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ABSTRACT: The static analysis of the indeterminate three-bar structure is developed using
the Castigliano’s first theorem, taking the lengths and inclination angles as variables.
Some reductions are applied in the resulting set of equations to approximate them to
the references models. From now on, the minimum mass optimization model with
restrictions is established. Then, the Optimality Criterion linear resizing optimization
rule algorithm for the unbounded and bounded design variables is applied in two
numerical cases. The analytical and Matlab Optimization Toolbox results are also
obtained and they demonstrate the Optimality Criterion linear resizing rule effectiveness
in structural optimization with a minimum mass objective and size restrictions.

RESUMEN: La análisis estático de la estructura indeterminada de tres barras es
desarrollada usando el primer teorema deCastigliano, tomando las longitudes y ángulos
de inclinación como variables. Al conjunto de ecuaciones obtenidas se aplican algunas
reducciones para asemejarlo a los modelos de las referencias. En lo sucesivo, se
establece el modelo de optimización de mínima masa con restricciones. Entonces,
se aplica el algoritmo de optimización con redimensionamiento lineal del criterio de
optimalidad para las variables de diseño restringidas y no restringidas en dos casos
numéricos. Los resultados analíticos y de la Matlab Optimization Toolbox también son
obtenidos y éstos demuestran la efectividad de la regla de redimensionamiento lineal
del criterio de optimalidad en optimización estructural con objetivo de mínima masa y
restricciones de dimensiones.

1. Introduction

The Optimality Criteria (OC) methods trace their origin to
intuitive traditional approaches to the problem of strength
design, more directly to the Fully Stress Design (FSD)
criteria, with its associated stress ratio resizing algorithm.
The FSD criterion states that a structure is of minimum
weight if every member is at its maximum allowable
stresses, or at its minimum size at least under one of the
loading conditions.

This criterion is based on the intuitive, yet incomplete
assumption that if a structure is sized so as not to fail
either locally or globally under its critical loads, then that
structure must be optimum [1]. Later on, the procedures
characterized as mathematics programming formulations
appeared on the scene. To define them in a succinct way,
they look for the minimum or maximum, depending on
the objective function, of a multi-variable function subject
to limitations (restrictions) expressed by equalities or
inequalities. The representation of inequality constraints
is important as it allows for identifying the design as
that in which not all the elements are subject to limited
conditions under a load system. This avoids a limitation
that is inherent in some of the above methods. The idea of
characterizing an optimum structure through conditions
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that are believed to exist at an optimumand then applying a
resizing procedure that directly satisfies those conditions
is the fundamental approach normally used by those
designers which became formalized as the Optimality
Criterion methods, which are classified as parametric
structural optimization. Such Optimality criterion consists
of discretizing a pre-established structure to find the
optimal dimensions of the structure. The design variables
that can be modified are the cross-sectional area of each
element, lengths, thicknesses and notch radii, unlike
topological optimization where holes or cavities are
introduced in the structure that were not present at the
beginning.

In [2] and [3] it is used an optimality criteria method
that proposed a uniform distribution of strain energy in
optimal trusses. In [4] it is derived an optimality criterion
based on the Kuhn-Tucker conditions for problems with
a single restriction, yet unfortunately, it was inapplicable
to problems with multiple restrictions. In the 1970-1980
decades, several authors propose various algorithms
to identify active restrictions based on the estimation of
Lagrange multipliers of the Kuhn-Tucker conditions in
problems with multiple restrictions. A unifying vision of
all of them is offered in [5], [6] and [7]. However, the
problems inherent in the active restrictions identifying
methods were not solved rigorously until the development
of the dual formulation, in which the identification of active
constraints was substantial and intimately linked to the
algorithm of mathematical programming used to solve the
problem of minimization. From this moment on, the dual
formulation was the unifying link between the Optimality
Criterion and the mathematical programming techniques.
It should be noted that so far, algorithms based on dual
formulation, such as the OC does, have only been able to
test its effectiveness in structural optimization problems
where the optimum is conditioned by a relatively low
number of restrictions [6].

There are several works related to optimality criteria in
structural design; for example, the work by [8] where
the optimality criterion is applied to the design of lattice
structures, the work by [9] using a different resizing rule
on the design of laminated composites. In the present
work, the optimality criterion is used in the design of
truss structures implementing the linear resizing rules
with ng = 1 and ng = 2 constraints. They can be
implemented with more constraints, taking into account
the loss of effectiveness of the method in the face of a
high number of restrictions. The constraints formulation
is obtained from the statics of the structure, in this case,
an indeterminate structure, in which equations of static
equilibrium are not sufficient to determine all the forces
and reactions. The resizing rules presented in this work
are based on the assumption that the load distribution in

the structure is independent of the member sizes and that
the loads carried by themembers remain constant. So, the
linear resizing rule is used to determine the optimal design
variables in such a way thatminimize the objective function
satisfying the restrictions.

2. Description of the Mechanical
Model.

Figure 1 shows the mechanical system analyzed herein.
The sectional areas and normal stresses in the lateral bars
between nodesA-D,B-D andC-D areAAD,ABD,ACD

and σAD, σBD, σCD, respectively. The A-D and C-D
lateral bars show rotations θ1 and θ2 with respect to the
vertical B-D. The B-D bar features length L, and the
lateral bars feature lengths LAD = L/ cos (θ1), LCD =
L/ cos (θ2). All the bars are built from the same linearly
elastic material featuring modulus of elasticity E. It is
clear that the truss has only two degrees of freedom for
joint translation, namely the D1 and D2 horizontal and
vertical translations at joint D, as shown in Figures 2 and
3.

A

LAD

B

C

LCD

D

L

P1

P2

θ θ

Figure 1 Three bars structure.

By applying Castigliano’s first theorem to the strain
energies of the displacements D1 and D2 [10], we obtain
the following equations 1 and 2 for the joint displacements:

D1 =
D11

D∗ (1)

D2 =
D22

D∗ (2)

where D11, D22 and D∗ are presented in equations 3, 4
and 5
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Figure 2 Translations due to P1.
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D

D
2

D′

Figure 3 Translations due to P2.

D11 = −2
{
ABDLADLCDP1+LBD

[
AADLCDP1 cos

2 (θ1)

−AADLCDP2 cos (θ1) sin (θ1)+ACDLAD cos (θ2)(P1 cos (θ2)

+ P2 sin (θ2))
]}

(3)

D22 = −2LBD

{
−AADLCDP1 cos (θ1) sin (θ1)

+AADLCDP2 sin
2 (θ1) +ACDLAD sin (θ2)

[
P1 cos (θ2)

+ P2 sin (θ2)
]}

(4)

D∗ = E
{
−ACD (ABDLAD +AADLBD)

−AADABDLCD +AADABDLCD cos (2θ1)

+ABDACDLAD cos (2θ2)

+AADACDLBD cos [2(θ1 + θ2)]

+AADACDLBD cos [2(θ1 + θ2)]
}

(5)

and the stresses in the bars in equations 6, 7 and 8

σAD =
σAD1

σ∗ (6)

σBD =
σBD1

σ∗ (7)

σCD =
σCD1

σ∗ (8)

where σAD1, σBD1, σCD1 and σ∗ are shown in equations
9, 10, 11 and 12.

σAD1 = ACDLBDP2 cos (θ1)−ACDLBDP2 cos (θ1 + 2θ2)

+ P1

[
ACDLBD sin (θ1) + 2ABDLCD sin (θ1)

+ACDLBD sin (θ1 + 2θ2)
]

(9)

σBD1 = −2
{
−AADLCDP1 cos (θ1) sin (θ1)

+AADLCDP2 sin
2 (θ1) +ACDLAD sin (θ2)

[
P1 cos (θ2)

+ P2 sin (θ2)
]}

(10)

σCD1 = 2ABDLADP1 sin (θ2)+AADLBD

[
P1 cos (θ1)

− P2 sin (θ1)
]
sin (θ1 + θ2) (11)

σ∗ = ABDACDLAD+AADACDLBD+AADABDLCD

−AADABDLCD cos (2θ1)−ACD

{
ABDLAD cos (2θ2)

+AADLBD cos [2(θ1 + θ2)]
}

(12)

2.1 Definition of the Optimization Model.

The combination of the P1 and P2 forces can represent
the components of any force acting on node D; however,
only positive forces are considered here according to the
directions described in Figure 1. The presence of the
positive P1 and P2 forces implies that the normal stress
in the A-D bar is always positive, but the stress in the
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C-D bar can be positive or negative. For the sake of model
reduction, some symmetries are introduced: the sectional
areas and rotation angles of the lateral bars of theA-D and
C-D nodes are equal; they are AAD = ACD and θAD =
θCD respectively. The new design variables are x1 =
AAD0,002E, x2 = ABD0,002E, θ = θAD = θCD. The
optimization problem consists of finding a minimum-mass
design for the truss, given by 13

W = ρL

[
x2 +

2x1

cos (θ)

]
(13)

where ρ is the mass density. The truss is designed in
subjection to 5 constraints shown in Eqs. 14 to 18; g1
corresponds to the vertical displacement at node D and
can not exceed a value of D2max = 0,001L. The g2 to
g4 constraints are related to limits on the traction stresses
σt
max = 0,002E and finally g5 is related to compression

stress limit in the bar C-D σc
max = 0,0015E

g1 = 1− D1

0,001L
≥ 0 (14)

g2 = 1− σAD

0,002E
≥ 0 (15)

g3 = 1− σBD

0,002E
≥ 0 (16)

g4 = 1− σCD

0,002E
≥ 0 (17)

g5 = 1 +
σCD

0,0015E
≥ 0 (18)

Considering the previous reductions, the design problem
may be rewritten as equations 19 - 24

Min
2x1

cos θ
+ x2 s. t. (19)

g1 (x) = 1− 0,002LP2

[x2 + 2x1 cos3 (θ)]
≥ 0 (20)

g2 (x) = 1− g11
x1g∗

≥ 0 (21)

g3 (x) = 1− g22
g∗

≥ 0 (22)

g4 (x) = 1 +
0,004g33
x1g∗

≥ 0 (23)

g5 (x) = 1− 0,003g33
x1g∗

≥ 0 (24)

where g11, g22, g33 and g∗ are presented in equations 25-
28

g11 = 0,002E
{
x1P2 cos (θ)− x1P2 cos (3θ) + P1

[
x1

+ 2x2 sec (θ)
]
sin (θ) + x1P1 sin (3θ)

}
(25)

g22 = 0,002E
{
4P2 sec (θ) sin

2 (θ)
}

(26)

g33 = E
{
x2P1 sec (θ) sin (θ) + x1

[
P1 cos (θ)

− P2 sin (θ)
]
sin (2θ)

}
(27)

g∗ = x1 − x1 cos (4θ) + 4x2 sec (θ) sin
2 (θ) (28)

3. Optimization Algorithm

The optimization problem can be represented by 29

Min f (y)
subject to gj (y) ≥ 0, j = 1,2,...,ng

(29)

In this work the objective function is linear. For these
problems the Kuhn-Tucker condition is 30

∂f

∂yi
−

ng∑
j=1

λj
∂gj
∂yi

= 0 i = 1,2,...,n (30)

In terms of the original design variables, eq. 30 becomes
31

x2
kfk −

ng∑
j=1

ckjλj = 0 k = 1,2,...,n (31)

where fk and ckj are presented in 32

fk =
∂f

∂xk
, ckj = − ∂gj

∂yk
, k = 1,2,...,n (32)

3.1 Resizing Approximation Rules

Another possibility for rewriting eq 31 is the exponential
rule 33

xnew
k = xk

 1

x2
kfk

ng∑
j=1

λjckj

1/η

k = 1,2,...,n. (33)

where the old value for xk is used to produce a new
estimate. A linearized form of eq 33 obtained by binomial
expansion is presented in 34

xnew
k = xk +∆xk, k = 1,2,...,n. (34)

where∆xk and λj are described in 35 and 36

∆xk =
1

η

 1

x2
kfk

ng∑
j=1

λjckj − 1

xk k = 1,2,...,n.

(35)

4

Acc
ep

ted
 M

an
us

cri
pt



J. A Ramírez et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 10X, pp. 1-7, 20XX

ng∑
j=1

n∑
k=1

cklckj
x3fk

λj =
n∑

k=1

ckl
xk

− ηgl (x) l = 1,2,...,ng.

(36)
the term η is a step size parameter. This linearized form is
known as the linear resizing rule.

3.2 Upper and Lower Limits on Design
Variables

In many cases, it is necessary to have lower and upper
limits on design variables besides the displacement
constraints. The set of design variables that are at their
lower or upper limits during iterations is called the passive
set, Ip, while the set including the rest of the variables
is called the active set, Ia. Such design variables call for
some modifications on the resizing algorithm. Thus, the
Lagrange multiplier λ is shown in equation 37

λ =

[
1

c∗0

∑
i∈Ia

(
− ∂f

∂xi

∂g

∂yi

)1/2
]2

(37)

where c∗0 and c0 are presented in 38 and 39

c∗0 = c0 +
∑
i∈Ip

∂g

∂yi

1

xi
(38)

c0 = g (x0) +
n∑

i=1

x0i
∂g

∂xi
(39)

and the resizing equation 40 is obtained from eq. 31

xi =

(
−λ

∂g/∂yi
∂f/∂xi

)1/2

i = 1,2,...,n. (40)

4. Results

This section shows the results obtained by the linear
resizing rule with and without limits on the design
variables. Two different cases are considered depending
on the θ angle, the P1, P2 loads and the objective function
in order to adapt the models to those presented in [6] and
[7]. The first example, from [6], shows the results of a
three-bar truss with the objective function 41

W = 4x1 + x2 (41)

and two restrictions: the vertical displacement and
the stress in the A-D bar; these are Eqs 19 and 21.
This example also considers P2 = 8P1, θ = π/3 and
x0 = (1, 10)

T as a starting point. The reference shows the
results only for the first three iterations. They are shown
in Table 1 below, where the maximal difference between
[6] and the results obtained here is 14,7% at the first

2 4 6 8 10

0,5

0,6

0,7

0,8

0,9

1

iteration

x
1

Present work
[6]

Figure 4 Convergence of the algorithm for x1.

iteration when estimating x1. Figures 4 and 5 show the
plotted values for the first 10 iterations. It widely shows
the fast convergence to the limit values of x1 = 0,6598,
x2 = 15,835 and a cost function f = 18,474358.

Table 1 Comparison of the first iteration values.

iter. var. Pres. Met. [6]
Difference

(%)

2
x1 0,4845 0,5557 14,706
x2 13,8125 13,906 0,677
f 15,7503 16,128 2,398

3
x1 0,6132 0,6434 4,922
x2 15,5798 15,6 0,1295
f 18,0326 18,1736 0,7814

The second three-bar truss optimization structure is
presented by [7]. This optimization problem considers
a D2max = 0,001 inch displacement restriction on the
vertical direction, with equal forces P1 = P2 = 300/

√
2

lb in the vertical and horizontal directions, θ = π/4 angle
of rotation of the lateral bars, ρ = 0,283 lb/in3 density,
E = 30 × 106 psi elsaticity modulus, L = 100

√
2 inch

length and x0 = (2, 2)
T as starting point. So, the design

variables are x1 = AADE/P1l = ACDE/P1l and x2 =
ABDE/P1l.
Two lower limits in the design variables x1 ≥ 0,1 and
x2 ≥ 0,1 are considered in [7]. The present work considers
only the x1 ≥ 0,1 limit as a passive restriction. The results
for the first seven iterations are shown in Table 2. Figure
6 plots the first 7 x2 iteration values presented by [6] with
a blue squared line, and the values here obtained with a
black dotted line.
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2 4 6 8 10
10

12

14

16

iteration

x
2

Figure 5 Convergence of the algorithm for x2.

Table 2 Comparison of the first 7 iteration values.

iter. var. Pres. Met. [7]
Difference

(%)

2
x1 0,29289 0,29289 0,00109578
x2 0,58578 0,58579 0,00060360
f 40,022247 40,022090 0,00039186

3
x1 0,16471 0,16472 0,00109578
x2 0,65886 0,65886 0,00041057
f 31,83039 31,830668 0,00085317

4
x1 0,1 0,1 0
x2 0,69114 0,69115 0,00000596
f 27,563993 27,563995 0,00000423

5
x1 0,1 0,1 0
x2 0,63679 0,70102 9,16154206
f 26,025769 27,843316 6,52776434

6
x1 0,1 0,1 0
x2 0,63639 0,70117 9,23796966
f 26,01446 27,847561 6,58262522

7
x1 0,1 0,1 0
x2 0,63639 0,70117 9,23797323
f 26,01445 27,847561 6,58262776

1 2 3 4 5 6 7
0,5

1

1,5

2

iteration

x
2

Present work
[7]

Figure 6 Convergence of the algorithm for x2.

5. Conclusions

The results of the first example shown in figures 4 and
5 were computed in 0,125364 seconds. The Matlab
Optimization Toolbox was used to solve this example
as well, and, after 34 iterations in 9,2498 seconds, the
results were x1 = 0,6598288, x2 = 15,852457 and
f = 18,491773. The analytical solution of this example
can be found by equalling both constraints to zero and
solving the system for the variables; when doing so,
these results are x1 = 0,659726, x2 = 15,8525 and
f = 18,4914. This example displayed a fast convergence
of the reciprocal exponential resizing rule, as expected,
because there are only two restrictions, and both of them
are of the passive type.

Regarding the second example, figure 6 shows a
separation between the plot lines from the 5th iteration;
such difference is around 0,101%. The difference in the
values of the cost function is remarkable. The results for
the 7th iteration by [7] are f = 27,847560; for the values
here presented, they are f = 26,014459, the difference
being 6,58%. Therefore, it can be said that this work
proposes a better cost function with less computation
effort. Because the results were known a priori, a
conclusion was reached that the optimal solution has the
tendency to take the lowest limit in x1, but not in x2, only
the x1 boundary was included in this work’s optimization
model. The Matlab Optimization Toolbox was used to solve
this example as well, and after 27 iterations in 9,4198
seconds, the results were f = 26,014458, x1 = 0,1 and
x2 = 0,636396.
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