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A B S T R A C T   

Time Series Classification (TSC) is an intricate problem that has encountered applications in various science 
fields. Accordingly, many researchers have presented interesting proposals to tackle the TSC problem. Never
theless, most methods are hand-crafted to classify specific Time Series (TS) and are computationally expensive 
even for small data sets. In this paper, we propose a new approach to the Multilayer Perceptron (MLP) for TSC. 
The main novelty is that the hyperparameters related to batch size and the number of neurons in the hidden 
layers are auto-adapted according to the TS nature. We carried out an empirical study on 61 benchmark data sets 
from the University of California, Riverside (UCR). The experimental evaluation revealed that our proposal is 
competitive when we compare the accuracy versus 14 state-of-the-art methods. A non-parametric statistical test 
verifies that the proposed MLP ranked in fourth place and can be executed on standard computer equipment, 
making it simple, accessible, and competitive.   

1. Introduction 

Data classification refers to the activity of categorizing and orga
nizing information for better analysis and decision-making. The aim is to 
generate a map from the input data to the desired output for a given 
training set (Li et al., 2021). The common data classification procedures 
are known as supervised and unsupervised. 

In supervised classification, a prediction model is developed by 
learning from labeled data (training); hence, it is possible to make 
predictions for unlabeled examples (Uddin, Khan, Hossain, & Ali, 2019). 
Conversely, in unsupervised classification, the data is no tagged; hence, 
no training phase is required. The prediction model uses clustering to 
define the number of classes (Kucuk & Avdan, 2020). 

Because many practical situations can be expressed as associations 
between two variables, supervised data classification has numerous 
applications, where the most common is image classification (Rawat & 
Wang, 2017). However, there are data known as Time Series (TS) whose 
characteristics make them unique. TS is a finite sequence of real values 
extracted from successive observations over a regular time interval. TS 

can be univariate, where at each time instant, only one real value is 
taken, or multivariate, where many real values are obtained simulta
neously (Lahreche & Boucheham, 2021). 

Time Series Classification (TSC) is different from traditional classi
fication because the attributes are ordered. TSC implies learning a 
function that maps a series into a class from a predefined class set. The 
research in TSC has been of particular interest in various fields, 
including classification of weather readings (Soares, Costa, & Leite, 
2018), biomedical signals (Azami, Fernández, & Escudero, 2017), 
financial records (Chang, Zhipeng, & Yuanjie, 2019), and psychological 
signals (Jebb, Tay, Wang, & Huang, 2015). 

Different methods of grouping TSC algorithms have been proposed in 
the literature (Bagnall, Lines, Bostrom, Large, & Keogh, 2017). Never
theless, in this paper, TSC techniques are grouped into three categories 
according to the 14 baseline algorithms employed for comparisons (i) 
based on features (Hu et al., 2018; Kenji & Uchida, 2020), (ii) based on 
ensembles (Bagnall, Lines, Hills, & Bostrom, 2015; Wei, Petitjean, & 
Webb, 2020), and (iii) based on deep learning (Chen & Shi, 2019; Liu, 
Hsaio, & Tu, 2019). 
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In feature-based methods, a discriminatory feature of the TS is cho
sen before the classification phase. The selected feature represents 
global or local patterns, which are passed through classifiers (Schäfer & 
Leser, 2020). The idea underlying these methods is the dimensionality 
reduction by using a set of features to represent the whole TS. The four 
algorithms selected in this category were: Word ExtrAction for time 
SEries cLassification (WEASEL) (Schäfer & Leser, 2017), Time Series 
Forest (TSF) (Deng, Runger, Tuv, & Vladimir, 2013), the CAnonical 
Time-series CHaracteristics (Catch22) (Lubba et al., 2019), and Shapelet 
Transform Classifier (STC) (Zhao, Pan, & Tao, 2020). 

Conversely, ensemble-based approaches utilize a combination of 
different classifiers integrated to achieve greater classification accuracy. 
Seven algorithms were selected in this category, including the HIerar
chical VotE Collective Of Transformation-based Ensembles (HIVE- 
COTE) (Lines, Taylor, & Bagnall, 2018), the Bag Of Symbolic Fourier 
approximation Symbols (BOSS) (Schäfer, 2015), Contract BOSS (cBOSS) 
(Middlehurst, Vickers, & Bagnall, 2019), Spatial BOSS (sBOSS) (Large, 
Bagnall, Malinowski, & Tavenard, 2019), Random Interval Spectral 
Ensemble (RISE) (Flynn, Large, & Bagnall, 2019), Proximity Forest (PF) 
(Lucas et al., 2019) and Time Series Combination of Heterogeneous and 
Integrated Embeddings Forest (TS-CHIEF) (Shifaz, Pelletier, Petitjean, & 
Webb, 2020). 

In the last decade, the use of deep learning for TSC has grown 
considerably (Fawaz, Forestier, Weber, Idoumghar, & Muller, 2019). 
Deep neural networks are based on learning by transforming the raw 
input data into a more abstract representation, suitable for classification 
(LeCun, Bengio, & Hinton, 2015). A wide variety of deep neural network 
architectures, such as Convolutional Neural Network (CNN) models 
(Chen & Shi, 2019; Liu et al., 2019), and Residual Neural Network 
(ResNet) (Xiaowu, Zidong, Qi, & Weiguo, 2019), are commonly 
employed for TSC. The three selected methods in this category were: the 
ResNet (Xiaowu et al., 2019), the Inception Time (Fawaz et al., 2020), 
and the RandOm Convolutional KErnel Transform (ROCKET) (Demp
ster, Petitjean, & Webb, 2020). 

In summary, numerous methods have attempted to solve the TSC 
problem. However, as a result of the literature review: (i) the methods 
have not yet achieved an entirely successful performance (Dau et al., 
2018), (ii) classifiers are hand-crafted to solve specific problems. Hence, 
when the length or nature of the TS changes, the algorithm must be 
redesigned (Bagnall et al., 2017); (iii) computer equipment with high 
processing power (clusters) and a large amount of memory are needed to 
perform TSC even for small data sets (Dempster et al., 2020), (iv) recent 
algorithms are becoming more complex and challenging to understand, 
and (v) when the hyperparameters in an Artificial Neural Network 
(ANN) model have been fixedly adjusted to process the TS specific 
characteristics, they cannot be reused for a TS with different properties. 

In machine learning, classification methods predict a class, while 
regression methods are designed to predict continuous numeric outputs. 
Although new algorithms for classification and regression have been 
developed, the Multilayer Perceptron (MLP) has remained a topic of 
interest for the scientific community. Multilayer perceptrons are often 
used due to their flexibility and the capability to fit a wide range of 
smooth, non-linear functions with high accuracy levels. 

Recent examples on the use of the MLP for classification, include the 
detection of melanoma (Sánchez, Rodríguez, Salazar, Avecilla, & Pérez, 
2020), liner surface defects in solid rocket motors (Simoes, Parquet, & 
Parquet, 2020), neonatal sleep-wake classification (Farooq et al., 2020), 
and thyroid disease diagnosis (Hosseinzadeh et al., 2021). On the other 
hand, MLP has been recently used as a regression method to predict the 
viscosity of a nanofluid (Hemmati, Varamesh, Husein, & Karan, 2018), 
the thermal conductivity of carbon dioxide (Nait, Jahanbani, & Zeraibi, 
2020), and the solubility of carbon dioxide in crude oil (Mahdaviara 
et al., 2021). 

The classification problem has been solved using robust methods 
including Least Square Support Vector Machines (LS-SVM) (Singh et al., 
2020), Support Vector Machines (SVM) (Singh, Chandra, Kumar, Dass, 

& Bhatnagar, 2020), CNN’s (Tang et al., 2020), and genetic algorithms 
(Ahn & Hur, 2020). However, we choose the MLP based on two main 
reasons. First, the implementation of most TSC techniques requires an 
advanced level of understanding of mathematical procedures. Second, 
the machine learning solutions implemented to solve the TSC problem 
require Graphics Processing Unit (GPU) cards to work around the 
intensive mathematical processing needed for training. In contrast, the 
MLP has the advantages that it does not require deep mathematical 
knowledge, the model complexity is lower than other methods, for 
example, the SVM (Zanaty, 2012), and finally, the MLP is more used 
than the SVM (Hesami, Naderi, Tohidfar, & Yoosefzadeh-Najafabadi, 
2020). 

In this work, we propose an alternative MLP for univariate TSC for 
one, two, and three layers. The input data do not require many cycles of 
mathematical processing, and the hyperparameters are dynamically 
adjusted depending on the size of the training set and the number of 
measurements in the TS. In summary, the contributions of this paper are 
as follows:  

1. We explain how to auto-adapt the proposed MLP for univariate TSC. 
2. We describe how to dynamically auto-adapt the MLP hyper

parameters regarding batch size and the number of neurons in the 
hidden layer according to the TS nature.  

3. We use 61 univariate UCR data sets to benchmark our MLP against 
14 state-of-the-art methods. 

The rest of the paper is organized as follows. A review of the works 
for hyperparameters optimization with different algorithms is presented 
in Section 2. Section 3 describes the materials used for the experiments. 
Section 4 shows the proposed MLP classifier architecture. The details of 
the experiments conducted and the corresponding results are presented 
in Section 5. Finally, Section 6 offers the concluding remarks. 

2. Literature review 

In the literature, many papers have addressed the problem of neural 
networks hyperparameter optimization. After the perusal conducted to 
analyze the newest papers (2016–2021), at least four main research 
branches were detected: (i) the search-based methods (grid (Pontes, 
Amorim, Balestrassi, Paiva, & Ferreira, 2016), random (Liashchynskyi & 
Liashchynskyi, 2019) and dynamic encoding (Yoo, 2019)); (ii) the 
sampling-based methods (genetic algorithms (Cui & Bai, 2019) and 
Bayes (Theckel, Rana, Gupta, & Venkatesh, 2020)); (iii) the model-based 
methods (reinforcement learning (Wu, Chen, & Liu, 2020)), and (iv) the 
auto-adaptive methods (apoptosis (Siegel, Daily, & Vishnu, 2010), batch 
size (Devarakonda, Naumov, & Garland, 2017), number of neurons 
(Garro, Sossa, & Vazquez, 2009), number of connections (Garro, Sossa, 
& Vazquez, 2011), and our proposal). 

The search-based methods employ brute-force or a simple rule to 
select the best from a given subset of hyperparameter values. These 
methods are the most frequently used due to their simplicity. However, 
they tend to be inefficient because they take a long time to execute and 
yield high variance during calculation. 

Pontes et al. (2016) proposed combining the design of experiments 
and focused grid search on tuning the hyperparameters of an MLP to 
predict average surface roughness. The learning rate, number of epochs, 
and neurons in hidden layers were optimized. Two data sets were 
employed for experimentation, and no information about the equipment 
utilized was offered. The results revealed a reduction of the prediction 
error between 71.5% and 82.3% compared to techniques currently used. 
A comparison between genetic algorithm and grid and random searches 
for neural networks hyperparameter optimization was presented by 
Liashchynskyi and Liashchynskyi (2019). The hyperparameters opti
mized were the number of convolutional and dense layers. The experi
ments used the CIFAR-10 data set in a powerful computer with Nvidia 
Tesla K80 GPU. The best results were obtained with the genetic 
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algorithm. Although, it took more time to compute the solution. 
Yoo (2019) used a univariate Dynamic Encoding Algorithm for 

Searches (uDEAS) for hyperparameter optimization. The proposal was 
tested with an autoencoder and a CNN using the MNIST data set. The 
learning rate, batch size, number of hidden layers, number of filters, and 
the first and second convolution layers were optimized. The authors 
argued that few computational resources were employed to achieve fast 
convergence. However, no detail about the equipment used for testing 
was offered. 

Sampling-based methods utilize a policy to guide the sampling pro
cess. The policy is updated by considering the evaluation of a new 
sample. These methods are better because they make smarter decisions 
than search-based algorithms. However, it is hard to determine the 
representation and size of the initial population, and there is no correct 
way to choose a prior. 

Cui and Bai (2019) optimized the CNN hyperparameters by 
combining multiscale and multilevel evolutionary optimization with 
Gaussian process Bayesian optimization. The optimized hyper
parameters were the size of layers and kernels, learning rate, mo
mentum, weight decay, and dropout. The experiments were conducted 
with powerful workstations on three data sets: CIFAR-10, CIFAR-100, 
and ILSVRC-2012. Experimental results showed good performance and 
adaptability to optimize the hyperparameters with various numerical 
types. 

Theckel et al., 2020 developed a framework for hyperparameter 
optimization of an MLP and a CNN based on Bayes theory. The opti
mization was performed on a small subset of training data and then with 
the whole data using directional derivative signs. The letter recognition, 
MNIST, adult income prediction, vehicle, and CIFAR-10 data sets were 
used to conduct the experiments. The hyperparameters tuned were the 
number of neurons, batch size, dropout, dropout weight, mini-batch 
size, learning rate, and momentum. No information about the compu
tational resources to conduct the tests was offered. The results obtained 
outperformed standard Bayesian optimization. 

The model-based methods allow learning a model of the environ
ment to determine the search strategy by trial and error. However, these 
methods need feedback about the agent’s action and require a lot of data 
and computation. 

A model that applies reinforcement learning to adjust the hyper
parameters of a CNN was presented by Wu et al. (2020). The optimi
zation was treated as a Markov decision problem, and reinforcement 
learning was employed to select the hyperparameters sequentially. The 
batch size, convolutional stride, kernel channel, pooling stride, kernel 
type, fully connected layers nodes, and learning rate were optimized. A 
total of 101 data sets from the OpenML and UCI were employed for 
experimentation. The proposal achieved an accuracy of 86.1% for the 
101 tasks. Unfortunately, no information about the equipment for 
experimentation was offered. 

The auto-adaptive methods refer to auto-adapt the hyperparameters 
according to the features or nature of the data set to classify. 

An approach to adaptively remove unnecessary neurons of CNNs was 
proposed by Siegel et al. (2010). The process of neuron pruning was 
called apoptosis, and after removal, it is not required to retrain the 
model. The data sets used were Higgs Bosson, Imagenet, and MNIST. The 
approach reduced the overall training time by 2-3x, obtaining a 
competitive accuracy. However, it must be executed in a supercomputer 
or similar large-scale system. 

Devarakonda et al. (2017) presented an approach for AlexNet, 
ResNet, and VGG networks in which the batch size was doubled every 
20-epoch, and the learning rate was adapted with a decay of 0.75. The 
data sets employed were CIFAR-10, CIFAR-100, and ImageNet. The 
batch size dimension increased to 524,288. Therefore, a powerful and 
expensive four NVIDIA Tesla P100 GPUs were needed. The running 
times of adaptive batch sizes were reduced with less than a 1% accuracy 
difference compared to fixed batch size. 

Garro et al. (2009) implemented Particle Swarm Optimization (PSO) 

to find the best topology, the number of neurons, the transfer function 
for each neuron, and the synaptic weights of an ANN. Four data sets 
were used to evaluate the algorithm’s accuracy: XOR, iris plant, wine, 
and breast cancer. The performance was compared against the Back
Propagation (BP) algorithm in an ANN composed of three layers, with a 
learning rate of 0.1, the same data sets, and the same number of epochs. 
The proposed algorithm performed better than the BP. 

Garro et al. (2011) presented an Artificial Bee Colony (ABC) method 
that minimizes the number of connections and maximizes the accuracy 
in an ANN. The proposal evolved the synaptic weights, the ANN’s ar
chitecture, and simultaneously the transfer functions of each neuron. 
The algorithm performance was evaluated with four data sets: iris plant, 
wine, breast cancer, and a real object recognition problem. The exper
iments were validated with two different fitness functions, the Mean 
Square Error (MSE) and the Classification ERror (CER). The experiments 
proved that the proposal provided a good optimization, given that it is 
possible to find the optimal values to construct an ANN automatically. 

As aforementioned, several methods have been proposed to solve the 
task of neural networks hyperparameters optimization. Most of the 
methods were global optimizers that can deal with multi-objective, 
constrained, and high-dimensional problems. The algorithms reviewed 
were tested with various data sets, but there were no references about its 
performance on TS. Moreover, all the works analyzed proposed using 
very deep networks to solve specific problems, requiring considerable 
time and computer resources (e.g., GPUs, RAM, storage space) to be 
executed, and the number of optimized hyperparameters varied from 
two to nine. 

Regarding auto-adaptive methods, four methodologies were detec
ted. Neuron pruning and PSO were used to adapt the network topology. 
Another method doubled the batch size and decreased the learning rate 
by 0.75 every 20 epochs. Finally, ABC was used to minimize the number 
of connections in an ANN. In contrast, our proposal considers the nature 
of the TS to adapt the number of neurons in the hidden layers and the 
batch size. Moreover, only standard computer equipment is needed to 
conduct the experiments, and the accuracy obtained is competitive with 
14 state-of-the-art methods. 

3. Materials 

In this section, we describe the materials used to conduct the ex
periments. First, we detail the computer equipment’s characteristics. 
Then, we describe the software employed to implement the tests. 
Finally, we present the selected TS data sets. 

3.1. Computer equipment 

To evaluate the performance of the proposed method on a com
mercial computer, we used an Intel i7-4790 K 64-bit desktop computer 
with Windows 10. The computer included 20 GB of Random-Access 
Memory (RAM) and a Graphics Processing Unit (GPU) NVIDIA 
GeForce RTX 2070 with 8 GB of RAM. 

3.2. Software 

Different development tools can be used to implement Artificial 
Neural Networks (ANNs) models, including Caffe, Theano, Microsoft 
Cognitive Toolkit, Torch, and TensorFlow, to name a few. In this work, 
we used the TensorFlow 2.0 open-source software. 

Also, to use the GPU’s computing capacity, it was required to install 
additional drivers provided by the manufacturer NVIDIA, version 10.1 
of Compute Unified Device Architecture (CUDA). 

3.3. UCR data set 

In this work, we selected the univariate subset of the TS data set 
published by the University of California, Riverside (UCR) (Dau et al., 
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2018). Because it is used for benchmarking purposes in other works 
(Bagnall et al., 2015; Bagnall et al., 2017; Abanda, Mori, & Lozano, 
2019; Kenji & Uchida, 2020; Wei et al., 2020; Schäfer & Leser, 2020). 
The UCR data set contains 128 different TS, from which 108 have re
ported classification accuracy results using the 14 algorithms mentioned 
in Section 1. 

The length of the UCR TS ranges from 24 to 2709. The training sets 
go from 16 to 8926, and the number of classes from 2 to 60. The UCR TS 
included audio, images, motion, ECG, HAR, spectrum, simulated sen
sors, traffic, EEG, financial, hemodynamics, and APG. From the 108 
series, 47 were left out of this study because they did not comply with 
the inclusion criteria: (i) the amount of data in the series required more 
RAM than the memory available, or (ii) the time required to train the 
MLP exceeded the 15 min that were arbitrarily defined as the limit to 
perform the training. 

The 61 selected series have different characteristics in terms of the 
number of samples in the training and validation sets, the number of 
samples per series, and the range of values between the measurements. 

Fig. 1 shows an example of three series randomly selected from the 
data set. The plots exhibit the diversity of values, the shape of graphs, 
and the number of samples. Note that the Symbols TS has a slight vari
ation between two consecutive measurements; hence, the plot is a 
smooth curve. The Earthquakes TS has high and low values alternated 
very frequently. Unlike the other two series, ECG200 TS has only 96 
measurements in terms of the amount of data, representing almost a 
quarter of Symbols and a fifth of Earthquakes. 

4. The proposed MLP architecture 

The proposed model for UCR TSC is an MLP with one, two, and three 
layers. This section describes the structure of a traditional MLP and of
fers a detailed explanation of our proposal. 

4.1. Multilayer perceptron 

Due to its reliable performance, the MLP is one of the most frequently 
employed ANN (Nait, 2020). MLP evolves the simple perceptron and is 
part of the family of the feed-forward neural networks. Incorporating 
one or more hidden layers, the MLP can represent non-linear functions 
(Hemmati, Nait, Reza, Dai, & Zhang, 2020). 

The traditional MLP is composed of one input layer (which receives 
the input data), l hidden layers (responsible for learning non-linear 
features), and one output layer (which provides the output). One hid
den layer is sufficient to make an MLP an universal approximator 
(Guliyev & Smailov, 2018). The MLP receives a data vector as input, and 
the output is a vector that defines the class to which the input data be
longs (Seo & Cho, 2020). 

Fig. 2 shows the general concept of an MLP made of l hidden layers. 
Each layer has a certain number of identical elements known as neurons. 
Each neuron of one layer is connected to the neurons of the next layer 
without feedback. 

For the sake of clarity on how an MLP works, consider wij as the 
weight between the input neuron i and the hidden neuron j; and wjk as 
the weight between the hidden neuron j and the output neuron k. 

All the layers have multiple neurons where addition and multipli
cation operations are conducted. When an input pattern (x1, x2,…xn) is 
presented, it is passed using wij weights from the input to the hidden 
layer. The product is applied to all the elements of the input vector for 
each neuron. The values obtained are added up (dot product) to get an 
output Oj; this process is shown in Eq. (1). 

Oj = f

(
∑n[0]

i=1
wijxi + bj

)

(1)  

where n[0] is the number of features in the input pattern, b is known as 
the bias that allows the shifting of linear combinations to either right or 

Fig. 1. The plot of three TS from the UCR data set.  

Fig. 2. The proposed MLP architecture.  
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left, and f(.) is the activation function that determines whether the 
output of the neuron is activated or not. 

Common activation functions employed in MLP are the sigmoid, the 
hyperbolic tangent, tan-sigmoid and log-sigmoid (Nait, Abdelfetah, & 
Ouaer, 2021). However, we used the Rectified Linear Unit (ReLU) to 
overcome the numerical problems related to the sigmoid such as the 
vanishing gradient. 

Each neuron activation function’s resulting values form the layer’s 
output vector and become the input to the next layer in the model, where 
the same process is repeated. An MLP can contain any number of layers, 
and each layer can have a different number of neurons. Each neuron 
connects to all the neurons in the next layer, creating a dense connec
tion. The layers in this model are also known as dense layers or fully 
connected layers. 

The lth layer’s output is computed by performing the dot product of 
the previously hidden layer’s outputs and the actual hidden layer 
weights plus the actual bias. The result is the input to the activation 
function f(.) as shown in Eq. (2). 

Ŷ k = f

(
∑n[l− 1]

j=1
wjkOj + bk

)

(2)  

where n[l− 1] is the number of hidden neurons in the previous layer. 
The softmax activation function was used in the output layer. Thus, 

the MLP output is a probability vector (the sum of probabilities is equal 
to 1.0) of the same length as the total number of classes (Li et al., 2019). 
Once the probability vector is obtained, the highest value is located, and 
its position indicates the class to which the input belongs. 

Only the vector element representing the correct class has a value of 
1, and the remaining elements have a value of 0. Thus, the input string 
has a probability of 100% belonging to the specific class and 0% to the 
other classes. 

The training process of the model is performed by comparing the last 
output vector against an expected vector. The expected vector is an array 
of dimensions equal to the number of classes of the series. All the 
computations until this step are known as the forward phase. After this 
point, the backward propagation phase starts. 

The difference between the output and the desired vectors represents 
the model error, and it is used to adjust the values of the previous layer 
weights. The goal is to minimize the mean squared error between the 
obtained output and the desired output. The error is computed using Eq. 
(3). 

Ep =
1
2
∑m

k=1

(
dk − Ŷ k

)2
(3)  

where m is the number of examples in the data set, dk is the desired 
output for the kth input example. 

The gradient of the error is multiplied by the learning rate (η), and 
the result is used to update each neuron’s weight in the corresponding 
layer under training. When the model is created, the weights are 
randomly initialized with a small value. The gradient is progressively 
backward passed to each layer, starting at the last layer until reaching 
the first layer to adjust the weights. 

The gradient is a vector equal to the partial derivative of Ep regarding 
each weight and takes the direction of the fastest error increase, while 
the opposite direction determines the fastest error decrease. The error is 
reduced by adjusting each weight in the direction shown in Eq. (4). 

− η ∂Ep

∂wij

(4) 

The weights are updated using Eq. (5). 

wij := wij − η ∂Ep

∂wij
(5) 

The backpropagation process is performed starting from the last 

layer to the first one. That is why it is called backpropagation (short of 
backward propagation of error). 

4.2. The proposed hyperparameter optimization method 

As well as other neural networks, MLP has hyperparameters such as 
the number of hidden layers, the number of neurons in each hidden 
layer, type of activation function, batch size, dropout, and learning rate, 
which must be tuned. 

Hyperparameter optimization is a challenging task that is frequently 
solved by experimented designers or by computational brute force. In 
this work, we propose a way to determine the number of hidden layers 
and the number of neurons in the MLP, and the batch size according to 
the TS nature. We have not considered the last layer of the MLP as part of 
the model; therefore, the value l was used to define the number of layers. 

The proposed l-layer model is shown in Fig. 2. However, we 
experimented with one, two, and three layers to find the optimal number 
of layers. For a four-layer model, the memory requirements exceeded the 
RAM available in the GPU for larger TS. We also observed that the TS 
that could be tested with four layers showed a lower accuracy than that 
obtained for the model with three layers. The learning process of the 
network is supervised. The data set consists of 2-tuples, each with the 
values of the series (input vector) and the probability of the class this 
vector belongs to (output vector). 

In the training stage, groups of one or more pairs of the training set 
are presented (input vector and expected vector); this group is called a 
batch. Once the whole batch has been presented to the model, the error 
is calculated, and the weights are updated. 

The selection of the batch size hyperparameter influences the dy
namics of the learning algorithm in two ways: (i) a large batch reduces 
the training time, and because the error is calculated using multiple 
pairs, the training is more efficient, and (ii) a small batch increases the 
training time, and because few elements are used to calculate the error, 
some noise is added to the process of weight updating. A small-batch can 
lead to the model working better for generalization (it can classify values 
that were not included in the training set) (Dostal et al., 2020; Kandel & 
Castelli, 2020). 

An epoch occurs when all batches in the training set have been used. 
The training cycle consists of running several training epochs until the 
error obtained falls below an acceptable value or the maximum number 
of allowed epochs is reached. However, the epoch can also be defined as 
processing a defined number of batches and not necessarily all of them. 
For the experiments conducted, an epoch was considered as using all the 
batches. 

Because the TS used to evaluate the model has different lengths, both 
in measurements and in the number of samples, the batch size selection 
could not be fixed for all the TS. It is also not recommended to set the 
batch to the size of the entire training data set. 

It was discovered through the diverse experiments that the different 
TS data sets required different hyperparameters. That means there was 
no general solution to the TSC problem. Therefore, a large number of 
experiments were executed to evaluate different hyperparameters and 
the model performance. As a result, Eqs. (6) and (7) were proposed to 
calculate the batch length and the hidden layer size, respectively. 

The equations were designed to involve the TS data sets attributes 
found to be distinctive, such as the size of the training set or the time 
series length. By including those attributes as variables in the equations, 
the MLP hyperparameters could be adjusted automatically for each TS 
data set. 

Eq. (6) depicts the proposed adaptive calculation of the batch size 
concerning the size of the training set. 

Batchsize = ⌊
Size of the training set

Divisor
⌋ (6)  

where the way to compute the Divisor is explained in this section. The 
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floor function ⌊.⌋ returns the largest integer that is smaller than, or equal 
to, the result of the division. The minimum value that Divisor can take is 
one since the division by zero results in an undefined value. 

On the other hand, establishing the number of neurons in the hidden 
layers is crucial because it affects the neural network’s capability for 
generalization and the training time. If a reduced number of neurons is 
used, it might result in underfitting, meaning the neural network is 
incapable of learning the data variability. Conversely, if many neurons 
are used, it might result in overfitting, meaning that the neural network 
learns the detail and noise in the training data. Hence, during the vali
dation stage, the network will not identify the new examples. Conse
quently, the generalization capabilities will be impaired. Moreover, 
many neurons in the hidden layers increase the time, making impossible 
the training of the network in standard computer equipment (Aalst et al., 
2010). 

Neural networks have been studied for several years. However, there 
is no fully valid method to determine the number of neurons in the 
hidden layers. Therefore, a trial and error method is usually employed to 

identify the suitable number of neurons in each hidden layer (Nait et al., 
2021). Considering this, we propose the Eq. (7) to determine the number 
of neurons in hidden layers adaptively. 

Neurons = TSLength ∗ LayerIndex ∗ Multiplier (7)  

where TSLength is the number of points measured in each TS, LayerIndex 
is an index assigned from the last to the first hidden layer. In the three- 
layer model, the assigned sequential values are 3, 2, 1. The Multiplier 
factor is computed later in this section. 

In Eq. (6), a Divisor value of 24, and in Eq. (7), a Multiplier value of 9 
were obtained after running several training cycles. For the sake of 
clarity on how these values were obtained, consider the information of 
the three TS shown in Table 1. The three TS selected represents the 
different shapes included in the data sets. Beef has a reduced number of 
training sets while FiftyWords has a larger number. PhalangesOutli
nesCorrect has more classes to differentiate, and the training set size is 
between the size of the other two TS. 

Each TS is used to train the MLP by changing the Divisor from 1 to 54 
in steps of one. The training time and loss values were collected by 
averaging ten cycles (to improve the repeatability), as it is shown in 
Fig. 3. The solid line represents the loss values and the dotted line the 
time. Notice that TS shares the same type of marker for loss and time. 

The solid vertical line in Fig. 3 shows the value of 24 for the Divisor. It 
establishes a trade-off between loss and time for the three TS.Beef is the 
shortest TS with 30 training sets. Therefore, when the Divisor goes higher 
than 15, the effective batch size is always one. Moreover, this value does 
not introduce an adverse effect on loss and time. The changes are only 

Table 1 
The TS characteristics used to explain how the Divisor and Multiplier values were 
calculated.  

Data set No. of 
training sets 

No. of 
test sets 

No. of 
classes 

Data 
points 

Beef 30 30 5 470 
FiftyWords 1800 858 2 80 
PhalangesOutlinesCorrect 455 455 50 270  

Fig. 3. The loss and time obtained by averaging ten training cycles for three TS with values from 1 to 54 for the Divisor.  
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attributed to the random nature of the MLP initialization and the 
numeric resolution. 

Small values of Divisor yield a significant loss variation for the Fif
tyWords TS. For instance, a maximum loss of 1.83 is obtained with a 
Divisor of four, while a Divisor of five gives a loss of 1.00. The variation 
decreases when the Divisor increases, with a stable value of 17. It is 
worth emphasizing that the variation shown was due to the MLP 
randomness. Hence, a Divisor value of 24 is appropriate because it is big 
enough to allow TS with a larger number of training sets to reach its 
stability while keeping the trade-off between low loss and low time. 
PhalangesOutlinesCorrect showed a smooth loss. The Divisor value of 24 is 
appropriate because it does not adversely affect the loss, and the highest 
values are already achieved. Moreover, the training time of 17 s is equal 
to the Beef and about one-fourth of FiftyWords. 

Fig. 4 shows the results of the training loss (solid line), validation loss 
(dashed line), and time (dotted line). The experiment was carried out 
with Multiplier values ranging from 1 to 21 in steps of one. Unlike the 
Divisor experiment, the validation loss was also included because the 
training and validation loss curves do not follow the same pattern. 

The solid vertical line in Fig. 4 shows the results with the proposed 
Multiplier value of nine. For larger values, the training loss decreases, 
and the validation loss reaches a steady level, as observed in FiftyWords 
TS. Low validation loss is needed to ensure generalization capability. At 
this point, the trade-off between validation loss and time is obtained for 

the three TS. It is also important to highlight that the training time is 
often increased as the Multiplier goes up. Therefore, it is desired to use 
the lowest Multiplier value that produces the smallest loss. 

The box and whisker plot of Fig. 5 shows that when the Multiplier 

Fig. 4. Training loss, validation loss and time obtained for the three TS with Multiplier values from 1 to 21.  

Fig. 5. Box and whisker plot for the validation loss using different values 
for Multiplier. 
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factor increases, the validation loss decreases. Also, the interval between 
the maximum and the minimum decreases as the Multiplier factor in
creases, and after it reaches 12 the spread increases again. It can be 
observed that the Multiplier factors of 9 and 11 exhibit the least spread of 
the quartiles as well as the least loss. However, a Multiplier factor of 9 
was selected because, according to Eq. (7), a Multiplier factor of 11 would 
increase the number of neurons. 

In the literature, underfitting is less discussed than overfitting 
because this problem can be alleviated by increasing the model’s 
complexity. Contrarily, methods such as cross-validation, feature 
removal, data augmentation, early stopping, and ensembling have been 
proposed to prevent overfitting. However, the most widely used method 
is regularization, which performs slight modifications to the network’s 
weights to find the best generalization (Nusrat & Jang, 2018). 

Table 2 
Test results part I: Average accuracy of the classifiers over 61 UCR data sets (Continued in Table 3).   

Reported methods 

Data set TS-Chief Rocket Inception S-Boss ResNet Hive-Cote Proximity Boss    

Time   v1.0 Forest  

Adiac 0.780 0.772 0.822 0.743 0.815 0.796 0.722 0.749 
ArrowHead 0.881 0.859 0.880 0.888 0.859 0.876 0.884 0.869 
Beef 0.632 0.760 0.682 0.656 0.677 0.736 0.594 0.612 
BeetleFly 0.958 0.885 0.893 0.937 0.853 0.963 0.860 0.943 
BirdChicken 0.963 0.882 0.952 0.968 0.945 0.940 0.903 0.983 
Car 0.879 0.912 0.901 0.859 0.908 0.869 0.806 0.848 
CBF 0.998 0.996 0.996 0.999 0.988 0.998 0.994 0.999 
ChlorineConcentration 0.661 0.796 0.864 0.659 0.841 0.734 0.631 0.658 
Coffee 0.990 1.000 0.999 0.981 0.996 0.993 0.992 0.986 
CricketX 0.830 0.839 0.853 0.784 0.808 0.816 0.800 0.762 
CricketY 0.817 0.845 0.860 0.771 0.810 0.810 0.800 0.750 
CricketZ 0.838 0.853 0.861 0.787 0.813 0.834 0.803 0.769 
DiatomSizeReduction 0.946 0.958 0.951 0.945 0.306 0.914 0.957 0.945 
DistalPhalanxOutlineAgeGroup 0.828 0.812 0.766 0.821 0.776 0.824 0.802 0.821 
DistalPhalanxOutlineCorrect 0.819 0.824 0.815 0.811 0.809 0.824 0.823 0.812 
DistalPhalanxTW 0.692 0.701 0.665 0.670 0.667 0.696 0.692 0.671 
Earthquakes 0.748 0.748 0.731 0.747 0.717 0.747 0.750 0.746 
ECG200 0.855 0.899 0.897 0.872 0.884 0.859 0.873 0.878 
ECG5000 0.948 0.947 0.942 0.941 0.937 0.946 0.940 0.940 
ECGFiveDays 0.994 0.996 0.996 0.992 0.951 0.994 0.883 0.992 
FaceAll 0.983 0.988 0.983 0.975 0.982 0.980 0.977 0.970 
FaceFour 1.000 0.931 0.939 0.982 0.925 0.973 0.945 0.995 
FacesUCR 0.973 0.971 0.977 0.957 0.964 0.961 0.956 0.951 
FiftyWords 0.843 0.825 0.827 0.765 0.724 0.772 0.826 0.706 
Fish 0.982 0.974 0.973 0.971 0.970 0.979 0.934 0.970 
GunPoint 1.000 0.992 0.995 0.997 0.991 0.998 0.991 0.996 
Ham 0.805 0.855 0.850 0.835 0.807 0.840 0.783 0.837 
Herring 0.597 0.625 0.625 0.608 0.597 0.612 0.574 0.596 
InsectWingbeatSound 0.632 0.657 0.627 0.519 0.491 0.640 0.607 0.512 
ItalyPowerDemand 0.962 0.962 0.960 0.868 0.957 0.958 0.956 0.871 
Lightning2 0.769 0.777 0.817 0.808 0.801 0.773 0.849 0.819 
Lightning7 0.794 0.798 0.821 0.681 0.810 0.758 0.792 0.671 
Meat 0.984 0.989 0.984 0.984 0.994 0.986 0.987 0.981 
MedicalImages 0.799 0.805 0.796 0.717 0.792 0.740 0.771 0.716 
MiddlePhalanxOutlineAgeGroup 0.694 0.711 0.594 0.659 0.597 0.698 0.659 0.656 
MiddlePhalanxOutlineCorrect 0.806 0.834 0.834 0.807 0.824 0.813 0.824 0.810 
MiddlePhalanxTW 0.573 0.590 0.527 0.542 0.531 0.584 0.549 0.532 
OliveOil 0.917 0.902 0.874 0.874 0.862 0.883 0.879 0.876 
OSULeaf 0.974 0.939 0.952 0.977 0.975 0.975 0.859 0.969 
PhalangesOutlinesCorrect 0.825 0.845 0.861 0.819 0.848 0.826 0.829 0.817 
Plane 1.000 1.000 0.997 0.998 1.000 1.000 1.000 0.998 
ProximalPhalanxOutlineAgeGroup 0.846 0.852 0.822 0.833 0.817 0.856 0.840 0.828 
ProximalPhalanxOutlineCorrect 0.875 0.899 0.906 0.866 0.906 0.885 0.866 0.866 
ProximalPhalanxTW 0.811 0.804 0.782 0.775 0.789 0.816 0.791 0.769 
ShapeletSim 1.000 0.998 0.924 1.000 0.727 1.000 0.789 1.000 
SonyAIBORobotSurface1 0.890 0.958 0.954 0.895 0.960 0.826 0.920 0.898 
SonyAIBORobotSurface2 0.901 0.935 0.951 0.884 0.969 0.937 0.899 0.879 
Strawberry 0.974 0.979 0.975 0.966 0.975 0.975 0.960 0.970 
SwedishLeaf 0.962 0.963 0.970 0.925 0.959 0.949 0.953 0.920 
Symbols 0.971 0.969 0.970 0.964 0.947 0.969 0.967 0.963 
SyntheticControl 0.999 0.998 0.996 0.965 0.994 0.994 0.998 0.967 
ToeSegmentation1 0.960 0.933 0.953 0.920 0.954 0.960 0.836 0.925 
ToeSegmentation2 0.963 0.933 0.964 0.963 0.953 0.968 0.886 0.962 
Trace 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
UWaveGestureLibraryX 0.847 0.857 0.834 0.788 0.790 0.833 0.831 0.753 
UWaveGestureLibraryY 0.788 0.784 0.771 0.715 0.676 0.755 0.767 0.662 
UWaveGestureLibraryZ 0.791 0.796 0.773 0.736 0.751 0.775 0.767 0.695 
Wafer 0.999 0.999 0.999 0.999 0.999 1.000 0.996 0.999 
Wine 0.898 0.914 0.887 0.894 0.856 0.892 0.856 0.893 
WordSynonyms 0.794 0.764 0.752 0.738 0.613 0.693 0.778 0.658 
Yoga 0.873 0.914 0.912 0.915 0.877 0.912 0.887 0.910  

Number of times the method wins 15 13 11 6 5 4 4 3  

F. Arias del Campo et al.                                                                                                                                                                                                                      



Expert Systems With Applications 181 (2021) 115147

9

A common technique employed for regularization is the dropout. 
Dropout consists of randomly ignoring some neurons in the layer and 
retaining the rest with a certain probability that needs to be optimized. 
The dropout value for each layer was calculated depending on the layer 
position. By observing the MLP from the input to the output (backward), 
the first layer has a dropout of 0.3. Then, the dropout was divided by two 
on each inner layer. In this way, the model with one layer uses a dropout 
of 0.3. The model with two layers uses a dropout of 0.3 and 0.15 for the 

last and penultimate layers, respectively. Finally, with three layers, the 
values used were 0.3, 0.15, and 0.075. 

5. Experiments and results 

To conduct the experiments, we used 61 TS from the UCR repository. 
We discarded the other sets due to the length and amount of data, the 
memory requirements, and the TS that requires more than 15 min to 

Table 3 
Test results part II (Continued from Table 2).   

Reported methods Proposed methods 

Data set cBoss STC Weasel Catch22 TSF Rise 1MLP 2MLP 3MLP 

Adiac 0.746 0.793 0.799 0.685 0.712 0.758 0.524 0.691 0.739 
ArrowHead 0.878 0.807 0.848 0.750 0.797 0.828 0.809 0.838 0.841 
Beef 0.571 0.736 0.740 0.473 0.689 0.742 0.880 0.900 0.860 
BeetleFly 0.975 0.933 0.887 0.840 0.833 0.872 0.860 0.850 0.900 
BirdChicken 0.977 0.870 0.865 0.893 0.815 0.868 0.840 0.765 0.770 
Car 0.843 0.858 0.834 0.746 0.766 0.753 0.872 0.882 0.873 
CBF 0.998 0.985 0.980 0.954 0.972 0.949 0.888 0.891 0.899 
ChlorineConcentration 0.665 0.735 0.755 0.598 0.723 0.765 0.487 0.753 0.785 
Coffee 0.990 0.989 0.989 0.980 0.987 0.985 1.000 1.000 1.000 
CricketX 0.764 0.792 0.776 0.609 0.693 0.706 0.544 0.574 0.588 
CricketY 0.751 0.778 0.780 0.591 0.686 0.709 0.601 0.628 0.625 
CricketZ 0.772 0.807 0.790 0.628 0.706 0.722 0.561 0.594 0.595 
DiatomSizeReduction 0.884 0.859 0.908 0.925 0.942 0.932 0.965 0.972 0.966 
DistalPhalanxOutlineAgeGroup 0.806 0.796 0.793 0.783 0.809 0.822 0.736 0.767 0.765 
DistalPhalanxOutlineCorrect 0.780 0.827 0.819 0.812 0.806 0.811 0.746 0.789 0.786 
DistalPhalanxTW 0.673 0.690 0.679 0.681 0.691 0.694 0.646 0.684 0.711 
Earthquakes 0.747 0.742 0.747 0.739 0.747 0.748 0.750 0.743 0.745 
ECG200 0.830 0.839 0.859 0.789 0.860 0.851 0.890 0.915 0.920 
ECG5000 0.943 0.942 0.946 0.936 0.943 0.937 0.936 0.939 0.941 
ECGFiveDays 0.984 0.978 0.994 0.816 0.952 0.973 0.958 0.974 0.977 
FaceAll 0.969 0.954 0.973 0.811 0.950 0.965 0.837 0.869 0.877 
FaceFour 0.997 0.656 0.981 0.680 0.907 0.877 0.847 0.835 0.839 
FacesUCR 0.952 0.910 0.956 0.709 0.904 0.892 0.790 0.806 0.810 
FiftyWords 0.718 0.737 0.777 0.598 0.722 0.667 0.697 0.711 0.709 
Fish 0.974 0.950 0.951 0.773 0.830 0.859 0.892 0.878 0.870 
GunPoint 1.000 0.986 0.993 0.943 0.955 0.981 0.908 0.949 0.951 
Ham 0.811 0.811 0.821 0.694 0.799 0.820 0.769 0.758 0.750 
Herring 0.574 0.633 0.602 0.556 0.604 0.598 0.728 0.719 0.722 
InsectWingbeatSound 0.539 0.629 0.619 0.559 0.603 0.636 0.654 0.651 0.645 
ItalyPowerDemand 0.926 0.954 0.947 0.877 0.959 0.945 0.967 0.973 0.974 
Lightning2 0.797 0.658 0.627 0.745 0.764 0.682 0.734 0.738 0.725 
Lightning7 0.720 0.743 0.713 0.646 0.721 0.698 0.671 0.677 0.660 
Meat 0.977 0.968 0.977 0.943 0.984 0.987 0.945 0.947 0.910 
MedicalImages 0.690 0.710 0.709 0.757 0.746 0.667 0.632 0.706 0.738 
MiddlePhalanxOutlineAgeGroup 0.677 0.668 0.660 0.688 0.660 0.700 0.629 0.646 0.649 
MiddlePhalanxOutlineCorrect 0.772 0.832 0.828 0.773 0.800 0.805 0.750 0.848 0.846 
MiddlePhalanxTW 0.567 0.579 0.554 0.557 0.569 0.585 0.490 0.531 0.623 
OliveOil 0.874 0.879 0.913 0.746 0.893 0.893 0.850 0.807 0.487 
OSULeaf 0.960 0.956 0.852 0.724 0.643 0.654 0.575 0.568 0.583 
PhalangesOutlinesCorrect 0.779 0.834 0.822 0.792 0.806 0.813 0.670 0.753 0.802 
Plane 1.000 0.999 0.995 0.988 0.996 0.997 0.974 0.975 0.981 
ProximalPhalanxOutlineAgeGroup 0.850 0.846 0.845 0.858 0.845 0.857 0.855 0.856 0.863 
ProximalPhalanxOutlineCorrect 0.865 0.895 0.876 0.834 0.849 0.874 0.734 0.869 0.884 
ProximalPhalanxTW 0.795 0.808 0.801 0.786 0.802 0.813 0.744 0.777 0.838 
ShapeletSim 0.985 1.000 0.997 0.994 0.514 0.768 0.534 0.526 0.537 
SonyAIBORobotSurface1 0.623 0.801 0.909 0.883 0.864 0.867 0.798 0.825 0.766 
SonyAIBORobotSurface2 0.876 0.937 0.935 0.902 0.874 0.912 0.826 0.828 0.839 
Strawberry 0.972 0.972 0.979 0.923 0.967 0.973 0.932 0.966 0.968 
SwedishLeaf 0.911 0.934 0.958 0.880 0.898 0.923 0.787 0.874 0.890 
Symbols 0.963 0.901 0.953 0.948 0.878 0.913 0.884 0.897 0.879 
SyntheticControl 0.951 0.992 0.987 0.967 0.992 0.678 0.933 0.971 0.974 
ToeSegmentation1 0.952 0.953 0.943 0.813 0.667 0.880 0.618 0.619 0.614 
ToeSegmentation2 0.965 0.945 0.928 0.835 0.803 0.912 0.745 0.779 0.775 
Trace 1.000 1.000 1.000 1.000 0.992 0.983 0.671 0.846 0.846 
UWaveGestureLibraryX 0.774 0.820 0.818 0.769 0.800 0.634 0.741 0.779 0.774 
UWaveGestureLibraryY 0.694 0.745 0.726 0.704 0.722 0.668 0.690 0.703 0.698 
UWaveGestureLibraryZ 0.711 0.772 0.755 0.706 0.733 0.664 0.686 0.721 0.719 
Wafer 0.999 1.000 1.000 0.997 0.997 0.995 0.995 0.995 0.996 
Wine 0.878 0.886 0.930 0.700 0.862 0.871 0.724 0.680 0.667 
WordSynonyms 0.668 0.623 0.713 0.544 0.648 0.592 0.587 0.591 0.595 
Yoga 0.912 0.880 0.892 0.804 0.866 0.837 0.832 0.857 0.855  

Number of times the method wins 3 3 2 0 0 0 2 4 7  
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train. 
The configuration parameters to train the three MLP models are 4500 

for the maximum number of epochs and a learning rate of 0.0001. 
Moreover, we configured a stopping point to prevent the training cycle 
from being extended to the maximum number of epochs and reduce 
overfitting. The stopping point occurs every time the loss value is less 
than 0.0008, with a patience factor of 35. 

We added a function to increase the efficiency of the training cycle 
when the curve reaches a stagnation point. The function reduced the 
learning rate by 20% when the variation of the accuracy of the evalu
ation is lower than 0.01. This function is called Reduce Learning Rate In 
Plateau. We also added a waiting period of 9 cycles to avoid excessive 
adjustments. This occurs before applying the reduction again if the curve 
remained unchanged. 

We used the 61 TS to independently train each of the three proposed 
models and the validation sets to measure the accuracy. Some validation 
sets were much larger than the training sets. 

We executed ten times the training and validation cycles to obtain 
the average accuracy. We used the average because it gives more 
consistent and reproducible values. The difference between distinct 
cycles for the same series could become significant due to the random 
initialization of the weights. For example, for the Strawberry series, the 
highest value was 89.46%, and the lowest was 77.02%. 

5.1. Results 

A benchmark was conducted between the results obtained with the 
proposed MLP and 14 state-of-the-art algorithms. The website in Bag
nall, Lines, Vickers, and Keogh, 2020 maintains a comprehensive re
pository for research into TSC, including Critical Difference Diagram 
(CDD) and the file with a collection of accuracy obtained with 14 al
gorithms on the UCR data set. 

A summary of the accuracy is shown in Tables 2 and 3. The last three 
columns in Table 3 contain the values obtained by the MLP with one, 
two, and three layers, respectively. Boldface numbers represent the 
highest values obtained for each TS. 

For the sake of clarity the decimal part of the accuracy was truncated 
to three digits. However, nine decimal digits were considered to 
compare maximum values. For example, the accuracy of the TS-chief and 
InceptionTime is 0.996 for ECGFiveDays in Table 3. However, the nine 
digit value for TS-chief is 0.995973674 and for InceptionTime is 
0.995857530. Hence, the first is marked in boldface. 

In the last row of Tables 2 and 3, we ranked the different methods 
according to how many times each method wins. The best performers 
were TS-Chief, Rocket, Inception time, and MLP with three layers. Each 
method won 15, 13, 11, and 7 times, respectively. 

The reason why the proposed model placed fourth can be explained 

by observing the first three classification methods. TS-Chief uses an 
ensemble combining some of the best TSC methods. Rocket utilizes a 
CNN, and Inception Time employs a deep learning model based on the 
Inception-v4 architecture. These three methods have a more complex 
structure and, therefore, superior performance than the MLP, which 
consists of a simpler neural network architecture. 

The use of hyperparameters calculated dynamically depending on 
the number of elements in the training set and the length of the TS 
allowed the MLP to automatically adjust to different TS without needing 
manual adjustments, generalizing the model for data sets of different 
shapes. Fig. 6 shows the average range of all the methods according to 
the number of times each method obtained the highest accuracy. It 
should be noted that the proposed methods occupy positions 4, 8, and 
13.5. Observe that our simplest method (1MLP) is above STC, cBOSS, 
and BOSS methods, and our most complex method (3MLP) is just below 
the top three methods. However, the 3MLP method is computationally 
less expensive, which is encouraging to justify its use. 

A comparison of the accuracy obtained with the MLP concerning the 
14 state-of-the-art methods is shown in Table 4. The first column shows 
the highest value obtained among all the included methods. The 
following three columns show the difference between the highest ac
curacy of the reference and the accuracy obtained by the proposed 
methods. We show the values as percentages, and negative values 
indicate that the proposed method obtained a lower accuracy. 

Typically, the CDD is used to evaluate the algorithms. However, the 
results may not be clear when a new method is evaluated. For instance, 
the diagram in Fig. 7 suggests that the proposed three-layer MLP method 
is ranked among the lower significance methods. However, in Table 3 
and in Fig. 6, it is in fourth place. Expedited analysis can lead to a new 
method being ruled out prematurely. 

As an additional way to evaluate the relevance of the proposed 
method, we suggest grouping by the range of normalized differences 
between the values obtained by the reference and the proposed 
methods. The difference can be converted into a percentage using the 
reference value (the maximum value of accuracy reported among all 
reference methods) as the value equivalent to 100%; this allows the 
conversion of the differences to a proportional part. 

For example, if the accuracy of 0.30 was obtained with the reference 
method and 0.25with the proposed method, the difference is − 0.05. 
Then, this difference is converted to a percentage with Eq. 8. 

Percentage =
Difference ∗ 100%

Reference
(8) 

Therefore, the resulting percentage is − 16.66%. On the other hand, if 
the reference method has an accuracy of 0.80, and the method to eval
uate 0.75, the difference is also − 0.05 and the percentage is − 6.25%. 
The method to be evaluated, in the second example, has an accuracy 

Fig. 6. Average ranges of the number of times won for each method.  
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closer to the reference than the one obtained in the first example. As it 
can be observed, negative differences indicated that the method pro
posed obtained less accuracy than the reference. However, it does not 
imply that the CDD should not be used. Percentage comparison uses 
different information and provides a numerical reference on how close 
the reference result is. 

Table 5 was generated from Table 4. The information was grouped 
into four categories: (i) the number of times the accuracy obtained by 
the proposed MLP was greater than the best reference method, (ii) the 

number of times when the accuracy was equal (methods achieved 100% 
accuracy), (iii) the difference was 1% lower than the best reference 
method, and (iv) the difference was 5% lower than the best reference 
method. The information can be considered as a histogram of the 
percentages. 

We used the Friedman and Nemenyi tests to compare multiple 
classifiers (Demsar, 2006). The aim was to determine if there is any 
statistically significant difference between the ranks of the compared 
methods. 

Table 4 
A summary of the percentage differences among the proposed and the reference methods.   

Accuracy Percentage difference 

Data set max value 1MLP 2MLP 3MLP 

Adiac 0.822 − 36.285 − 15.970 − 10.142 
ArrowHead 0.888 − 8.925 − 5.578 − 5.278 
Beef 0.760 15.789 18.421 13.158 
BeetleFly 0.975 − 11.795 − 12.821 − 7.692 
BirdChicken 0.983 − 14.576 − 22.203 − 21.695 
Car 0.912 − 4.388 − 3.291 − 4.205 
CBF 0.999 − 11.162 − 10.829 − 10.006 
ChlorineConcentration 0.864 − 43.626 − 12.797 − 9.066 
Coffee 1.000 0.000 0.000 0.000 
CricketX 0.853 − 36.268 − 32.692 − 31.070 
CricketY 0.860 − 30.107 − 26.968 − 27.356 
CricketZ 0.861 − 34.895 − 30.994 − 30.904 
DiatomSizeReduction 0.958 0.773 1.456 0.841 
DistalPhalanxOutlineAgeGroup 0.828 − 11.092 − 7.385 − 7.559 
DistalPhalanxOutlineCorrect 0.827 − 9.781 − 4.613 − 4.964 
DistalPhalanxTW 0.701 − 7.917 − 2.428 1.368 
Earthquakes 0.750 0.000 − 0.864 − 0.576 
ECG200 0.899 − 1.001 1.780 2.336 
ECG5000 0.948 − 1.270 − 0.995 − 0.765 
ECGFiveDays 0.996 − 3.840 − 2.196 − 1.928 
FaceAll 0.988 − 15.292 − 12.076 − 11.243 
FaceFour 1.000 − 15.246 − 16.446 − 16.105 
FacesUCR 0.977 − 19.134 − 17.509 − 17.075 
FiftyWords 0.843 − 17.326 − 15.683 − 15.918 
Fish 0.982 − 9.121 − 10.576 − 11.391 
GunPoint 1.000 − 9.200 − 5.067 − 4.933 
Ham 0.855 − 10.134 − 11.359 − 12.249 
Herring 0.633 15.062 13.580 14.074 
InsectWingbeatSound 0.657 − 0.456 − 0.833 − 1.802 
ItalyPowerDemand 0.962 0.491 1.087 1.198 
Lightning2 0.849 − 13.458 − 13.071 − 14.617 
Lightning7 0.821 − 18.197 − 17.529 − 19.533 
Meat 0.994 − 4.919 − 4.751 − 8.440 
MedicalImages 0.805 − 21.441 − 12.273 − 8.384 
MiddlePhalanxOutlineAgeGroup 0.711 − 11.480 − 9.105 − 8.648 
MiddlePhalanxOutlineCorrect 0.834 − 10.144 1.592 1.386 
MiddlePhalanxTW 0.590 − 16.991 − 9.945 5.688 
OliveOil 0.917 − 7.273 − 12.000 − 46.909 
OSULeaf 0.977 − 41.159 − 41.836 − 40.271 
PhalangesOutlinesCorrect 0.861 − 22.263 − 12.561 − 6.932 
Plane 1.000 − 2.571 − 2.476 − 1.905 
ProximalPhalanxOutlineAgeGroup 0.858 − 0.423 − 0.265 0.587 
ProximalPhalanxOutlineCorrect 0.906 − 19.009 − 4.146 − 2.477 
ProximalPhalanxTW 0.816 − 8.889 − 4.842 2.690 
ShapeletSim 1.000 − 46.587 − 47.389 − 46.333 
SonyAIBORobotSurface1 0.960 − 16.875 − 14.137 − 20.201 
SonyAIBORobotSurface2 0.969 − 14.765 − 14.495 − 13.357 
Strawberry 0.979 − 4.731 − 1.307 − 1.141 
SwedishLeaf 0.970 − 18.891 − 9.899 − 8.200 
Symbols 0.971 − 8.972 − 7.595 − 9.417 
SyntheticControl 0.999 − 6.607 − 2.769 − 2.503 
ToeSegmentation1 0.960 − 35.659 − 35.522 − 36.024 
ToeSegmentation2 0.968 − 23.014 − 19.518 − 19.915 
Trace 1.000 − 32.900 − 15.400 − 15.400 
UWaveGestureLibraryX 0.857 − 13.515 − 9.092 − 9.740 
UWaveGestureLibraryY 0.788 − 12.407 − 10.848 − 11.404 
UWaveGestureLibraryZ 0.796 − 13.778 − 9.386 − 9.642 
Wafer 1.000 − 0.522 − 0.483 − 0.426 
Wine 0.930 − 22.163 − 26.941 − 28.334 
WordSynonyms 0.794 − 26.061 − 25.548 − 24.995 
Yoga 0.915 − 9.036 − 6.334 − 6.548  
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Friedman’s test scores the methods for each data set separately. The 
best get the first rank, the second-best gets the second rank, and so on. 
We assigned the average ranges in the event of a tie. On the other hand, 
we used the Nemenyi test to compare the classifiers and find if the two 
classifiers’ performance is significantly different. We need to know if the 
average ranges corresponding to both classifiers differ, at least in the 
critical difference, determined by Eq. (9). 

CD = qα

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
z(z + 1)

6N

√

(9)  

where z corresponds to the number of methods to compare (z = 17), N 
is the total number of TS (61), the critical value qα corresponding to the 
test used for the comparison of the methods, is given in (Zar, 2007) 
(Appendix Table B.15), and is equivalent to 3.562; and αrepresents the 
confidence interval over which the critical value qα is selected. The 
number α commonly used in the analysis done on the reported methods 
is equal to 0.05. So that, we also selected it for the present study. 

We obtained the average rankings of the algorithms to create the 

diagram depicted in Fig. 7. First, we separated the TS, and we performed 
a ranking of the methods according to the accuracy values obtained. 
Then, we obtained the sum and average of each of the method ranges. 
Finally, we ordered the ranges from highest to lowest. We positioned the 
highest performances on the left (the first one being the first in the 
ranking), and we placed the methods with the lowest-performing on the 
right (the last is the one that obtained the last place in the ranking). 
Table 6 shows the average rankings of the algorithms. 

The horizontal bars in Fig. 7 show the classifiers’ pairs where the 
difference between average ranges is less than the critical difference 
calculated with Eq. 9. The horizontal bars group the methods in which 
there is no significant statistical difference among the values. Even 
though the proposed 3MLP method is placed in the range 11.4508, there 
is no critical difference against the ProximityForest method positioned 
in the range 8.2951. This allows us to locate the proposed method 
competitively among the reported methods. 

The statistical comparison of the algorithms carried out by the 
Friedman test shows a rejection of the null hypothesis, which means that 
the proposed MLP differs significantly from the highest-rated algorithm 
(ROCKET). 

When the null hypothesis of Friedman’s test is rejected, there is a 
wide variety of multiple comparisons that can be used to determine 
which treatments differ from each other. The p-values obtained by 
applying post hoc methods over the Friedman procedure results are 
presented In Table 7.  

• Bonferroni-Dunn’s procedure rejects the hypotheses with a p-value 
≤ 0.003125.  

• Holm’s procedure rejects the hypotheses with a p-value ≤ 0.016667.  
• Hochberg’s procedure rejects the hypotheses with a p-value 
≤ 0.0125.  

• Hommel’s procedure rejects the hypotheses with a p-value 
≤ 0.016667.  

• Holland’s procedure rejects the hypotheses with a p-value 
≤ 0.016952.  

• Rom’s procedure rejects the hypotheses with a p-value ≤ 0.013109.  
• Finner’s procedure rejects the hypotheses with a p-value 
≤ 0.043889.  

• Li’s procedure rejects the hypotheses with a p-value ≤ 0.036484. 

Fig. 7. Average accuracy ranges for the 14 state-of-the-art methods and the three proposed methods.  

Table 5 
Comparing the accuracy obtained with the proposed MLP and the reference methods by groups.   

1MLP 2MLP 3MLP  

Accuracy Wins Accumulated Wins Accumulated Wins Accumulated  

Greater than 3 3 5 5 9 9  
Equal to 2 5 1 6 1 10  
Less than 1% 19 24 24 30 23 33  
Less than 5% 32 56 26 56 23 56   

Table 6 
Friedman average rankings of the methods (Demsar, 
2006).  

Method Ranking 

ROCKET 3.9426 
TS-CHIEF 4.8770 
HIVE-COTE v1.0 5.2049 
InceptionTime 5.7377 
WEASEL 8.0738 
ProximityForest 8.2951 
S-BOSS 8.3115 
ResNet 8.3525 
STC 8.4672 
cBOSS 9.4344 
BOSS 9.5738 
RISE 10.7377 
TSF 11.2951 
3MLP 11.4508 
2MLP 11.9344 
Catch22 13.6557 
1MLP 13.6557  
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It is worth noting that even though the statistical data shown in Table 7 
makes clear that the MLP’s is not the top performer, the diagram in Fig. 7 
also shows that the proposed 3MLP method can be commensurable to 
the highest-ranking algorithms. This can be seen in Fig. 6. According to 
the number of times the algorithm obtained the highest accuracy value 
when classifying a TS, our proposed method occupied fourth place in 
general. 

In summary, the proposed three-layer MLP obtained fourth place 
according to accuracy (it wins ten times). However, in 23 TS our pro
posal is close to reaching the highest reference value. 

At the end of the experimentation stage, we have observed at least 
three main disadvantages of our proposal. First, when the number of 
nodes and connections in the hidden layers increases, the memory 
required grows. Therefore, the training stage cannot be conducted on 
traditional computers with low memory. This is the reason why we have 
used only a three-layer MLP. Second, when the MLP competes against 
complex methods, it can be easily defeated. However, the complex 
methods can only be implemented in powerful computers. As was shown 
in our study, a correct hyperparameter tuning makes the MLP a 
competitive alternative. Third, the MLP, as other artificial neural net
works, can fall in local minima. So that, it is needed to work to define 
methods to overcome this problem. 

On the other hand, our proposal has many advantages. First, it does 
not require deep mathematical knowledge or the use of perplexing al
gorithms. Second, the model complexity and training time are relatively 
low compared to complex methods; and third, its simplicity makes it an 
accessible solution to a TSC problem. 

6. Conclusions 

In this paper, we proposed an auto-adaptive MLP for TSC on 61 UCR 
data sets. The hyperparameters for batch size and the number of neurons 
in the hidden layers are automatically adapted according to the TS na
ture. Hence, the proposed method solves different TSC tasks. We con
ducted a benchmark of our proposal against 14 state-of-the-art methods. 
From the results, we observed that the three-layer MLP ranked in fourth 
place, even when it is computationally simple. Also, we proposed a 
different alternative to compare the accuracy among methods. 

Although the MLP was not among the three best performers, it is 
important to highlight the advantages of using our model. It is a simple 
architecture, easy to implement, accessible, affordable, competitive, and 
a valid solution to the TSC problem. 

In the future, it will be desirable to test the proposed model with a 
different data set. It will also be interesting to modify the method to 

handle the TS excluded from the study. Furthermore, it will be desirable 
to perform comparisons of execution time. Finally, the comparison will 
include distance-based methods that were excluded in the current 
experiment. 
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