

ScienceDirect

View **PDF**

Access through Autonomous University ...

Purchase PDF

Building and Environment

Available online 2 July 2021, 108110

In Press, Journal Pre-proof ?

Thermal effectiveness of wind-tower with heated exit-wall and inlet-air humidification: Effects of winter and summertime

X. Morales ^a, F.Z. Sierra-Espinosa ^b ○ ☑, S.L. Moya ^a, F. Carrillo ^c

Show more \vee

Outline

≪ Share

J Cite

https://doi.org/10.1016/j.buildenv.2021.108110

Get rights and content

Highlights:

- Wind-tower-building aided with air humidification is analysed as a heat exchanger.
- A Nu-Re correlation to wind tower dry-air/moist air flow is developed.
- Humid air provides 16.4% thermal comfort in summer.
- A model for wind-tower-building thermal effectiveness is presented.

Abstract

Wind-towers provide natural ventilation to residential building in hot arid and semi-arid climate. Water-droplet spray can reduce the air-stream temperature at air-inlet section to increase wind-tower effectiveness. However, temperature and humidity weather conditions due to climate change throughout the year play a main role. Besides, heating of building's structure produced by solar radiation has an impact on interior air-stream temperature. This paper presents a thermal assessment of combined wind-tower air-humidification with a heated wall under the effect of winter and summertime. A correlation Nusselt-Reynolds numbers for different weather conditions was developed experimentally, which investigates thermally a simulated solar heating of an exit-wall wind-tower-building by means of a parallel plate heat exchanger tested in a low-speed wind tunnel. The effect of a water-droplet spray on the windtower streams and constant heating exit-wall of the building was investigated varying the air-inlet Re number between 1.3×10^4 and 2.5×10^4 . The results show that Nu number increases with Re number for both dry-air and moist-air flow wind-tower-building inlet condition. Wind-tower thermal effectiveness is 10.1% higher for wintertime compared to the summertime. Results for dry-air and moist air and the Nu-Re correlation can be used as guidelines for future wind-tower designs.

Keywords

Wind-tower heat transfer; Air humidification; Residential comfort; *Nu-Re* correlation; Wind-tower building

Recommended articles Citing articles (0)

View full text

© 2021 Elsevier Ltd. All rights reserved.

About ScienceDirect

Remote access

Shopping cart

Advertise

Contact and support

FEEDBACK 💭

11/7/2021 Thermal effectiveness of wind-tower with heated exit-wall and inlet-air humidification: Effects of winter and summertime - ScienceDirect

Terms and conditions

Privacy policy

We use cookies to help provide and enhance our service and tailor content and ads. By continuing you agree to the **use of cookies**. Copyright © 2021 Elsevier B.V. or its licensors or contributors. ScienceDirect ® is a registered trademark of Elsevier B.V. ScienceDirect ® is a registered trademark of Elsevier B.V.

