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Abstract
In this research, a specimen of arthropod, infraspecies Cormocephalus calcaratus (centipede) is the matter of study for
modeling its trunk-limb biomechanics. The endoskeletal system was built to model and approach its passive dynamics
motion. The limb’s musculoskeletal system was digitally ’sculpted’ in three-dimension using the planar taxonomic sagittal,
ventral and transventral views as metrical references, constrained in scale and geometry. The endoskeleton was modeled
by an equivalent network of spring-mass-damper muscles with five joints controlled by two input muscles to manipulate
the limb’s tip. The kinematic position equations with their higher-order derivatives and the inner muscles dynamics were
deduced for a Newton-based dynamic controller to resemble scramble up motion. Simulations produced realistic controlled
motions with expected limb’s dexterity underactuation.
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1 Introduction

In the last years, research on biological species have
inspired robotics engineering towards enhancing and devel-
oping both, intelligence and locomotion for modern robotic
technology [1]. The advantages obtained from bioinspired
designs are less conservative effectors with fluent motions
controlled by their own natural physics-based models. This
study is motivated by the need to understand the highly effi-
cient nature of insects. The role of biorobotics in modern
technological development is becoming a global inspira-
tion taken from numerous biological species. For instance,
robotic fish have emulated the efficiency of biological fish’s
exoskeleton that yields fluent and highly effective swim-
ming motions [2, 3]. Some underwater bioinspired robots
such as octopus-like [4, 5] and manta-like [6] have been
developed using soft materials to accomplish agile wavy
locomotion and dexterous maneuvers spending very low
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mechanical energy. Amphibious robots’ limb exert hybrid
motion, either terrestrial walking or underwater swimming
[7]. Robotic lizards [8–10] and snake robots [11, 12] have
proven amazing crawling skills deploying low energy loco-
motion costs. Robotic birds exhibit prominent maneuver-
ability of flapping flight despite changes in aerodynamic
forces, reaching precise high-frequency performance of
instantaneous wing trajectory tracking [13]. Perhaps, the
largest number of studies reported in biorobotics are on
arachnid robots [14], where multi-legged robots are redun-
dantly hyper-static, often highly dexterous terrestrial walk-
ers [15]. The study disclosed in this work focuses on the
massive multi-legged biomechanics exhibited by centipedes
[16–18].

The study of insect’s limbs and their capability to move,
jump, climb, hunt, scramble up and predate represents a
research field of relevance in biorobotics. The Chilopoda
class of the phylum arthropoda has an anatomy that
provides particular biomechanical advantages, such as
being capable to climb over virtually any surface. The
subphylum myriapoda contains organisms such as the
millipedes (Diplopoda) and centipedes (Chilopoda), which
range from fourteen to forty eight pairs of legs. The
centipede insect dexterity changes from specie to specie due
to size, number of segments and morphology exhibiting a
wide range of sizes. The smallest ones hunt bugs, while
the biggest ones catch up to little birds and rodents.
The Scolopendromorpha order has the biggest specimen
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of centipede. The centipede is by nature symmetrically
body segmented (Fig. 1a) exhibiting external simplicity.
Endoskeletal tendons of head and trunk are ordered by
pairs of tendons arranged by segments to support the
dorsal, lateral and sternum’s longitudinal muscles. The
Chilopoda’s morphology such as the body’s length, the
longitudinal alignment of the trunk segments and the
absence of articulated inter-segments are due to elasticity
of the sclerite cuticle and the form of intersegmental
joints. The lateral flexibility of the trunk is enhanced
by the presence of intercalated sternites. The intercalary
sternites and tergites in the geophilomorpha facilitate strong
shortening of the body used during burrowing. Simple
longitudinal hinge lines in Scolopendromorpha facilitate
flattening of a segment and its reverse.

Arthropods are one of the biggest phylum, their hunting
success comes from the advantages of having numerous
legs. Therefore, the number of legs attracts the attention

Fig. 1 Centipede anatomy. a Chilopod’s morphology. b Limb’s
kinematic (angles φi , α, β, γ and lenghts li )

for biological inspiration to design highly dexterous
robots. Across the different subphylums species, their great
maneuverability and dexterity basically solves locomotion
for almost any terrain. During this study, the nearest
morphological reference found of an scolopendromorpha
was the Cormocephalus calcaratus, belonging to the same
subclass. These species have longer links (Fig. 1b) than
other species of similar type, thus its metrical scales
simplified this study. The Chilopoda’s large number of legs
allows high tolerance to errors against falls or instability
[24, 25], when amputated legs, the specimen is capable
to walk and climb preserving maneuverability. The larger
the number of legs, the better hyper-static stability is
yielded and higher complex dexterity, consequently. The
limb’s biomechanics is compounded by networks of bio-
elastic systems that provide high dexterity and compliance.
Understanding the complexity of multi-legged insects
endoskeleton is fundamental to model and design highly
efficient artificial bioinspired machines. The work [24]
researched on a centipede-like robot with twelve legs
and six body segments passively connected through yaw
joints of torsional springs. Stability and maneuverability in
locomotion were quantitatively investigated. The work in
[21], reported a muscle-based control method to simulate
three-dimension walking biped creatures. Muscle routing
and parameters optimization resulted in actuation forces
that generated torque patterns incorporating biomechanical
constraints, finding different gaits and target speed of
generic locomotion. In [22], a footing control of a trunk-
segmented centipede-like robot with modular pair of legs
conceptualized gaits of the fore limbs’ tip being followed
by the rear limbs. In [23], a six-legged robot with abstracted
anatomy of the insect’s leg mechanism was reported. The
leg’s proportions and muscles were studied to yield motion
using bioinspired spring-based passive compliance for the
leg’s distal segment to soften foot impacts (Fig. 2).

The following Table 1 shows some taxonomic and
anatomic features of the biological specimen, which was
taken as a matter of study in this manuscript.

The purpose of this work is to build an endoskeletal coxa-
limb computational model to deduce its motion dynamics
for numerical simulation, such as the elastic properties
of muscular extension, contraction and joints rotation.
The present work’s contributions are: 1) An original
three-dimension (3D) endoskeleton model by computer
assisted design (CAD) of an Arthropod’s limb “sculpted”
from assembling the sagittal, ventral, and transversal
taxonomic planes (metric references). The endoskeleton
network was characterized by a set of sliding vectors.
The “sculpted” model reduced the muscles network but
resembled equivalent passive dynamics. 2) Deduction of
the kinematics and passive dynamics of the limb and
endoskeleton network. A variant of the Hill’s model was
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Fig. 2 Scolopendra Calcaratus
(Photos from [24])

established using distal segments that combine over and
critically damped muscles. 3) Reduction of the endoskeletal
network into an equivalent three-muscle bifurcation model,
two inputs one output governed by underactuated dynamic
laws. 4) A customized biomechanical controller including
forward and backward dynamic solutions. Solving the
lengths of the input muscles knowing a desired position and
solving force/torque in terms of desired limb’s speed.

In this paper, Section 2 describes the technique used to
“sculpt” the coxa-limb 3D musculoskeletal model. Section 3
deduces the high-order kinematics to describe the limb’s
dexterity. Section 4 mathematically models the endoskeletal

network passive dynamics. Section 5 describes the biome-
chanical dynamic controller. Finally, Section 7 discusses the
work’s conclusion.

2 Taxonomic 3D “sculpting”

Reproducing the inside Chilopod’s limb biomechanics using
as reference a real biological specimen may result too
difficult to carry out due to its endoskeletal network mil-
limeter scale. Available from entomologists, the taxonomic
views are accurate resources that map positions, forms and

Table 1 Centipede’s biological
features Scientific classification

Kingdom: Animalia Order: Scolopendromorpha

Phylum: Arthropoda Family: Scolopendridae

Subphylum: Myriapoda Genus: Scolopendra

Class: Chilopoda Species: S. calcaratus

Anatomic features

Segments 21 - 23 Width 15.24 mm

Limb’s links 4 Length 150 mm

Limb size 5.1328 mm
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Fig. 3 Endoskeletal
CAD-model construction. a
Taxonomic planes coupling; b
muscle’s Cartesian points; c
metric outlining; d points
fitting; e muscle shaping

geometrical metric proportions (Fig. 3a). The chilopoda
taxonomic maps and notation developed in the present
work were taken from [26] for the “sculpting” process
(Fig. 3bcde). The method developed in this work to real-
istically “sculpt” the coxa-limb endoskeletal network was
the use of a CAD software to map muscles and tendons.
The reference map was an orthogonal coupling of the pla-
nar taxonomical views: sagittal, coronal and transventral
(Fig. 3a), which provided accurate sizes and metric geo-
metric proportions. For instance, Fig. 3b shows a pair of

3D points outlining the dvtr muscle. The start and end
points of a sliding vector are set through the Cartesian tax-
onomic planes to compound vectored tendons and muscles,
forming curved lines as depicted in Fig. 3c. The vectored
muscles are projected over the orthogonal planes connect-
ing key-points as shown in Fig. 3d. The muscles shaping
were profiled through numerical interpolations, resulting in
numerous vectors that assembled the muscles connection
between the body-coxa and the coxa-limb. One of the con-
tributions of this work is the resulting endoskeletal system
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characterized by a set of spatial vectors that numerically
models the limb’s biomechanics. Therefore, the limb’s kine-
matic of motion and its passive dynamics have realistically
been simulated. This approach calculated the Cartesian vec-
tors shown in Appendix A, the muscles’ length in Appendix
B, the muscles unit vectors provided in Appendix C and the
list of direction cosines in Appendix D.

For instance, the size and thickness of the muscle
dvtr (Fig. 3e) was taken as a key reference. dvtr’s
thickness and size allowed to estimate other muscles’
thickness and size by using metric proportions. Besides, dvtr
functioned as a common geometric reference for Cartesian
planes alignment because this muscle is a crossover.
Figure 4a depicts the whole endoskeletal CAD model
built. Different colors easy visual identification for the
reader. Chosen colors classify in accordance to the type of
muscles’ function such as stabilizers, rotators, retractors and
protractors (see Fig. 4c and Appendix E).

From a biorobotics approach, an interest of this work is
to exploit the natural limb’s biomechanical underactuation.
This work considered understanding the passive dynamics
of a pair of muscles as independent linear inputs to control
the limb’s position, speed and applied forces, namely lev.tr.a
and lev.tr.b. Both input muscles are depicted in the ventral
view of Fig. 4b. Moreover, for instance, the capability of
shortening and elongation exhibited by chilopodans is in
particular given by the group of muscles ret and the group
pr (sagittal view of Fig. 4ab and Appendix B). In addition,
the ability to perform leg’s speedy backstroke and power
of reversible dorsoventral flattening are concerned with the
group of muscles dvc and tep.tcx (see Fig. 4b and Appendix
E). Furthermore, the coxa disposition is controlled by
coxa-body muscles co.fe and the coxa-trochanter joints
located between femur and coxa (Fig. 4b). Each muscle
dvc intersects the costa coxalis allowing rotation around the
limb’s axis promoting maximum strides and thrust against
the ground at all phases of a backstroke.

There are two coxal movements in Chilopoda: (i) the
normal arthropodan promotor-remotor swing; and (ii) the
rotation of the leg on its long axis, resulting from the
parasagittal rock1 of the coxa about a more or less ventral
fulcrum.

In this work, the reconstructed network of muscles meet
equivalence with an over damped system of elastic elements
(see Appendix A), where each muscle is modeled by an
equivalent variation of the Hill’s model [28], subsequently
discussed in Section 4. Given the endoskeletal network
heteronomy such as sclerites, muscles and joints, the
limb’s biomechanics provides stability at the leg-bearing
segment. Biomechanical stability reduces the limb’s lateral
undulations particularly by the group of elements co.fe and

1Study of rock-coxa are further described in [27] pp.73.

Fig. 4 Computer-based biomechanical endoskeleton. a) Network of
muscles and tendons, rock-coxa-limb; b) ventral-view; and c) sagital-
view

lev.tr.co and muscles layouts (Appendixes C and D). The
trunk segmental tendons and muscles (anamorpha) improve
performance of anamorphic walking patterns, exhibiting
uniformity in their origins from the ventral segmental
tendons, intersegment or limb bases. Thus, establishing
a coordinate system to represent motion is fundamental.
Cartesian starting locations (nearest to the coxa) of branches
of ventral segmental tendons, intersegment and limb bases
were numerically averaged to obtain a general spatial origin.
However, the origin as well as minimum and maximum
locations resulted out of phase w.r.t. the coxa’s center.
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Nevertheless, it was found out that the surface of a spherical
model made a coarse “best fit” to the muscles positions.
Therefore, a spherical joint model fitted trunk-limb with
coxa’s center (Fig. 5). Using the CAD endoskeleton,
numerical parameters of muscles were obtained. Let us
define the kth general element basic vector points. The start
and end points of a muscle are respectively qk, rk ∈ R

3,
such that qk, rk = (x, y, z)�, with elements length

uk = 2
√

(rx − qx)2 + (ry − qy)2 + (rz − qz)2, (1)

with each element’s direction angles αk , βk and γk defined
by the general expression:

⎛
⎝

αk

βk

γk

⎞
⎠ = arccos

(
rk − qk

‖uk‖
)

. (2)

Calculations of geometric parameters of coxa-limb
muscles were estimated and are shown in Appendixes A to
E. Further analytic models are deduced in Section 4.

3 Limb Dexterity Model

In accordance to the limb elements with five rotary joints
that is depicted in free-body diagram of Fig. 1b, this section
deduces the limb’s kinematic model to describe its geometry
of motion. Deduction of the limb’s tip Cartesian position
is of interest in this work. Subsequently, higher-order
derivatives of kinematics are obtained as fundamentals for
the passive dynamic model. The expression Eq. 3 describes
the lim’s tip position p, given the joints angles (denoted by
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Fig. 5 View of spherical joint and the muscle model

φ01234). The model p is a Cartesian vector, where p ∈ R
3,

such that p = (x, y, z)�. Thus,

p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l1 sin(φ0) cos(φ1) + l2 sin(φ0) cos(φ1 + φ2)+
l3 sin(φ0) cos(φ1 + φ2 + φ3)+

l4 sin(φ0) cos(φ1 + φ2 + φ3 + φ4)

l1 sin(φ1) + l2 sin(φ1 + φ2)+
l3 sin(φ1 + φ2 + φ3)+

l4 sin(φ1 + φ2 + φ3 + φ4)

l1 cos(φ0) cos(φ1) + l2 cos(φ0) cos(φ1 + φ2)+
l3 cos(φ0) cos(φ1 + φ2 + φ3)+

l4 cos(φ0) cos(φ1 + φ2 + φ3 + φ4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

Deriving with respect to (w.r.t.) time previous expression
Eq. 3, the higher-order derivative is obtained, being a time-
variant linear model of the form ṗ = J · �̇. Where
the non-squared matrix J is the Jacobian and represents
how the limb’s position changes w.r.t. the rate of rotation
of all joints simultaneously. The vector � ∈ R

5, �̇ =
(φ̇0, φ̇1, φ̇2, φ̇3, φ̇4)

� is the vector of independent control
variables of the limb’s rotary joints. Thus, hereafter for the
purpose of shortening too long trigonometric expressions,
particularly obtained from higher-order derivatives, let us
define the following notation in Definition 1.

Definition 1 (sin, cos short notation) Let the function sine
be re-defined as s, and let the function cosine be re-defined
as c. Such that, with parameters φm, φn, the equivalent
reduced notation is:

sm + cmn ≡ sin(φm) + cos(φm + φn)

Thus, previous Definition 1 is to be used into the next
higher-order derivative expressions. The Cartesian limb’s
speed model describes the rate of change of the limb’s tip
for the x component as

ẋ = (l1c0c1 + l2c0c12 + l3c0c123 + l4c0c1234)φ̇0

− (l1s0s1 + l2s0s12 + l3s0s123 + l4s0s1234)φ̇1

− (l2s0s12 + l3s0s123 + l4s0s1234)φ̇2 − (l3s0s123

+ l4s0s1234)φ̇3 − l4s0s1234φ̇4,

(4)

similarly, the speed rate of change along the y component,

ẏ =(l1c1 + l2c12 + l3c123 + l4c1234)φ̇1

+ (l2c12 + l3c123 + l4c1234)φ̇2

+ (l3c123 + l4c1234)φ̇3 + l4c1234φ̇4,

(5)

likewise, the speed motion along the z component:

ż = − (l1s0c1 + l2s0c12 + l3s0c123 + l4s0c1234)φ̇0

− (l1c0s1 + l2c0s12 + l3c0s123 + l4c0s1234)φ̇1

− (l2c0s12 + l3c0s123 + l4c0s1234)φ̇2

− (l3c0s123 + l4c0s1234)φ̇3 − l4c0s1234φ̇4.

(6)
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Moreover, by obtaining the Jacobian matrix elements in
terms of the joints rotary angles, the following terms are
related to the x component:

∂φ0

∂x
=c0

4∑
i=1

li cos

⎛
⎝

i∑
j=1

φj

⎞
⎠ ; ∂φ1

∂x
= −s0

4∑
i=1

li sin

⎛
⎝

i∑
j=1

φj

⎞
⎠ ;

∂φ2

∂x
= − s0

4∑
i=2

li sin

⎛
⎝

i∑
j=1

φj

⎞
⎠ ; ∂φ3

∂x
= −s0

4∑
i=3

li sin

⎛
⎝

i∑
j=1

φj

⎞
⎠ ;

∂φ4

∂x
= − l4s0 sin

⎛
⎝

i∑
j=1

φj

⎞
⎠ .

In addition, the Jacobian matrix elements that represent
the y Cartesian component are,

∂φ0

∂y
=0; ∂φ1

∂y
=

4∑
i=1

li cos

⎛
⎝

i∑
j=1

φj

⎞
⎠ ; ∂φ2

∂y
=

4∑
i=3

li cos

⎛
⎝

i∑
j=1

φj

⎞
⎠ ;

∂φ3

∂y
= − s0

4∑
i=3

li sin

⎛
⎝

i∑
j=1

φj

⎞
⎠ ; ∂φ4

∂y
= l4 cos

⎛
⎝

4∑
j=1

φj

⎞
⎠ .

Finally, the Jacobian matrix elements that represent the z

Cartesian component are,

∂φ0

∂x
= − s0

4∑
i=1

li cos

⎛
⎝

i∑
j=1

φj

⎞
⎠ ; ∂φ1

∂x
= −c0

4∑
i=1

li sin

⎛
⎝

i∑
j=1

φj

⎞
⎠ ;

∂φ2

∂x
= − c0

4∑
i=2

li sin

⎛
⎝

i∑
j=1

φj

⎞
⎠ ; ∂φ3

∂x
= −c0

4∑
i=3

li sin

⎛
⎝

i∑
j=1

φj

⎞
⎠ ;

∂φ4

∂x
= − l4c0 sin

⎛
⎝

i∑
j=1

φj

⎞
⎠ .

Therefore, the Jacobian matrix form is fulfilled with the
partial differential terms as the following expression,

J =
⎛
⎜⎝

∂φ0
∂x

∂φ1
∂x

∂φ2
∂x

∂φ3
∂x

∂φ4
∂x

0 ∂φ1
∂y

∂φ2
∂y

∂φ3
∂y

∂φ4
∂y

∂φ0
∂z

∂φ1
∂z

∂φ2
∂z

∂φ3
∂z

∂φ4
∂z

⎞
⎟⎠ . (7)

Therefore, in order to obtain the second-order derivative
model, let us derive the fundamental time-variant linear
function ṗ = J · �̇, such that

p̈ = J̇ · �̇ + J · �̈, (8)

then, by algebraically expanding previous model with
separated derivation of Cartesian components w.r.t. time, let
us obtain the expressions Eqs. 4, 5 and 6.

Thus, the acceleration model ẍ is algebraically expanded
and shown separately,

ẍ =(l1c0c1 + l2c0c12 + l3c0c123 + l4c0c1234)φ̈0−
(l1s0s1 + l2s0s12 + l3s0s123 + l4s0s1234)φ̈1−
(l2s0s12 + l3s0s123 + l4s0s1234)φ̈2−
(l3s0s123 + l4s0s1234)φ̈3 − l4s0s1234φ̈4−
(l1s0c1 + l2s0c12 + l3s0c123 + l4s0c1234)φ̇

2
0−

(l1s0c1 + l2s0s12 + l3s0s123 + l4s0s1234)φ̇
2
1−

(l2s0c12 + l3s0c123 + l4s0c1234)φ̇
2
2−

(l3s0c123 + L4s0c1234)φ̇
2
3 − l4s0c1234φ̇

2
4−

(l1c0s1 + l2c0s12φ̇1 + l2c0s12φ2 + l3c0s123φ̇1+
l3c0s123φ̇2 + l3c0s123φ̇3 + l4c0s1234φ̇1 + l4c0s1234φ̇2+
l4c0s1234φ̇3 + l4c0s1234φ̇4)φ̇0 − (l1c0s1φ̇0+
l2c0s12φ̇0 + l2s0c12φ̇2 + l3c0s123φ̇0 + l3s0c123φ̇2+
l3s0c123φ̇3 + l4c0s1234φ̇0+̇l4s0c1234φ̇2+
l4s0c1234φ̇3 + l4s0c1234φ̇4)φ̇1 − (l2c0s12φ̇0+
l2s0c12φ̇1 + l3c0s123φ̇0 + l3s0c123φ̇1+
l3s0c123φ̇3 + l4c0s1234φ̇0 + l4s0c1234φ̇1+
l4s0c1234φ̇3 + l4s0c1234φ̇4)φ̇2 − (l3c0s123φ̇0+
l3s0c123φ̇1 + l3s0c123φ̇2 + l4c0s1234φ̇0+
l4s0c1234φ̇1 + l4s0c1234φ̇2 + l4s0c1234φ̇4)φ̇3−
(l4c0s1234φ̇0 + l4s0c1234φ̇1 + l4s0c1234φ̇2+
l4s0c1234φ̇3)φ̇4.

(9)

Similarly, the acceleration model ÿ is algebraically
expanded and shown separately,

ÿ = (l1c1 + l2c12 + l3c123 + l4c1234)φ̈1 +
(l2c12 + l3c123l4c1234)φ̈2 + (l3c123 +

l4c1234)φ̈3 + l4c1234φ̈4 −
(l1s1 + l2s12 + l3s123 + l4s1234)φ̇

2
1 +

(l2s12 + l3s123 + l4s1234)φ̇
2
2 +

(l3s123 + l4s1234)φ̇
2
3 + l4s1234φ̇

2
4 − (l2s12φ̇2 +

l3s123φ̇2 + l3s123φ̇3 + l4s1234φ̇2 + l4s1234φ̇3 +
l4s1234φ̇4)φ̇1 − (l2s12φ̇1 +

l3s123φ̇1 + l3s123φ̇3 + l4s1234φ̇1 + l4s1234φ̇3 +
l4s1234φ̇4)φ̇2 − (l3s123φ̇1 + l3s123φ̇2 + l4s1234φ̇1 +

l4s1234φ̇2 + l4s1234φ̇4)φ̇3 + (l4s1234φ̇1 +
l4s1234φ̇2 + l4s1234φ̇3)φ̇4. (10)
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Likewise, the acceleration model z̈ is algebraically
expanded and shown separately,

z̈ = (l1s0c1 + l2s0c12 + l3s0c123 − l4s0c1234)φ̈0 −
(l1c0s1 + l2c0s12 + l3c0s123 + l4c0s1234)φ̈1 −

(l2c0s12 + l3c0s123 + l4c0s1234)φ̈2 −
(l3c0s123 + l4c0s1234)φ̈3 − l4c0s1234φ̈4 −

(l1c0s1 + l2c0c12 + l3c0c123 + l4c0c1234)φ̇
2
0 −

(l1c0c1 + l2c0c12 + l3c0c123 + l4c0c1234)φ̇
2
1 −

(l2c0c12 + l3c0c123 + l4c0c1234)φ̇
2
2 −

(l3c0c123 + L4c0c1234)φ̇
2
3 − l4c0c1234φ̇

2
4 −

(l1s0s1 + l2s0s12φ̇1 + l2s0s12φ2 + l3s0s123φ̇1 +
l3s0s123φ̇2 + l3s0s123φ̇3 + l4s0s1234φ̇1 + l4s0s1234φ̇2 +

l4s0s1234φ̇3 + l4s0s1234φ̇4)φ̇0 + (l1s0s1φ̇0 +
l2s0s12φ̇0 − l2c0c12φ̇2 + l3s0s123φ̇0 − l3c0c123φ̇2 −

l3c0c123φ̇3 + l4s0s1234φ̇0 − l4c0c1234φ̇2 −
l4c0c1234φ̇3 − l4c0c1234φ̇4)φ̇1 + (l2s0s12φ̇0 −

l2c0c12φ̇1 + l3s0s123φ̇0 − l3c0c123φ̇1 −
l3c0c123φ̇3 + l4s0s1234φ̇0 − l4c0c1234φ̇1 −

l4c0c1234φ̇3 − l4c0c1234φ̇4)φ̇2 + (l3s0s123φ̇0 −
l3c0c123φ̇1 − l3c0c123φ̇2 + l4s0s1234φ̇0 −

l4c0c1234φ̇1 − l4c0c1234φ̇2 − l4c0c1234φ̇4)φ̇3 −
(l4s0s1234φ̇0 − l4c0c1234φ̇1 − l4c0c1234φ̇2 −

l4c0c1234φ̇3)φ̇4.(11)

By algebraically arranging previous second-order com-
ponents ẍ, ÿ and z̈, the following expression is obtained,
which in their matrix forms are equivalent to Eq. 8, thus

p̈ = J · �̈ + J2 · �̇
2 + J̇ · �̇. (12)

The expression Eq. 3 represents a forward kinematic
solution and is relevant because an inverse analytical
solution is non trivial. A method proposed in this work is
to obtain a numerical recursive solution by using previous
matrix forms, first-order and second-order derivatives.

Therefore, through an algebraic approach the inverse
general kinematic solutions for the first and second order are

�̇ = J+ · ṗ = (J · J�)−1 · J · ṗ, (13)

in these expressions, the Moore-Penrose left-sided pseu-
doinverse algebraic model is being included in its functional
form, since Jm×n, | m < n is non-squared,

�̈ = (J · J�)−1 · [
p̈ − J̇ · �̇

]
. (14)

4 Endoskeletal passive dynamic model

This section deduces the endoskeletal passive dynamic
model. The geometric elements built into the “sculpted”

limb’s biomechanics are fundamental to provide a dynamic
formulation that is based on the Newton’s second-law of
motion. In this work, the center of coxa has been referenced
as the coordinates origin (see Fig. 5). This work proposes
a variation of the traditional Hill’s muscle composed
of spring-mass-damper + spring-mass. The spring-mass
element is modified by including a damper element in
parallel, as shown in Fig. 5. This change avoids any under-
damped effect in the limb when touching the ground or
grasping an object. This approach provides the flexibility
to configure a muscle by combining over-damped (Co
and Ko), critically damped (Cc and Kc) or both mixed.
The expression Eq. 15 models cosine directions, being
αk , βk and γk the angles of the kth muscle w.r.t. the
axis x, y, z respectively. r and q are the begin and end
vector points, respectively of an arbitrary muscle. From
expressions Eqs. 1- 2 that are related to Fig. 4bc, the
direction cosines Appendix D for the kth muscle are

αk = arccos

(
rxk

− qxk

‖uk‖
)

;

βk = arccos

(
ryk

− qyk

‖uk‖
)

;

γk = arccos

(
rzk

− qzk

‖uk‖
)

.

(15)

The Appendixes A and B collect the real metric values
and lengths of the muscles Cartesian components obtained
from the computer-generated 3D model.

In addition, the force components in their basic forms are,

f x = ‖fk‖ cos(αk),

fy = ‖fk‖ cos(βk),

f z = ‖fk‖ cos(γk).

(16)

The resulting limb’s general force fR with center of mass
at the coxa is a sum of all components

fR = 2

√√√√
(∑

k

fxk

)2

+
(∑

k

fyk

)2

+
(∑

k

fzk

)2

. (17)

In this work, a slight variation of the Hill’s muscle model is
proposed. As shown in Fig. 5, a critically damped element is
serially coupled with an over-damped one. In this work the
traditional Hill’s model under damped element is substituted
by the critically new spring-mass-damp system in order to
dissipate limb’s vibrations [29]. As a spring-mass-damper
system models a muscle, its general linear elongation is
defined by �k . Thus, the muscle second-order homogeneous
differential equation is defined by

mk�̈k + Ck�̇k + Kk�k = 0, (18)

where the elastic restitution coefficient is K [kg/s2].
The damping coefficient is C [kg/s]. The restitution
force m�̈ counteracts the oscillatory damping effects. The
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oscillatory velocity and acceleration are denoted by �̇

and �̈ respectively. Thus, solving the 2nd -order differential
equation, as a 1st -order equation such that C�̇ = −K�,
∫

�

d�

�
= −K

C

∫

t

dt, (19)

hence

ln(�) = −K

C
t + c, λ = −K

C
, (20)

with integration constant c = 0 for analysis purpose. The
damping elongation derivatives as functions of time are

�d = eλt , �̇d = λeλt , �̈d = λ2eλt . (21)

Substituting previous expression in Eq. 18,

mkλ
2eλt + Ckλeλt + Kkeλt = 0, (22)

by algebraically simplifying, the characteristic equation:

λ2 + C

m
λ + K

m
= 0, (23)

Therefore, the following Definition 2 arises:

Definition 2 (Muscles parameters model) The character-
istic equation solution is defined by

λ1,2 = −Ck

2mk

±
2

√(
Kk

mk

)2 − 4 Kk

mk

2
. (24)

when a critically damped behavior is assumed,
(

K

m

)2

= 4

(
K

m

)
,

with one real root defined by

λ = − C

2m
. (25)

The damping motion is analytically solved by

�d(t) = Weλt , (26)

with amplitude numeric weight W [m]. When over
damped behavior is assumed, analytical solution is defined
by
(

Kk

mk

)2

> 4

(
Kk

mk

)
.

Hereafter, this work discloses the proposed mathematical
model that describe the endoskeletal network passive
dynamic analysis, which differs from other approaches [30].

After analysis of the muscles network, the proposed
general model has fundamentals on
∑

i

mi �̈i +
∑
j

cj �̇j +
∑

k

kk�k = 0.

Proposition 1 (Coxa dynamic model.) The dynamic model
of muscles for the Coxa is

−m0

∑
i=1,3

(�̈i + �̈i+1) + m1

∑
i=5,7

(�̈i + �̈i+1)+

m2

∑
i=9,11

(�̈i + �̈i+1) +
12∑
i=1

(Ci �̇i + Ki�i) = 0

(27)

with negative damping coefficient −C3.

Proposition 2 (Prefemur dynamic model.) The dynamic
model of muscles for the Prefemur is

−m0

∑
i=5,7

(�̈i + �̈i+1) + m2

∑
i=19,21

(�̈i + �̈i+1)+

m3

∑
i=15,17

(�̈i + �̈i+1) −
8∑

i=5

(Ci �̇i + Ki�i)+

22∑
i=13

(Ci �̇i + Ki�i) = 0

(28)

Proposition 3 (Femur dynamic model.) A dynamic model
for the Femur

−m0

∑
i=9,11

(�̈i + �̈i+1) − m1

∑
i=19,21

(�̈i + �̈i+1)+

m4

∑
i=27,29

(�̈i + �̈i+1) −
12∑
i=9

(Ci �̇ + Ki�i)−

22∑
i=19

(Ci �̇ + Ki�i) +
30∑

i=27

(Ci �̇ + Ki�i) = 0.

(29)

Proposition 4 (Tibia dynamic model.) The dynamic model
for the Tibia

m4(�̈23 + �̈24) − m1

∑
i=15,17

(�̈i + �̈i+1)+

24∑
i=23

(Ci �̇i + Ki�i) −
18∑

i=15

(Ci �̇i + Ki�i) = 0

(30)

Proposition 5 (Tarso dynamic model.) and the dynamic
model for the Tarso muscles network

−m1(�̈13 + �̈14) − m2

∑
i=25,27

(�̈i + �̈i+1)−

m3(�̈23 + �̈24) −
14∑

i=13

(Ci �̇i + Ki�i)−

30∑
i=23

(Ci �̇i + Ki�i) = 0

(31)
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The next Definition 3 establishes the unit vectors that
provide orientations to the coxa-limb’s muscles. Vector ζi

has three angles in the form of cosine directions based on
the forces of Theorem 1. Calculated cosine directions are
shown in Table 6 of Appendix D.

Definition 3 (vector angles) The muscles’ director angles
according to the muscles shown in Figs. 5 and 6 are defined as

ζ1 = (lev.tr .coα, lev.tr .coβ, lev.tr .coγ )�

ζ2 = (dep.trα, dep.trβ, dep.trγ )�

ζ3 = (co.f eα, co.f eβ, co.f eγ )�

ζ4 = (f l.un.trα, f l.un.trβ, f l.un.trγ )�

ζ5 = (lev.tr .aα, lev.tr .aβ, lev.tr .aγ )�

ζ6 = (lev.tr .bα, lev.tr .bβ, lev.tr .bγ )�

ζ7 = (f l.un.p.f eα, f l.un.p.f eβ, f l.un.p.f eγ )�

ζ8 = (ret .t i.lα, ret .t i.lβ, ret .t i.lγ )�

ζ9 = (f l.t iα, f l.t iβ, f l.t iγ )�

ζ10 = (dep.f eα, dep.f eβ, dep.f eγ )�

ζ11 = (pr .f eα, pr .f eβ, pr .f eγ )�

ζ12 = (f l.un.f eα, f l.un.f eβ, f l.un.f eγ )�

ζ13 = (f l.taα, f l.taβ, f l.taγ )�

ζ14 = (pr .taα, pr .taβ, pr .taγ )�

ζ15 = (pr .ta.lα, pr .ta.lβ, pr .ta.lγ )�

Theorem 1 (limbs force model) Each Cartesian compo-
nent differs in their muscles angular moment, the Newton’s
second-order law of motion models the sum of components
to describe the forces with directions α, β and γ . Thus,
Propositions 1-4 are generalized by

N∑
k=0

(mf − ms)

⎛
⎝

�̈x

�̈y

�̈z

⎞
⎠ cos(ζ k) = m · a, (32)

where mf and ms are the connected equivalent masses of a
muscle at its respective begin and end extremes of each the
total N elements.

The inner limb’s muscles elastic network is modeled
in terms of mass and acceleration for position Λi,j =
(�̈xi,j

, �̈yi,j
, �̈zi,j

)� and ζ according to Definition 3, by

(m1 − m0)[Λ5,6 cos(ζ1) + Λ7,8 cos(ζ2)]+
(m2 − m0)[Λ9,10 cos(ζ3) + Λ11,12 cos(ζ4)]+
m0[Λ1,2 cos(ζ5) + Λ3,4 cos(ζ6)]+
(m4 − m1)Λ13,14 cos(ζ7)+
(m3 − m4)Λ15,16 cos(ζ8)+
(m3 − m1)Λ17,18 cos(ζ9)+
(m2 − m1)[Λ19,20 cos(ζ10) + Λ21,22 cos(ζ11)]+
(m4 − m2)[Λ27,28 cos(ζ12) + Λ29,30 cos(ζ13)+

(33)

Λ23,24 cos(ζ14) + Λ25,26 cos(ζ15)] +
C1,2ẋ1,2 cos(ζ5) + C3,4ẋ3,4 cos(ζ6) = m · a.

where a = (ẍ, ÿ, z̈)T.

5 Biomechanical control model

In this section, a reduced dynamic network of muscles
that is equivalent to the limb’s computational model
is proposed. This approach facilitates inverse dynamic
solutions to predict either lengths of lev.tr.a and lev.tr.b, or
their restitution forces. In addition, a model-based recursive
controller is deduced to control the limb’s motion. The
controller recursively calculates inverse kinematics and
use it to estimate forward dynamics and inversely. In
model-based control, availability of mathematical models
describing the physical system may provide a variety of
solution implementations. In this work, the forward model
estimates the lengths of �1,2 by stating the limb’s tip desired
Cartesian position, pref . The backward model estimates the
input muscles’ force f1,2 by knowing the limb’s motion
speed ṗref .

Figure 7a-I depicts a similar diagram to Fig. 6ab. Thick
lines are parallel/serial muscle connections. For instance,
muscles �b1,2 ≡ �b, �c1,2 ≡ �c, �e1,2 ≡ �e, �f1,2 ≡ �f

and �h1,2,3 ≡ �h, such equivalences are formulated by
Eq. 54 in Appendix F. From Fig. 7a-I, a simpler equivalent
network is shown in Fig. 7a-II, with formulations in Eq. 55.
Further simplifications are followed in Figs. 7a-III and
7a-IV, with expressions Eqs. 56 and 57, respectively. A fork-
like simplified network model is obtained in this approach
to formulate the inverse dynamics.

The three-muscle fork-like network model of Fig. 7b
is modeled in terms of muscles’ elongation by expression
Eq. 34 and deduced in Appendix F, thus

�ξ = �ε1 + �ε2 + �deg

2
+ �ε3 + �h

2
. (34)

Next, let us deduce a dynamic model to obtain posture
of the limb’s tip (xξ , yξ , θx) using the reduced equivalent
network. Let the posture be described as functions of �1, �2

and �ξ .
Let us assume �2 (lev.tr.b) and �ξ to be collinearly

oriented w.r.t. θξ , with Cartesian projection along the x and
y axis by

xξ = (�2 + �ξ ) cos(θξ ) (35a)

and

yξ = (�2 + �ξ ) sin(θξ ). (35b)

Thus, bifurcation point at coxa (M0), where �ξ joints
with �1 and �2 together is �1 = ds + �2 cos(θξ ), and
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Fig. 6 Limb’s muscles system
approached by overdamped
elastic systems

assuming constant height h. Therefore, the functional form
for θξ (�1, �2) as a function of �1 and �2 is

�1 − ds = �2 cos(θξ ), (36a)

dropping off cos(θξ ),

cos(θξ ) = �1 − ds

�2
, (36b)

hence, θξ as a function of �1 and �2

θξ = cos−1
(

�1 − ds

�2

)
. (36c)

By substituting previous expression, xξ and yξ can
explicitly be stated in terms of �1 and �2,

xξ = (
�2 + �ξ

)
cos

(
cos−1

(
�1 − ds

�2

))
(37a)

and

yξ = (�2 + �ξ ) sin

(
cos−1

(
�1 − ds

�2

))
. (37b)

Definition 4 (Three-muscle equivalent network) The
equivalent muscles network is defined as �2 and �ξ always
collinear and �1 elongates horizontally, with h constant.
Therefore, �1 yields a tangential force that yield angular
moment around A by �2 and �ξ . The first-order forward
solution is

θ̇ξ = �̇1�2

l2
2

2

√
1 −

(
�1−ds

�2

) , (38a)

with limb position:

ẋξ = �̇1

(
1 + �1 − ds

�2
+ �1

(
1 + �̇1 − ds

�2

))
(38b)
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Fig. 7 Equivalent endoskeletal
network. a parallel muscles
�b,c,d,f,h (I); serial �e,g and
Delta net �b,c,f (II); serial �d,eg

and Star net �ε1,ε2,ε3 (III); serial
�ε1,deg in parallel with �ε3,h

(IV). b Equivalent net �ξ and
two-input �1,2

and

ẏξ = (�̇2 + �̇ξ ) sin

(
cos−1

(
�1 − ds

�2

))
cos−1

(
�̇1 − ds

�2

)
.

(38c)

From Definition 4, a set of nonlinear equations xξ ,
yξ and θξ exists, hence the inverse solution is non
trivial and is solved numerically. Thus, starting from the
multidimensional Taylor series:

xξ + ∂xξ

∂�1
(�1t+1 −�1t )+

∂xξ

∂�2
(�2t+1 −�2t )+

∂xξ

∂�ξ

(�ξt+1 −�ξt ) = 0 (39a)

yξ + ∂yξ

∂�1
(�1t+1 −�1t )+

∂yξ

∂�2
(�2t+1 −�2t )+

∂yξ

∂�ξ

(�ξt+1 −�ξt ) = 0 (39b)

θξ + ∂θξ

∂�1
(�1t+1 −�1t )+

∂θξ

∂�2
(�2t+1 −�2t )+

∂θξ

∂�ξ

(�ξt+1 −�ξt ) = 0 (39c)

By placing the unknown variables of interest at one side
of the equality, and the rest of factors at the other side:

− xξ + ∂xξ

∂�1
�1t + ∂xξ

∂�2
�2t + ∂xξ

∂�ξ

�ξt =
∂xξ

∂�1
�1t+1 + ∂xξ

∂�2
�2t+1 + ∂xξ

∂�ξ

�ξt+1 , (40a)

as well as

− yξ + ∂yξ

∂�1
�1t + ∂yξ

∂�2
�2t + ∂yξ

∂�3
�3t =

∂yξ

∂�1
�1t+1 + ∂yξ

∂�2
�2t+1 + ∂yξ

∂�ξ

�ξt+1 (40b)

and

− θξ + ∂θξ

∂�1
�1t + ∂θξ

∂�2
�2t + ∂θξ

∂�ξ

�ξt =
∂θξ

∂�1
�1t+1 + ∂θξ

∂�2
�2t+1 + ∂θξ

∂�ξ

�ξt+1 . (40c)

Redefining the temporal terms A1, A2 and A3 as,

A1 = −xξ + ∂xξ

∂�1
�1t + ∂xξ

∂�2
�2t + ∂xξ

∂�3
�3t , (41a)

A2 = −yξ + ∂yξ

∂�1
�1t + ∂yξ

∂�2
�2t + ∂yξ

∂�3
�3t , (41b)

and

A3 = −θξ + ∂θξ

∂�1
�1t + ∂θξ

∂�2
�2t + ∂θξ

∂�3
�3t . (41c)

Thus, from Eq. 40 the set of linear equations is

A1 = ∂xξ

∂�1
�1t+1 + ∂xξ

∂�2
�2t+1 + ∂xξ

∂�ξ

�ξt+1 , (42a)
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as well as

A2 = ∂yξ

∂�1
�1t+1 + ∂yξ

∂�2
�2t+1 + ∂yξ

∂�ξ

�ξt+1 (42b)

and

A3 = ∂θξ

∂�1
�1t+1 + ∂θξ

∂�2
�2t+1 + ∂θξ

∂�ξ

�ξt+1 . (42c)

Expressing in the matrix form A = Q · Λ, where A =
(A1, A2, A3, )

�, Λ = (�1t+1 , �2t+1 , �ξt+1)
� and Q is the

Jacobian matrix,

⎛
⎝

A1

A2

A3

⎞
⎠ =

⎛
⎜⎜⎝

∂xξ

∂�1

∂xξ

∂�2

∂xξ

∂�ξ
∂yξ

∂�1

∂yξ

∂�2

∂yξ

∂�ξ
∂θξ

∂�1

∂θξ

∂�2

∂θξ

∂�ξ

⎞
⎟⎟⎠ ·

⎛
⎝

�1t+1

�2t+1

�ξt+1

⎞
⎠ (43)

where the Jacobian matrix elements are defined by:

∂xξ

∂�1
= �2 + �ξ

�2
,

∂xξ

∂�2
= �1 − ds

�2

[
1 − (�2 − �ξ )

�2

]
,

∂xξ

∂�ξ

= �1 − ds

�2

and

∂yξ

∂�1
=− (�2 − �ξ )(�1 − ds)

�2
2

2

√
1 −

(
�1−ds

�2

)2
,

∂yξ

∂�2
= (�1 + �3)(�2 − ds)

�3
1

2

√
1 −

(
�2−ds

�1

)2
,

∂yξ

∂�ξ

= 2

√
1 −

(
�1 − ds

�2

)2

,

∂θξ

∂�1
= − 1

�2
2

√
1 −

(
�1−ds

�2

)2
,

and finally,

∂θξ

∂�2
= �1 − ds

�2
2

2

√
1 −

(
�1−ds

�2

)2
,

∂θξ

∂�ξ

= 0.

Therefore, a linearized inverse recursive solution is

Λt+1 = Λt + Q−1
t · At (44)

the recursion is stopped until the convergence criterion∣∣∣Λt+1−Λt

Λt+1

∣∣∣ < ελ is established true,

5.1 �1, �2 length control by limb’s positionΛ(pref )

The inverse kinematics is obtained from Eq. 3, where pref

is a desired limb position. Joints are inferred recursively,

�t+1 = �t + J+
t · (pref − p̂t), (45a)

then, �ref = �t+1 will predict the limb position:

pt+1 = pt + Jt · (�ref − �̂t) (45b)

and matrices Jt = Jt+1(�t+1) and J+
t = J+

t+1 are updated.
The recursive process finishes until the relative error rate
converges less than εp
∥∥∥∥
pref − pt

pref

∥∥∥∥ < εp. (45c)

Hence, the limb pt+1 is obtained by forward kinematics,
being equivalent to model Eq. 37, such that

pε ≡ pt+1, θε = arctan

(
yt+1

xt+1

)
(45d)

and the controller recursively infers �1 and �2,

Λt+1 = Λt + Q−1
t · At (45e)

until convergence is reached with numeric precision ελ,
∥∥∥∥
Λt+1 − Λt

Λt+1

∥∥∥∥ < ελ (45f)

Therefore, lengths �1 and �2 are initially obtained from
estimating �t+1.

5.2 Control of f1,2 by limb’s speed f1,2(ṗref )

Restitution forces for �1 (lev.tr.a) and �2 (lev.tr.b) are
controlled in terms of limb’s speed ṗref , initially stated in
Eq. 3 and recursively inferred by,

�t+1 = �t + J+
t · (pref − p̂t ), (46a)

the limb’s position prediction by the forward model is

pt+1 = pt + Jt · (�ref − �̂t), (46b)

where

ΔJt = Jt+1 − Jt ; Δ�t = �t+1 − �t (46c)

using previous terms, the first-order expressions are

ṗt+1 = ṗt + ΔJ · Δ�t + Jt · (�̇
ref − ˆ̇

�t), (46d)

where pref ≡ pt+1, then

�̇t+1 = �̇t + J+
t (ṗref − ˆ̇pt − ΔJt · Δ�t ). (46e)

Fig. 8 Compliant (reachable) and workable (controlled) space by
using lev.tr.a (�1) and lev.tr.b (�2)
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Fig. 9 ODE-based 3D wireframe limb, arbitrary motions of lev.tr.a are predominant over lev.tr.b

Therefore, pt+1 and ṗt+1 are used next to determine
muscles elongations and speeds by

Λt+1 = Λt + Q−1 · A(pt+1), (46f)

then with prediction and actual values a general approach is

Λ̇ = d

dt
Λ = Λt+1 − Λt

t2 − t1
,

and substituting next

Λ̇t+1 = Λ̇t + Q̇−1 · A(pt+1) + Q−1 · Ȧ(ṗt+1). (46g)

Thus, the instantaneous muscle forces are,

ft =
⎛
⎝

f1

f2

fξ

⎞
⎠ =

⎛
⎝

m1 0 0
0 m2 0
0 0 mξ

⎞
⎠ · d

dt

⎛
⎝

�̇1

�̇2

�̇ξ

⎞
⎠ . (46h)

Fig. 10 Motion behavior when lev.tr.a and lev.tr.b are similar inputs
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Fig. 11 Limb’s motion effects
varying W1..4. a) xyz

displacements. b) xyz

velocities. c) xyz accelerations

Moreover, the limb’s tip tangential force fT is of interest,
thus the angular moment MA = I θ̈ξ at the point A, w.r.t. θξ

is equivalent to torque τ , such that MA = fT (�1 +�ξ ), thus

MA = fT (�1 + �ξ ), (47)

hence, by dropping off fT

fT = I θ̈ξ

�2 + �ξ

, (48)
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where I = r2m assumes each muscle shape as cylinders.
For known values of �1,ξ when pt+1 is known a priori,

fT = I

�2 + �ξ

= d

dt

⎛
⎜⎝ �̇2

�̇2
2

2
√

1 − �1−ds

�2

⎞
⎟⎠ , (49)

Furthermore, the time model to reach a reference position
ṗref , while applying a force,

t2 = t1 + (af2)
−1(ṗref − ˆ̇pt ), (50a)

where, ˆ̇pt is the actual limb’s position tided to reach ṗref at
time prediction t2, while projected into future ṗt+1, taken as
reference time in next expression:

ṗt+1 = ṗt + af2(t2 − t̂1). (50b)

Additionally to Definition 4, with the time prediction at
hand, alternative dynamic muscles’ model in particular for
lev.tr.ab are available:

�̇1 = −W1λ1e−λ1t − W2λ2e−λ2t

�̇2 = −W3λ3e−λ3t − W4λ4e−λ4t

�̇ξ = −W5λ5e−λ5t − W6λ6e−λ6t

(51)

6 Results and discussion

Although, this work’s purpose is not focused on yielding
Chilopoda’s locomotion or gait patterns [31], the present
control approach provides flexibility to meet different
limb’s motion behaviors throughout a pair of input muscles
lev.tr.a and lev.tr.b. The reference models previously defined
(e.g. pref , ṗref ) are critical because they represent either
experimental data or analytic functions about a centipede’s
gait. These reference models fit to positions and/or higher-
order kinematic derivatives arising from linear or nonlinear
functions.

Figure 8 shows the limb’s motion space, with Cartesian
origin in the middle of coxa and prefemur. The controlled
motion (workable space) is eventually produced by using
the pair of muscles lev.tr.a and lev.tr.b.

The proposed dynamic model was implemented in a
standard capability computer under a Linux system. The
algorithms were coded and compiled in GNU C/C++.
Animated simulations included the use of a physics engine
library Object Dynamic Engine (ODE). The limb is a
wireframe structure constructed by a spherical joint for
link l0, and rotatory joints for l1,...,4 (See Figs. 9 and 10).

Fig. 12 ODE simulation torque
for equivalent network
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Table 2 Simulation dynamical properties

Kinematic properties

l1 (mm) 1.1418 l3 (mm) 0.8658

l2 (mm) 1.1115 l4 (mm) 1.4119

Kinetic properties

m0(gr) 2.0 m3(gr) 1.7

m1(gr) 2.0 m4(gr) 1.0

m2(gr) 2.5 W (mm) 2.0

Ka (gr/s2) 20 Ccoxa(gr/s) 26.698

Kb 10 Cpref emur 26.698

Kc 11 Cf emur 29.85

Kd 10 Ct ibia 24.615

Ke 5 Ctarso 18.879

Kf 9 Kg 9.0

Kh 9 Δt (s) 0.01

Figure 9 shows six simulation video frames illustrating
the limb’s controlled motion for arbitrary trajectories. In
this simulation the motions magnitudes of the muscle

lev.tr.a are more predominant than the elongations of lev.tr.b
(Fig. 11).

Figure 10 depicts six video frames that resume simula-
tions on the trajectories yielded when lev.tr.b is more or less
similar to the motions of lev.tr.a. Figure 12 shows some
equivalent dynamic properties.

Figure 11a depicts Cartesian elongation/contraction
motion of the whole network of muscles. According
to the dynamic parameters, the system is experiencing
either critically damped or overdamped effects, which
is an advantage because shows dissipation capability
when vibrations are produced by external noise. In these
simulations, the metric amplitude for each muscle W

includes alternative values, above and below the average
value. Although, while in the metric displacement, the x

and the yz components yield critically and overdamped
effects respectively, in Fig. 11bc both linear velocities and
accelerations exhibit an overdamped stability behavior.

Table 2 shows some dynamic properties used to obtain
the results depicted in Figs. 9, 10 and 11. The proposed
approach does not explcity models the mechanical energies

Fig. 13 Centipede’s gait pixels
tracking. The coxa’s pixel was
used as local Cartesian reference
coordinate. Video frames
provided by [19] in publisher’s
site
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of the system as it does not follow an energy-based
Euler-Lagrange approach, but follows a Newton-Euler-
based solution. Table 2 not necessarily represent the
exact biological Centipede’s parameters, some data were
adjusted by the authors in order to improve numerical
visualization during simulates animations (most other
dynamical parameters that could be set fixed were
calculated online). This work’s purpose differs from other
similar researches, where our primary objective is to
model the limb’s inner network of muscles and see its
underactuated effects by two input muscles, instead of
generating gaiting patterns and/or Chilopoda locomotion
behaviors. Such as the case of [32] where a Chilopoda of
same taxonomic order, the Scolopendromorpha2 is studied
in terms of its gait locomotion wave patterns to change
direction. Likewise, the work [33] reported an study on
amphibious adaptation during transition between terrestrial
and aquatic environments for a centipede Scolopendra
subspinipes mutilans.

Nevertheless, in order to validate and show effectiveness
of the proposed model, we collected the experimental videos
1 and 2 that were provided Yasui K. et al. (Fig. 13). We
found these experimental data suitable enough to validate
our approach.

In such a reference, a Chilopoda motion is video
recorded by two cameras (same optical features) placed
at top and side locations. Although video cameras do not
provide metric data about the Centipede’s limbs, authors
of the present research processed individual frames that
compounded the videos in order to calculate one limb’s
gait cycle. The main purpose of this digital image process
was to extract a set of Cartesian points tracked by the
Chilopoda’s limb to be treated as the reference trajectory.
Due to image resolution and low sharpness quality (in
particular the side view frames) only nine points were
tracked with the less noise possible to complete a gait cycle.
The gait’s points represent nine reference 3D positions pref

k

for k = 1, 2, . . . , 9.
The camera calibration is the process of recovering

metric information from the image planes. In this work,
the calibration model is basically as same as the reference
points pref

k . The following cameras model was used to infer
the Cartesian measurements of one limb’s positions. Thus,
by using the top and side views, the orientation angle ϕxz of
the limb’s tip w.r.t. the coxa at the xz plane is

ϕxz = arctan

(
ΔρC

ΔρR

)
, (52)

2Scolopocryptops rubiginosus L. Koch centipede.

the pixels distance between coxa’s coordinate (ρc
C, ρc

R) and
limb’s tip coordinate (ρC, ρR) are

ΔρC = ρc
C − ρC, ΔρR = ρc

R − ρR .

The nominal image resolution [mm/pixel] for columns ratio
fx and rows ratio fy , assuming that both cameras (top xz

and side xy) are identical, then f xz
x ≡ f

xy
x and f xz

z ≡ f
xy
y .

Hence,

fx = Xback

NC

, fz = Zback

NR

,

where, XYZback are the background metric lengths scoped
by the camera field of view and were inferred by a linear

Fig. 14 Centipede’s gait tracking control
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metric relationship known by the real Centipede’s metric
size. Likewise, NR × NC is the image resolution:

pref
k =

⎛
⎜⎝

2
√

(ΔρC · fx)2 + (ΔρR · fz)2 sin(ϕxz)∣∣∣ρo
xy − ρR

xy

∣∣∣
(

Yback

NR

)

2
√

(ΔρC · fx)2 + (ΔρR · fz)2 cos(ϕxz)

⎞
⎟⎠ , (53)

where the scene’s floor vertical pixel reference in the
plane xy is ρo, and the limb’s end is ρy . Therefore,
at each image frame the limb’s tip pixels coordinate is
at (ρC

k , ρR
k ). For this experiment, the limb’s reference

positions denoted by pref

1 , . . . ,pref

9 are shown in Fig. 14
as the reference Centipede’s gait. The tracking control
trajectory follows the reference gait points, and therefore
represents the effectiveness of the proposed limb’s dynamic
trackig control.

7 Conclusion

From different planar taxonomic views reported by biolo-
gists in the scientific literature, in this work we have pre-
sented the Chilopoda’s limb muscular system in 3D, which
was built geometrically by means of polygonal matching.
We conclude that the musculoskeletal connections were bio-
mechanically consistent with the 3D polygonal matched
model because their projections over the taxonomic planes
were equivalent. From the disclosed 3D musculoskeletal
model, a reduced muscular system was proposed that con-
sistently emulated the equivalent motion of a complete
biological chilopoda’s limb. The kinematic constraint and
laws governing the reduced muscular system motion was
coherent compared with bibliographic reported material.
The mathematical model describing the simplified limb’s
musculoskeletal 3D motion was deduced, with good con-
trollability, dexterity and motion resolution. The network
of elastic elements (muscles) allowed the analysis and val-
idation about the dynamics of the 3D limb’s biomechanics.
Having the artificial muscles, the elasticity and dampen-
ing coefficients were estimated by manual adjusting, which
were equivalents to the Centipede’s muscles in millimeters
scale. Through the proposed dynamic model was proved
that the four joints (coxa, prefemur, tibia and tarso) and the
inner network of muscles can realistically be controlled by
means of only two control input muscles from the coxa,
lev.tr.a and lev.tr.b. A set of images frames extracted from
real experimental top and side videos on Centipede’s loco-
motion were taken as validation data. The real Centipede
limb’s gait was metrically calculated to represent the set
of reference points pref

k . Tracking control demonstrated
the validity and effectiveness of the proposed model to
accurately follow a cycle gait.

Appendix A: Muscles spatial vectors

Table 3 Muscles local Cartesian vectors

Muscle x y z

Vectors trunk – coxa

dvc 0.283823 2.42299 –0
dvc.a 0.53162 0.178111 –0.144076
dvc.1 –0.0537923 –0.51629 0.465783
dvc.2 0.0492127 –0.48288 –0.148438
dvc.3 –0.314205 –0.366093 0.266286
dvc.4 –0.826191 –0.514065 0.0666297
rot.trp –0.823967 1.20077 –0.80671
pclx –0.294956 0.591413 –1.27856
tcx –0.614395 0.705609 –1.21438
tep –0.341857 0.852939 –0.188288
rot.tr –0.571187 0.678299 –0.448729
pct.1 –0.0216041 0.815354 1.19871
pct.2 –0.0216041 0.854303 0.97963
ret.cos –1.92313 2.6278 –1.59876
ret.trt –0.757779 –0.370891 –0.588648
ret.trs –2.04362 –0.448584 –0.58574
pr.tr.co.a –1.75638 2.72539 1.16473
pr.tr.co.b –2.19002 2.7579 0.478868
pr.cot –0.586189 –0.166015 1.24596
lev.tr.a –1.91697 –1.14027 0.396057
lev.tr.b –1.7406 –1.13435 0.0362734

Vectors Coxa – leg’s tip
pr.ta E 0.128956 –0.124584 0.183548
re.ti E 1.10537 –0.228331 0.207842
fl.ta E 1.19067 –0.436205 0.00164285
pr.ta.l E 0.877384 –0.0459183 0.00180277
fl.ti E 2.07231 0.430633 0.175537
fl.un.p.fe E 2.78483 –0.0810722 –0.136167
fl.un.fe E 0.995665 –0.42592 0.0441969
dep.fe E 0.826902 0.129965 –0.0179841
co.fe E 1.55459 0.748069 0.0753528
fl.un.tr E 1.02399 0.292072 0.448555
pr.fe E 0.238628 0.364539 –0.0634313
co.fe –1.58734 –0.565637 –0.127153
re.ti.l 1.00977 –0.83153 0.265341
fl.ta 0.605271 –1.22357 –0.0438771
pr.ta.l 0.747108 –1.03269 –0
pr.ta 0.0580041 –0.367416 0.157451
pr.fe –0.288898 –0.207974 0.0567872
fl.ti 1.89324 –0.252076 0.169736
fl.un.p.fe 2.42277 –1.44575 –0.136705
fl.un.tr 0.923576 –0.126688 0.39751
fl.un.fe 0.415119 –1.10395 –0.0193071
lev.tr.co –0.272448 –0.543866 –0.142375
dep.fe –0.790407 0.020207 0.049329
dep.tr 0.531036 0.0218455 0.0479478
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Appendix B: Muscles length

Table 4 Muscles metric length

Muscle Length (mm) Muscle Length (mm)

dvc 2.43956 re.ti E 1.14768
dvc.a 0.57888 fl.ta E 1.26806
dvc.1 0.697426 pr.ta.l E 0.878587
dvc.2 0.507572 fl.ti E 2.12384
dvc.3 0.551051 fl.un.p.fe E 2.78934
dvc.4 0.975343 fl.un.fe 1.08384
rot.trp 1.6648 dep.fe E 0.837246
pclx 1.43926 co.fe E 1.72686
tcx 1.533 fl.un.tr E 1.15545
tep 0.937989 pr.fe E 0.44029
rot.tr 0.993832 co.fe 1.6899
pct.1 1.44989 re.ti.l 1.33472
pct.2 1.29999 fl.ta 1.3658
ret.cos 3.62765 pr.ta.l 1.2746
ret.trt 1.02873 pr.ta 0.403918
ret.trs 2.17272 pr.fe 0.360472
pr.tr.co.a 3.44518 fl.ti 1.91747
pr.tr.co.b 3.55408 fl.un.p.fe 2.82466
pr.cot 1.38694 fl.un.tr 1.01344
lev.tr.a 2.26536 fl.un.fe 1.17958
lev.tr.b 2.07793 lev.tr.co 0.624731
pr.ta E 0.256595 dep.fe 0.792203

dep.tr 0.533644

Appendix C: Endoskeleton unit vectors

Table 5 Normalized vectors

Vectors trunk – Coxa
dvc 0.116342 0.993209 –0
dvc.a 0.918361 0.307682 –0.248888
dvc.1 –0.0771298 –0.740279 0.667861
dvc.2 0.0969571 –0.951354 –0.292447
dvc.3 –0.570192 –0.664354 0.483234
dvc.4 –0.847077 –0.527061 0.0683141
rot.trp –0.494935 0.721271 –0.484569
pclx –0.204936 0.410914 –0.888342
tcx –0.400779 0.46028 –0.792161
tep –0.364458 0.909327 –0.200735
rot.tr –0.574732 0.682509 –0.451514
pct.1 –0.0149006 0.562357 0.82676
pct.2 –0.0166187 0.657161 0.753567
ret.cos –0.530132 0.724382 –0.440716
ret.trt –0.736613 –0.360531 –0.572205
ret.trs –0.940583 –0.206462 –0.269588
pr.tr.co.a –0.509809 0.791074 0.338076
pr.tr.co.b –0.616198 0.775981 0.134737
pr.cot –0.42265 –0.119699 0.898354
lev.tr.a –0.84621 –0.503351 0.174832
lev.tr.b –0.837664 –0.545907 0.0174566

Table 5 (continued)

Vectors Coxa – leg’s tip
pr.ta E 0.502567 –0.48553 0.715323
re.ti E 0.963132 –0.198949 0.181097
fl.ta E 0.938971 –0.343994 0.00129556
pr.ta.l E 0.998631 –0.0522638 0.0020519
fl.ti E 0.975734 0.202761 0.0826508
fl.un.p.fe E 0.998385 –0.0290651 –0.048817
fl.un.fe E 0.918645 –0.392973 0.0407781
dep.fe E 0.987645 0.155229 –0.02148
co.fe E 0.900243 0.433197 0.0436358
fl.un.tr E 0.886227 0.252777 0.388207
pr.fe E 0.54198 0.827951 –0.144067
co.fe –0.93931 –0.334717 –0.0752432
re.ti.l 0.756539 –0.622999 0.198799
fl.ta 0.443163 –0.895865 –0.0321256
pr.ta.l 0.58615 –0.810203 –0
pr.ta 0.143604 –0.90963 0.38981
pr.fe –0.801444 –0.576949 0.157536
fl.ti 0.987361 –0.131463 0.088521
fl.un.p.fe 0.857721 –0.511833 –0.048397
fl.un.tr 0.911329 –0.125008 0.39224
fl.un.fe 0.351922 –0.935886 –0.0163678
lev.tr.co –0.436104 –0.870561 –0.227898
dep.fe –0.997733 0.0255074 0.0622681
dep.tr 0.995114 0.0409365 0.0898499

Appendix D: Muscles vector direction cosine

Table 6 Muscles angle (radians)

Muscle α β γ

Vectors trunk – Coxa
dvc 1.45419 0.116606 1.5708
dvc.a 0.406878 1.25804 1.82233
dvc.1 1.648 2.40428 0.839466
dvc.2 1.47369 2.8284 1.86758
dvc.3 2.17754 2.29743 1.06645
dvc.4 2.58126 2.12593 1.50243
rot.trp 2.08856 0.76516 2.07667
pclx 1.77719 1.14734 2.66452
tcx 1.98316 1.09249 2.48514
tep 1.94385 0.429132 1.7729
rot.tr 2.18307 0.819607 2.03926
pct.1 1.5857 0.973563 0.597472
pct.2 1.58742 0.85375 0.717325
ret.cos 2.12955 0.760659 2.02719
ret.trt 2.39884 1.93963 2.17999
ret.trs 2.79514 1.77875 1.84376
pr.tr.co.a 2.10576 0.658233 1.22592
pr.tr.co.b 2.2347 0.682528 1.43565
pr.cot 2.00716 1.69078 0.454789
lev.tr.a 2.57963 2.09827 1.74653
lev.tr.b 2.56379 2.14827 1.58825
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Table 6 (continued)

Muscle α β γ

Vectors Coxa – leg’s tip
pr.ta E 1.04423 2.07777 2.36788
re.ti 0.272385 1.77108 1.7529
fl.ta E 0.35117 1.92196 1.57209
pr.ta.l E 0.0523279 1.62308 1.57285
fl.ti E 0.220748 1.36662 1.65354
fl.un.p.fe E 0.0568451 1.59987 1.52196
fl.un.fe E 0.406158 1.97466 1.61159
dep.fe E 0.157357 1.41494 1.54931
co.fe E 0.45047 1.12276 1.61445
fl.un.tr E 0.48166 1.31525 1.96948
pr.fe E 0.998005 0.595352 1.42623
co.fe 2.79141 1.9121 1.49548
re.ti.l 0.712792 2.24337 1.77093
fl.ta 1.11167 2.68117 1.53867
pr.ta.l 0.944498 2.51529 1.5708
pr.ta 1.42669 2.71319 1.97122
pr.fe 2.5005 2.18578 1.72899
fl.ti 0.159159 1.70264 1.65943
fl.un.p.fe 0.539976 2.10811 1.52238
fl.un.tr 0.424295 1.69613 1.97386
fl.un.fe 1.21117 2.78156 1.55443
lev.tr.co 2.02206 2.62714 1.34088
dep.fe 3.07425 1.54529 1.6331
dep.tr 0.0988972 1.52985 1.48083

Appendix E: Joints torque

Table 7 Muscles’ torque
(

gr·mm2

s2

)

Muscle τx τy τz

Stabilizers

dvc –12.8795 351.658 0

dvc.a –100.102 106.922 20.6868

dvc.1 8.40724 –262.776 –47.3286

dvc.2 –11.2554 –345.311 20.7245

dvc.3 66.7127 –237.192 –34.2448

dvc.4 102.593 –189.861 –4.84115∑
53.47 –576.5 –45.00

Rotators

rot.trp 34.0026 281.342 37.5341

pclx 17.7682 135.103 60.4408

tcx 36.752 155.517 34.3797

tep 30.87 325.304 10.7461

rot.tr 38.9101 263.355 33.4184

pct.1 1.21739 185.924 –42.1223

pct.2 1.35777 207.365 –40.412∑
160.88 1553.9 93.985

Table 7 (continued)

Muscle τx τy τz

Retractors

ret.cos 34.1522 274.549 33.8761

ret.trt 48.4823 –135.941 41.1221

ret.trs 60.0972 –77.8893 18.5655∑
142.73 60.719 93.564

Protractors

pr.tr.co.a 39.0604 268.049 –23.9581

pr.tr.co.b 47.8748 263.671 –9.54829

pr.cot 33.1249 –40.0448 –63.6627∑
120.06 491.67 –97.16

Total 477.15 1529.7 45.376

Appendix F: Equivalent muscle model �ξ

From Figs. 7a-I-IV, the following functions describe
elongations of the parallel/serial connections. The parallel
muscles are assumed to elongate a same length, this work
coupled parallel lengths by averaging them:

�b = �b1 + �b2

2
, (54a)

�c = �c1 + �c2

2
, (54b)

�e = �e1 + �e2

2
, (54c)

�f = �f 1 + �f 2

2
, (54d)

�h = �h1 + �h2 + �h3

3
. (54e)

Moreover, for Figs. 7-II-III, the following functions
describe their elongations,

�eg = �e1 + �e2

2
+ �g, (55a)

the next equivalent muscle models, both �d and �eg are
parallel,

�deg = �d + �eg

2
. (55b)

The muscles interconnected in Delta configuration of
Fig. 7-II are transformed into a Star configuration as shown
in Fig. 7-III, hence their models are

�ε1 = �b�e

�b + �e + �f

(56a)

and

�ε2 = �b�f

�b + �e + �f

(56b)
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and

�ε3 = �e�f

�b + �e + �f

(56c)

Finally, the equivalent model �ξ shown in Fig. 7-IV is
obtained by modeling the serial connection of �ε2 and �deg ,
which are in parallel with the serial connection between �ε3

and �h, such that

�ξ = �ε1 + �ε2 + �deg + �ε3 + �h

2
(57a)

by reordering and expanding fractional terms,

�ξ = �ε1 + �ε2 + �ε3

2
+ �deg + �h

2
(57b)

by substituting each term’s formula,

�ξ = �b�e

�b + �e + �f

+ 1

2

(
�b�f

�b + �e + �f

+ �e�f

�b + �e + �f

)
+

1

2

(
�d

2
+ �e1 + �e2

2
+ �g + �h

)
.

(57c)

To simplify notation, let us define �α
.= �b + �e + �f ,

algebraically substitute and arrange to obtain a complete
function in terms of muscles’ length,

�ξ = 2�b�e + �b�f + �e�f

2�α

+ �d + �e1 + �e2 + 2�g + 2�h

4
.

(57d)

Supplementary Information The online version contains supplemen-
tary material available at (https://doi.org/10.1007/s12213-021-00141-
y).
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