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Abstract The oasis effect refers to the impact of advected energy on the surface energy balance leading to
enhanced evapotranspiration. In this study, we utilize a 1‐yr record of water, energy, and carbon
dioxide (CO2) fluxes to study the occurrence and signature of the oasis effect in an irrigated turf grass of an
arid urban region. Days with the oasis effect are selected using readily available air temperature and
relative humidity and include excessive heat warnings. During oasis days, higher evaporative cooling is
demonstrated throughout the day, especially for late afternoons when it can exceed net radiation.
Evaporative enhancements are linked to abiotic mechanisms, such as soil and irrigation water evaporation,
since plant productivity is unaltered. Nighttime evaporative losses and CO2 releases are also enhanced
during oasis days. Our findings show how the oasis effect impacts the water, carbon, and thermal conditions
of urban parks.

1. Introduction

Irrigation allows the maintenance of vegetation which supports evaporative cooling, significantly reducing
air and surface temperatures and enhancing atmospheric water content (e.g., Gober et al., 2010; Myint
et al., 2013; Song & Wang, 2015). Sharp thermal and moisture contrasts are often created between irrigated
areas and their surrounding landscapes (Chow et al., 2012; Ko et al., 2016). An example of this is the establish-
ment of irrigated turf grasses in urban parks and golf courses which are surrounded by land cover types with
less or no irrigation. These sharp contrasts in irrigation have the potential for creating an “oasis effect”
whereby advected energy from hotter and drier surrounding areas from all directions can influence the
irrigated site (Warner, 2004). A separate impact of irrigated sites on downwind areas is also expected (e.g.,
Motazedian et al., 2020). Identifying the presence of the oasis effect and the mechanisms leading to its con-
sequences on the surface energy balance is critical in urban parks of arid and semiarid regions since these
provide ecosystem services related to heat amelioration (Harlan et al., 2006), biodiversity (Cook &
Faeth, 2006), cultural amenities (Park, 2017), aesthetics (Yabiku et al., 2008), and real estate prices (Larson
& Perrings, 2013).

Continuous, in situ measurements of the surface energy balance in urban parks are generally lacking, thus
limiting our understanding of the effects of irrigation on water, energy, and carbon dioxide (CO2) fluxes.
Most prior studies are limited to short periods that do not capture the strong seasonal variations that often
exist in radiative forcing, outdoor water use, and turf grass management (e.g., Chow et al., 2011; Colter
et al., 2019; Day et al., 2002; Pérez‐Ruiz et al., 2020; Sproken‐Smith et al., 2000; Templeton et al., 2018). In
addition, the atmospheric conditions leading to the oasis effect are not well understood, in particular whether
or not readily available data are sufficient for its identification. It is also unclear if a direct relationship exists
with excessive heat warnings (EHWs) during which these sites serve as thermal refugia (e.g., Brown et
al., 2015). Since urban parks and golf courses often occupy large surface areas in arid and semiarid regions,
it is possible that their interactions with the atmosphere can also have regional consequences on the urban
heat island (Buyantuyev & Wu, 2010), the CO2 dome (Koerner & Klopatek, 2002), and the precipitation
regime (Shepherd, 2006), among others.

In this study, we address this knowledge gap through the use of the eddy covariance (EC)method tomeasure
water, energy, and CO2 fluxes at an irrigated urban park in a desert region. EC measurements provide
high‐temporal resolution data that are useful for quantifying turbulent fluxes and identifying linkages
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between them that reveal the role played by urban ecosystems (e.g., Baldocchi et al., 2001). The study period
allows investigating seasons when irrigation and turf grass management vary considerably, including EHW
periods during the North American monsoon (see http://www.weather.gov/psr/HeatSafety). Through
ancillary measurements, we aim to understand how the surface energy balance is altered under the oasis
effect due to the omnidirectional effects of neighboring urban sites on the golf course. In particular, we
address if changes in evapotranspiration driven by the oasis effect are linked to abiotic or biotic
mechanisms through an analysis of coincident CO2 fluxes. van Bavel et al. (1963) argued that enhanced
plant transpiration explained these changes but did not benefit from simultaneous water, energy, and
CO2 fluxes for exploring the underlying mechanisms.

2. Methods
2.1. Study Location

The study site is located in the northwest corner of the 18‐hole Encanto Golf Course in Phoenix, Arizona,
USA (33.48°N, −112.10°W, 334 m; Figure 1a). At the site, the Arizona Meteorological Network (AZMET;
https://cals.arizona.edu/AZMET/) placed a weather station in 1988 to estimate reference evapotranspira-
tion. We installed additional sensors inside the fenced area of the AZMET station over the period 16
March 2019 to 16March 2020. Turf management at Encanto Golf Course includes varying treatments in fair-
ways and rough areas, using warm season bermudagrass (Cynodon dactylon) and overseeding with ryegrass
(Lolium perenne) to maintain grass cover during the cool season. Soils at the site are well‐drained Mohall
clay loam that have undergone several decades of soil and water treatments (Soil Survey Staff, 2020).
While turf grass is nearly continuous in cover, a few scattered palms are found in rough areas and trees line
nearby streets (170 m to west of EC site). The site is immersed in a low‐density urban fabric consisting of

Figure 1. (a) Encanto Golf Course in Phoenix, AZ, with location of EC site and AZMET station. (b) Spatial distribution of NDVI at 3‐m resolution with the EC
footprint (FP) estimated at 50% and 80% contributions, each averaged over the warm season, and radiometer footprint (Rad FP). (c, d) Daily variations in
rainfall, net radiation, NDVI for fairway and rough areas, soil moisture at three depths, and air and soil temperature during the warm and cool seasons. Inset in
(d) shows monthly estimates of irrigation at Encanto Golf Course.
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single‐family residences, commercial areas, streets, and parking lots. Local climate is classified as hot and
arid (Köppen zone BWh) with an average annual rainfall of 203 mm/yr (AZMET data over the period
1989–2019), with small differences between warm (87 mm, 1 April to 30 September) and cool (116 mm, 1
October to 31 March) seasons. Similar conditions are expected in other urban parks and golf courses that
occupy about 32 km2 or 2.4% of the City of Phoenix area.

2.2. Surface Energy Balance Measurements

The EC method consists of an open path‐infrared gas analyzer to measure H2O and CO2 concentrations
(LI‐7500A, Li‐COR Biosciences) and a three‐dimensional sonic anemometer (CSAT‐3, Campbell Scientific)
to measure turbulent wind velocities. The EC system was installed at 5 m above the ground and aligned with
the dominant wind direction (180° fromNorth) to measure latent heat flux (λET), sensible heat flux (H), and
net ecosystem exchange (NEE). A radiometer (CNR4, Kipp& Zonen) was installed at a 4m height tomeasure
net radiation (Rn), while a heat flux plate (HFP01SC, Hukseflux) was buried at 5 cm depth to estimate ground
heat flux (G). Sensor placement and measurement heights were selected to sample turf grass conditions in a
small EC footprint obtained using the two‐dimensional model of Kljun et al. (2015) at the daily scale and
aggregated for each season. Figure 1b illustrates the 50% and 80% source areas during the warm season.
Vegetation within the 50% and 80% footprints were classified as grass (98% and 81%), tree (2% and 8%), bare
soil (<1% and 4%), and impervious surface (0% and <8%), respectively, based on a 1‐m land cover classifica-
tion obtained in 2010 (Li et al., 2014). Fluxes were calculated at 30‐min intervals with EddyPro® 7.0.4. EC pro-
cessing included a number of standard processing steps (supporting information Text S1). Missing data
accounted for 21% of the study period due to maintenance and power issues. The energy balance yielded that
90% of available energy (Rn − G) was measured as turbulent fluxes (λET + H), consistent with studies in dif-
ferent ecosystems (Wilson et al., 2002; see Figure S1).

2.3. Ancillary Data Sets

Ancillary measurements were installed to complement the AZMET records, including: (1) volumetric soil
moisture at 5‐, 15‐, and 30‐cm depths (θ, CS616, Campbell Sci.), (2) soil temperature at 2‐ and 6‐cm depths
(TCAV‐L, Campbell Sci., averaged as Tsoil), (3) land surface temperature (LST) estimated from longwave
radiation, following Martin et al. (2019), and (4) midday albedo (a) obtained from the radiometer. We used
AZMET data for rainfall (R), air temperature (Tair), vapor pressure deficit (VPD), relative humidity (RH),
incoming solar radiation (Rs), wind speed and direction, and reference evapotranspiration (ETo). Monthly
estimates of water use via sprinkler irrigation were provided by the City of Phoenix based on metering. In
addition, we used high spatiotemporal resolution data on the normalized difference vegetation index
(NDVI) from Planet Labs (2017), to quantify turf grass conditions. PlanetScope products (3 m, daily resolu-
tion; Text S2) were obtained from a constellation of >130 active Cubesats in four spectral bands. A total of
201 cloud‐free scenes (54.6% of study period) at an overpass time from 9:30 to 11:30 a.m. were converted into
a linearly interpolatedNDVI series (Chen et al., 2004). Bias correction was then used to adjustNDVI to match
coincident values obtained from Landsat 8. PlanetScope has been applied in agricultural areas (Houborg &
McCabe, 2018), but its observing capabilities in urban parks and golf courses have not been demonstrated.

3. Results and Discussion
3.1. Seasonal Variations

Figures 1c and 1d display the annual cycle in soil, vegetation, and meteorological variables during the study
period. These were selected to show the water and energy input and the resulting soil and turf grass condi-
tions in the warm and cool seasons. Net radiation (Rn) tracks the seasonal variation in solar irradiance and
daily changes linked to rainfall and cloud cover. During the warm season, rainfall (R) was below average,
while air temperature (Tair) was above average (8 mm and 29.2°C as compared to 87 mm and 28.8°C from
1989 to 2019), consistent with analyses indicating exceptionally hot and dry conditions (National Weather
Service [NWS], 2019). This included 26 days of EHWs between 11 June to 7 September 2019. During the cool
season, R was above average (177% of 1989–2019 average), including 4 days with R > 20 mm/day, which has
a low probability (<2%; Mascaro, 2018). When compared to irrigation (Figure 1d inset), however, R is a neg-
ligible to minor input for the warm and cool seasons (<1% and 36% of total, respectively). Based on turf gui-
dance (Brown et al., 2001), sprinkler irrigation occurs daily in the warm season in the entire golf course,
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whereas only fairways receive daily irrigation during the cool season and roughs are irrigated once per week.
Irrigation increases soil moisture (θ) during the warm season down to 30‐cm depth (Figure 1d), which
sustains high NDVI (Figure 1c). Decreases in irrigation in the cool season are reflected in lower θ and
decreases in NDVI in rough areas, whereas overseeding and irrigation in fairways promotes continued
NDVI (see Text S2 and Figure S2).

In addition to wet soil conditions, frequent irrigation promotes evaporative cooling which impacts the rela-
tion between daily Tair and Tsoil (Figure 1d). A lower Tsoil was noted in the turf grass for the warm season as
compared to Tair (28.4°C and 29.2°C, respectively). This was supported by daily estimates of LST (28.2°C),
indicating the air was warmer than the irrigated turf grass during the warm season (see Table S1), in contrast
to nonirrigated land covers in Phoenix (Song et al., 2017). We explore this seasonality further in Figures 2a
and 2b by comparing the surface energy fluxes for the warm and cool seasons, shown as diurnal cycles of Rn,
λET, H, and G (see Text S8 and Table S2). The majority of energy input (Rn) results as evaporative cooling
(λET) in the warm and cool seasons (peak λET/Rn of 0.70 and 0.47, respectively). SinceH and G remain con-
sistent across the two seasons (Figures 2a and 2b), reductions in Rn in the cool season or during cloudy days
in the warm season lead to lower λET, an indication of an energy limitation in the turf grass. It is also note-
worthy that λET is positive at night during the warm season (average of 59W/m2), whileH is negative (aver-
age of −43 W/m2), implying that air warms the turf grass during the night (Table S2). This nighttime
behavior of λET and H, in particular during the warm season, are characteristic of the oasis effect
(Warner, 2004). Only a small amount of energy is partitioned to deeper soil layers (lowmagnitude ofG), con-
sistent with the relation between Tair and Tsoil.

Figure 2. Diurnal cycles of (a, b) surface energy fluxes and (c, d) CO2 fluxes during the warm and cool seasons. Symbols
indicate average values for each 30‐min interval in each season, while envelopes depict the ±1 standard deviation.
Inset in (b) shows the daily relations between midday albedo and NDVI for the warm and cool seasons, including linear
regressions (see Text S3).
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The influence of irrigation extends to both the warm and cool seasons, such that surface energy fluxes are
dominated by λET. Nevertheless, large variations are noted in the turf grass conditions, in particular in
the relation between NDVI and midday albedo (Figure 2b inset). In the cool season, rough areas decrease
in NDVI and increase in a, which reduces energy inputs via the effect of albedo on Rn. Seasonal differences
are also apparent in CO2 fluxes which are compared in Figures 2c and 2d as diurnal cycles ofNEE and its two
components: gross primary productivity (GPP) and ecosystem respiration (Reco; Text S9 and Table S4).
Irrigated turf grass exhibits diurnal behavior that reflects photosynthetic processes, with daytime CO2

uptake (NEE < 0) and nighttime CO2 releases (NEE > 0). As expected, the warm season has higher GPP
and Reco, leading to higher CO2 uptake, as turf grasses receive more irrigation and energy input, exhibit
greater NDVI and lower a, and grow in an environment of higher Tair and Tsoil. Warm season CO2 uptake
during the day is considerably higher than reported values from irrigated turf grasses at other sites
(Pahari et al., 2018), suggesting that biological processes are at maximum capacities, in particular for the
warm season. In both seasons, a negligible impact of anthropogenic emissions, such as traffic, is noted on
CO2 fluxes, in contrast to other land covers in Phoenix (Pérez‐Ruiz et al., 2020).

3.2. Oasis Effect

Due to its higher irrigation and energy input, we focus on identifying if there is an oasis effect during the
warm season. Figures 3a and 3b present the daily variation of ET and two primary controlling factors, Rs

and VPD, as obtained through a linear regression analysis (Text S4 and Table S3). Wind speed or direction
were not significant controls, indicating that advected energy is omnidirectional. As expected, variations
in ET reflect the seasonality of solar radiation and daily changes in Rs and VPD related to the North
American monsoon (Vivoni et al., 2008). Daily ET from the EC method exhibited a strong relation with eva-
potranspiration estimates obtained as KcETo (Figure 3a inset), where Kc is a monthly varying crop coefficient
(Brown et al., 2001; Text S5). This provided confidence in the use of the long‐term ETo estimates at the
AZMET station (2003–2018) to determine days with an oasis effect (yellow circles in Figure 3). To generalize
the method for other sites, we utilized Tair and RH as proxies for Rs and VPD. We identified the Tair and RH
conditions during warm season days that exceeded the 90% quantile in KcETo in the 6,352‐day record. This
yielded a threshold of Tair that if exceeded at a particular RH indicates a day with the oasis effect, in amanner
similar to the use of a heat index (Text S6 and Figure S4). Note that oasis days represent 36% of the warm
season in Figure 3, including all of the EHW days in 2019, as compared to 21% in the long‐term records,
an indication of the exceptionally hot and dry conditions. Furthermore, the selection of oasis days generally
results in high ET, Rs, and VPD, as compared to the long‐term averages over 2003–2018 (Figures 3a and 3b).

Oasis days represent high‐temperature and low‐humidity settings leading to exceptionally large daily ET.
Note that oasis days have average daily wind speeds and profile‐averaged soil moisture values (1.62 m/s
and 0.59 m3/m3) that are similar to nonoasis days (1.62 m/s and 0.55 m3/m3) during the warm season.
Even the wind direction has a limited control on daily ET (Figure 3b inset), with days with winds from the
west (240° to 300°) exhibiting similar values (6.62 ± 0.71 mm/day) to days from all other directions
(6.28 ± 1.13 mm/day), despite having a residential area to the west. Given the high CO2 sequestration poten-
tial of irrigated turf grasses, it is surprising that oasis days with high ET are also typically periods of CO2

release to the atmosphere (average daily NEE of 3.78 g CO2 m
−2 day−1; Figure 3c inset), due to higher night-

time Reco as compared to daytime GPP (see Table S4). Nonoasis days are characterized by neutral CO2 condi-
tions (NEE near zero) such that a balance exists between plant productivity and respiration from soils, turf
grasses, and lawn residues. Inherent water use efficiency (IWUE; Text S7) indicates that sustained plant pro-
ductivity per unit of evaporative loss occurs throughout the warm season such that plants are at their max-
imum capacity and are not influenced by the advected energy during oasis days. These results are in
contrast to studies in other climates showing that irrigated turf grasses primarily absorb CO2 (Pahari
et al., 2018). Overall, this points to the oasis effect having important outcomes for CO2 releases from urban
parks in desert cities.

Features of the oasis effect are shown in Figures 4a and 4b through a comparison of the diurnal cycles of Rn,
λET,H,G, andNEE averaged over oasis (n= 65) and nonoasis (n= 118) days in the warm season (see Text S6
and Table S2). For reference, conditions during EHW days (n = 26) are also shown as dashed lines. As first
reported by Sproken‐Smith et al. (2000), the oasis effects in an urban park is characterized by a high daytime
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and nighttime λET. During oasis days, the ratio of peak λET/Rn rises from 0.62 to 0.80 (28% higher), while
the peak ratio of H/Rn is reduced from 0.18 to 0.10 (41% lower). Another distinguishing feature is the late
afternoon period when λET can exceed Rn as additional energy is input via a negative H (average H of
−31 W/m2 over 5:00 to 9:00 p.m.). Energy input during oasis days is likely affected by advection from
surrounding urban areas in all directions that are hotter and drier, leading to a higher Rn, a more negative
H, and an increase in λET (average peak differences of +56, −40, and +142 W/m2, respectively). This is
consistent with Sproken‐Smith et al. (2000), who first performed measurements in an urban park and its
surroundings. The authors also indicated that separately accounting for advected energy is not feasible

Figure 3. Daily variations in (a) ET and ETo, (b) Rs and VPD, and (c) NEE and IWUE. Solid lines are study period
observations, while thin lines with shading depict daily average values and ±1 standard deviation over 2003–2018.
Yellow circles represent oasis days. Inset in (a) compares daily ET with KcETo during the study period (see Text S5). Inset
in (b) shows daily average wind speed (m/s) and direction (° from North) for oasis days. Inset in (c) is the relation
between daily ET and NEE in four quadrants with thresholds of NEE = 0 g CO2 m

−2 day−1 and ET = 4 mm day−1.
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during oasis conditions since it has a direct impact on all other fluxes. Interestingly, only a minor effect is
noted on NEE during oasis days, with a small increase in NEE observed at night due to an increase in Reco

under the warmer temperatures of oasis days. This suggests that turf grass transpiration does not adjust to
the additional energy input due to the oasis effect as plants are at their maximum capacity, as confirmed
by no daytime change in NEE and GPP. As a result, an abiotic process should be responsible for the
higher daytime λET. Chow et al. (2014) also noted some of the oasis effect features within an urban area
of Phoenix but did not attribute the observed increase in λET to specific evaporative processes.

An inspection of representative oasis days yields insights on the factors influencing the high evaporative loss.
Figures 4 c and 4d show the diurnal cycles ofRn, λET,H,G, andNEE for two oasis days (5 and 30August 2019)
that were also identified as EHW days. These days recorded no rainfall and capture differing wind directions
(WD of 43 and 241° from North) that sample the variability in contributions from neighboring areas during
the warm season. To provide context, normalized soil moisture in the shallow 5 cm sensor and maximum
wind speed are shown (see Text S10). Note the late afternoon periods when is λET greater than Rn due to
the energy input from H. In contrast to this consistent feature of the oasis effect (Warner, 2004), some oasis
days also exhibit large increases in λET during the midafternoon as shown in Figure 4d. These are attributed

Figure 4. Diurnal cycles of surface energy fluxes and NEE during warm season for (a) oasis days and (b) all other days
(labeled nonoasis). Symbols indicate average values for each 30‐min interval in each subset, while envelopes depict
the ±1 standard deviation. Dashed lines represent excessive heat warning (EHW) days in both (a) and (b) as a
comparison. (c, d) Diurnal cycles for two oasis days (5 and 30 August 2019) with different wind directions (WD, ° from
North), along with shallow soil moisture (gray dots) and maximum wind speed (gray line) shown as normalized
quantities (χ, Text S10).
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to large increases in wind speed, in particular when wind directions are from the west (240 to 300°), and are
coincident with midafternoon decreases in H, but no discernable changes in NEE. We attribute these
short‐lived increases to a more localized impact of wind gusts from the residential area to the west.
Interesting behavior occurs in response to irrigation as depicted through a delayed rise in the shallow soil
moisture. At night, irrigation via sprinkler application promotes a short pulse in λET that is associated with
an increasedCO2 release (higherReco). This suggests that nighttime irrigation during oasis days is the primary
reason for turf grass to be a net CO2 source. Note that nighttime λET andReco account for 36% and 52% of daily
values during oasis conditions (Tables S2 and S4). Furthermore, increased λET is not linked to plant produc-
tivity such that additional energy is partitioned through abiotic mechanisms such as evaporation from direct
sprinkler water, intercepted water on turf grasses, and soils that are wet down to 30 cm.

4. Concluding Remarks

We identify that the oasis effect is a persistent warm season feature of an irrigated turf grass which is closely
linked to periods of high air temperature and low humidity associated with EHWs.While previously thought
to occur, direct evidence has not been documented at the level of detail provided here. The large distance of
the site to the golf course edge suggests that advected energy is input from local surroundings in all direc-
tions rather than being an edge effect (Sproken‐Smith et al., 2000). Nonetheless, certain oasis days have short
periods with high winds from a neighborhood to the west that briefly elevate latent heat flux. It is important
to note that the oasis effect has impacts on both daytime and nighttime conditions (see Text S11). During
short periods at midday and late afternoons, latent heat flux can exceed net radiation since advected energy
and irrigated conditions lead to downward sensible heat flux. At night, latent heat flux increases in response
to higher amounts of advected energy and often has short pulses occurring after irrigation. These features are
muted or absent from days that do meet the oasis conditions based on daily air temperature and RH data.

A summary of the CO2 budget offers novel insights on the oasis effect (see Text S11). Daytime plant produc-
tivity is unaffected by advected energy, indicating that latent heat flux increases are not related to higher turf
grass transpiration. This contradicts van Bavel et al. (1963) who attributed higher evaporative losses under
advected energy to an increase in grass transpiration. Instead, latent heat fluxes are higher due to the
increased evaporation from soils and direct evaporation of irrigation and from intercepted water on the turf
itself. Interestingly, nighttime evaporative losses occur under conditions of CO2 release. While evaporative
losses during short pulses are associated to sprinkler water application, more persistent latent heat fluxes
are linked to soil evaporation and possibly to nighttime transpiration identified to occur in warm season
grasses (O'Keefe & Nippert, 2018). Additional CO2 releases during the oasis effect are likely due to higher
soil and turf grass respiration upon soil wetting from irrigation.

The existence of a warm season oasis effect in arid and semiarid regions has important implications for the
urban heat island, CO2 emissions, and heat‐related health hazards. Our findings suggest that the oasis effect
can be identified for other parks using readily available data. When EHWs are issued, for instance, the oasis
effect provides enhanced evaporative cooling in irrigated areas and their downwind locations. This enhances
the suitability of urban parks as a heat mitigation strategy (Zhang et al., 2017). Furthermore, the oasis effect
is anticipated to becomemore prevalent during the warm season under the combined effects of urbanization
and climate change which are increasing EHWs.

Data Availability Statement

Data sets for the study period are available at Zenodo (Kindler et al., 2020).
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