of clarity the decimal part of the accuracy was truncated
to three digits. However, nine decimal digits were considered to
compare maximum values. For example, the accuracy of the TS-chief and
InceptionTime is 0.996 for ECGFiveDays in Table 3. However, the nine
digit value for TS-chief is 0.995973674 and for InceptionTime is
0.995857530. Hence, the first is marked in boldface.

In the last row of Tables 2 and 3, we ranked the different methods
according to how many times each method wins. The best performers
were TS-Chief, Rocket, Inception time, and MLP with three layers. Each
method won 15, 13, 11, and 7 times, respectively.

The reason why the proposed model placed fourth can be explained

by observing the first three classification methods. TS-Chief uses an
ensemble combining some of the best TSC methods. Rocket utilizes a
CNN, and Inception Time employs a deep learning model based on the
Inception-v4 architecture. These three methods have a more complex
structure and, therefore, superior performance than the MLP, which
consists of a simpler neural network architecture.

The use of hyperparameters calculated dynamically depending on
the number of elements in the training set and the length of the TS
allowed the MLP to automatically adjust to different TS without needing
manual adjustments, generalizing the model for data sets of different
shapes. Fig. 6 shows the average range of all the methods according to
the number of times each method obtained the highest accuracy. It
should be noted that the proposed methods occupy positions 4, 8, and
13.5. Observe that our simplest method (1MLP) is above STC, cBOSS,
and BOSS methods, and our most complex method (3MLP) is just below
the top three methods. However, the 3MLP method is computationally
less expensive, which is encouraging to justify its use.

A comparison of the accuracy obtained with the MLP concerning the
14 state-of-the-art methods is shown in Table 4. The first column shows
the highest value obtained among all the included methods. The
following three columns show the difference between the highest ac-
curacy of the reference and the accuracy obtained by the proposed
methods. We show the values as percentages, and negative values
indicate that the proposed method obtained a lower accuracy.

Typically, the CDD is used to evaluate the algorithms. However, the
results may not be clear when a new method is evaluated. For instance,
the diagram in Fig. 7 suggests that the proposed three-layer MLP method
is ranked among the lower significance methods. However, in Table 3
and in Fig. 6, it is in fourth place. Expedited analysis can lead to a new
method being ruled out prematurely.

As an additional way to evaluate the relevance of the proposed
method, we suggest grouping by the range of normalized differences
between the values obtained by the reference and the proposed
methods. The difference can be converted into a percentage using the
reference value (the maximum value of accuracy reported among all
reference methods) as the value equivalent to 100%; this allows the
conversion of the differences to a proportional part.

For example, if the accuracy of 0.30 was obtained with the reference
method and 0.25with the proposed method, the difference is − 0.05.
Then, this difference is converted to a percentage with Eq. 8.

Percentage =
Difference ∗ 100%

Reference
(8)

Therefore, the resulting percentage is − 16.66%. On the other hand, if
the reference method has an accuracy of 0.80, and the method to eval-
uate 0.75, the difference is also − 0.05 and the percentage is − 6.25%.
The method to be evaluated, in the second example, has an accuracy

Fig. 6. Average ranges of the number of times won for each method.

F. Arias del Campo et al.

Expert Systems With Applications 181 (2021) 115147

11

closer to the reference than the one obtained in the first example. As it
can be observed, negative differences indicated that the method pro-
posed obtained less accuracy than the reference. However, it does not
imply that the CDD should not be used. Percentage comparison uses
different information and provides a numerical reference on how close
the reference result is.

Table 5 was generated from Table 4. The information was grouped
into four categories: (i) the number of times the accuracy obtained by
the proposed MLP was greater than the best reference method, (ii) the

number of times when the accuracy was equal (methods achieved 100%
accuracy), (iii) the difference was 1% lower than the best reference
method, and (iv) the difference was 5% lower than the best reference
method. The information can be considered as a histogram of the
percentages.

We used the Friedman and Nemenyi tests to compare multiple
classifiers (Demsar, 2006). The aim was to determine if there is any
statistically significant difference between the ranks of the compared
methods.

Table 4
A summary of the percentage differences among the proposed and the reference methods.

Accuracy Percentage difference

Data set max value 1MLP 2MLP 3MLP

Adiac 0.822 − 36.285 − 15.970 − 10.142
ArrowHead 0.888 − 8.925 − 5.578 − 5.278
Beef 0.760 15.789 18.421 13.158
BeetleFly 0.975 − 11.795 − 12.821 − 7.692
BirdChicken 0.983 − 14.576 − 22.203 − 21.695
Car 0.912 − 4.388 − 3.291 − 4.205
CBF 0.999 − 11.162 − 10.829 − 10.006
ChlorineConcentration 0.864 − 43.626 − 12.797 − 9.066
Coffee 1.000 0.000 0.000 0.000
CricketX 0.853 − 36.268 − 32.692 − 31.070
CricketY 0.860 − 30.107 − 26.968 − 27.356
CricketZ 0.861 − 34.895 − 30.994 − 30.904
DiatomSizeReduction 0.958 0.773 1.456 0.841
DistalPhalanxOutlineAgeGroup 0.828 − 11.092 − 7.385 − 7.559
DistalPhalanxOutlineCorrect 0.827 − 9.781 − 4.613 − 4.964
DistalPhalanxTW 0.701 − 7.917 − 2.428 1.368
Earthquakes 0.750 0.000 − 0.864 − 0.576
ECG200 0.899 − 1.001 1.780 2.336
ECG5000 0.948 − 1.270 − 0.995 − 0.765
ECGFiveDays 0.996 − 3.840 − 2.196 − 1.928
FaceAll 0.988 − 15.292 − 12.076 − 11.243
FaceFour 1.000 − 15.246 − 16.446 − 16.105
FacesUCR 0.977 − 19.134 − 17.509 − 17.075
FiftyWords 0.843 − 17.326 − 15.683 − 15.918
Fish 0.982 − 9.121 − 10.576 − 11.391
GunPoint 1.000 − 9.200 − 5.067 − 4.933
Ham 0.855 − 10.134 − 11.359 − 12.249
Herring 0.633 15.062 13.580 14.074
InsectWingbeatSound 0.657 − 0.456 − 0.833 − 1.802
ItalyPowerDemand 0.962 0.491 1.087 1.198
Lightning2 0.849 − 13.458 − 13.071 − 14.617
Lightning7 0.821 − 18.197 − 17.529 − 19.533
Meat 0.994 − 4.919 − 4.751 − 8.440
MedicalImages 0.805 − 21.441 − 12.273 − 8.384
MiddlePhalanxOutlineAgeGroup 0.711 − 11.480 − 9.105 − 8.648
MiddlePhalanxOutlineCorrect 0.834 − 10.144 1.592 1.386
MiddlePhalanxTW 0.590 − 16.991 − 9.945 5.688
OliveOil 0.917 − 7.273 − 12.000 − 46.909
OSULeaf 0.977 − 41.159 − 41.836 − 40.271
PhalangesOutlinesCorrect 0.861 − 22.263 − 12.561 − 6.932
Plane 1.000 − 2.571 − 2.476 − 1.905
ProximalPhalanxOutlineAgeGroup 0.858 − 0.423 − 0.265 0.587
ProximalPhalanxOutlineCorrect 0.906 − 19.009 − 4.146 − 2.477
ProximalPhalanxTW 0.816 − 8.889 − 4.842 2.690
ShapeletSim 1.000 − 46.587 − 47.389 − 46.333
SonyAIBORobotSurface1 0.960 − 16.875 − 14.137 − 20.201
SonyAIBORobotSurface2 0.969 − 14.765 − 14.495 − 13.357
Strawberry 0.979 − 4.731 − 1.307 − 1.141
SwedishLeaf 0.970 − 18.891 − 9.899 − 8.200
Symbols 0.971 − 8.972 − 7.595 − 9.417
SyntheticControl 0.999 − 6.607 − 2.769 − 2.503
ToeSegmentation1 0.960 − 35.659 − 35.522 − 36.024
ToeSegmentation2 0.968 − 23.014 − 19.518 − 19.915
Trace 1.000 − 32.900 − 15.400 − 15.400
UWaveGestureLibraryX 0.857 − 13.515 − 9.092 − 9.740
UWaveGestureLibraryY 0.788 − 12.407 − 10.848 − 11.404
UWaveGestureLibraryZ 0.796 − 13.778 − 9.386 − 9.642
Wafer 1.000 − 0.522 − 0.483 − 0.426
Wine 0.930 − 22.163 − 26.941 − 28.334
WordSynonyms 0.794 − 26.061 − 25.548 − 24.995
Yoga 0.915 − 9.036 − 6.334 − 6.548

F. Arias del Campo et al.

Expert Systems With Applications 181 (2021) 115147

12

Friedman’s test scores the methods for each data set separately. The
best get the first rank, the second-best gets the second rank, and so on.
We assigned the average ranges in the event of a tie. On the other hand,
we used the Nemenyi test to compare the classifiers and find if the two
classifiers’ performance is significantly different. We need to know if the
average ranges corresponding to both classifiers differ, at least in the
critical difference, determined by Eq. (9).

CD = qα

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
z(z + 1)

6N

√

(9)

where z corresponds to the number of methods to compare (z = 17), N
is the total number of TS (61), the critical value qα corresponding to the
test used for the comparison of the methods, is given in (Zar, 2007)
(Appendix Table B.15), and is equivalent to 3.562; and αrepresents the
confidence interval over which the critical value qα is selected. The
number α commonly used in the analysis done on the reported methods
is equal to 0.05. So that, we also selected it for the present study.

We obtained the average rankings of the algorithms to create the

diagram depicted in Fig. 7. First, we separated the TS, and we performed
a ranking of the methods according to the accuracy values obtained.
Then, we obtained the sum and average of each of the method ranges.
Finally, we ordered the ranges from highest to lowest. We positioned the
highest performances on the left (the first one being the first in the
ranking), and we placed the methods with the lowest-performing on the
right (the last is the one that obtained the last place in the ranking).
Table 6 shows the average rankings of the algorithms.

The horizontal bars in Fig. 7 show the classifiers’ pairs where the
difference between average ranges is less than the critical difference
calculated with Eq. 9. The horizontal bars group the methods in which
there is no significant statistical difference among the values. Even
though the proposed 3MLP method is placed in the range 11.4508, there
is no critical difference against the ProximityForest method positioned
in the range 8.2951. This allows us to locate the proposed method
competitively among the reported methods.

The statistical comparison of the algorithms carried out by the
Friedman test shows a rejection of the null hypothesis, which means that
the proposed MLP differs significantly from the highest-rated algorithm
(ROCKET).

When the null hypothesis of Friedman’s test is rejected, there is a
wide variety of multiple comparisons that can be used to determine
which treatments differ from each other. The p-values obtained by
applying post hoc methods over the Friedman procedure results are
presented In Table 7.

• Bonferroni-Dunn’s procedure rejects the hypotheses with a p-value
≤ 0.003125.

• Holm’s procedure rejects the hypotheses with a p-value ≤ 0.016667.
• Hochberg’s procedure rejects the hypotheses with a p-value
≤ 0.0125.

• Hommel’s procedure rejects the hypotheses with a p-value
≤ 0.016667.

• Holland’s procedure rejects the hypotheses with a p-value
≤ 0.016952.

• Rom’s procedure rejects the hypotheses with a p-value ≤ 0.013109.
• Finner’s procedure rejects the hypotheses with a p-value
≤ 0.043889.

• Li’s procedure rejects the hypotheses with a p-value ≤ 0.036484.

Fig. 7. Average accuracy ranges for the 14 state-of-the-art methods and the three proposed methods.

Table 5
Comparing the accuracy obtained with the proposed MLP and the reference methods by groups.

1MLP 2MLP 3MLP

Accuracy Wins Accumulated Wins Accumulated Wins Accumulated

Greater than 3 3 5 5 9 9
Equal to 2 5 1 6 1 10
Less than 1% 19 24 24 30 23 33
Less than 5% 32 56 26 56 23 56

Table 6
Friedman average rankings of the methods (Demsar,
2006).

Method Ranking

ROCKET 3.9426
TS-CHIEF 4.8770
HIVE-COTE v1.0 5.2049
InceptionTime 5.7377
WEASEL 8.0738
ProximityForest 8.2951
S-BOSS 8.3115
ResNet 8.3525
STC 8.4672
cBOSS 9.4344
BOSS 9.5738
RISE 10.7377
TSF 11.2951
3MLP 11.4508
2MLP 11.9344
Catch22 13.6557
1MLP 13.6557

F. Arias del Campo et al.

Expert Systems With Applications 181 (2021) 115147

13

It is worth noting that even though the statistical data shown in Table 7
makes clear that the MLP’s is not the top performer, the diagram in Fig. 7
also shows that the proposed 3MLP method can be commensurable to
the highest-ranking algorithms. This can be seen in Fig. 6. According to
the number of times the algorithm obtained the highest accuracy value
when classifying a TS, our proposed method occupied fourth place in
general.

In summary, the proposed three-layer MLP obtained fourth place
according to accuracy (it wins ten times). However, in 23 TS our pro-
posal is close to reaching the highest reference value.

At the end of the experimentation stage, we have observed at least
three main disadvantages of our proposal. First, when the number of
nodes and connections in the hidden layers increases, the memory
required grows. Therefore, the training stage cannot be conducted on
traditional computers with low memory. This is the reason why we have
used only a three-layer MLP. Second, when the MLP competes against
complex methods, it can be easily defeated. However, the complex
methods can only be implemented in powerful computers. As was shown
in our study, a correct hyperparameter tuning makes the MLP a
competitive alternative. Third, the MLP, as other artificial neural net-
works, can fall in local minima. So that, it is needed to work to define
methods to overcome this problem.

On the other hand, our proposal has many advantages. First, it does
not require deep mathematical knowledge or the use of perplexing al-
gorithms. Second, the model complexity and training time are relatively
low compared to complex methods; and third, its simplicity makes it an
accessible solution to a TSC problem.

6. Conclusions

In this paper, we proposed an auto-adaptive MLP for TSC on 61 UCR
data sets. The hyperparameters for batch size and the number of neurons
in the hidden layers are automatically adapted according to the TS na-
ture. Hence, the proposed method solves different TSC tasks. We con-
ducted a benchmark of our proposal against 14 state-of-the-art methods.
From the results, we observed that the three-layer MLP ranked in fourth
place, even when it is computationally simple. Also, we proposed a
different alternative to compare the accuracy among methods.

Although the MLP was not among the three best performers, it is
important to highlight the advantages of using our model. It is a simple
architecture, easy to implement, accessible, affordable, competitive, and
a valid solution to the TSC problem.

In the future, it will be desirable to test the proposed model with a
different data set. It will also be interesting to modify the method to

handle the TS excluded from the study. Furthermore, it will be desirable
to perform comparisons of execution time. Finally, the comparison will
include distance-based methods that were excluded in the current
experiment.

CRediT authorship contribution statement

Felipe Arias del Campo: Conceptualization, Methodology, Soft-
ware, Writing - original draft. María Cristina Guevara Neri: Concep-
tualization, Methodology, Formal analysis. Osslan Osiris Vergara
Villegas: Methodology, Formal analysis, Writing - original draft. Via-
ney Guadalupe Cruz Sánchez: Methodology, Investigation, Visualiza-
tion. Humberto Jesús Ochoa Domínguez: Methodology, Investigation,
Writing - review & editing. Vicente García Jiménez: Validation,
Formal analysis.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

Aalst, W., Rubin, V., Verbeek, H., van Dongen, B., Kindler, E., & Günther, C. (2010).
Process mining: A two-step approach to balance between underfitting and
overfitting. Software & Systems Modeling, 9, 87–111.

Abanda, A., Mori, U., & Lozano, J. (2019). A review on distance based time series
classification. Data Mining and Knowledge Discovery, 33, 378–412.

Ahn, G., & Hur, S. (2020). Efficient genetic algorithm for feature selection for early time
series classification. Computers & Industrial Engineering, 142, 1–5.

Azami, H., Fernández, A., & Escudero, J. (2017). Refined multiscale fuzzy entropy based
on standard deviation for biomedical signal analysis. Medical & Biological Engineering
& Computing, 55, 2037–2052.

Bagnall, A., Lines, J., Bostrom, A., Large, J., & Keogh, E. (2017). The great time series
classification bake off: A review and experimental evaluation of recent algorithmic
advances. Data Mining and Knowledge Discovery, 31, 606–660.

Bagnall, A., Lines, J., Hills, J., & Bostrom, A. (2015). Time-series classification with cote:
The collective of transformation-based ensembles. IEEE Transactions on Knowledge
and Data Engineering, 27, 2522–2535.

Bagnall, A., Lines, J., Vickers, W., & Keogh, E. (2020). The UEA & UCR time series
classification repository. www.timeseriesclassification.com.

Chang, L., Zhipeng, J., & Yuanjie, Z. (2019). A novel reconstructed training-set svm with
roulette cooperative coevolution for financial time series classification. Expert
Systems with Applications, 123, 283–298.

Chen, W., & Shi, K. (2019). A deep learning framework for time series classification using
relative position matrix and convolutional neural network. Neurocomputing, 359,
384–394.

Cui, H., & Bai, J. (2019). A new hyperparameters optimization method for convolutional
neural networks. Pattern Recognition Letters, 125, 828–834.

Table 7
Post Hoc comparison for α = 0.05 (Friedman).

i Algorithm
z =

(R0 − Ri)

SE
p Holm Hochberg Hommel Holland Rom Finner Li

16 1MLP 10.62 < 0.00001 0.003 0.003 0.003 0.003 0.036
15 Catch22 10.62 < 0.00001 0.003 0.003 0.004 0.006 0.036
14 2MLP 8.74 < 0.00001 0.004 0.004 0.004 0.010 0.036
13 3MLP 8.21 < 0.00001 0.004 0.004 0.004 0.013 0.036
12 TSF 8.04 < 0.00001 0.004 0.004 0.004 0.016 0.036
11 RISE 7.43 < 0.00001 0.005 0.005 0.005 0.019 0.036
10 BOSS 6.16 < 0.00001 0.005 0.005 0.005 0.022 0.036
9 cBOSS 6.01 < 0.00001 0.006 0.006 0.006 0.025 0.036
8 STC 4.95 < 0.00001 0.006 0.006 0.007 0.028 0.036
7 ResNet 4.82 < 0.00001 0.007 0.007 0.008 0.031 0.036
6 S-BOSS 4.78 < 0.00001 0.008 0.009 0.009 0.035 0.036
5 ProximityForest 4.76 < 0.00001 0.010 0.010 0.011 0.038 0.036
4 WEASEL 4.52 0.00001 0.013 0.013 0.013 0.041 0.036
3 InceptionTime 1.96 0.04962 0.017 0.017 0.017 0.044 0.036
2 HIVE-COTE v1.0 1.38 0.16743 0.025 0.025 0.025 0.047 0.036
1 TS-CHIEF 1.02 0.30681 0.050 0.050 0.050 0.050 0.050

F. Arias del Campo et al.

http://refhub.elsevier.com/S0957-4174(21)00588-1/h0005
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0005
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0005
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0010
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0010
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0015
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0015
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0020
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0020
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0020
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0025
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0025
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0025
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0030
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0030
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0030
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0040
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0040
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0040
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0045
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0045
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0045
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0050
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0050

Expert Systems With Applications 181 (2021) 115147

14

Dau, H., Keogh, E., Kamgar, K., Yeh, C., Zhu, Y., Gharghabi, S., Ratanamahatana, C.,
Yanping, Hu, B., Begum, N., Bagnall, A., Mueen, A., Batista, G., & Hexagon-ML
(2018). The UCR time series classification archive. https://www.cs.ucr.edu/eam
onn/time_series_data_2018/.

Dempster, A., Petitjean, F., & Webb, G. (2020). Rocket: Exceptionally fast and accurate
time series classification using random convolutional kernels. Data Mining and
Knowledge Discovery, 34, 1454–1495.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research, 7, 1–30.

Deng, H., Runger, G., Tuv, E., & Vladimir, M. (2013). A time series forest for
classification and feature extraction. Information Sciences, 239, 142–153.

Devarakonda, A., Naumov, M., & Garland, M. (2017). Adabatch: Adaptive batch sizes for
training deep neural networks. CoRR, abs/1712.02029. http://arxiv.org/abs/
1712.02029. arXiv:1712.02029.

Dostal, L., Grossert, H., Duecker, D., Grube, M., Kreuter, D., Sandmann, K., Zillman, B., &
Seifried, R. (2020). Predictability of vibration loads from experimental data by
means of reduced vehicle models and machine learning. IEEE Access, 8,
177180–177194.

Farooq, S., Ahmad, J., Tahir, A., Awais, M., Chen, C., Irfan, M., Ayesha, H., Bakar, A.,
Long, X., Yin, B., Akbarzadeh, S., Lu, C., Wang, L., & Chen, W. (2020). EEG-based
neonatal sleep-wake classification using multilayer perceptron neural network. IEEE
Access, 8, 183025–183034.

Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., & Muller, P. (2019). Deep learning for
time series classification: A review. Data Mining and Knowledge Discovery, 33,
917–963.

Fawaz, H., Lucas, B., Forestier, G., Pelletier, C., Schmidt, D., Weber, J., Webb, G.,
Idoumghar, L., Muller, P., & Petitjean, F. (2020). Inceptiontime: Finding alexnet for
time series classification. Data Mining and Knowledge Discovery, 34, 1936–1962.

Flynn, M., Large, J., & Bagnall, T. (2019). The contract random interval spectral
ensemble (c-RISE): The effect of contracting a classifier on accuracy. In Proc. of the
International Conference on Hybrid Artificial Intelligence Systems (pp. 381–392).
Springer.

Garro, B., Sossa, H., & Vazquez, R. (2009). Design of artificial neural networks using a
modified particle swarm optimization algorithm. In Proc. of the 2009 International
Joint Conference on Neural Networks (pp. 938–945). IEEE.

Garro, B., Sossa, H., & Vazquez, R. (2011). Artificial neural network synthesis by means
of artificial bee colony (abc) algorithm. In Proc. of the IEEE Congress of Evolutionary
Computation (pp. 331–338). IEEE.

Guliyev, N., & Smailov, V. (2018). On the approximation by single hidden layer
feedforward neural networks with fixed weights. Neural Networks, 98, 296–304.

Hemmati, A., Nait, M., Reza, M., Dai, Z., & Zhang, X. (2020). Modeling co2 solubility in
water at high pressure and temperature conditions. Energy & Fuels, 34, 4761–4776.

Hemmati, A., Varamesh, A., Husein, M., & Karan, K. (2018). On the evaluation of the
viscosity of nanofluid systems: Modeling and data assessment. Renewable and
Sustainable Energy Reviews, 81, 313–329.

Hesami, M., Naderi, R., Tohidfar, M., & Yoosefzadeh-Najafabadi, M. (2020).
Development of support vector machine-based model and comparative analysis with
artificial neural network for modeling the plant tissue culture procedures: effect of
plant growth regulators on somatic embryogenesis of chrysanthemum, as a case
study. Plant Methods, 16, 1–15.

Hosseinzadeh, M., Hassan, O., Yassin, M., Safara, F., Kamaran, H., Ali, S., Vo, B., &
Chiang, H. (2021). A multiple multilayer perceptron neural network with an
adaptive learning algorithm for thyroid disease diagnosis in the internet of medical
things. The Journal of Supercomputing, 77, 3616–3637.

Hu, M., Ji, Z., Yan, K., Guo, Y., Feng, X., Gong, J., Zhao, X., & Dong, L. (2018). Detecting
anomalies in time series data via a meta-feature based approach. IEEE Access, 6,
27760–27776.

Jebb, A., Tay, L., Wang, W., & Huang, Q. (2015). Time series analysis for psychological
research: examining and forecasting change. Frontiers in Psychology, 6, 1–24.

Kandel, I., & Castelli, M. (2020). The effect of batch size on the generalizability of the
convolutional neural networks on a histopathology dataset. ICT Express, 6, 312–315.

Kenji, B., & Uchida, S. (2020). Time series classification using local distance-based
features in multi-modal fusion networks. Pattern Recognition, 97, 1–12.

Kucuk, D., & Avdan, U. (2020). Optimization-based automated unsupervised
classification method: A novel approach. Expert Systems with Applications, 160, 1–15.

Lahreche, A., & Boucheham, B. (2021). A fast and accurate similarity measure for long
time series classification based on local extrema and dynamic time warping. Expert
Systems with Applications, 168, 1–12.

Large, J., Bagnall, A., Malinowski, S., & Tavenard, R. (2019). On time series classification
with dictionary-based classifiers. Intelligent Data Analysis, 23, 1073–1089.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444.
Li, Q., Xiong, Q., Ji, S., Yu, Y., Wu, C., & Yi, H. (2021). A method for mixed data

classification base on rbf-elm network. Neurocomputing, 431, 7–22.
Li, Y., Tang, G., Du, J., Zhou, N., Zhao, Y., & Wu, T. (2019). Multilayer perceptron

method to estimate real-world fuel consumption rate of light duty vehicles. IEEE
Access, 7, 63395–63402.

Liashchynskyi, P., & Liashchynskyi, P. (2019). Grid search, random search, genetic
algorithm: A big comparison for NAS. CoRR, abs/1912.06059. http://arxiv.org/abs/
1912.06059. arXiv:1912.06059.

Lines, J., Taylor, S., & Bagnall, A. (2018). Time series classification with hive-cote: The
hierarchical vote collective of transformation-based ensembles. ACM Transactions on
Knowledge Discovery from Data, 12, 1–35.

Liu, C., Hsaio, W., & Tu, Y. (2019). Time series classification with multivariate
convolutional neural network. IEEE Transactions on Industrial Electronics, 66,
4788–4797.

Lubba, C., Sethi, S., Knaute, P., Schultz, S., Fulcher, B., & Jones, N. (2019). catch22:
Canonical time-series characteristics. Data Mining and Knowledge Discovery, 33,
1821–1852.

Lucas, B., Shifaz, A., Pelletier, C., O’Neill, L., Zaidi, N., Goethals, B., Petitjean, F., &
Webb, G. (2019). Proximity forest: An effective and scalable distance-based classifier
for time series. Data Mining and Knowledge Discovery, 33, 607–635.

Mahdaviara, M., Nait, M., Hemmati, A., Dai, Z., Zhang, C., Xiao, T., & Zhang, X. (2021).
Toward smart schemes for modeling CO_2 solubility in crude oil: Application to
carbon dioxide enhanced oil recovery. Fuel, 285, 1–16.

Middlehurst, M., Vickers, W., & Bagnall, A. (2019). Scalable dictionary classifiers for
time series classification. In Proc. of the International Conference on Intelligent Data
Engineering and Automated Learning (pp. 11–19). Springer.

Nait, M. (2020). Modeling solubility of sulfur in pure hydrogen sulfide and sour gas
mixtures using rigorous machine learning methods. International Journal of Hydrogen
Energy, 45, 33274–33287.

Nait, M., Abdelfetah, M., & Ouaer, H. (2021). On the evaluation of solubility of hydrogen
sulfide in ionic liquids using advanced committee machine intelligent systems.
Journal of the Taiwan Institute of Chemical Engineers, 118, 159–168.

Nait, M., Jahanbani, A., & Zeraibi, N. (2020). Predicting thermal conductivity of carbon
dioxide using group of data-driven models. Journal of the Taiwan Institute of Chemical
Engineers, 113, 165–177.

Nusrat, I., & Jang, S. (2018). A comparison of regularization techniques in deep neural
networks. Symmetry, 10, 1–18.

Pontes, F., Amorim, G., Balestrassi, P., Paiva, A., & Ferreira, J. (2016). Design of
experiments and focused grid search for neural network parameter optimization.
Neurocomputing, 186, 22–34.

Rawat, W., & Wang, Z. (2017). Deep convolutional neural networks for image
classification: A comprehensive review. Neural Computation, 29, 2352–2449.

Schäfer, P. (2015). The boss is concerned with time series classification in the presence of
noise. Data Mining and Knowledge Discovery, 29, 1505–1530.

Schäfer, P., & Leser, U. (2017). Fast and accurate time series classification with weasel. In
Proc. of the 2017 ACM on Conference on Information and Knowledge Management (pp.
637–646). ACM.

Schäfer, P., & Leser, U. (2020). Teaser: Early and accurate time series classification. Data
Mining and Knowledge Discovery, 34, 1336–1362.

Seo, H., & Cho, D. (2020). Cancer-related gene signature selection based on boosted
regression for multilayer perceptron. IEEE Access, 8, 64992–65004.

Shifaz, A., Pelletier, C., Petitjean, F., & Webb, G. (2020). Ts-chief: A scalable and accurate
forest algorithm for time series classification. Data Mining and Knowledge Discovery,
34, 1–34.

Siegel, C., Daily, J., & Vishnu, A. (2010). Adaptive neuron apoptosis for accelerating deep
learning on large scale systems. In Proc. of the 2016 IEEE International Conference on
Big Data (pp. 753–762). IEEE.

Simoes, L., Parquet, F., & Parquet, J. (2020). Detection of liner surface defects in solid
rocket motors using multilayer perceptron neural networks. Polymer Testing, 88,
1–13.

Singh, S., Singh, K., Singh, S., Kaur, J., Peshoria, S., & Kumar, J. (2020). Study of ARIMA
and least square support vector machine (LS-SVM) models for the prediction of sars-
cov-2 confirmed cases in the most affected countries. Chaos, Solitons & Fractals, 139,
1–9.

Singh, V., Chandra, R., Kumar, S., Dass, P., & Bhatnagar, P. A. V. (2020). Prediction of
covid-19 corona virus pandemic based on time series data using support vector
machine. Journal of Discrete Mathematical Sciences and Cryptography, 23, 1–15.

Soares, E., Jr., Costa, P. C. B., & Leite, D. (2018). Ensemble of evolving data clouds and
fuzzy models for weather time series prediction. Applied Soft Computing, 64,
445–453.

Sánchez, L., Rodríguez, J., Salazar, S., Avecilla, G., & Pérez, G. (2020). A high-accuracy
mathematical morphology and multilayer perceptron-based approach for melanoma
detection. Applied Sciences, 10, 1–17.

Tang, W., Long, G., Liu, L., Zhou, T., Jiang, J., & Blumenstein, M. (2020). Rethinking 1d-
cnn for time series classification: A stronger baseline. arXiv preprint arXiv:
2002.10061.

Theckel, T., Rana, S., Gupta, S., & Venkatesh, S. (2020). Fast hyperparameter tuning
using bayesian optimization with directional derivatives. Knowledge-Based Systems,
205, 1–8.

Uddin, S., Khan, A., Hossain, M., & Ali, M. (2019). Comparing different supervised
machine learning algorithms for disease prediction. BMC Medical Informatics and
Decision Making, 19, 1–16.

Wei, C., Petitjean, F., & Webb, G. (2020). Fastee: Fast ensembles of elastic distances for
time series classification. Data Mining and Knowledge Discovery, 34, 231–272.

Wu, J., Chen, S., & Liu, X. (2020). Efficient hyperparameter optimization through model-
based reinforcement learning. Neurocomputing, 409, 381–393.

Xiaowu, Z., Zidong, W., Qi, L., & Weiguo, S. (2019). Integration of residual network and
convolutional neural network along with various activation functions and global
pooling for time series classification. Neurocomputing, 367, 39–45.

Yoo, Y. (2019). Hyperparameter optimization of deep neural network using univariate
dynamic encoding algorithm for searches. Knowledge-Based Systems, 178, 74–83.

Zanaty, E. (2012). Support vector machines (SVMs) versus multilayer perception (MLP)
in data classification. Egyptian Informatics Journal, 13, 177–183.

Zar, J. (2007). Biostatistical analysis (1st ed.). USA: Prentice-Hall Inc.
Zhao, H., Pan, Z., & Tao, W. (2020). Regularized shapelet learning for scalable time series

classification. Computer Networks, 173, 1–12.

F. Arias del Campo et al.

https://www.cs.ucr.edu/eamonn/time_series_data_2018/
https://www.cs.ucr.edu/eamonn/time_series_data_2018/
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0060
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0060
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0060
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0065
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0065
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0070
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0070
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0080
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0080
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0080
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0080
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0085
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0085
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0085
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0085
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0090
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0090
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0090
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0095
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0095
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0095
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0100
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0100
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0100
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0100
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0105
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0105
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0105
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0110
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0110
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0110
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0115
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0115
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0120
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0120
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0125
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0125
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0125
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0130
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0130
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0130
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0130
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0130
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0135
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0135
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0135
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0135
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0140
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0140
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0140
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0145
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0145
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0150
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0150
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0155
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0155
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0160
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0160
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0165
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0165
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0165
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0170
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0170
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0175
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0180
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0180
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0185
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0185
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0185
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0195
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0195
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0195
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0200
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0200
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0200
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0205
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0205
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0205
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0210
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0210
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0210
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0215
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0215
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0215
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0220
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0220
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0220
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0225
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0225
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0225
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0230
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0230
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0230
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0235
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0235
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0235
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0240
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0240
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0245
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0245
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0245
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0250
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0250
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0255
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0255
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0260
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0260
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0260
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0265
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0265
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0270
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0270
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0275
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0275
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0275
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0280
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0280
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0280
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0285
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0285
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0285
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0290
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0290
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0290
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0290
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0295
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0295
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0295
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0300
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0300
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0300
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0305
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0305
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0305
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0315
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0315
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0315
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0320
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0320
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0320
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0325
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0325
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0330
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0330
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0335
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0335
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0335
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0340
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0340
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0345
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0345
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0350
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0355
http://refhub.elsevier.com/S0957-4174(21)00588-1/h0355

	Auto-adaptive multilayer perceptron for univariate time series classification
	1 Introduction
	2 Literature review
	3 Materials
	3.1 Computer equipment
	3.2 Software
	3.3 UCR data set

	4 The proposed MLP architecture
	4.1 Multilayer perceptron
	4.2 The proposed hyperparameter optimization method

	5 Experiments and results
	5.1 Results

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References

