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Abstract

Time series emerge in various applications such as financial data and production

data, however, most of the generated data exhibit nonlinear inter-dependency

between samples and noise, making necessary the development of methods ca-

pable of handling such nonlinearities and other abnormalities. In this paper we

present an architecture for prediction of time series embedded in noise. The

proposed architecture combines a convolutional and long short term memory

(LSTM) layers into a structure similar to an analysis filterbank of two channels.

The first element of each channel is a convolutional layer followed by a LSTM,

which is able to find temporal dependencies of the signal. Finally the channels

are summed to obtain a prediction. We found that the frequency response of

the filters resemble a complementary filter bank response, with each channel

having a maximum at different bands which could suggest that it characterizes

the incoming signal in frequency. Comparisons with other methods demonstrate

that the proposed method offer much better results in terms of different error

measures.
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1. Introduction

Time series arises in several branches of science and technology such as: fi-

nancial data, sensor networks [1], weather records, industrial observations, and

IFully documented templates are available in the elsarticle package on CTAN.
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many other sources. However, most of the generated data by these applications

exhibit nonlinear inter-dependency between samples, and measurements are of-5

ten contaminated by noise coming from the sensor or the environment where

the measurements were made. As a result, nonlinear approaches are often re-

quired for the analysis and forecasting. Therefore, the methods used for the

analysis must be robust to noise or outliers that contaminate the data, thus,

making crucial the development of methods capable of handling such ailments10

and nonlinearities.

Several algorithms for time series analysis and forecasting have been pro-

posed in the literature as pointed out in [2, 3]; conventional approaches include

autoregressive models such as ARMA, ARIMA [4], and hidden markov models

[5]. However, with the recent interest in deep neural networks [6], the explo-15

ration of methods for time series forecast using new network architectures has

been increased, especially the use of LSTM [7], because of their ability to capture

the long-term and short-term dependencies in a sequence. This type of networks

has been successfully applied to problems in natural language processing [8, 9],

recognition of handwritten sequences [10], and electric power forecasting [11].20

However, the modeling of long sequences, such as documents or physiological

signals, requires that the LSTM network keeps dependencies between elements

of the series for a long period of time and some important features could be lost

in the process [9].

One approach to overcome this problem is through a multiscale analysis25

[12, 13, 14, 9], this allows the analysis of important features at multiple scales

of time, and reduces dependencies intervals. For this end, the time series is

decomposed in a hierarchy of new time series that are easier to model and

predict, separating the fast dynamics from the slow ones and facilitating the

analysis of long range correlations [15].30

In this work we propose a multiscale network based on an LSTM architecture

as the main prediction element, and preceded by convolutional layers. We hope

that, in this configuration the filters of the convolutional layers make the network

more immune to noise and to outliers in the data. In the literature there is
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the use of LSTM in conjunction with convolutional networks [16], however, the35

network topology is adapted to data in two dimensions or images. In contrast, in

this work a convolutional network is introduced as a filter of adaptive coefficients

to the bandwidth of the signal.

The rest of the document is organized as follows: section 2 offers an introduc-

tion of neural networks, section 3 explains the proposed methodology, section 440

shows the results obtained, and finally section 5 offers conclusions of this work

and future directions.

2. Neural networks

This section offers a brief introduction to the network architectures used in

the proposed scheme. For a more detailed treatment of this, the reader can45

consult [17] and [18].

2.1. Convolutional neural networks

Convolutional neural networks (CNN) were introduced in [19, 20] for the

recognition of handwritten characters. These networks are fed with data or-

ganized as an uniform grid or matrix. Such a grid can be of one or several50

dimensions, and data can consist of signals in one dimension or higher dimen-

sion data such as images. CNNs are inspired by the visual cortex of the human

brain, where there are specific areas that are only sensitive to certain features of

the input, for example, some neurons in some specialized area are only excited

by vertical edges. Architectures using CNNs, generally consist of one or more55

convolutional layers, followed by a pooling layer, which is used to compress data

without loosing much information.

2.2. LSTM

The LSTM model proposed in [7] arises as a solution to the problem of

decaying error during the training of existing recurrent neural networks (RNN).60

The problem was exposed in the works [21, 22], in which it was found that during

training, the gradient dissipates exponentially or explodes. Thus, in practice,
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RNNs have difficulty learning long-term dependencies in the data. The LSTM,

are a special type of RNN, capable of learning long term dependencies. This

type of recurrent neural networks resolves the extreme values of the gradient65

experienced by classical RNNs, through the use of multiplicative gates that

impose a constant error flowing through internal states in the cells that make

up the LSTM network [23].

Unlike a conventional RNN neuron, the LSTM cell has a more complex

mechanism with an additional state C(t), that keeps information at the time t.70

Such state can be modified through gates that interact linearly with the current

state, these gates are composed of feedforward layers followed by nonlinear

operations. There exist different types of gates to modify and control the state

of the cell C(t): the forget gate, decides what information is discarded from

the state of the cell, using the past output and the current input, this gate75

establishes or attenuates components of C(t) by multiplying them with values

obtained through its activation function; another gate, the external input gate,

decides what new information to store in the cell’s state; finally a output gate

controls the output of the LSTM cell, using the input, past output, and the

current state C(t), see [18] for details.80

3. Proposed scheme

Given a time series, represented by X = {x(1), x(2), ..., x(n)}, the prediction

problem consists in obtaining a future value x(n+ 1), a challenging task, due to

undesirable disturbances in the data, such as noise or outliers. A common way

of dealing with such unwanted local fluctuations is through the application of85

filters, particularly finite-response filters of linear phase [4]. The classic filters

used are generally of the moving averaging type.

In this work, we propose a network that uses LSTM units as main prediction

elements, and temporal convolutional layers as filters for the rejection of noise

and outliers in the data. Temporal convolutions have proven to be effective as90

feature extractors[24, 25].
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Figure 1: Diagram of a memory cell of an LSTM network

In the literature, it is common to use LSTM units in conjunction with con-

volutional networks such as the works in [16], where the network topology is

adapted to two-dimensional data and embedded in the LSTM units, and in

[25], where the scheme is used for classification tasks. In contrast, in this work95

the convolutional networks are introduced as processing filters of adaptive coef-

ficients to the bandwidth of the signal, as preprocessing elements and not just

for extracting features that are feed to the LSTM units.

In addition, it is expected that, by placing several filters and operators of

pooling in a topology similar to the filter banks, this scheme allows to the100

different LSTM units to analyze different aspects of the signal.

The proposed scheme is show in Figure 1, where a decomposition of the

signal through a network architecture similar to a bank of filters is introduced

[26]. The filters of each phase are implemented through a temporal convolutional

network. For operation, the convolutional network contains a single filter, in105

this case the filter is not restricted to a linear phase filter and it is expected

that the training process determines the optimum filter coefficients, so that for

the filter to be capable of eliminating the noise and anomalous values, and at

the same time retain essential information for the prediction. Down sampling

operations are implemented by pooling layers. After passing through a filter and110

a pooling stage, the signal is analyzed by an LSTM structure. We expected that

this configuration makes the network more robust to noise and outliers in the
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data. We also expected that each filter is, in some way, complementary in the

cases of the filters at the same decomposition level. This allows each LSTM unit

to analyze a different aspect of the signal to be predicted. It is also expected115

that at each subsequent level, the signal will be easier to analyze and predict

as in [26]. For this study, an architecture that breaks down the signal into two

levels was used, implementing a poliphase scheme by down-sampling the even

components of the input signal for the first phase, and the odd components for

the other phase, similar to [27]. The first level of the proposed architecture is120

given by

Z1,1 = (↓ 2)even(X ∗ filter1), (1)

and

Z1,2 = (↓ 2)odd(X ∗ filter2), (2)

where filter1 and filter2 are the filters or kernels of their respective convolution

layer, and (↓ 2)odd is the downsampling by two operation on odd coefficients of

the input. The second level is given by the following expressions125

Z2,1 = (↓ 2)even(Z1,2 ∗ Filter3), (3)

and

Z2,2 = (↓ 2)odd(Z1,2 ∗ Filter4), (4)

where filter3 and filter4 are the filters in the second level. The signals Z1,1,Z2,1,

and Z2,2 are fed to the LSTM units, expecting that each filter to be sensitive

only to certain characteristics in the input and that the LSTMs can more easily

find time dependencies in the time series. Finally, the network has a dense layer130

with linear activation as output, which is used to output the predicted value

based in the LSTM outputs.

3.1. Performance measures

To evaluate the adaptability of the proposed model, the method used in [28]

is followed, we used one-step-ahead forecasting for experimentation. One-step-135

ahead predictions, consisted in the forecasting of values one step at a time and

6



then, for the next prediction, the actual and past values are used. The criteria

used to evaluate the performance of the proposed scheme consist of the follow-

ing metrics: The root mean square error (RMSE), mean absolute error (MAE),

mean absolute percentage error (MAPE), direction accuracy (DA). These met-140

rics are described in [28, 29].

4. Results

In this section, the results of a series of experiments for validation and com-

parison of the proposed algorithm are presented. The methods evaluated are

ARIMA, a dense feed forward network (NN) and a simple LSTM network. The145

used ARIMA model consists of a four order AR term and a seven order AM

term, two non-seasonal differences were used to approximate stationarity, the

coefficients for the term were determined by a conjugate direction method [30].

The NN consists of three layers, the first two of them have three units with

ReLu, and the output layer one linear unit. The LSTM consists of a LSTM150

layer with four neurons and a dense output layer with one linear unit. For the

proposed architecture implementation, the number of filters of each convolu-

tional layer was fixed to one; we used for filter1 a size of 23, for filter2 a size

of 10, and a size of 2 for filter3 and filter4; at the output we used two dense

layers of five and one neurons respectively. The first dense layer used a ReLu155

activation function while the last layer used a linear activation. All models, ex-

cept ARIMA, were trained with the method of [31], with a mean squared error

loss function, the number of epochs and number of units were determined by

grid search. We perform three experiments: the first of these is a comparison

between the methods operating on clean data, the second is aimed to verify the160

performance of the proposed method under samples corrupted by noise, and the

third is to observe the response of the model when a variable number of samples

is used to make predictions. The experiments were conducted in a computer

with Pentium core i7 Dual-Core CPU T4400 @2.20GHz, with 5.8 GB of RAM

and all methods were implemented using the Keras [32] library and python.165
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4.1. Comparisons on clean data

For this experiment, a database of samples of air quality used in [33] was

employed. This database contains 9358 samples of responses averaged by time

of five metal oxide chemical sensors embedded in an air quality sensing device.

The device was located in a significantly contaminated area of an Italian city.170

The registration of the data started in March 2004 until February 2005. For

more details regarding the database, the reader can consult [33].

In all the experiments we take a set of 24 samples to make predictions, this

value may seen somewhat random, however, a value not too far from a real

application if we take it as if it were a prediction after 24 hours of sampling or a175

24 day. In this section, we conduct a comparative study among simple LSTMs,

conventional methods ARIMA, neural networks (NN), and the proposed model.

The experiment consists of out-of-sample forecasting over an interval of 74 air

quality samples, where each input sample consists of a fixed 24 samples-length

mobile window along the time series. Previously, the methods were fit in a set180

of 300 samples of the air quality data.

The results for out-of-sample forecasting performance are summarized in

Table 1, we can see that proposed method obtains better predictive accuracy

than the other methods in most of the criteria evaluated, except in the fifth

column where prediction with NN obtains a better result when the DA metric185

is used.

In Figure 2 we show the forecasting curves for each of the evaluated methods, it

can be seen that globally all methods evaluated follow the actual data, although

none of the methods has an exact prediction in the whole interval, also, it can

be seen that the proposed method is able to follow more accurately the original190

curve, this observation confirms the quantitative results in Table 1. In Figure

3, we present another segment of the time series but with about half of the

samples shown in the figure 2, in order to show more detail of the predictions

attained by each method, once again it can be seen that the proposed method

follows more accurately the original time series.195
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Table 1: Results of forecasting performance

RMSE MAE MAPE DA

ARIMA 2.11 1.88 89.37 0.62

NN 0.67 0.55 41.69 0.69

LSTM 0.72 0.60 51.63 0.68

proposed 0.59 0.49 34.34 0.67

0 10 20 30 40 50 60 70
Samples

0

1

2

3

4

5

Am
pl
itu

de

original
ARIMA

0 10 20 30 40 50 60 70
Samples

1

2

3

4

5

Am
pl
itu

de

original
NN

(a) (b)

0 10 20 30 40 50 60 70
Samples

1

2

3

4

Am
pl
itu

de

original
LSTM

0 10 20 30 40 50 60 70
Samples

1

2

3

4

5

Am
pl
itu

de

original
proposed

(c) (d)

Figure 2: Results with the different methods on a set of the air quality database a) ARIMA

b) NN, c) LSTM, and d) proposed.

4.2. Comparisons with noisy data

The second experiment is focused on knowing the response of the algorithm

when there is a noisy signal. For this end, we add different levels of noise

to the time series used in section 4.1. Gaussian noise with known variances
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Figure 3: Results with the different methods on a set of the air quality database a) ARIMA

b) NN, c) LSTM, and d) proposed.

of 0.3 to 1.0 were used; we begin with a variance of 0.3 since less amplitudes200

make no much different in the results as compared with zero noise. Figure 4

depicts the time series with added noise of 0.75. Predictions with the different

methods where taken using a 24 samples-length mobile window of the noisy time

series. Then, the results were evaluated using the metrics. Figure 5 shows how

each method behaves as the noise increases, it can be seen that the LSTM and205

NN approaches loss accuracy as the noise increases, this could happen because

an overfitting to the actual series. Surprisingly the ARIMA method has better

performance than LSTM and NN, since there is not overfitting and it just follows

the trend of the current series. In general, as the noise amplitude is increased,

the error of prediction, RMSE, MAE, and MAPE, on all methods also increase.210

However, the error rate of the proposed method increases slower than in the
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Figure 4: Actual time series show in red, while the solid blue line represents the time series

with noised of 0.75 (only a 50 samples interval is show).

other methods, which implies that the proposed method is less affected when

making predictions in the presence of noise. This behavior, could be explained

because of the convolutional input layer which behaves as a filter to the noise,

as we noted in Section 4.4.215

4.3. Variable mobile window length

This section presents the sensitivity of the model to the number of samples

in the mobile window used to predict. For the experiments we used the data

from a time series representing the hourly German electricity spot prices, this

data was taken from the Open power system data platform (http://open-power-220

system-data.org). For evaluation and comparisons we employ the same methods

and performance metrics used in Section 4.2. The samples in the mobile window

were chosen as 10, 20, 35, 40, 55, 60, 72, 100. The results obtained are shown in

Table 2, it can be seen that in all the evaluated methods, there is a tendency to

increase the prediction error as the size of the window gets larger. This may be225

due to the great variability of the data, thus, when taking a smaller sample the

process is more local and with fewer variations, while for a longer window, the

variability increases. Despite this, the proposed method performs better than

the rest of the methods, this may be due to the fact that the different LSTM

networks, because of their long-term memory, tend to adapt better than simple230

networks.
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Figure 5: Results with the different methods on a noisy time series a) RMSE b) MAE, c)

MAPE, and d) DA.

The prediction of the time series for the different methods, using a mobile

window length of 55 samples, is shown in Figure 6.

4.4. Frequency response of the model

It is interesting to observe the frequency response of the filters. Figure 7235

depicts the frequency response of the convolution filters. Filters 1 and 2 have

a quasi complementary response, where filter 2 has a response resembling a

stopband at 1.5 radians, while filter 1 has its peak at that frequency. The same

effect occurs in filters 3 and 4. This could explain why the propose scheme has

a better performance predicting from a noisy time series, since the signal could240

be denoised before arriving to the LSTM layers. Thus some channels seem to

process characteristics with different frequency components. In Figure 8 we

show the frequency response of a portion of 24 samples of the generated noise

12



Table 2: Results of forecasting performance for different mobile window lengths on the elec-

tricity prices series.
mobile window length

Algorithm Metric 10 20 35 40 55 60 72 100

ARIMA

RMSE 5.42 4.63 9.93 9.91 9.96 10.19 10.19 10.92
MAE 4.17 3.48 7.70 7.61 7.58 7.80 7.62 8.18

MAPE 17.48 14.49 34.77 35.36 32.62 34.03 32.80 19.64
DA 0.66 0.68 0.02 0.01 0.01 0.01 0.01 0.00

NN

RMSE 3.96 4.14 3.55 3.56 3.23 3.97 3.45 13.28
MAE 2.93 3.30 2.70 2.72 2.52 3.09 2.90 10.92

MAPE 12.02 14.55 10.30 10.54 9.10 11.52 10.85 27.34
DA 0.68 0.65 0.64 0.66 0.71 0.72 0.66 0.00

LSTM

RMSE 4.57 4.39 3.47 4.66 4.66 3.83 4.64 10.82
MAE 3.64 3.60 2.69 3.72 3.77 3.29 3.85 9.85

MAPE 14.69 15.59 10.82 13.45 15.62 12.96 13.32 26.65
DA 0.69 0.68 0.70 0.68 0.71 0.73 0.71 0.58

Proposed

RMSE 3.91 3.87 5.10 5.15 3.19 3.76 3.40 6.04
MAE 2.82 3.00 4.13 4.35 2.61 3.02 2.76 5.05

MAPE 11.82 12.79 15.21 16.28 9.73 11.49 10.18 13.52
DA 0.67 0.68 0.69 0.71 0.66 0.77 0.71 0.58

(variance of 0.4), it can be seen that there are frequency bands less affected by

noise than other bands in the response.245

5. Conclusions

An algorithm for the prediction of time series was presented through a combi-

nation of LSTM and a convolutional networks. The architecture of the proposed

network behaves similar to a filter bank. In this case, the filters adapt to the

signals according to the training set by adjusting the coeficients of the convo-250

lution layers. It is expected that each of the filters that make up the network

extracts different characteristics of interest of the signal, so that later these

characteristics can be used by the LSTM network to predict the signal. Noise-

contaminated data sets were used to train the network and compared with the

prediction obtained by a pure LSTM network. When the original signal does255

not contain noise, both networks, LSTM and our proposed approach, behave in

a similar way, however, as the original signal becomes more contaminated, the

proposed network is capable of making a better prediction.
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Figure 6: Results with the different methods on the data of the hourly German electricity

spot prices a) ARIMA b) NN, c) LSTM, and d) proposed.

(a) (b)

Figure 7: Frequency response of the convolutional filters in the proposed architecture. a)

response of the input filters ( 1 and 2 from Figure 1 ) and b) response of the second channel

filters ( 3 and 4 from Figure 1 ).
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Figure 8: Frequency response of a realization of the noise generated. It can be seen that

there are frequency bands, like the band from 0.7 to 1.0 rads and the DC band, which are less

affected by noise

Thus the proposed model has several attributes that make it suitable for the260

analysis and subsequent prediction of series over time:

• A multiscale decomposition in terms of the characteristics of the signal.

This is possible using several channels for the input signal, in each channel

a filter of different size is used, thus each filter obtain characteristics of

the signal at different sizes, a channel with a larger filter size will obtain265

global trends in the signal, while a smaller filter will look for more local

characteristics.

• Rejection of noise. The use of filters before each LSTM layer could filter

some of the noise of the signal, as observed in the frequency analysis section

(4.4). This also agrees with the experiments carried out, when the noise270

was gradually increased, the proposed model obtained the least error with

respect to the other methods presented.

• The inherited properties of the recurrent models, which permits to repre-

sent the sequences with hidden states and nonlinear functions, allows to

the proposed model to represent complex sequences without the necessity275

to compensate for non stationarity.

• Forecasts accuracy is maintained even when few observations are used to

output a prediction.
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As future work, it is planned to analyze the behavior of the network using

more subband filters, in addition, to explore using convolutional filters to add280

a synthesis stage and exploring deeper architectures.
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