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ABSTRACT The color quality of an image shown on a liquid crystal display (LCD) can be measured with a
spectroradiometer; however, this instrument is expensive, work under controlled illumination conditions with
an artificial source of light, andmeasurements take a long time. A spectroradiometer returnsmeasurements of
wavelength or CIE color space. A low-cost and fast alternative consists of using a digital camera that outputs
RGB measurements. Unfortunately, comparisons between measurements obtained with both instruments
cannot be performed; hence, conversion equations must be used. The main problem is that equations do
not consider the effects caused by the camera lens, sensor variations, and configurable parameters such
as gain and the exposure time. This paper proposes the architecture of a radial basis function neural
network (RBFNN) to measure the image color quality displayed by an LCD using a digital camera. The
RGB values acquired with a camera are used as inputs to the RBFNN. The output predicted the luminance
and chromaticity components in the CIExyY color space and included the corrections to the lens and camera
parameters. First, the RBFNN topology is explained, including the calculation of the number of neurons in the
hidden layer, and the definition of the dispersion centers and their associated spread. Next, the experiments
related to RGB color space reconstruction and conversion from RGB to CIE are presented. The proposed
approach was tested on a real automotive scenario. The results obtained were similar to those measured with
the spectroradiometer with an accuracy of 93.3%. Moreover, the results remained within limits established
by the six-sigma methodology.

INDEX TERMS Liquid crystal display, radial basis function neural network, digital camera, spectroradiome-
ter, RGB, CIE.

I. INTRODUCTION
The use of display technologies has become indispensable in
the modern world. Currently, liquid crystal displays (LCD)
are dominant technology due to their size, low-drive voltage,
and low-power consumption, encountering applications in
computer monitors, televisions, tablets, smartphones, among
others [1]. The introduction of digital displays in the auto-
motive industry occurred in the middle of the 70s. Since
then, the display market for automotive applications has sig-
nificantly evolved [2], [3]. Now, LCDs are almost standard

The associate editor coordinating the review of this manuscript and

approving it for publication was Jeon Gwanggil .

accessories in the design of modern automobiles to provide
information, assistance, control, and entertainment to the
driver [4]. The possibility of displaying different information
in the same place helps save space and allows the customiza-
tion of the information according to the user preferences or
needs [5].

The manufacturing process of LCDs has many optical
challenges, including the detection of defect regions, pixel
failure (always off or on), mura (a non-uniformity dis-
tortion, in luminance or color), intensity, uniformity, and
abnormal reproduction of colors (perceivable regional color
variations) [6], [7]. The task of error detection can be
carried out either visually or with specialized inspection
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equipment. The visual inspection method can be applied in
most cases, but it is costly, time-consuming, non-repeatable,
human dependent, and subject to the inspector’s perception
and criteria. In contrast, errors that cannot be perceived by
human eyes can be detected using specialized equipment,
and the measurements obtained are repeatable and consistent.
However, the equipment can be expensive, sometimes it is
not possible to reach the target object with the measurement
instrument, and the time employed to obtain results can be
long [8].

Defects such as pixel failure, intensity, and non-uniformity
can be detected using digital cameras. The main idea is to
capture an image and then analyze it with specialized algo-
rithms. The camera gives images composed of three planes,
Red, Green, and Blue (RGB). The color of a pixel is generated
by the combination of each color plane intensity using 8-bits
values. However, the verification of the color of an image
displayed in an LCD cannot be carried out by a human,
because nobody can guarantee that colors perceived by differ-
ent inspectors are the same [9]. Therefore, this task requires
more specialized equipment such as a spectroradiometer [10].

A spectroradiometer measures the wavelength and ampli-
tude of the light emitted by a light source, and assures
accurate and repeatable measurements of color, luminance,
and spectral radiance information. Also, it preserves the spa-
tial relationship of measurements across the display, which
is required for measuring spatial variations. The measures
obtained can be represented with different units including
the light wavelength, amplitude, CIExyY , CIE XYZ , and
CIE L∗a∗b∗ [11].

The use of a spectroradiometer to detect color defects in
production lines is an expensive solution. Today, a spec-
troradiometer could cost more than 50,000 dollars. Also,
the controlled conditions to use it must be considered, which
further increases the cost of the manufacturing test equip-
ment. Therefore, a lower-priced solution, like the use of a dig-
ital camera, is desirable. However, before implementing this
solution, several problems must be addressed. For example,
the camera cannot offer the spectral accuracy of a spectro-
radiometer, the image is captured in RGB space (however,
sometimes it is transformed into a grayscale image), and
the acquired images are subject to variations in color and
intensity caused by the camera location and lens, to mention
a few.

A color conversionmust be conducted to compare the mea-
sures obtained with a camera to those obtained with a spectro-
radiometer. In the literature, equations to convert from RGB
to CIExyY or CIE L∗a∗b∗ color spaces have been proposed.
Nevertheless, the equations can only be applied to convert
the color after it has been digitized [12]. Several param-
eters affect the measurements when a camera is used for
color digitalization, including the lens, angles, digital gain,
exposure time, gamma, brightness corrections, among others.
Consequently, the values obtained by the conversion from
RGB to CIExyY will be different from the values obtained

with a spectroradiometer. Hence, it is almost impossible to
perform comparisons.

This research was motivated by two main issues. First,
to present a solution to an actual problem related to the cost
of the equipment required to measure color in a massive
production environment, and second, but not least important,
the interest in bring closer academic research to the actual
manufacturing world. The scientific developments sooner or
later reach a maturity level that ends in materializing an
artifact that satisfies a real necessity. However, the researchers
often limit their work to the academic scenarios, stopping
short on the actual implementation of their work. Thus, this
work intends to provide a real implementation of a concept
that is known to be used to solve many problems but, as far
as we found, it has had a short presence in the engineering
world.

Accordingly, in this paper, a proposal to solve the problem
of accurately converting the RGB values acquired with a
digital camera to CIExyY color space values obtained with
a spectroradiometer is presented. A radial basis function
neural network (RBFNN) is used to perform the conversion
and to compensate for the variations in the environmental
conditions, the camera parameters, the camera lens distortion,
and the effect of its physical restrictions. In other words,
we propose an innovative method to characterize complex
systems eliminating the need to define mathematical models
to compensate environmental factors by using the RBFNNs.
In the manufacturing industry, where the proposed solution
was implemented, the quality measurement of the colors dis-
played in an LCDwas done using a spectroradiometer, which
implies high costs and long inspection times. In contrast, our
proposal is less expensive and achieves competitive results
in a real scenario by using less time. To the best of our
knowledge, using RBFNNs has not previously been reported
to solve the aforementioned problem.

The main contributions of this paper are as follows:

• We propose an automatic method that uses RBFNNs
to convert RGB values to CIExyY by compensating the
environmental variations.

• We demonstrate how the RGB images acquired with a
digital camera are used to obtain similar color measures
to those obtained with a spectroradiometer at a lower
cost.

• We present the design of a configurable scenario to
acquire color measurements with a digital camera.

• We implement our proposal in a real automotive sce-
nario, obtaining competitive results.

The rest of the paper is organized as follows. In Section II,
the literature review, the theoretical framework of RBFNNs,
and the explanations about how to use a digital camera for col-
orimetry purposes are presented. The research methodology
is explained in Section III. The experiments and results are
provided in Section IV. Finally, the conclusions and further
work are presented in Section V.
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II. BACKGROUND
In this section, the analysis and comparison of the related
literature works is presented. Also, a theoretical explana-
tion about how an RBFNN operates is introduced. Finally,
an explanation of how to use digital image-based colorimetry
is offered.

A. RELATED WORK
A search was conducted to detect related work in the
period 2010-2020. The search included papers published in
journals and conferences, and the engines employed were the
typical for sciences, including IEEE, Springer, ACM, Willey,
and Taylor & Francis.

Two main branches were detected according to the
search. The first one uses the RGB colors acquired with
a digital camera to measure concentrations in solutions or
materials in the environment. The output of this kind of
systemwas not a color value. Instead, an absorbance/presence
measurement was obtained [13]–[15]. The other branch uses
the RGB measurements to conduct color plane transfor-
mations. This kind of system frequently transforms values
into the CIE color plane intending to compare the results
with those obtained with a spectroradiometer or similar
equipment [9], [11], [16].

From the literature perusal, only a few papers that use
a camera to measure color in the same way that can be
performed by using a spectroradiometer were detected. How-
ever, one work of the other branch was first discussed because
it was the only one that uses a neural network to solve the
problem. Each work is discussed below.

Bang-iam et al. [13] employed a backpropagation neural
network to detect proteins in latex materials (natural rubber
and gloves). The Lowry method was used to create eleven
solutions with different concentrations to determine the total
protein level. The authors built a closed box where the illu-
mination LEDs, the camera, and the sample holder were
located. The absorbance of the solutions was measured with
an UV–Vis spectrophotometer and the RGB values with the
camera-based system. An accuracy of 89.8% was obtained as
a result of the experiments.

The work by Sanmartín et al. [16] describes the process
to calibrate a digital camera to be used as a colorimeter. The
camera was used to measure the color of granite artworks.
The low chroma values of the granite were reported as the
main challenge. The problem was solved with a linear model
using multiple measurements taken with a spectrophotometer
and a camera. The measurements obtained with the camera
were converted from RGB to the CIE L∗a∗b∗ color space.
The results showed a difference of 1.32 (using the color
similarity method 1E?ab) between the values obtained with
the proposed model and the values obtained with the direct
transformation from RGB to CIE L∗a∗b∗.
A systematic framework that uses high-dynamic-range

(HDR) imaging to measure subtle color defects in flat panel
displays (FPD) was presented in the work of Nam et al. [9].

The core of the proposal was a method to convert the
device-dependent HDRRGB signals into device-independent
color coordinates of CIE XYZ . First, the camera was charac-
terized. Second, an FPD was selected, and a total of 24 color
patches were displayed in it. Then, each patch was sequen-
tially captured with a spectroradiometer and the camera.
Also, the images captured with the camera were combined
into the HDR radiance map. Finally, a linear transformation
that converts RGB camera signals into CIE XYZ values was
performed. A reference image of a well finished FPD product
was used for comparisons. Contrast sensitivity functions were
used to compute the visual difference of color defects at
various frequency levels. The accuracy obtained was 95.61%.

Notermans and Cohen [11] presented an instrument that
combined the strengths of a spectrometer and a high-quality
camera to provide rapid and reliable measurements of color
displays. The spectrometer collected the light from its field
of view and provided a measurement of intensity as a wave-
length function. Then, the data was processed to recover the
CIE XYZ values. Simultaneously, a CCD camera acquired
an RGB image. The region captured with the camera corre-
sponded to the area sampled by the spectrometer. The image
was processed to recover the sum of the RGB values. The
ratio of the two measurements yielded a conversion factor.
Unfortunately, no information about the tests and results
obtained was offered.

Table 1 shows a summary of the literature work.
As it can be observed from Table 1, two works used a spec-

troradiometer, one used a spectrometer, and the other used
a spectrophotometer for comparison purposes. The largest
camera resolution was 16 MP, followed by 10, 6.6, 5, and
4 megapixels. One work verified proteins, one granite art-
work, two FPDs, and one LCDs. The last four works per-
formed conversions to CIE color space. Our proposal is the
third one that inspected most images. None of the works
employed a neural network to solve the color conversion.
Note that the lowest and highest accuracy are 76% and
95.61%, respectively.

B. RADIAL BASIS FUNCTION NEURAL NETWORKS: BRIEF
THEORETICAL BACKGROUND
One of the major disadvantages of a backpropagation neural
network (BPNN) is that the training speed decreases as the
number of layers and neurons increases. It is also challeng-
ing to determine the most suitable architecture to solve a
problem [17]. To overcome these issues, Powell [18], [19]
introduces the RBFNN as a feedforward architecture with one
hidden layer that uses a radial basis function (RBF) to process
input data.

RBF networks are gaining popularity due to many advan-
tages compared to other types of artificial neural networks,
which include a good response for patterns not used for train-
ing, better approximation capabilities, simpler structure, easy
design and training, tolerance to input noise, faster learning
algorithms, and online learning ability. Moreover, an RBFNN
can characterize complex functions by providing only the
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TABLE 1. Summary of the works analyzed in the literature review.

training sets, avoiding a complex analysis on the system to
approximate [20]. The simple topological structure with the
ability to characterize complex functions and the fast learning
were critical features considered to select the RBFNN as a
competitive method to solve the problem stated in this paper.

The RBFNN consists of three layers: the input layer,
the hidden layer, and the output layer. Each layer is fully
connected to the next, and there is no bias term [21], [22].
The input neurons x (feature vector to be classified), also
called identity neurons, are represented by the symbol shown
in Fig. 1a. The neurons in the hidden layer use RBF to process
the inputs. Each neuron consists of an RBF centered at the
point c in the input space. The average distance between all
points of a N -dimensional feature vector to c is known as the
Gaussian activation function. In general, the closer the input
vector is to the center vector of an RBF neuron, the higher
is the value at the output of the neuron. The name RBF is
used because the value of the function is the same for all
points that are at equal distance from the center. The symbol
to represent hidden neurons is shown in Fig. 1b. The output
neurons supply the response from the network to the outside
world; its symbol is shown in Fig. 1c. These neurons use a
weighted sum as a propagation function and the identity as
the activation function [23].

FIGURE 1. Neurons of the RBFNN: (a) Input, (b) RBF, and (c) Output [23].

An example of the RBFNN architecture with three neurons
in the input layer, four neurons in the hidden layer, and two
neurons in the output layer is shown in Fig. 2. Observe that
the connections from the input to the hidden neurons are not
weighted.

The most popular RBF is given in Equation (1).

ϕi(||x − ci||) = exp

(
−
||x − ci||2

2σ 2
i

)
(1)

where x is the input vector, || · || is the Euclidean norm, ci is
the center of the ith RBF unit, and σ is the spread of the RBF.

FIGURE 2. Architecture of a traditional radial basis function neural
network.

Typically, the Gaussian function ϕ is selected with σ being
the spread parameter. Fig. 3 shows two Gaussian functions,
centered at zero with σ = 20 and σ = 10.

FIGURE 3. Two bells-shaped obtained with two Gaussian functions, using
σ = 20 (solid line) and σ = 10 (dashed line).

The jth output node of the output layer is defined as the
jth hypothesis hj(x) and it is defined in Equation (2).

hj(x) =
n∑
j=1

(ϕi(x)Wij) (2)

where n is the number of activation functions in the hidden
layer andWij the weights from the hidden to the output layer.

For a data set of m examples defined by {(x1, y1),
(x2, y2) · · · (xm, ym)} where the pair (xi, yi) corresponds to
the ith input example xi and the corresponding ground
truth yi. The learning can be formulated as the minimization
of the cost C defined by the sum-squared-error function

VOLUME 9, 2021 21697



F. Arias del Campo et al.: RBFNN for the Evaluation of Image Color Quality Shown on LCDs

of Equation (3).

C =
1
2m

m∑
k=1

(yk − h(xk ))2 (3)

In summary, the RBFNN is a universal approximator much
faster and simpler than the Multilayer Perceptron (MLP).

C. DIGITAL IMAGE-BASED COLORIMETRY
The spectroradiometer is the most accurate tool to measure
the spectral information of a light source, and consequently,
to measure pure color. Conversely, a high-resolution cam-
era can quickly measure the light intensity displayed by a
source in a single shot. Nevertheless, the cameras only detect
changes in light intensity (brightness) and not in color [24].

A traditional chamber used to measure the color of an
object employing a digital camera is shown in Fig. 4. In its
ideal configuration, shown in Fig. 4a, the camera is aligned
at 90◦, pointing directly to the center of the object. The line
that passes through the camera center represents an imagi-
nary axis perpendicular to the center of the object. However,
when the chamber is designed applying industry standards
and guides (ergonomic regulations, manufacturing floor foot-
prints, equipment standardization guides), it is common that
the camera needs to be shifted and sometimes rotated. There-
fore, the imaginary center line does not pass through the cam-
era center. The camera should be placed outside the chamber
to ensure the ideal configuration, as it is shown in Fig. 4b.

FIGURE 4. Design of the tester for object inspection: (a) Ideal design, and
(b) Real design.

The measurement process comprises four elements that
have a different impact on the computed color values:
(i) the object placed on a nest to ensure the same position
for repeatability purposes; (ii) the measurement instrument,
in this case, the digital camera and its lens; (iii) the camera
distance and location to acquire the entire object; and (iv) the
configurable camera parameters, such as the color channel
gain, exposure, and gamma correction.

The camera lens is manually adjusted to get the correct
focus and iris aperture. The goals are to obtain an image

with the best clarity and to avoid the saturation of the camera
imaging sensors when the brightness of the display is set too
high (during the test, the display needs to be verified using
high and low-brightness settings).

Three factors need to be considered to select the best
location of the camera. First, the test equipment must be
designed to be reused for different products when the original
one is no longer in production. The camera does not have a
fixed location; it must have the possibility of being manually
adjusted in three axes (yaw, pitch, and row). Second, the tester
must be planned to inspect objects with different sizes. Also,
the mechanical restrictions for connectors, labels, guides, and
shapes must be considered. All this implies that the geometric
center of the object, in relation to the camera, may change
between models. Third, design restrictions related to space
and ergonomic guides must be considered. For instance, if the
camera needs to be located in a position where it can see the
entire object, then it may not be placed or oriented in the ideal
position (pointing to the middle axis of the display).

The camera parameters such as gain, exposure time, and
white reference can be reconfigured using software com-
mands. Once the camera, lens, and related parameters are
adjusted, the settings remain constant, and the inspection
process starts.

To create color images, red, green, and blue filters are
placed over individual pixels on the image sensor. Afterward,
some interpolation is used to compute the color of each
pixel for the digitalized image. The calculation is done by
combining the light intensity captured directly from one color
(the light intensity after one color filter) with the other two
colors captured by the pixels around it.

When an RGB image is acquired with the camera, it is
processed in a computer using specialized software routines.
Also, the process of color conversion is conducted. The
RGB image acquired with a camera depends on the system
parameters. As a consequence, a direct transformation from
RGB to CIE cannot be conducted. A camera characterization
process is needed to define the mapping between RGB and
the device-independent color space. The characterization is
used to predict the camera response given an input energy
spectral distribution [25].

The color conversion transforms the RGB color measured
by the camera (Fig. 5a), to the bi-dimensional (x, y) CIE 1931
color space used by the spectroradiometer (Fig. 5b). However,
other possible units like the CIE Luv color space or the
wavelength could be used. Finally, a comparison of the color
values obtained with the camera and the spectroradiometer
is performed to have an insight about the accuracy measured
with the camera.

III. MATERIALS AND METHODS
For training the network, the R, G, and B components are
taken as the input parameters, and the luminance (Y), and
chromaticity coordinates (x and y) from the CIExyY are the
output parameters which are compared with the measure-
ments from the spectroradiometer. In addition to the color
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FIGURE 5. Color space conversion: (a) Three-dimensional space (RGB)
measured with the camera, and (b) Bi-dimensional space (x , y ) CIE 1931
xyY measured with the spectroradiometer.

transformation, the model includes the variables related to the
equipment design (distance, position of the camera, and field
of view) and the camera parameters, like gain, sensitivity, and
lens focus.

In this section, the processes to obtain the test images,
to measure the ground truth color values with the spectro-
radiometer, to measure color with the camera, to use the
RBFNN and to establish a color similarity error are explained.

A. TEST IMAGES
A set of 125 uniform color, solid filled images to be displayed
in the LCD was generated utilizing a windows application.
The RGB color to be displayed in the LCD was generated by
changing each of the three values of the color intensity (Red,
Green, and Blue). Even though the full range is from 0 to 255,
only a range from 0 to 128 tones was considered to avoid the
saturation1 of the camera color sensors. The color range was
divided into four intervals (0-31, 32-63, 64-95, 96-128).

For example, the color to be displayed could be the black
(0,0,0). If the R-value is increased, the next color is (32,0,0).

1When the sensors are exposed to a very bright color, the captured image
will be fully white.

If a G-value (0,128,0) is generated, then by stepping the
B-value, the next color is (0,128,32).

Finally, a total of 70 images were randomly chosen from
the generated set of 125. The resulting set was divided into
60 images for training and 10 for testing (≈ 14%) according
to the Guyon’s rule [26].

B. MEASUREMENT OF THE GROUND TRUTH COLOR
VALUES WITH THE SPECTRORADIOMETER
The color reference values or ground truth in the CIE 1931
xyY space were measured in a manufacturing laboratory with
an OL 770-DMS Gooch & Housego spectroradiometer with
a 610 telescopic lens. The spectroradiometer was mounted on
a fixed base, as it is shown in Fig. 6. The LCD was mounted
on three axes adjustable fixture at a distance of 50 cm
from the spectroradiometer. Themeasurements were taken on
a 12" LCD.

FIGURE 6. Conceptual view of the spectroradiometer setup.

The 70 images in the data set were sequentially dis-
played in the LCD. For each image, nine acquisitions were
taken, each located in different coordinates (points), as shown
in Fig. 7.

FIGURE 7. Location of the color measurement points on the LCD.

The measurement process started by moving the first point
of the LCD in the spectroradiometer field of view. Then,
the first measurement is taken. Afterward, the LCD is moved
to the next location to measure the second point. The process
is repeated until the nine points are measured. The LCD
movement allowed the measure of each of the nine points
with the same visual angle concerning the spectroradiometer.

Seven parameters were measured at each point: luminance
(cd/m2); coordinates in the CIE 1931 xyY color space (x, y);
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color components in the Luv color space (u′, v′), dominant
wavelength (nm) and saturation (s). Measurements at each
point are averaged to obtain the total reference value. The
results are stored in a file, including the reference between
the color displayed and the measured value.

C. MEASUREMENT OF THE COLOR VALUES WITH THE
CAMERA
The tester was simulated using a chamber to create a dark
space. The LCD was placed at one end inside the chamber,
and the camera at a distance of 40 cm, as it can be observed
in Fig. 8. The perpendicular display plane is pointed about
10 degrees relative to the camera lens vision axis, to resem-
ble the conditions employed to measure the ground truth.
The camera used was a digital Gigabit Ethernet iDS model
UI-5490SE-C with a Kowa 2/3′′ 10 megapixels 8.0mm lens
(model KOWLM8JC10M).

FIGURE 8. The chamber containing the LCD and the camera.

After the camera and lens are aimed and adjusted, the same
sequence order of images measured with the spectroradiome-
ter is displayed on the LCD. The RGB values of each acquired
image, are averaged to obtain a single RGB color value. The
measured values are stored in a file and used as the input
examples to train the RBFNN.

D. RBFNN MODEL
The color conversion is performed using an RBFNN. The
goal is to approximate the network functions to convert the
RGB color measurements, taken with the camera, to the
values measured with the spectroradiometer in the CIE 1931
xyY color space.
The centers are distributed over the space of the function,

as it can be observed in Fig. 9a. During the training, the dis-
tance of each point of the function to each neuron center is
learned (Fig. 9b).

When an RBFNN is used to characterize a function in
a bi-dimensional space, it can be visualized as a circle
(Fig. 10a), where the distance between the center and a
point (the radius) drives its activation. In contrast, when the
characterized function is defined in three-dimensional space,
it can be represented as a sphere (Fig. 10b).

FIGURE 9. Conceptualization of an RBFNN to learn an arbitrary function:
(a) The neuron centers are distributed over the function space, and
(b) The model is trained to learn the function by using the distance
between each data point and each neuron’s center.

FIGURE 10. Representation of neurons: (a) The 2D case (circle), and
(b) The 3D case (sphere).

Because the RGB color space has three components,
the input data to the network is visualized as a 3D space,
where each color component is aligned with an axis. Orig-
inally, the values that each component can take goes from
0 to 255. However, the generated images had a maximum
value of 128 for each channel. Due to the radial function, each
neuron of the networkwas represented as a sphere (3D space).

The neuron center is placed in a three-dimensional space.
The neuron location is defined by the range of the color and
the number of neurons placed on each axis (n). The value of
the range is used to define the area covered by the neurons.
For interpolation, this value should be in the range of the
color space (0 to 255). However, the value can be extended to
cover a volume that exceed the range of the color space. The
experiments showed that by covering a bigger volume, even
if it is empty, helped to improve the network interpolation
capability. The center of the entire network should be the
same center of the volume defined by the color space.

An example of the distribution of the neurons for the
red color is shown in Fig. 11. The horizontal and vertical
axis represents the red color plane. The neurons are evenly
distributed in the entire surface, as shown in Fig. 11a. Then,
each axis is divided by n−1, where n is the number of neurons
to be located on each edge (minimum 2). If n = 2, then two
neurons will be placed on each edge.

It is worth noting that two edges share neurons in the
vertex. The RBF σ value is set to represent the 90% of the
distance between the centers (Fig. 12), and they are consid-
ered the core neurons. The number of core neurons is defined
as n3. Therefore, when n = 2, two neurons are placed in each
vertex of the 3D space, for a total of 8 core neurons.
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FIGURE 11. Neuron centers distribution: (a) Red color plane where the
neurons are evenly distributed, (b) Neurons placed on each edge, and
(c) Additional neurons added to cover the gaps.

FIGURE 12. Gaussian distribution with an overlap of 90% of the distance
between the neuron centers.

The center of the plane is located relatively far from the
influence of the core neurons, as it is shown in Fig. 11b.
By making an analogy between neurons and a light source,
it is possible to think that the middle point between two light
rays will receive less light. Hence, to make the illumination
more even, additional light rays need to be added in the
middle. Therefore, to improve the interpolation capability of
the network, additional neurons are added to cover the space
(fill the gaps) between the sphere of influence, including one
layer in the outside. An example of this is shown in Fig. 11c.
The Euclidean distance of the input vector x to the hidden

neuron Hm is calculated with Equation (4).

distance =

√√√√ 3∑
i=1

(Xi − Hmi )2 (4)

wherem is themth neuron in the hidden layer. The calculated
value of the distance is passed to theGaussian activation func-
tion, given by Equation (5), which is similar to Equation (1).

activation = exp

(
−
distance2

2σ 2
i

)
. (5)

When the model was tested, it was observed that an
additional layer around the original core neurons helped
to improve the network training, the convergence and the
approximation. The total number of additional neurons is
calculated as (n + 1)3. Therefore, the complete RBFNN is
made of (n3) + (n + 1)3 neurons in the hidden layer. The
minimum value of n = 2 is established because it gives
the smallest number of neurons required to cover the cubic
space. In contrast, the maximum value of n = 4 is established
because with larger values the network does not converge.

All the neural networks have associated variables, also
called hyperparameters, which determine the network archi-
tecture (topology) and how it is trained [27].

A summary of the hyperparameters related to the proposed
RBFNN topology is shown in Table 2. The distribution of
the neurons in the three-dimensional space is done in two
blocks. The first is based on the color range for which the
model is trained, and this set is labeled as color neurons.
The second block of neurons named fill neurons, is added
to improve the model accuracy by filling the gaps between
the color neurons. The two defined blocks of neurons are just
for conceptualization. When the model is trained or used to
evaluate a real-world value, all the neurons in the hidden layer
are processed in the same way.

TABLE 2. Hyperparameters of the proposed RBFNN.

On the other hand, a summary of the hyperparameters
related to RBFNN training is shown in Table 3. The values
of the hyperparameters are tuned through the classical grid
search [28].

E. THE COLOR SIMILARITY ERROR FUNCTION
The colors are compared using a reference to determine
their similarity. The comparison between two colors could be
described using adjectives. However, the necessity to accu-
rately distinguish the color similarity detonated the proposal
of formal comparison methods [29].
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TABLE 3. Hyperparameters for training the proposed RBFNN.

In the twenty-first century, the color spaces known as
CIELAB and CIELUV were proposed as a recommenda-
tion to quantify and judge color [30]. In 1984, the Colour
Measurement Committee (CMC) of the Society of Dyes and
Colourists of Great Britain published the color difference
method known as 1ECMC [31].
The 1ECMC method included the parameters l and c,

to define factors for lightness and chroma. Hue (H) was
defined as a constant with a value of 1. The default ratio
of l and c is 2:1, allowing twice the lightness difference
than chroma. The human eye can detect changes in chroma
better than in lightness. The method calculates the dissimi-
larity between two colors in the Lab color space. Therefore,
a reference color (L1, a1, b1) and a sample color (L2, a2, b2)
are used. The

a
E value is given by:

i
ECMC =

√(a
L

lSL

)2

+

(a
C

cSC

)2

+

(a
H

SH

)2

, (6)

where
a
L,

a
C and

a
H are the differences of the two colors

being compared, and defined by the Equations (7), (8) and
(11) respectively.

i
L = L1 − L2 (7)

i
C = C1 − C2 (8)

where:

C1 =

√
a12 + b12 (9)

C2 =

√
a22 + b22 (10)

i
H =

√i
a2 +

i
b2 −

i
C2 (11)

where:
i

a = a1 − a2 (12)
i

b = b1 − b2 (13)

SL , SC and SH are additional functions given by the Equa-
tions (14), (15) and (16) respectively.

SL =

0.511, if L1 < 16.
0.040975 L1

1+ 0, 01765L1
, if L1 ≥ 16.

(14)

SC =
0.0638C1

1+ 0.0131C1
+ 0.638 (15)

SH = SC (FT + 1− F) (16)

where:

T =

{
0.56+|0.2 cos(H1+168◦)|, if 164◦ ≤ H1 ≤ 345◦.
0.36+|0.4 cos(H1+35◦)|, otherwise.

(17)

F =

√
C1

4

C1
4
+ 1900

(18)

H = arctan
(
b1
a1

)
(19)

H1 =

{
H , if H ≥ 0.
H + 360◦, otherwise.

(20)

IV. EXPERIMENTS AND RESULTS
Two experiments were conducted to evaluate the performance
of the proposed RBFNN. The first was used to verify the
capability to reconstruct the entire RGB color space and
the second to test the color space conversion from RGB to
CIE 1931 xyY .

A. RGB COLOR SPACE RECONSTRUCTION
The RBFNN was trained with three sets of reference values,
including 27, 60, and 200 colors, respectively. The selection
of the training sets size was made, considering that 27 is
close to the actual number of available samples at the first
prototype stages in a typical development cycle of a new LCD
application. A set size of 60 is small enough to fit in the
slot of time for which the spectroradiometer was available
for utilization. Finally, 200 is chosen to verify if a larger set
size improve the results.

The reference values for each set where randomly chosen
from a total of 16,777,216 (224) possible values in the RGB
color space. Therefore, an input R1G1B1 yields an output
R2G2B2 in such a way that R1G1B1 = R2G2B2. To visualize
the colors in the 3D space, the value of each color compo-
nent was mapped as a coordinate value in x, y, and z axis,
respectively. An example of a 3D representation of the set
with 200 random samples is shown in Fig. 13. It should be
noted that the axis ranges goes from 0 to 255.

FIGURE 13. 3D localization of 200 sample colors randomly generated.
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The proposed algorithm 1 generates a wire cage cube (3D
grid) with a configurable number of divisions in two of the
three axes. Also, it was used to evaluate the performance of
the RBFNN trained. The complete wire cage was produced
by changing the third axis in steps of one (from 0 to 255).
Each value was used as the input for the RBFNN, and the
returned value was expected to be the same. The color dif-
ference (error) between the input and output was evaluated
with the 1ECMC method. The accuracy is dependant of the
capability of the RBFNN to interpolate the entire 3D color
space.

An example to evaluate the color red is described
in Algorithm 1. Nevertheless, a similar process was used to
evaluate the green and blue colors. The difference is carried
out by switching the order of color components in the loop,
and by changing two colors with big steps and the other color
with one step. The result obtained from algorithm 1 represents
the average estimated error of all the interpolated points.
Ideally, the value should be zero, when all the colors are
identical. Any value less than two indicates that both colors
cannot be visually differentiated.

The grid obtained by using three divisions (85 steps) in the
blue and green axis, with an error of 2.8 is shown in Fig. 14a.
In contrast, a grid with an error of 0.3 is shown in Fig. 14b.
A visual comparison of both figures shows the difference in
the linearity of the generated points. The RBFNN was con-
figured using the mentioned error values as the training goal.
Except for the error values, the RBFNN hyperparameters for
both examples were the same. Observe that, a small training
error produces better interpolation results.

FIGURE 14. Color interpolation results: (a) The grid obtained with an
error of 2.8, and (b) The grid obtained with an error of 0.3.

During the execution of the experiments, it was observed
that by increasing the color range over an RGB tridimen-
sional space beyond the valid range, the mean color similarity
error obtained becomes smaller. However, with values greater
than 1000, the RBFNN begins to approximate to its minimum
error.

Three different values for n are used in the experiments,
2, 3, and 4. For n = 2, there are 35 neurons (23 + 33)
in the hidden layer, for n = 3, 91 neurons (33 + 43), and
for n = 4, 189 neurons (43 + 53). The n value defines the
number of divisions of the RGB axis for the neuron centers.
Several trains and evaluation cycles were applied, using the

Algorithm 1 Generation of the 3D Grid and Color Error
Calculation With the 1ECMC Method
Input: divisions
Output: result

1 Function
RedColorSimilarityError(divisions):

2 step← 255/divisions;
3 error ← 0;
4 counter ← 0;
5 red ← 0;
6 green← 0;
7 blue← 0;
8 while green < 255 do
9 while blue < 255 do
10 while red < 255 do
11 color ← Color(red, green, blue);
12 estimatedColor ←

Net(red, green, blue);
13 x ← estimatedColor .red ;
14 y← estimatedColor .green;
15 z← estimatedColor .blue;
16 Draw3DPoint(x, y, z);
17 errorColor =

DeltaEcmc(color, estimatedColor);
18 error ← error + errorColor ;
19 counter ← counter + 1;
20 red ← red + 1;
21 blue← blue+ step;
22 green← green+ step;
23 end
24 end
25 end
26 result ← error/counter;
27 return result;
28 End Function

highest color component values from 255 to 1000 in steps
of 50 (the lowest value was always 0), over sets with 27, 60,
and 200 pairs of inputs and output samples.

Figure 15 shows three examples of how the mean error
for the color similarity changes when both the number of
neurons in the hidden layer and the distance of the centers
over the color range (horizontal axis) changed. A network
with few neurons in the hidden layer (n=2) produces a smaller
error thanmodels with higher number of neurons (n=4). Also,
the RBFNN converges faster, the curve for n = 2 is the lowest
in the three plots. It is also noticeable that the error decreases
when the center dispersion increases. When the dispersion
value goes towards 1000, the three curves begin to converge
to the same minimum. However, the curve for (n = 2) has
reached the minimum error when the dispersion is near to
700, as shown in Fig. 15a and 15b.
Training the RBFNN with a set of 200 values produced

an error smaller than the one obtained using sets with
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FIGURE 15. The mean color similarity error obtained using: (a) 27, (b) 60, and (c) 200 samples.

27 and 60 values. However, the network presented conver-
gence problems for a higher number of neurons, as shown
in Fig. 15c. Also, the time required to train the network
increased significantly. The actual timeout was set to 33 min-
utes for a target error of 0.01. Increasing the timeout to allow
lower convergence error is not worthy of the training time.
An error of 1 is the threshold to accept two colors as identical.
The training was carried out in a Dell workstation with an
Intel i7 processor running at 3.0 Mhz, with 8Gb of RAM,
no GPU was used.

A set of 60 samples, with n = 2, and a dispersion
of 700 yielded the best results, with a low color similarity
error.

B. CONVERSION FROM RGB TO CIE 1931 xyY
The second experiment was conducted using the same setup
of the experiment one and was designed to evaluate the capa-
bility to perform the conversion from RGB values measured
with a camera to CIE 1931 xyY . The 10 images measured, but
not included in the training set, were loaded in the LCD and
captured with the camera. The RGB values were fed to the
RBFNN, obtaining at the output the values in the xyY space.
These values were compared against the values measured
with the spectroradiometer.

The results were evaluated for the three estimated ele-
ments, luminance (Y ) and chromaticity coordinates (x and
y). The main difference between the measurements, with the
spectroradiometer and the camera, is that the spectroradiome-
ter gives the color value for a localized point on the screen,
while the proposed method performs its operation over the
60% of the display area.

In order to have more similar measurements, the nine
measures obtained with the spectroradiometer were averaged
together. It is important to consider that each of the nine
individual measurements does not produce the same value.
That means, that the values obtained consist of two elements,
a measurement center point and data dispersion. The first one
is represented by the average and the second one by the stan-
dard deviation. The evaluation was performed against a range

of values to include the dispersion of the measurements in the
different nine locations. The range was obtained by applying
the six-sigma methodology used in manufacturing to define
the natural limits in a process, using several measurements
over the same product, with the same instrument.

The six-sigma limits for a process, with normal distribu-
tion, mean that 99.99966% of the produced parts are inside
the limits. This is a standard technique used in manufacture
to set the pass/fail criteria for an under control process. The
application of the proposed method is intended to be used in
a manufacturing process, and this makes valid the applica-
tion of the six-sigma methodology to calculate the limits to
evaluate the result.

The second and third columns in Table 4 show the mean
value (µ) and the standard deviation (σ ) for themeasurements
of the nine averaged points shown in Fig. 7. The fourth and
fifth columns are the limits calculated by subtracting and
adding σ multiplied by 6 to µ. The sixth column is the
luminance obtainedwith the RBFNN, and the seventh column
is number of sigmas that the luminance is far from the mean.
The underlined values indicate that the result is not inside
the six-sigma limits. The same structure was used to create
Table 5 for x and Table 6 for y color components.

TABLE 4. Luminance measurements on the 9 points for each pattern
sample.

From the 30 values shown in Tables 4-6, only 2 were out-
side the expected range, 1 for the luminance, (see Table 4) and
1 for the y color component (Table 6). That represents about
6.6% of misses. However, about 77% are inside three sigmas,
which means that most of the measurements are closer to the
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TABLE 5. x measurements on the 9 points for each pattern sample.

TABLE 6. y measurements on the 9 points for each pattern sample.

mean value than to the value in the limits. In other words,
the probability that the measured values with the RBFNN are
inside the tolerance is high (93.3%).

The values outside the limits were obtained for the pattern
sample number 8, which has the lowest luminance value.
Thus, the values for which the RBFNN failed to meet the tol-
erance were taken when the display intensity was the lowest.

C. DISCUSSION
The results obtained with our proposal were competitive with
the results shown in Table 1. In the works by [11], [13], [16],
a significant quantity of time was spent into manual camera
calibration, parameter adjustments, and establishing lighting
conditions. However, our proposal automatically compen-
sates for environmental conditions. Moreover, in the previ-
ous work, different measures were employed to determine
the color differences. Nevertheless, none of the cited works
obtained differences below two units, which means that the
colors obtained with our proposal cannot be visually differ-
entiated.

Only the work by Bang-iam et al. [13] uses a neural
network trained with the backpropagation algorithm for col-
orimetry purposes and no justification about the network
topologywas offered. In our work, we explained how to deter-
mine the architecture of the RBFNN. Furthermore, we used
the RBFNN to predict the CIE values, while the other work
used the backpropagation to estimate protein concentrations.
Therefore, no comparisons could be carried out.

One of the main differences with the work presented in
the literature is that our proposal was implemented in a real
automotive scenario. Our results comply with the six-sigma
standard, and 77% of the measures are inside three-sigma and
93.3% inside six-sigma. Also, our RBFNN was implemented

in a computer with average features, while the other work was
implemented using powerful equipment. Moreover, our pro-
posal presented two experiments: color space reconstruction
and color prediction.

The selection of the 70 random images, for the measure-
ment experiment, did not produce a uniform population for
the RGB color space range. After the RBFNN was trained,
it was discovered that missing values, in some parts of the
color range, produced a bigger variation for the interpolation
of values in some regions. In future experiments, the selection
of the color samples will be designed to include color images
at the borders and corners of the three-dimensional color
space to improve the network performance. It is expected
that training the network with those boundary samples will
improve the capability to interpolate values with fewer errors.

The failure of the camera to provide a better measurement
for the sample patterns with low intensity, can be attributed to
the camera configuration, sensitivity, and lens aperture. The
camera was adjusted considering the highest intensity pat-
terns to avoid the saturation of the imaging sensor. Therefore,
the patterns with low intensity were affected. To solve this
problem, it is possible to apply one of the next two solutions:

1) Change the lens aperture and camera gain to be more
sensitive to low-intensity images.

2) Use a second camera, adjusted to images with low
intensity, using a second RBFNN trained with this
camera configuration.

Finally, because most of the points were inside or close to
the low or high measurement, it is assumed that the RBFNN
can provide a good approximation. However, the RBFNN still
needs to be improved to obtain more consistent results. More
training samples, with a better distribution over the RGB
color space, may increase accuracy.

V. CONCLUSION
This paper presented the application of an RBFNN used for
the evaluation of image color quality displayed on LCDs,
using a digital camera. In addition to convert the RGB val-
ues to the CIExyY , the RBFNN applies corrections to the
deformations introduced by the camera position, the lens,
and the camera parameters, making possible to compare the
measurements with the camera against design specifications
measured with a spectroradiometer.

The experiment to test the RBFNN capability to interpolate
the RGB color space showed that the training set should
include values at the borders (color axis) and corners to
achieve better results. The training samples for the color
conversion showed large errors for colors in some areas of
the 3D space. This failure is attributed to the lack of training
points in some 3D RGB color space regions. However, for the
conversion from RGB to CIExyY an accuracy of 93.3% was
obtained.

In future evaluations, the training samples will be artifi-
cially distributed to include values at the corners and the
color axis to improve the color conversion. Also, it will be
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desirable to test other neural network architectures, including
deep neural networks.
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