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Layered two-dimensional materials have been highly attrac-
tive mainly for their usage to fabricate high-throughput low 
dimension electronic devices.[1,2] As encountered in the lit-

2), tungsten diselenide 

2

used as materials for nanotransistors,[3,4] phototransistors and 
 photodetectors[5–7]

-
tor–metal interfaces during operation.[8,9]

contact materials in semiconductor-based devices are gold, 

chemical compatibility with semiconductors.

desirable properties of metal–semiconductor interfaces 
because it reduces energy losses and provides a linear 
dependency between current and applied voltage. An intense 

-
tact in metal–semiconducting interfaces layered two-dimen-

been highlighted by Das et al. who determined that metals 
promote n 2 is combined 

-
moting a high electron carrier, thereby lowering the contact 
resistance.[10] Guo et al.
methods to predict metal-induced gap states with a combina-

2 2 2, 

2 2 2

type of chemical bonding between the contact and the semi-
conductor material.[11] Li et al., by means of computational 
simulations, used titanium carbides  Ti2CY2

2 -
[12]

2 as contact material 

[13]

2 are scarce in the 
-

ent contact material.
-

2 was demonstrated to create a metallic–semi-
conducting interface.[14] This interface has been characterized 

-
struction technique to achieve physical information in three 
dimensions with near atomic resolution.[15] To investigate the 
electronic structure and electrical behavior, we present in here 

2 interfaces for both 

2

2

2 as a layered structure. If so, one could aim at using the 

and optoelectronic applications.



-

2) were deposited on commercial coupons 

for 20 min to achieve an ohmic contact material at atmospheric 
pressure using a 100 standard  cm3

2 2; next, one layer of approximately 700 nm 

2 was deposited in 3600 s as described in prior authors 
[16,17]

-

-

-
[18] with a revised 

functional as part of the generalized gradient approximation 
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2 phase with lattice parameters of a b
c 2 
phase with lattice parameters of a b c
angles 2 2 7) unit cell with lattice 
parameters of a b c

2 phases was set using 

exposing oxygen surface. To ensure no periodic boundary con-

25 Å in z direction was placed for every interface model.

2 was completed 
-
-

2 as a layered struc-

by electron microscopy in scanning mode) can be seen in the 

2 
1 [16]

2 creat-

the approximate spatial distribution of atomic species of either 

1 2, now corresponding to the upper part of 
1

represent molybdenum atoms, while yellow ones represent 
-

1
1 2 deposited under the mentioned 

along the < 110 >  direction[17] as observed by scanning electron 

2 phase to remain encap-

and moisture.[19]

[20]

improved whereby variation of the deposition parameters such 

[21] In addition, achieving a 

2 as 

that transition metal dichalcogenides growth are favored by 
oxygen-rich surfaces.[22]

) values of each surface consid-

-



as obtained by atom probe tomography. In here we consider 

2

1

222 2 222-

2 400 2 400 2 in what fol-
-

tronic structure and behavior of the proposed interface models. 

-

planes.[20]

2
electronic structure compared to the band structure of iso-

2 -
ture results suggest that redistribution of molecular orbitals 

2 
interfaces as hinted previously.[23]

222 2 

400 2 structures the band structure resulted 
quite similar and without higher energy level insertion than 

222 2 400 2 structures, which can be 

attributed a lower repulsion among orbitals and the spread of 
molecular orbitals without severe overlapping or hybridization. 

existence of a molecular orbital redistribution process, which 

with low resistivity.

2 2

2 interfaces where a high density 
of d [24] attrib-
uted to a disturbance of metallic d
distribution of the orbitals at the same region, indicates a low 
or partial hybridization, both at the top of the valence band and 

2

3

previously. This process of s and p orbitals spreading through 
the bandgap happens without disturbance of molybdenum d 
orbitals and have a direct impact on the electronic distribution 

deq 2

is displayed in Table I deq is considered as minimum 

2





interface -typical contact distances between 2.8 and 4.0 Å, and 
-

culated that deq 4
these relatively large values, the nature of the electronic con-

2 lead us to expect an interaction 

2 interfaces, implying 
the electronic structure compatibility toward usage on fabrica-
tion of microelectronic devices, mainly as transparent-semicon-
ductor nanolayers for solar cells applications as demonstrated 
before.[14]

for an n-type semiconductor requires a material, typically a 
-

2

displayed in Table I
The p- [25]

where the additional term  is included to consider the dipole 
formation at the interface.  and  are the position of the 

The n

where 2, calculated with respect to 
the vacuum level.

summarized in Table I 2 interface consid-

negative values of p and n, respectively, indicating the for-
mation of ohmic contacts in all cases, which are larger to those 
reported in other metal-transition metal dichalcogenides inter-
faces.[12,13] The calculation of positive and negative values of 

p and n

2 sand-

2
[26] All p- and n-type 

-

2 phase.

downwards is expected because of the negative values of n 
-

2 near the interface. Electron accumula-

2

-
ating a contact of ohmic nature; a linear dependency between 
current and applied voltage is expected.

-
-

Rc) decays strongly around 
2

2 -
sion mechanism dominance.[27] As a consequence, an inter-

2 orbitals or within each 
material has to occur at least to some degree,[24] similar to other 

2.
[28]

2

-
als of each material. The estimated partial density of states as 

2 and 3, indicates a low degree of hybridiza-

2

4
achieve a conduction channel but not strong enough to disturb 

2 electronic structure and the small insertion of states 
3) is mainly caused by orbitals from sulfur, 

oxygen, indium, and tin atoms.
C) plotted parallel to the z 

Geometrical optimized 
deq) 

2 to 

The estimated W ps, p n

ps calculation include a correction of W 2 lattice parameters as discussed in 

2 EC) and 
EV).

deq/Å W EC EV W ps p n

222 2 3.00 – – – 3.75 3.45

222 2 3.10 – – – 3.83 3.45

400 2 3.14 – – – 3.20 1.395 3.00

400 2 3.50 – – – 4.31 1.277 2.96

2 – 5.6 5.4 7.2 – – – –

2 – 5.66 5.46 7.27 – – – –



2 side 
4

the uppermost electrons 2s and 2p, belonging to oxygen, and 
the bottom electrons from the sulfur, also 2s and 2p. This 
then suggest that these orbitals hybridize inside each material 

-
cessfully acts as an electron reservoir allowing the repulsed 
electrons to reallocate the 2s with point symmetry  a1g and 2p 
with point symmetry  t1u orbitals from oxygen without further 

2
[29] and without disturbance of metallic 

molybdenum d orbitals. These delocalized electrons explain 



an ohmic contact.

2 can be understood recalling the preferred octa-

2

oxides, resembling what happens in indium tin oxide, and 

2 g point symmetry metal 

x
2

-y
2 

and  dz
2 orbitals) are aligned with the 2p oxygen orbitals result-

ing in strong overlap and hybridization of orbitals. In second 
case, triple degenerated  t2g xy,  dyz and  dxz orbitals) 
yield a small overlap with the 2p orbitals of oxygen or sulfur 

2

orbitals aligned with the 3p sulfur orbitals results in strong 

2 characteristic metallic edges.[30] 

1u

 a1g

the unoccupied and occupied molecular orbitals, leading to 
Eg

overlap between same symmetry orbitals would leads to the 
formation of a continuum of levels and the loss of Eg.

-
tional theory and on experimental information from atom 

2 interface, indi-

2

2 implies formation of 

n

2 and a computed contact 
2

non-disturbance of metallic molybdenum d

2 materials towards development of nanoscale 
-

tovoltaic devices and optoelectronic applications.
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