

Cell behavior on SiO2-Hydroxyapatite coaxial composite

Jesðs Alberto Garibay-Alvarado¹, Pamela Nair Silva-HolguÃn¹, Nahum Andres Medellin-Castillo², Jonotan Torres-Perez¹, SimÃ³n Yobanny Reyes-LÃ³pez¹

¹ Instituto de Ciencias Biom \tilde{A} ©dicas, Universidad Aut \tilde{A}^3 noma de Ciudad Ju \tilde{A}_i rez

² Centro de InvestigaciÃ³n y Estudios de Posgrado, Facultad de IngenierÃa, Universidad AutÃ³noma de San Luis PotosÃ

In the last years an effort has been made to produce materials which aid in the recovery of damaged tissue. Hydroxyapatite (HA) is a material with lots of potential in tissue regeneration, however, its structural characteristics need to be improved for better performance. In this study SiO_2 -HA non-woven electrospun membranes were prepared using HA and SiO_2 obtained through the sol-gel method. Three configurations of the membranes were obtained and tested in vitro, showing that the composite of SiO_2 -HA fibers showed a high percentage of viability on a fibroblast cell line. The obtained SiO_2 -HA polymeric fibers had approximately 230 ± 20 nm in diameter and were then sintered at 800 °C average diameter decreased to 110 ± 17 nm. The surface area of the sintered SiO_2 -HA fibers was 5.77 m²/g. After sintering the obtained composite, it was characterized by infrared spectroscopy, where the presence of bands corresponding to Si-O. Si-O.Si bonds of silica, phosphate and carbonate where found. XRD confirmed the composite composition by showing peaks corresponding to silica and hydroxyapatite. It is concluded that the fibers of SiO_2 -HA set in a coaxial configuration may be helpful to develop materials for bone regeneration.