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This chapter explores the relationship among different routing policies for order picking and the 
features of the problem (describing both warehouse layout and orders), the results obtained by 
simulation show that some policies are especially sensitive to the presence of certain conditions that 
are likely to be present in real-world cases. 

Moreover, the routing policies are represented—for the first time in the literature as far as our 
knowledge—on structured algorithms. This contribution can facilitate their implementation because 
the features of the policies are modeled by formal mathematical structures, laying the foundations to 
standardize the way they operate. 

1. Introduction 

A warehouse is a fundamental part of a company, and its performance can impact the entire supply 
chain [1]. 

Order picking is a problem that is present in all companies. It has received special focus from 
research areas related to planning and logistics. This fact is a consequence of several studies that 
identify order picking as the activity that demands more resources inside the warehouses, reaching 
up to 55% of the operational cost of the entire warehouse [2]. 

This activity has a strong impact on production lines, so companies with complex warehouses 
have areas dedicated to improving their product collection processes. 
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166 Innovative Applications in Smart Cities 

There are optimization models to support the resolution of this problem in the generation of 
product-picking routes; however, being considered as an NP-complete problem is not feasible to 
solve the models when working at medium and large scale due to the high cost that this represents. 
Thus, it is possible to apply some heuristics to get an approximate solution in real cases. 

Although several studies in the literature (e.g., [3]) show that these procedures are far from 
finding solutions close to the optimal one; these heuristics are still applied to real problems due to 
the simplicity and the way they relax the problem, granting a good balance between the quality of 
the solution and the ease of implementation. 

The picking routes are dependent on the structure of the warehouse and the properties of the 
orders, so studies have stated [4] that the input elements and the performance of the routes obtained 
are highly related. For example, a greater number of cross aisles facilitates movements inside the 
warehouse, so that the distance of the route tends to decrease. 

Throughout this chapter, we are going to define the algorithms for five of these heuristics and 
deepen on the study of which of them are more sensible to the characteristics describing the layout 
of a warehouse. 

2. Background 

Warehouses are an important part of supply chain in a factory, and the main activities inside of it, 
like reception (receive and collect all product data), storage (move products to their locations), pick 
up (pick products from their storage location), packing (prepare for being transported), and shipping 
(place product in the transport medium). On this last step, the warehouse operation ends. 

2.1 Warehouse Layout 

The chief features of the warehouse are: the central depot, where the picker starts its route and 
finish it, also usually is where the picker gets the order. The picker has to walk by the—the second 
element— picking aisles. A picking aisle is the space between two racks and facilitates the picker 
to pick product from the shelf, and the aisles have the following characteristics: length (distance 
between front aisle and rear aisle), and distance between aisles (distance that exists from the center 
of one aisle to center of next aisle); based on the distance, we can classify the aisles as short or 
long, in this case, we are going to use short aisles, which means that we can get the products from 
the shelves without making lateral displacements over the aisle. Cross aisles are perpendicular to 
picking aisles and are used to travel from one aisle to another, picking node is the location in the 
shelf where you can get the product, shelf is the space in the rack where products are stored, block 
is the area between the cross aisle and picking aisle, and sub-aisle is the area between the picking 
aisles inside the block if the blocks have picking aisles. Finally, picker is the person, tool or machine 
that picks up the products. 

Figure 1 represents an example of a layout of a warehouse with five cross aisles, four blocks, 
six picking aisles, and a central depot. 

Also, we are going to clarify the key concepts and briefly explain how the order picking routing 
policies work. 

2.2 Steiner STP 

In the literature, it is verified that TSP (Travel Salesman Problem) is on the classification of NP-hard 
problems [5]; likewise, TSP and Order Picking have a close relationship. Unfortunately, the optimal 
solution may require intolerable run times for high-scale problems. Considering an approximate 
solution might be more convenient as this provides an favourable relationship between time and cost. 

Optimization algorithms based on local searches focus on achieving a good quality solution in 
a reasonable time to get a minimum or maximum value and avoid being stuck in a local optimum. 
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Figure 1: Warehouse layout elements. 

It is necessary to start from a solution and, by applying operators, calculate solutions better than the 
initial solution. Normally, this strategy is applied to NP-hard problems, where heuristic functions 
are used to eliminate non-promising routes [6]. 

The solution for this project is represented as SPRP (Single-Picker Routing Problem), which 
consists of finding the shortest path that includes all the products to pick up [7]. This problem 
could be represented as a special case for TSP and can be applied as such to solve the initial SPRP 
problem. The objective is minimizing the distance and the time travel of the picker, either a human 
or machine, so it becomes a TSP. TSP consists of a salesman and a set of cities. The salesman must 
visit each of the cities, starting from a specific location (for example, native city), and come back 
to the same city. The challenge of this problem is that the salesman wishes to minimize the total 
duration of his/her trip. 

SPRP could be modeled as TSP, where the vertices of the correspondent graph are defined 
by the location of the available products inside of the warehouse and the location of the depot, as 
presented in Figure 2. 

This graph shows all the vertices and not only the picking ones, so the SPRP was modelled as a 
Steiner TSP (which is a variant of the classical TSP) that is defined as follows: 

Let G = (V, E) be a graph with a set of vertices V and a set of edges E. Let P be a subset of V. 
The elements of V \P are Steiner points. On a Steiner route, each vertex of P is visited only once. 
Steiner points should not be visited multiple times. However, a Steiner route could travel through 
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Figure 2: Example of a warehouse structure as a set of V vertices. 

some vertices and edges more than one time. In conclusion, the TSP of Steiner consists of finding a 
route of Steiner with the minimum distance [8]. 

Figure 3 shows an example of a warehouse layout with different parameters and variables. 

Figure 3: Example of a warehouse structure with different parameters. 

In Figure 4, the black-filled vertices are the picking vertices and the initial vertex, also known 
as the depot. This set of vertices is the set P, a subset of all the vertices V. This subset will form a 
Steiner graph, and the vertices formed at the intersections of the cross aisles and the picking aisles 
we will call Steiner points. 

Once the graph is obtained, the objective is to find a Hamiltonian circuit with the minimum 
cost. The initial and finish point of this circuit will always be the depot. 

Also, it is important to know that there are six different ways to travel through a picking aisle [9]. 
Figure 5 describes each one over one example of a unique block, one front cross aisle, and one 

rear cross aisle. 
Picker enters by the front cross aisle, crosses it completely, picks up all required products, and 

finishes leaving the aisle by the rear cross aisle. 
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Figure 4: Example of a Steiner graph. 

Figure 5: Six ways to travel edges through the picking aisles. 

Picker enters by the rear cross aisle, crosses it completely, picks up all required products, and 
finishes leaving the aisle by the front cross aisle. 

Picker enters and leaves twice through the aisle, enters once through the front cross aisle and 
once more through the rear cross aisle, picker enters and leaves by the same place. The picker 
will make its return defined by the largest gap, which is the largest distance between two adjacent 
picking vertices or the picking vertex and cross aisle. 

Picker enters through the front cross aisle, and its return point is the picking vertex farthest from 
the front aisle. 

Picker enters through the rear cross aisle, and its return point is the picking vertex farthest from 
the rear aisle. 

The picker doesn’t need to travel through the aisle because there are no picking vertices inside. 
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These ways to travel are combined, generating different routing policies, which are highly 
popular in practice. 

3. Routing Policies 

The routing policies determine the collection sequence of the SKUs (Stock-keeping unit) [10]. The 
objective of the routing policies is minimizing the distance traveled by the picker using simple 
heuristics [3]. 

To achieve this, it is necessary to consider the following features of the warehouse layout and 
the product orders, which can influence the final performance of each policy: quantity of products in 
the order, picker capacity, aisle length, and the number of aisles. 

Five of these heuristics are described below. 

3.1 S-Shape 

The picker must start by entirely crossing the aisle (with at least one product) that is at the left or 
right end (depending on which is the closest one to the depot) until reaching the rear cross aisle of 
the warehouse. Then, the sub-aisles that belong to the farthest block of the depot are visited one by 
one until they end up at the opposite end of the warehouse. The only case where it is not necessary 
to cross a sub-aisle completely is when it is the last one in the block. In this case, after picking up the 
last product, the picker returns to the cross aisle from where it entered the sub-aisle. When changing 
blocks, the picker visits the closest sub-aisle to the last visited sub-aisle of the previous block. After 
picking up all the products, the picker must return to the depot [11]. Figure 6 shows an example. 

Figure 6: An example of a route applying S Shape. 
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3.2 Largest gap 

This routing policy consists of identifying which is the largest gap in each sub-aisle and then 
avoiding crossing it [12]. This gap can be either between the rear cross aisle and the first product to 
be picked, between adjacent products or between the last product of the sub-aisle to the front cross 
aisle. All products that are before this gap will be picked up from the rear cross aisle and afterwards 
the picker must return to the cross aisle where it departed and do the same until all the sub-aisles of 
the block are explored, then, pick up all the remaining products from the front cross aisle. 

The sub-aisles that are completely crossed are those belonging to the first visited picking aisle 
and the last one of each block (this way, it passes from one cross aisle to another). 

When the picker picks up all the products, it must return to the depot. Figure 7 shows an 
example. 

Figure 7: An example of a route applying Largest Gap 

3.3 Midpoint 

This routing policy is similar to Largest Gap; the main difference is that the picker identifies the 
product to pick closest to the center of each sub-aisle, which is considered the travel limit [13]; 
at first, the products that are in the upper half of the sub-aisle are picked up from the rear cross 
aisle, then, after picking up all the upper half products of the entire block, continues picking up the 
remaining products from the front cross aisle. If the product is exactly in the center, the picker takes 
it from either of the two cross aisles. In the end, the picker must return to the depot. An example is 
represented in Figure 8. 

3.4 Return 

When applying this routing policy, the picker enters and leaves the sub-aisle from the same cross 
aisle; this means that, after picking up the last product of the sub-aisle, the picker must return to the 
cross aisle [14]. 
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Figure 8: An example of a route applying Midpoint. 

In the case that the warehouse configuration contains more than one block, the picker visits all 
the sub-aisles of the two adjacent blocks to the cross aisle alternately. After that, the picker moves 
to the next cross aisle that is adjacent to two unexplored blocks. The picker must return to the depot 
once all the products have been picked. This route is shown in Figure 9. 

Figure 9: An example of route applying Return. 
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3.5 Combined 

This routing policy is considered a combination of S Shape and Largest Gap policies. When all 
products are picked up completely, the picker must decide between (1) continuing through the front 
cross aisle, or (2) returning to the rear cross aisle [14]. This decision is made according to the 
shortest distance to the next product to pick up. An example of this route is shown in Figure 10. 

Figure 10: An example of a route applying Combined. 

4. Development of Routing Policies 

The necessary elements for the development and application of the algorithms for each heuristic 
will be defined below. 

4.1 S-Shape 

A fundamental part of the implementation of this heuristic is to define the order in which the picker 
will visit the sub-aisles, an example of the correct order according to its characteristics is shown in 
Figure 11. 

Also, to help obtain the order, it is necessary to assign “auxiliary coordinates” to each sub-aisle. 
Figure 12 represents an example. 
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Figure 11: An example of sub-aisles order to visit for S-Shape. 

x max = 4 

ymax = 3 

Figure 12: An example of auxiliary coordinates for each sub-aisle. 

The following equation returns the picking order of each sub aisle, given x and y coordinates: 

 y if x = 0, 
  f (x, y) = y max + (x max −1)( y max − ( y +1)) + x −1  if y max − ( y +1) m od 2 = 0,  (1)
 
y max + ((x max −1)( ymax − ( y +1)) )+ (xma x − +(x 1))  otherwise. 

where: 

ymax is the quantity of sub-aisles per aisle,

 is the quantity of sub-aisles per block,max 

x is the current picking aisle, and 

y is the current block. 
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Once the order is defined, the next step is to obtain the direction in which the picker will pick 
products from each sub-aisle. 

Algorithm 1 describes the procedure used to obtain the final path. 

Algorithm 1. S Shape 

Input: Sub-aisles s with at least one product to pick up, visit order of sub-aisles 
Output: Final path C 
1 Begin 
2 While there is unexplored s with product Do 
3 Select next s according to the visit order 
4 If s is part of the first picking aisle 
5 Add products in s in ascending order to C 
6 Else if s-1 was explored in an ascending direction 
7 Add products in s in descending order to C 
8 Else if s-1 was explored in a descending direction 
9 Add products in s in ascending order to C 
10 If the current block was explored completely 
11 Add products in s in descending order to C 
12 While end 
13 Return C 
14 End 

Where all the sub-aisles that are part of the first picking aisle are explored and added to the final 
path ascendingly (lines 4–5); then, the direction must alternate between each sub-block (lines 6–9) 
until the picker has visited the block completely; in that case, the first sub-block the picker visits in 
the new block is always traversed in a descending direction (lines 10–11). 

4.2 Largest gap 

The order in which the picker will visit the sub-aisles in this heuristic is different in comparison to 
S-Shape. In Largest Gap, each explored block starts and ends from the same sub-aisle. Figure 13 
shows an example. 

Figure 13: An example of sub-aisles visit order generated by Largest Gap. 
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The application of this equation only depends on whether the sub-block is on the first picking 
aisle; in any other case, the blocks are explored from left to right. The following equation represents 
this: 

 y if x = 0,
f ( ,x y) =   (2)

ymax + (xmax −1)( ymax − ( y +1))  + −x 1  otherwise. 

Once the order in which the picker will visit the sub-blocks is defined, the generation of the final 
route begins. This method is described in Algorithm 2. 

Algorithm 2. Largest Gap 

Input: Sub-aisles s with at least one product to pick up, visit order of sub-aisles 
Output: Final path C 
1 Begin 
2 While there is unexplored s with product Do 
3 Select next s according to the visit order 
4 If s is part of the first picking aisle 
5 Add products to C in an ascending direction 
6 Else 
7 Valuate elements in s 
8 Calculate the distance between the current element and the next one 
9 If the current distance is higher than the current limit 
10 The new limit is the current element. 
11 Traverse elements in s 
12 If the current element is higher than the limit 
13 Add the current element to C 
14 Else 
15 Add the current element to pending 
16 If the current block was explored completely 
17 Add elements in pending to C. 
18 While end 
19 Return C 
20 End 

Where the direction in which the picker traverses the sub-aisles that are in the first picking 
aisle is ascending, adding the elements to the final path (lines 4–5). Then, the largest gap of each 
sub-aisle is calculated by the distance between each of the elements that it contains; the new limit 
is defined by the element that detects the highest travel distance (lines 8–10), the next step is to add 
the elements that are above this limit to the final path (lines 11–12) and the elements that are below 
are stored in a stack (14–15); once all the elements of the block—that are above this limit—have 
already been added to the final path, lines 16–17 insert the pending elements in LIFO order (Last 
In, First Out). 

4.3 Midpoint 

It is a heuristic similar to Largest Gap. They share the order in which the picker traverses the sub-aisles 
(Figure 13). 
Hereunder, the algorithm designed for the generation of the final path for Midpoint: 
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Algorithm 3. Midpoint 

Input: Sub-aisles s with at least one product to pick up, visit order of sub-aisles, locations per sub-block LS, locations 
per aisle LA. 
Output: Final path C 
1 Start 
2 While there is unexplored s with product Do 
3 Select next s according to the visit order 
4 If s is part of the first picking aisle 
5 Add products to C in an ascending direction 
6 Define the Midpoint value of the current block: LP-(LS/2) 
7 Traverse elements on s 
8 If the current element is higher or equal to Midpoint 
9 Add element to C 
10 Else 
11 Add element to pending 
12 If the current block was explored completely 
13 Add elements on pending to C 
14 Update Midpoint value of the next block: Midpoint-LS 
15 While end 
16 Return C 
17 End 

Where the sub-aisles that are in the first picking aisle must be traversed in an ascending direction 
while adding all the elements to the final path. (Lines 4–5). After, to obtain the midpoint and take 
it as a limit (line 6), starting from the farthest block to the depot, this value is obtained as follows: 

LS Mp = LA −  (3)
2 

Where: 

Mp is the midpoint, 
LA represents the locations per picking aisle, and 
LS represents the locations per sub-aisle. 

This value is defined as a limit until there is a block change (lines 12 and 14), where it must be 
updated as follows: 

Mp = Mp – LS (4) 

If the element is above the midpoint, it will be added directly to the final path, storing the rest 
on the pending elements (lines 8–11). The elements of the last sub-block of the block must be added 
completely in a descending way; so, it passes to the lower cross aisle and then starts adding the 
pending elements to the final path (line 13). 

4.4 Return 

The first step in the implementation of this routing policy is to define the order in which the picker 
will visit the sub-aisles; Figure 14 shows an example of the correct order according to the previously 
described properties. 
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Figure 14: An example of sub-aisles order to visit for Return. 

The following equations return the previously mentioned values: 

 y if x = 0,
 g(x y, ) = h 1 (x y, ) if( y max − ( y +1)) mod 4 < 2,  (5) 

h2 (x y, ) otherwise. 

 ymax + (xmax −1)( ymax − ( y +1)
h x( −1, y) +1 if( y  1 max − ( y +1)) mod 2  = 0, 
 x = 1 


h x1 ( , y) = h x1 ( −1, y) + 2 if( y max − ( y +1)) mod 2 = 0,  (6) 
 y = 0 
h 1 (x y, +1) +1 if( y max − ( y +1)) mod 2  = 0, 
 
 otherwise 

 y max + (x max −1)( y max − ( y +1)) 
h x( +1, y) +1 if( y  2 max − ( y +1)) mod 2  = 0, 
 x x= max −1


h x2 ( , y) =  h x2 ( +1, y) + 2 if( y max − ( y +1)) mod 2 = 0,  (7) 
 y = 0 
h 2 (x y, +1) +1 if( y − , 


max ( y +1)) mod 2  = 0
 
 otherwise 

In this policy, the patterns of the order of travel are more complex than those seen before, so it 
was necessary to define a series of equations which consist of a function g(x, y) on which you can 
obtain direct results and functions h1(x, y) and h2(x, y) where it is necessary to call them recursively 
to reach the desired result. For the application of these equations, it is necessary to use the auxiliary 
coordinates exemplified in Figure 12. 

Once having the sub-aisles visit order, the process to generate the final path is shown in 
Algorithm 4: 
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Algorithm 4. Return 

Input: Sub-aisles s with at least products to pick up, visit order of sub-aisles, locations per sub-block LS, locations 
per aisle LA. 
Output: Final path C 
1 Start 
2 While there is unexplored s with product Do 
3 Select next s according to the visit order 
4 If s is part of the first picking aisle 
5 Add products to C in an ascending direction 
6 If the quantity of the blocks is an even number 
7 If s is part of a block with an even coordinate 
8 Add elements in s to C in an ascending direction 
9 Else 
10 Add elements in s to C in a descending direction 
11 Else 
12 If s is part of a block with a even coordinate 
13 Add elements in s to C in a descending direction 
14 Else 
15 Add elements in s to C in an ascending direction 
16 If s is part of the block on y=0 
17 Add elements on s to C in an ascending direction 
18 If the current block was explored completely 
19 Add elements in s+1 to C in an ascending direction 
20 While end 
21 Return C 
22 End 

The elements found in the first picking aisle are added to the final path in an ascending direction 
(lines 4–5). Subsequently, it is important to define whether the number of blocks in the warehouse is 
even or odd (line 6). This fact influences because the characteristics of the routing policy states that 
the picker must alternate between the sub-blocks of two blocks, this implies that, in cases where the 
warehouse configuration has an odd number of blocks, the sub-blocks belonging to the last block to 
explore (closest to the depot) must be explored continuously (without alternating) (line 16). When 
the total number of blocks is even, all sub-aisles belonging to a block are crossed ascendingly, and 
in the odd ones in a descending direction (lines 6–10). In the opposite case (warehouses with an odd 
number of blocks), the sub-aisles that belong to the odd-number blocks are traversed in an ascending 
direction, and the sub-aisles that belong to the even-number blocks are traversed in a descending 
direction (lines 11–15). On the last block to be explored, all sub-aisles are visited ascendingly (line 
16). In both cases, at the end of every block, the elements of the first sub-block of the next block 
(lines 18–19) are added to the final path in a descending direction. 

4.5 Combined 

The order of how to traverse the sub-aisles is similar to S Shape (represented in Figure 11), but 
there are cases where it can vary because of the characteristics of this routing policy; when picking 
up the last element of every block, it is important to define which is the sub-aisle of the next block 
with product that has the smaller distance, if this sub-aisle is on the left end, the path of the block 
turns in the direction from left to right; otherwise (if the sub-block with the nearest product is in the 
extreme right sub-aisle), the opposite direction must be taken. The following equation represents 
the above behavior: 

y if x = 0,
f (x y  , ) = ymax + (xmax −1)( ymax − ( y +1))  + −x 1  if d 1 < d 2 ,  (8) 

ymax + (xmax −1)( ymax − ( y +1)) + (xmax − (x +1)) o therwise. 
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Where d1 is the distance between the last element of the block and the sub-block with the 
leftmost product and d2 is the distance between the last element of the block and the sub-block with 
the product on the rightest location. Once having the order in which the picker will visit the sub-
aisles, the final route is generated as presented in Algorithm 5. 

Algorithm 5. Combined 

Input: Sub-aisles s with at least one product to pick up, visit order of sub-aisles. 
Output: Final path C 
1 Start 
2 While there is unexplored s with product Do 
3 Select next s according to the visit order 
4 If s is part of the first picking aisle 
6 Add elements on s to C in an ascending direction 
7 Capture the last element on s 
8 Calculate d1: the difference between the last element on s and the first one on s+1 from the rear cross aisle. 
9 Calculate d2: the difference between the last element on s and the first one on s+1 from the front cross aisle. 
10 If d2 is greater than d1 
11 Add elements on s to C in an ascending direction. 
12 Else 
13 Add elements on s to C in a descending direction. 
14 If the current block was completely explored 
15 Add elements in s+1 to C in an ascending direction 
16 While end 
17 Return C 
18 End 

Where the elements that belong to the first picking aisle are added to the final path in an 
ascending direction (lines 4–5), from this point, the distance from the last element of each sub-
aisle to the first element of the next sub-aisle accessing from the front and rear cross aisle must be 
evaluated (lines 7–9). In the case that the distance to the first element from rear cross aisle is slower, 
the elements on the next sub-aisle have to be added in a descending direction to the final path; in the 
opposite case, the elements on the next sub-aisle are added in an ascending direction (lines 10–13). 

4.6 Efficiency measurement 

To measure the effectiveness of the result, it is necessary to calculate the distance matrix between 
all product nodes and artificial nodes by applying Dijkstra. Subsequently, a sum of all the distances 
between consecutive nodes on C is made, represented by the following equation: 

∑
p−1 

d (C) =  D x( i , x i+1 )
i=1  

where: 

C = <x1, x2, x3, …, xp> is the sequence of elements to evaluate, 

p is the number of vertices that forms a circuit, and 

D is the distance matrix. 

5. Experimental Results 

In this section, the results obtained by this project are shown and interpreted. 
A total of 125 different warehouse layouts were processed and defined according to the 

combination of the following values: 
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Number of products capacities per sub-block: 18, 30, 42, 54 and 60 
Number of picking aisles: 3, 6, 9, 12 and 15 
Number of cross aisles: 1, 3, 5, 7 and 9 

In each layout, five routing policies were processed and applied to five different orders with 4, 
7, 10, 12, and 15 percent of the full capacity of the products in the warehouse. 

The results give a total of 3125 different instances (625 results per routing policy). This 
information was processed by SAS 9.4 software to generate a correlation analysis. 

The rank is one of the different variables to consider, it represents the position obtained by each 
routing policy in comparison to the other ones. The first position is assigned to the one that gets 
the lower distance and the fifth the highest. The locations per sub-block with or without product, 
the quantity of picking aisles, the number of cross aisles, and the percent of total locations of the 
warehouse that contains products to pick up were other variables used. 

5.1 Insights 

Let us remember that, as the correlation gets closer to 1 or –1, the correlation is greater. Because 
this is a minimization problem, a correlation with the performance is better if it is negative. So, the 
main insights are: 

• S Shape tends to be sensitive to the number of locations by sub-aisles (negative correlation 
of 0.41824) and the number of products in the warehouse (negative correlation of 0.24840) 
(Figures 15a and 16a). 

• For Largest Gap, the correlation coefficient that stands out is the number of picking aisles, 
obtaining a positive 0.37988 (Figures 15b and 16b). Figure 15b demonstrated the tendency 
generated by this result, where the level of efficiency compared with the other policies decreases 
as this value becomes greatest. 

• For Midpoint, the two most relevant variables are the number of aisles and the number of 
products to pick up, both with a positive correlation of 0.33772 and 0.26812, respectively 
(Figures 15c and 16c). 

• The variable with the most effect over the performance of Return is the number of locations 
by aisle, where it gets a positive correlation of 0.58660. The more locations by aisle, the more 
competitiveness Return obtains. Figures 15d and 16d show that this policy gets better results as 
the number of aisles increases. 

• Regarding the results of Combined, the number of locations by sub-aisle seems to be an 
important feature, with a negative coefficient of 0.48762, considerably higher compared to the 
other variables (Figures 15e and 16e show). 

• Combined has better results in warehouses where the number of locations by aisle is the greatest 
variable, while the most degraded is Return. 

• A high number of aisles tends to affect the performance of the five policies, but the policy with 
the most unfavorable results is Largest Gap. Being S-Shape and Combined the least affected. 

• In the case of cross aisles, there was no improvement in the performance of any studied policy. 
The policies where its effectiveness decreases are Return and Combined. While in S Shape is 
just a little bit affected. 

• S-Shape is the most benefited policy in warehouses where the number of products to be picked 
up increases. 

To be able to develop this project, it was necessary to process orders, get five different results, 
and compare them over different methods. A benchmark of instances was synthetically created, and 
the performance in this wide range of different conditions was measured. 
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a) S shape 

b) Largest Gap 

c) Midpoint 

d) Return 

e) Combined 

Figure 15: Pearson correlation coefficient. 

The main purpose of this project is to explain and get knowledge on policies and to reduce 
traveled distances in order picking processes in warehouses, offering an encouraging panorama for 
the construction of more complex routing policies. 
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a)  S shape 

b)  Largest Gap 

c)  Midpoint 

Figure 16 contd. ... 



 

 

 

 

d) Return 

e) Combined 
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Figure 16: Pearson correlation coefficient Scatter Plot Matrix. 

6. Conclusions and Directions for Future Work 

In this chapter, we studied and developed five routing policies to apply them in order to multiple 
scenarios and situations and generate enough information to find trends and understand the behavior 
of these heuristics. 

These experiments provide evidence that the performance of these policies can be highly 
sensitive to the different characteristics of the warehouse; for example, in the case of the S Shape 
routing policy, its performance is mainly affected by (1) the number of locations per sub-block, and 
(2) the size of orders of products to be picked. In the case of Largest Gap, the most marked trend 
is defined by the number of aisles, affecting its performance. Similarly, although not as marked as 
in Largest Gap, in Midpoint, the number of aisles tends to reduce its efficiency. The Return policy 
seems to be highly sensitive to the number of locations per sub-aisle, with performance deteriorating 
in a highly marked way. On the contrary, Combined improves as the number of locations increases. 

These insights can be used in the future to design a heuristic enriched with these key elements 
about routing policies. In this way, such a heuristic can foresee aspects of the test instances that can 
affect its performance and mitigate the consequences. 
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