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ABSTRACT In machine learning, a natural way to represent an instance is by using a feature vector.
However, several studies have shown that this representation may not accurately characterize an object.
For classification problems, the dissimilarity paradigm has been proposed as an alternative to the standard
feature-based approach. Encoding each object by pairwise dissimilarities has been demonstrated to improve
the data quality because it mitigates some complexities such as class overlap, small disjuncts, and low-
sample size. However, its suitability and performance when applied to regression problems have not been
fully explored. This study redefines the dissimilarity representation for regression. To this end, we have
carried out an extensive experimental evaluation on 34 datasets using two linear regression models. The
results show that the dissimilarity approach decreases the error rates of both the traditional linear regression
and the linear model with elastic net regularization, and it also reduces the complexity of most regression
datasets.

INDEX TERMS Data complexity, Dissimilarity representation, Linear models, Regression

I. INTRODUCTION

AN underlying step in machine learning and pattern
recognition is the characterization of objects, where

an ideal representation ensures building accurate learning
algorithms [1]. Three approaches have emerged to represent
a real-world object [2], [3]: the structural or syntactical
approach using a symbolic data structure, the statistical
approach based on a feature representation, and the class
models.

The statistical approach assumes that an object is charac-
terized by an n-dimensional vector x = [x1, . . . , xn]

T ∈ Rn,
where each xi is a numeric attribute (feature) whose values
are obtained through observation or as samples of the data
(e.g., pixels of an image) [3], [4]. However, this representa-
tion may not capture the internal structure of some objects
that have an intrinsic and detectable organization [5]–[7]. In
classification problems, it is often difficult to obtain an appro-
priate feature-based characterization of objects, leading to a

high-dimensional representation with class overlap or also a
representation with a mixture of continuous and categorical
features [5], [8].

Pȩkalska and Duin [9] proposed a dissimilarity represen-
tation in which objects are characterized by the difference
or the dissimilarity to other objects from a representation
set. A straightforward method of constructing the new rep-
resentation is by means of mapping processes that convert
a feature vector into a dissimilarity vector using a distance
metric. Several studies have demonstrated that this alterna-
tive characterization suggests practical advantages over the
feature representation, such as: i) it is possible to use a simple
linear prediction model [10], ii) it yields a good separability
between classes [11], iii) all dimensions in the dissimilarity
space are equally relevant [11], and iv) the small disjunct
problem is reduced [12].

Dissimilarity representation has been extensively applied
to a variety of classification problems. For example, Bruno
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et al. [13] proposed a particular form of dissimilarity space
for multimodal information, enabling fast and efficient inter-
active content-based retrieval of video data. Porro-Muñoz et
al. [14] concluded that the use of the dissimilarity represen-
tation for the classification of chemical spectral data, which
is characterized by changes in the shape of the spectra of
different classes, outperformed the results achieved on the
feature space.

Theodorakopoulos et al. [15] developed a method for
pose-based human action recognition in the dissimilarity
space. The problem of corporate bankruptcy prediction was
tackled using four linear classifiers designed on the dissim-
ilarity space, showing that their performance was consider-
ably better than that of the models applied onto the feature
space [10]. Orozco-Alzate et al. [1] investigated the suit-
ability of a dynamic time warping based on the dissimilarity
representation for distinguishing among the different seismic
volcanic patterns. Classification of time series was carried out
by using the dissimilarity representation [16].

Martins et al. [17] introduced a framework based on dis-
similarity vectors and dynamic classifier selection to identify
microscopic images of forest species. A two-stage model that
consists of a feature selection algorithm and the dissimilarity-
based representation for the classification of microarray gene
expression data was proposed by García and Sánchez [18],
who reported that the dissimilarity approach appears to be
less sensitive to the number of genes than the feature-based
representation. Also, the dissimilarity representation was
combined with multiple classifier systems for text categoriza-
tion [19].

To the best of our knowledge, far less research attention
has been paid to the applicability of the dissimilarity repre-
sentation to regression tasks. For instance, Jaramillo-Garzon
et al. [20] modeled time-frequency representations by means
of support vector regression, and the distance between regres-
sions was calculated through dissimilarity measures based
on dot products for the classification of phonocardiographic
recordings. Silva-Mata et al. [21] combined the dissimi-
larity representation with the classical partial least square
regression model for the recognition of substances and their
chemical-physical properties in biochemical data. Despite
these few works, we argue that the dissimilarity represen-
tation has not yet been deeply studied in the framework of
regression problems.

This paper offers a large-scale experimental analysis with
34 benchmark regression datasets aiming to compare the
performance of two linear models trained using feature and
dissimilarity vectors. We intend to shed light on the suit-
ability of the dissimilarity representation by addressing the
following questions:

1) How the representation set size affects the predictive
performance of regression models?

2) Does the dissimilarity representation reduce the com-
plexity of a regression problem?

3) Do the dissimilarity-based linear regression models per-
form significantly better than the feature-based ones?

We cope with these issues by evaluating the dissimilarity
representation constructed by means of the Euclidean dis-
tance and a random selection procedure designed to conform
the representation set. To capture the difficulty of a regres-
sion problem, we compute a data complexity measure [22]
to check whether or not the regression problem is simpler
using the dissimilarity strategy than the traditional feature
representation.

Henceforth the paper is organized as follows. Section II in-
troduces the basis of the dissimilarity representation, whereas
Section III describes the process for adapting the dissim-
ilarity approach to regression problems. Next, Section IV
provides the experimental set-up. In Section V, the results
are presented and discussed. Finally, Section VI remarks the
main conclusions and outlines possible future directions for
extending this work.

II. THE DISSIMILARITY REPRESENTATION
The construction of the dissimilarity representation from the
feature representation is based on measuring pairwise dissim-
ilarities between an object and a set of prototypes or represen-
tative objects of each class R = {p1, . . . , pM}. This R can
be taken as the complete set of objects T = {x1, . . . ,xN} or
a subset of T (R ⊆ T ), or even it can be defined as a set of
generated prototypes [23]. The most straightforward method
to selectM prototypes from T is the random selection, which
can be done either by ensuring that R contains prototypes
of each class or by a global selection where R may not
have examples from all classes. Several works have shown
that an appropriate, intelligent selection strategy improves the
performance owing to a better transformation of the feature
space [24].

For the dissimilarity representation, we need a suitable
dissimilarity measure d(·, ·) computed or derived from the
objects; this dissimilarity measure must be non-negative
(d(xi,xj) > 0 if xi is distinct from xj) and obey the
reflexivity condition (d(xi,xi) = 0), but it might be non-
metric. Common dissimilarity measures include Chi-square,
Euclidean distance, Kolmogorov-Smirnov distance, cosine
distance, Pearson correlation coefficient, Minkowski dis-
tance, and Spearman correlation.

A dissimilarity representation is defined as a data-
dependent mapping function D(·, R) from T to the dis-
similarity space [9], [11]. This implies that each object
xi ∈ T can be represented by an M -dimensional real-
valued vector in the dissimilarity space, D(xi, R) =
[d(xi, p1), . . . , d(xi, pM )], that is, each dimension corre-
sponds to the dissimilarity computed between xi and a pro-
totype pj ∈ R, (j = 1, . . .M). Then, the dissimilarities be-
tween all objects in T and the prototypes inR are represented
by a matrix D(T,R) of size N ×M [25]:

D(T,R) =


d(x1, p1) d(x1, p2) · · · d(x1, pM )
d(x2, p1) d(x2, p2) · · · d(x2, pM )

...
...

. . .
...

d(xN , p1) d(xN , p2) · · · d(xN , pM )
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A representation space can now be built from this matrix.
The dimensionality of the dissimilarity space is equal to M
(the cardinality of R). Thus, each dimension corresponds to
the dissimilarities with one of the prototypes in R. Note that
the mapping process generates new variables to represent the
data, thus changing the meaning of the original attributes.

III. DISSIMILARITY REPRESENTATION FOR
REGRESSION
A regression problem involves a pair of measurements (x, z),
where x is called the independent variable and z ∈ R is
the dependent variable. The aim of the regression is to find
the function f(.) that can predict z from T based on N
observations (xi, zi), i = 1, . . . , N .

Similar to the mapping process for converting a feature
vector into a dissimilarity vector in classification tasks, in
regression problems, the procedure is carried out for the
learning and testing phases, as shown in the flowchart of
Figure 1.

FIGURE 1. The mapping process into a dissimilarity representation. Dotted
lines stand for the process to convert a test dataset into a dissimilarity dataset,
whereas straight lines correspond to the step for building the dissimilarity
regression training set.

The first step in constructing a dissimilarity matrix is
to select an R from the training set. Here, this process is
performed using a random selection method (Algorithm 1).
Therefore, R was constructed by taking M random samples
without replacement from T . In classification tasks, several
instance selection methods have focused on extracting the
most significant samples.

Algorithm 1: Random selection of the representation
set

Input: Regression training set
T = {(x1, z1), . . . , (xN , zN )},
K Number of samples to select.

Output: Representation set R ⊆ T
/* Sampling without replacement */
M = Generate K random numbers ∈ [1, N ]
R = {xM}

The dissimilarity matrix is constructed using a dissimilar-
ity measure once R has been selected, as shown in Algo-
rithm 2; we used the Euclidean distance in the experiments.
It should be noted that the resulting matrix D is a set that
contains the target values taken from T . Remember that

this mapping process should be performed in both the train-
ing and testing datasets. These dissimilarity sets are passed
through the regression model for learning and predicting the
independent variable of a new instance x′.

Algorithm 2: Mapping process to construct a dissim-
ilarity matrix

Input: Regression set T = {(x1, z1), . . . , (xN , zN )},
Representation set R = {p1, , . . . , pM}.

Output: Dissimilarity set D
D = ∅
foreach xi ∈ T do

distances = ∅
foreach pj ∈ R do

disti,j = d(xi, pj)
distances = distances ∪ {disti,j}

D = D ∪ {distances}
D = {D,Z}

The computational complexity of the proposed algorithm
depends on the computational costs associated with the map-
ping process to construct a dissimilarity matrix D. For the
training stage, both the time complexity and space complex-
ity are O(N ·M), where N is the training set size and M
is the representation set size. As the testing stage uses R, the
time and space complexities of mapping a test example are
O(M).

IV. EXPERIMENTAL SET-UP
Considering that the ultimate goal of this work is to investi-
gate the benefits of the dissimilarity representation over the
feature representation in regression problems, we performed
a systematic experimental study using two linear regression
models that are tested over a pool of gold-standard datasets.
In addition, a Wilcoxon’s paired signed-rank test was em-
ployed to support the statistical validity of the results. The
dissimilarity mapping process was implemented in the mlr3
library [26] and is available at https://github.com/JAIR-VG/
dissreg-tools.

A. DATASETS
Experiments were carried out on 34 benchmark small-and
medium-sized regression datasets that are commonly used in
some studies on regression [27]–[29]. Table 1 summarizes
the main characteristics of these datasets, which were ob-
tained from the following sources:

1) Torgo repository (https://www.dcc.fc.up.pt/~ltorgo/
Regression/DataSets.html)

2) Weka dataset repository (https://waikato.github.io/
weka-wiki/datasets/)

3) Energy efficiency dataset used in [30]
4) Extrusion diameter dataset used in [31]
5) Residential building dataset used in [32]
For each dataset, the input variables were normalized in the

range of [0, 1]. The quality estimation of the linear regression
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models was generated using a 5-fold cross-validation. The
resulting training and testing datasets were transformed by
Euclidean distances using R.

The training and testing processes of both regression mod-
els were carried out on the original dataset (feature repre-
sentation) and the transformed dataset (dissimilarity repre-
sentation). The performance results reported in this paper
correspond to the averaged values from the five trials.

TABLE 1. Overview of the databases (superscripts refer to the sources given
in the list of database repositories and related articles).

No. Dataset Variables Instances

1 Diabetes-numeric1 2 43
2 Quake2 3 2178
3 Basketball2 4 96
4 DeltaAilerons1 5 7129
5 MachineCPU1 6 209
6 DeltaElevators1 6 9517
7 Cooling3 8 768
8 Heating3 8 768
9 Bank-8FM1 8 8192

10 Kinematics1 8 8192
11 Puma8NH1 8 8192
12 Calhousing1 8 20640
13 House8L1 8 22784
14 Stock1 9 950
15 PwLinear2 10 200
16 2DPlanes1 10 40768
17 Friedman1 10 40768
18 CPUSmall1 12 8192
19 BodyFat2 14 252
20 Pollution2 15 60
21 ExtrusionOuter 4 15 260
22 ExtrusionInner 4 15 260
23 House16H1 16 22784
24 Elevators1 18 16599
25 CPUAct1 21 8192
26 Pyrimidines1 27 74
27 Wisconsin1 32 194
28 Bank32NH1 32 8192
29 Puma32H 32 8192
30 Ailerons1 40 13750
31 Pol1 48 15000
32 Triazines1 60 186
33 SalesPrices5 105 372
34 ConstructionCosts5 105 372

B. REGRESSION MODELS
The two regression models evaluated in our experiments were
the generalized linear model with elastic net regularization
(GLM) and a linear regressor (LR). In a linear model, the
response variable zi is modeled by a linear function of
explanatory variables xj , j = 1, . . . , n plus an error term
εi (typically, it is assumed εi ∼ N(0, σ2)) as follows:

zi = β0 + β1x1i + · · ·+ βnxni + εi, (1)

where βj are the regression coefficients and xji are the
regression variables.

In contrast with linear regression where the output is
assumed to follow a Gaussian distribution, the generalized

linear model [33] is a special class of nonlinear models
where the response variable yi does not need to be normally
distributed, but it can follow some distribution from the expo-
nential family (Poisson, multinomial, Bernoulli, chi-squared,
gamma, and many others). Furthermore, homogeneity of
variance does not need to be satisfied and errors need to be
independent but not normally distributed.

A GLM is made up of a linear predictor ηi = β0 +
β1x1i + · · · + βnxni, a smooth and invertible linearizing
link function g(µi) = ηi that describes how the mean
(E(Yi) = µi) depends on the linear predictor, and a variance
function var(yi) = φV (µi) which describes the conditional
distribution of the response variable yi, that is, how the
variance depends on the mean µi and a dispersion parameter
φ.

The LR and the GLM with a Gaussian distribution were
taken from the mlr3 framework [26] implemented in the R
environment [34]. The default parameter values were used so
that the results were not affected by a fine-tuning parameter
step.

C. EVALUATION CRITERIA

We adopted two performance metrics commonly used in
regression problems [29]. Both compute the numerical dif-
ference between the prediction of the model (ẑi) and the true
value (zi) [35]. First, the Root Mean Squared Error (RMSE)
was defined as follows:

RMSE =

√√√√ 1

Ntest

Ntest∑
i=1

(ẑi − zi)2, (2)

where Ntest is the number of test samples.
The second metric was the Mean Absolute Error (MAE):

MAE =

Ntest∑
i=1

| ẑi − zi | . (3)

D. STATISTICAL TESTS

The Wilcoxon’s paired signed-rank test was used to check
for statistically significant differences between each pair of
models. This statistic ranks the differences in the perfor-
mances of the two algorithms for each dataset, ignoring
the signs, and compares the ranks for the positive and the
negative differences. Let di be the difference between the
performance scores of the two models on i-th out of L
datasets. Differences were ranked according to their absolute
values. Let R+ be the sum of ranks for the datasets on which
the first model outperforms the second, and R− the sum of
ranks for the opposite. Ranks of di = 0 are split evenly
among the sums; if there is an odd number of them, one is
ignored:
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R+ =
∑
di>0

rank(di) +
1

2

∑
di=0

rank(di), (4)

R− =
∑
di<0

rank(di) +
1

2

∑
di=0

rank(di). (5)

Let Z be the smaller of the sum, Z = min(R+, R−). If Z
is less than or equal to the distribution value of Wilcoxon for
L degrees of freedom, the null-hypothesis that both models
perform equally well can be rejected.

E. DATA COMPLEXITY IN REGRESSION
Data complexity analysis was proposed in classification tasks
as an approach to describing the intrinsic data characteris-
tics [36]. The ultimate aim is to quantify some difficulties
such as class ambiguity, boundary complexity, sample spar-
sity, and feature space dimensionality [36].

Lorena et al. [22] proposed several complexity measures
to estimate the regression complexity. In this paper, we
employed a feature correlation measure that captures the re-
lationship between feature values and outputs. This is called
the maximum feature correlation (C1), where higher values
indicate simpler problems, and lower values the opposite
situation.
C1 takes the maximum correlation value over all feature

dimensions and can be computed as follows:

C1 = max
j=1,...,n

|ρ(xj , z)|, (6)

where ρ is the Spearman correlation, xj is the feature j, z is
the independent variable, and n is the dimensionality.

V. RESULTS
The general objective of the experiments can be divided into
a series of more specific purposes. First, we analyzed the
effect of selecting differentR sizes on the performance of the
regression models. Second, we statistically checked whether
or not the dissimilarity representation outperformed the fea-
ture representation when applied to regression. Finally, we
compared the complexity of the dissimilarity-based datasets
with that of the feature-based datasets.

A. INFLUENCE OF THE REPRESENTATION SET SIZE
In this experiment, we are interested in the impact of different
R sizes over the dissimilarity regression models. We omit-
ted the small-sized databases (Diabetes-numeric, Basketball,
Pollution, Pyrimidines, and Triazines) and for the remaining
29 datasets, we randomly selected a number of representative
objects ranging from 2 to 150. The upper bound was set to
150 because the random selection process cannot guarantee
the optimal number of prototypes, whereas previous studies
observed that selecting more than 150 objects did not produce
significant differences [18].

When comparing and contrasting two or more datasets, it
is important to represent them on comparable scales. Thus,

(a) GLM

(b) LR

(c) GLM

(d) LR

FIGURE 2. Relative error difference for both regression models in terms of
MRSE and MAE. Red and blue lines correspond to the average values across
all datasets.
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we defined a relative error difference [29], [37] computed for
each dataset as follows:

Diff(D,F ) =
D − F
F

× 100, (7)

where F and D represent the feature-based regressor and
dissimilarity-based regressor results, respectively. Note that
this score can be viewed as an indicator of improvement or
deterioration of the dissimilarity-based model compared to
the feature-based one.

Figure 2 shows the relative error difference of the 29 se-
lected datasets achieved with the dissimilarity mapping pro-
cess for all R sizes (2, . . . , 150), where the red and blue lines
correspond to the RMSE and MAE values averaged across
all datasets, respectively. The x-axis represents the number of
objects selected to construct R and the y-axis is the relative
error difference in terms of RMSE (Figure 2–a, Figure 2–b)
and MAE (Figure 2–c, Figure 2–d). Negative values indicate
that the model using the dissimilarity representation was
better than that based on the feature representation.

As can be observed from these plots, there appears a
general tendency to reduce the error when increasing the R
size. In addition, the relative error difference indicates that
the regression models performed better when most datasets
were transformed into a dissimilarity representation than
with the original feature-based datasets. However, it was
not possible to determine the optimal R size. Although the
dissimilarity mapping process did not yield an error reduction
when applied to some databases, we believe that the use of an
intelligent prototype selection strategy instead of the random
method could lead to the expected good behavior.

B. PERFORMANCE EVALUATION
Table 2 reports the RMSE and MAE values of both regression
models, respectively. As the dissimilarity experiments were
performed using different representation set sizes, for clarity
and conciseness only the best RMSE and MAE values for
each pair of dataset and regression model were collected.
As can be observed, the best performances were mostly ob-
tained by training the regressor with the dissimilarity-based
datasets. In addition, for each performance measure, Table 3
summarizes how many times the regression models built on
the dissimilarity representation were better/same/worse than
the regressors based on the feature representation.

To determine whether or not the dissimilarity represen-
tation was better than the traditional approach, we ran a
Wilcoxon’s signed-rank test for detecting statistically signifi-
cant differences using the results of RMSE and MAE. Table 4
shows the ranks and the p-values when comparing one rep-
resentation against the other. Considering a significance level
of α = 0.05, the winner models are highlighted in bold when
the associated p-value is lower than α. As can be seen, for all
comparisons, the best algorithms were those trained with the
data mapped into a dissimilarity space.

C. DATA COMPLEXITY IN DISSIMILARITY REGRESSION
DATASETS
C1 was computed for each dataset in the feature representa-
tion as well as for the dissimilarity representation constructed
from several R sizes. For the sake of simplicity and clarity,
Table 5 summarizes the maximum C1 values obtained from
all dissimilarity datasets. The results show that, for some
datasets, the mapping process converted a dataset into a
simpler problem. However, this behavior was not observed in
all the datasets, despite the fact that some of them achieved
better results when using the dissimilarity representation.

VI. CONCLUSIONS AND FURTHER EXTENSIONS
A good object representation influences the performance
of supervised machine learning methods. The dissimilarity
representation has been used as an alternative to the fea-
ture characterization in classification problems, showing that
dissimilarity-based classifiers may improve their accuracy. In
addition, this mapping process presents important advantages
regarding the reduction of some intrinsic data difficulties that
allow the use of single linear models.

In this sense, the dissimilarity mapping process can also
be used in the context of regression. Therefore, we per-
formed an extensive experimental study on 34 benchmark
regression datasets where each dataset was transformed into
a dissimilarity matrix using the Euclidean distance and a set
R. The independent variables in the new space correspond
to the dissimilarity between the pairs of objects. From the
experimental results, it is possible to draw some concluding
remarks that support our findings:

1) Through a random selection of R of various sizes, it
has been proven that mapping a feature sample into
a dissimilarity space improves the performance of the
linear regression models. On the other hand, it seems
that in some cases, the use of a larger R can result
beneficial.

2) The Wilcoxon’s signed-rank test with α = 0.05 vali-
dates our claim that the linear regression models built
on the dissimilarity representation perform better than
those based on the traditional feature-based representa-
tion.

3) Using a data complexity measure, it has been observed
that the problems yield high correlation values when the
datasets are mapped into a dissimilarity representation,
that is, the problems become simpler.

The main criticism that can be made to the present work is
the lack of a theoretical analysis. However, the experimental
results have demonstrated the potential benefits of using
the dissimilarity representation in the context of regression
problems, thus opening some avenues for further research.
One of them can be the design of systematic methods for
the selection of representative objects specifically focused
on regression tasks. Although it has been claimed that the
Euclidean distance is suitable for dissimilarity transforma-
tion, other metrics should also be explored. In this sense,
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TABLE 2. Average RMSE and MAE values (for each dataset, the best result is highlighted).

RMSE MAE

Datasets GLM-F GLM-D LR-F LR-D GLM-F GLM-D LR-F LR-D

Diabetes-numeric 6.6086e−1 6.3962e−1 6.0247e−1 6.4734e−1 5.3554e−1 5.044e−1 4.7050e−1 5.2263e−1
Quake 1.8935e−1 1.8935e−1 1.8887e−1 1.8896e−1 1.4927e−1 1.4927e−1 1.4858e−1 1.4837e−1
Basketball 9.1455e−2 8.9383e−2 8.5302e−2 8.5141e−2 7.2492e−2 7.0860e−2 6.7051e−2 6.7526e−2
DeltaAilerons 1.7484e−4 1.6834e−4 1.7195e−4 1.6490e−4 1.2382e−4 1.1898e−4 1.2367e−4 1.1570e−4
MachineCPU 8.8162e1 6.3543e1 6.9117e1 5.4220e1 4.3905e1 3.2306e1 4.1662e1 3.1331e1

DeltaElevators 1.4608e−3 1.4340e−3 1.4487e−3 1.4252e−3 1.1069e−3 1.0859e−3 1.1025e−3 1.0778e−3
Cooling 3.3464 2.9734 3.0857 2.7977 2.3760 2.0835 2.2980 1.9779
Heating 3.0394 2.6663 2.8781 2.4715 2.1712 1.8259 2.0802 1.6839
Bank-8FM 3.9509e−2 3.7539e−2 3.8820e−2 3.6591e−2 2.9357e−2 2.8804e−2 2.8556e−2 2.8170e−2
Kinematics 2.0360e−1 1.4339e−1 2.0210e−1 1.3837e−1 1.6468e−1 1.1028e−1 1.6232e−1 1.0641e−1

Puma8NH 4.4885 3.9619 4.4639 3.8562 3.7287 3.2126 3.6460 3.1076
Calhousing 7.0222e4 6.3125e4 6.9575e4 6.0647e4 5.1452e4 4.4760e4 5.0780e4 4.2730e4
House8L 4.2291e4 3.4944e4 4.1544e4 3.3935e4 2.4536e4 1.9510e4 2.4349e4 1.8981e4
Stock 2.4112 1.0329 2.3446 8.8450e−1 1.8752 7.9780e−1 1.8404 6.6056e−1
PwLinear 2.3208 1.8942 2.2064 1.7694 1.8519 1.5151 1.7525 1.4019

2DPlanes 2.3909 1.1120 2.3841 1.0964 1.9287 8.8403e−1 1.9225 8.7236e−1
Friedman 2.6432 1.7696 2.6310 1.7277 2.0674 1.3683 2.0384 1.3399
CPUSmall 1.0101e1 3.6057 9.8376 3.3586 6.0274 2.6305 6.1750 2.3795
BodyFat 1.7145 1.7270 1.1956 1.5080 1.1216 1.1992 5.1532e−1 7.9893e−1
Pollution 4.0683e1 4.0872e1 4.7583e1 3.7256e1 3.0584e1 3.1323e1 3.6088e1 2.9796e1

ExtrusionOuter 1.2753e−2 1.2743e−2 2.6372e−2 1.2993e−2 3.8206e−3 3.8206e−3 8.0987e−3 4.1025e−3
ExutrusionInner 1.0727e−3 1.0727e−3 1.3520e−3 1.0748e−3 8.9223e−4 8.9223e−4 9.6523e−4 8.9157e−4
House16H 4.6408e4 4.0053e4 4.5481e4 3.8915e4 2.5741e4 2.1860e4 2.5450e4 2.1680e4
Elevators 2.9514e−3 2.5907e−3 2.9058e−3 2.4896e−3 1.9875e−3 1.8578e−3 1.9910e−3 1.8330e−3
CPUActivity 9.9122 3.8733 9.6236 3.5444 5.8959 2.6599 6.0697 2.3484

Pyrimidines 1.3984e−1 8.8503e−2 2.2168e−1 7.7675e−2 9.6768e−2 6.2905e−2 1.2751e−1 5.4419e−2
Wisconsin 3.3216e1 3.2704e1 3.4254e1 3.1248e1 2.8484e1 2.7799e1 2.8487e1 2.5426e1
Bank32NH 8.4512e−2 8.6267e−2 8.3536e−2 8.4312e−2 5.8151e−2 6.0941e−2 5.8659e−2 6.0076e−2
Puma32H 2.6948e−2 2.6884e−2 2.6763e−2 2.6707e−2 2.1253e−2 2.1238e−2 2.0988e−2 2.0941e−2
Ailerons 1.7584e−4 1.6698e−4 1.7580e−4 1.6373e−4 1.2889e−4 1.2184e−4 1.2913e−4 1.1965e−4

Pol 3.0599e1 1.3767e1 3.0488e1 1.2920e1 2.6732e1 1.0229e1 2.6592e1 9.4926
Triazines 1.5312e−1 1.5009e−1 1.5689e−1 1.4325e−1 1.1519e−1 1.0921e−1 1.1932e−1 1.0317e−1
SalesPrices 1.7665e2 4.6195e2 1.7190e3 3.2565e2 9.7319e1 3.1496e2 3.0033e2 2.2127e2
ConstructionCosts 3.3477e1 5.5326e1 4.7211e2 4.3560e1 2.1410e1 3.3524e1 7.3097e1 2.5363e1

TABLE 3. Comparison of representation strategies. The three values in the
cells show the number of datasets where the dissimilarity-based model of the
row was better/same/worse than the feature-based regressor of the column.

GLM-Feature LR-Feature

RMSE GLM-Dissimilarity 27/2/5
LR-Dissimilarity 30/0/4

MAE GLM-Dissimilarity 26/3/5
LR-Dissimilarity 30/0/4

TABLE 4. Wilcoxon test for dissimilarity-based vs feature-based regressors.

Comparison R+ R− p-value

RMSE GLM-Dissimilarity vs GLM-Feature 494.5 100.5 4.4760e−4
LR-Dissimilarity vs LR-Feature 551.0 44.0 1.7102e−6

MAE GLM-Dissimilarity vs GLM-Feature 482.0 113.0 1.1152e−3
LR-Dissimilarity vs LR-Feature 547.0 48.0 2.8280e−6

we believe that the adoption of distance metrics for high-
dimensional problems could be an interesting direction for
extending the present work. Another point to investigate in
the future can be to study the behavior of the dissimilarity

representation for non-linear regression models, such as XG-
Boost, K-nearest neighbors, support vector regressor and ran-
dom forest. In addition, living in the Big Data era where data
is growing exponentially, we would like to extend the present
work by exploring the performance of the dissimilarity-based
regression method on massive datasets, which bring a series
of special computational challenges.

Finally, our proposal in its present form could not be ap-
plied to real-world applications in a continuous learning sys-
tem, capable of incrementally storing and discarding stream-
ing data. Thus the design of dissimilarity-based regression
models with the power of continuous learning and adaptation
during real-time operations under changes in the environment
may constitute an interesting open line for further research.
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