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Abstract 
 

A large number of real-world problems require optimising several objective functions at the 

same time, which are generally in conflict. Many of these problems have been addressed 

through multi-objective evolutionary algorithms. In this paper, we propose a new hybrid 

evolutionary algorithm whose main feature is the incorporation of the Decision Maker’s 

(DM’s) preferences through multi-criteria ordinal classification methods in early stages of 

the optimisation process, being progressively updated. This increases the selective pressure 

towards the privileged zone of the Pareto front more in agreement with the DM’s 

preferences. An extensive experimental research was conducted to answer three main 

questions: i) to what extent the proposal improves the convergence towards the region of 

interest for the DM; ii) to what extent the proposal becomes more relevant as the number of 

objectives increases, and iii) to what extent the effectiveness of the hybrid algorithm 

depends on the particular multi-criteria method used to assign solutions to ordered classes. 

The issues used to evaluate our proposal and answer the questions were seven scalable test 

problems from the DTLZ test suite and some instances of project portfolio optimisation 

problems, with three and eight objectives. Compared to MOEA/D and MOEA/D-DE, the 

results showed that the proposed strategy obtains a better convergence towards the region 

of interest for the DM and also performs better characterisation of that zone on a wide 

range of objective functions. 

 

Keywords 

Evolutionary multi-objective optimisation; multi-criteria ordinal classification; preference 

incorporation. 
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1 Introduction 

 

Nowadays, multi-objective optimisation is an important research field since many real-

world problems involve optimising many objective functions simultaneously [1]. These 

problems are known as Multi-objective Optimisation Problems (MOPs), and their solution 

gives rise to a set of trade-off solutions, commonly known as Pareto-optimal solutions [2], 

characterised by the feature that their objectives are usually in conflict with each other (i.e., 

one objective cannot be improved without deteriorating another one). Multi-objective 

Evolutionary Algorithms (MOEAs) have been widely used for solving MOPs because they 

have the ability to deal with a set of possible solutions at the same time, allowing them to 

obtain an approximation of the Pareto frontier in a single run. This capability is an 

advantage of MOEAs over conventional multi-objective programming methods, which 

need to perform a set of separate single-objective optimisations to generate a set of 

compromise solutions [3]. Additionally, MOEAs are more robust regarding the 

mathematical characteristics of the objective functions and their constraints [4].  

According to Bechikh et al. [5], some of the challenges faced by MOEAs when the number 

of objective functions increases are the following: 

 

1) Ineffectiveness of the genetic operators (crossover, mutation and selection; e.g. 

[6,7]). 

2) Remarkable difficulties to represent the Pareto front since many points are 

necessary to do it. 

3) High computational cost to determine the extent of crowding (diversity measure 

estimation) of a solution in a population. 

4) Difficulty of visualization of a high-dimensional Pareto front. 

5) Increase in the number of non-dominated solutions, making it hard to obtain a 

representative sample of the Pareto front. 

6) Increase in the number of the Dominance Resistant Solutions (DRSs), which 

according to Ikeda et al. [8], are solutions with a poor value in at least one of the 

objectives, but with near-optimal values in the remaining objectives, thus being very 

hard to be dominated. 

 

Although MOEAs generate a set of efficient solutions, only one of these will be chosen as 

the final option to be implemented. Thus, besides finding Pareto-optimal solutions, it is 

equally important to provide support in the decision-making process. The Decision Maker 

(DM) is the entity in charge of choosing a single option (the best compromise) to be 

implemented [3]. 

As is widely known, preferences can be incorporated in three different stages: a priori, 

progressively (interactive) and a posteriori. 

An a posteriori incorporation of preferences rests on two main assumptions: A) the 

approximation to the Pareto Frontier identified by the metaheuristic contains a representative 

subset of the Region of Interest (ROI) [9], i.e., the zone of the Pareto frontier more in 

agreement with the DM’s preferences; this means that no better solutions lied out of the 

known Pareto Frontier); B) the DM is able to make consistent judgments when compares 

solutions on the known Pareto Frontier, and hence (s)he can identify the best compromise.  
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Concerning Assumption B), the identification of the best compromise from a set of solutions 

could be an easy task in problems with two or three objective functions but, when these 

increase, this task becomes very hard due to the human mind cognitive restrictions. 

According to Miller [10], the human mind is limited to processing a small amount of 

information simultaneously. This condition is a severe obstacle for identifying the best 

compromise from a set of solutions, mainly in the problems having many objectives, since it 

is beyond the cognitive abilities of an average DM. The DM often selects the first solution 

that seems to match his/her aspiration levels, without making suitable judgments of the other 

alternatives. Additionally, the appropriateness of Assumption A) depends on the nature of 

the problem, its number of variables and objective functions and the specific metaheuristic 

used. But given a particular problem which has not been addressed before, this assumption 

is very strong. 

The a priori and interactive incorporation of preferences can reduce the search space, filter 

non-dominated solutions  and help the search to identify solutions closer to the Region of 

Interest. This is a real advantage in comparison with the posterior preferences 

incorporation. 

 

There are many approaches in the literature that have incorporated this preference 

information into the optimisation process in order to direct it only towards the ROI and 

avoid unnecessary exploration of the entire search space. According to Bechikh [11], the 

information structures most often used to incorporate the preferences are the following: 

 

 weights (e.g. [12,13]),  

 ranking of solutions (e.g. [14,15]),  

 ranking of objective functions (e.g. [16,17]),  

 reference point (e.g. [18]),  

 trade-offs between objective functions (e.g. [19]),  

 desirability thresholds (e.g. [20]) and,  

 outranking relations (e.g. [21,22]).  

 

In our opinion, a more complete and systematic taxonomy of the methods for preference 

incorporation should cover the following issues: 

 

- the model of aggregating multi-criteria preferences underlying behind the way in 

which preferences are incorporated (e.g. value functions, outranking relations, 

trade-offs between objective functions); 

- the stage in which the preference information is articulated (e.g. a priori, 

progressively); 

- the cognitive process required from the DM (e.g. ranking of solutions, pairwise 

comparisons, ordinal classification). 

 

Some requirements for the DM are implicit in the above issues. For example: i) an a priori 

incorporation of preferences assumes that the DM has, before the optimisation process, a 

rather well-formed knowledge about his/her problem and preferences, and (s)he can set the 

decision model parameters ii) the use of value functions, ranking of solutions or pairwise 

comparisons assume that the DM can make decisions on sets of solutions (comparability), 
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and with transitive preferences; iii) most interactive methods require also comparability and 

transitivity of preferences; iv) a cognitive process like ranking of solutions or pairwise 

comparisons may be very demanding for the DM, mainly due to his/her cognitive 

limitations in problems with many objectives [10]; this is even harder in interactive 

frameworks. 

Interactive methods are more popular than methods with a priori articulation of preferences, 

because within an interactive framework the DM learns about his/her problem, discovers new 

solutions and goes inside the complex trade-offs among his/her objectives; such a learning 

process helps the DM to choose more appropriate settings of the decision model parameters. 

As stated by Miettinen [23], the DM can specify and correct his/her preferences and gain a  

better knowledge of his/her problem and its potentialities. Also, the DM should be more 

confident with the final results, since (s)he has been involved in the search process. However, 

most interactive methods require comparability and transitive preferences from the DM (cf. 

[24]). Unfortunately, as a consequence of the human cognitive limitations, there is abundant 

evidence about non-transitive judgments and incomparability situations in real decision 

making processes (see [25]). 

In our opinion, the following features are desirable for a method of preference 

incorporation: 

 

a) an easy interaction between the DM and the solution generator algorithm; this 

implies minimizing the cognitive effort from the DM when (s)he makes judgments 

about solutions. 

b) no requirement of comparability and transitivity of preferences; 

c) the model of aggregation of multi-criteria preferences should be compatible with 

relevant characteristics of real DMs; 

d) there should be techniques to infer the decision model parameters from decision 

examples provided by the DM during his/her learning process. 

 

Concerning preference incorporation, the cognitive process with the lowest cognitive 

demand on the DM is perhaps the classification into two ordered classes (also called 

categories in the related literature). Assigning solutions to classes ‘good’ and ‘no good’ 

does not require transitive preferences; comparability among ‘good’ and ‘no good’ 

solutions suffices. In an interactive process, assigning solutions to these classes is clearly 

less cognitively demanding than pairwise comparisons, ranking of solutions, or judgments 

about closeness to certain desired goals. 

The use of outranking relations is a way to handle characteristics of many decision makers 

facing real world problems. Methods based on outranking relations are recommended to 

address problems that present any of the following characteristics [26]: i) at least one of the 

evaluation criteria is non-quantifiable, i.e., it is measured on an ordinal or qualitative scale; 

ii) it has criteria of heterogeneous nature; iii) compensation between criteria is not generally 

accepted (veto situations are possible) and iv) at least in one criterion the following is true: 

small differences in the evaluations are not significant in terms of preference, while the 

accumulation of many small differences becomes important. Non-transitive preferences and 

incomparability situations are consequences of points iii) and iv). 

Outranking methods have been criticized for the difficulty to elicit the whole set of model 

parameters. However, there are several works that apply preference-disaggregation 
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approaches to make an indirect elicitation of outranking model parameters from assignment 

examples [27–29]. 

According to the above discussion, we strongly believe that outranking-based ordinal 

classification methods are good options to fulfill the four desirable features for any of the 

methods of preference incorporation stated above. 

 

To the best of our knowledge, the first paper in using outranking-based multi-criteria 

ordinal classification was Oliveira et al. [30]. In this paper, the popular ELECTRE-TRI 

method was used for ordinal classification in a three-objective problem. The preferences 

were incorporated a priori, setting directly the outranking model parameters. 

Recently, Cruz et al. [31] proposed an hybrid algorithm using outranking-based multi-

criteria ordinal classification. It works on three phases. During the first phase, a 

metaheuristic algorithm (appropriate to the problem to be solved) obtains an approximation 

to the Pareto frontier. In the second phase (interactive), the DM assigns the solutions to two 

ordered classes (‘satisfactory’ and ‘non satisfactory’), and the outranking model parameters 

are elicited by him/her. In the third phase, the THESEUS multi-criteria ordinal 

classification method is used to make selective pressure towards ‘satisfactory’ solutions. 

The first phase was implemented with NSGA-II and NOACO, a recently proposed Ant 

Colony Algorithm [4]. The proposal was tested in project portfolio problems with 4, 9 and 

16 objectives; its results outperformed NSGA-II and the ant colony algorithm [4]. 

Four main limitations of [31] can be identified: 

 

- Although in several instances and on a wide range of objectives, the proposal was 

only tested on non-interacting project portfolio optimisation problems;  

- The lack of knowledge about the true Pareto front of the project portfolio 

optimisation problems prevents an appropriate evaluation of the quality of 

solutions; there was no information about the closeness to the region of interest; 

- No state of the art representative metaheuristics were used during the first phase; 

neither for comparison of results; 

- The proposal in 31 is not really interactive. There is only one step in which the DM 

assigns solutions to ordered categories. This does not allow the learning and 

preference updating process which is typical of interactive methods.The learning 

capacity provided by the method should be enriched through other interaction steps. 

 

As a consequence of the above limitations, the work in Cruz et al. [31] left some open 

questions: 

 

1. Is the high quality of its solutions kept in a wide range of difficult problems, 

different from the project portfolio optimisation problem? 

2. Does the method outperform benchmark metaheuristics? 

3. To what extent is the closeness to the region of interest degraded by increasing the 

number of objectives? 

4. To what extent is the method effectiveness affected by the selection of a particular 

multi-criteria ordinal classification approach? 

 

The above questions are addressed by the present paper. Instead of NSGA-II and NOACO, 

MOEA/D (MultiObjective Evolutionary Algorithm based on Decomposition) and 
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MOEA/D-DE (MOEA/D based on Differential Evolution) are used as metaheuristics in the 

first phase of the hybrid algorithm; they can be considered as metaheuristics representative 

of the  state of the art, useful for an a posteriori incorporation of preferences. In addition to 

some instances of project portfolio optimisation problems, our proposal was evaluated on 

scalable test problems (the DTLZ test suite), using three and eight objectives; the use of the 

DTLZ test suite allows us to evaluate the closeness to a simulated ROI, and compare the 

performance with three and eight objectives. The DM’s preferences are simulated through 

an outranking model. In addition to the THESEUS method, here we use the popular 

ELECTRE-TRI, and the results from both methods are compared. 

This paper is organized as follows: Section 2 presents a brief summary of some 

evolutionary algorithms related to this work, a model of preferences based on outranking 

relations and the ELECTRE-TRI and THESEUS methods. The proposed algorithm is 

described in Section 3. The experimentation and results are shown in Section 4. Our 

concluding remarks are presented in Section 5. 

 

2 Background 
 

2.1 Some multi-objective approaches related to this work 

 

In this section, two recent algorithms, used in the comparison with the approach presented 

here, will be briefly described. 

 

2.1.1 MOEA/D 

 

It is a MOEA based on a decomposition approach [32]; any decomposition method can be 

used. MOEA/D decomposes a MOP through aggregation functions into a number of 

optimisation subproblems, and optimises them at the same time. MOEA/D needs the 

following input data: 

 

 a stopping condition; 

 N, the number of subproblems and the population size; 

 N, weight vectors uniformly distributed; 

 T, the number of weight vectors in the neighborhood of each vector. 

 

MOEA/D gives as output an external population (EP), used to store non-dominated 

solutions found during the optimisation process. The steps considered by the algorithm are 

concisely described below. 

The first step is the initialisation where the following actions are carried out: the EP starts 

empty; the Euclidean distance between any two weight vectors is calculated and after that, 

the T closest weight vectors to each vector are related to it; an initial population is created 

and a reference point z is initialized. The second step is the update where, for each solution 

in the population, the following is done: two solutions of the population are randomly 

selected and used to generate a new solution by applying genetic operators; the new 

solution can be repaired or improved. The reference point z is updated taking into 

consideration the new solution; a population member can be replaced by the new solution 

when it obtains a better aggregation function value; finally, the EP is updated by removing 
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from it all the solutions dominated by the new solution and, adding to the EP the new 

solution if it is non-dominated in the EP. The third step is to check the stopping condition; 

if it is satisfied, the algorithm finishes and reports the EP as its output; otherwise, the 

algorithm returns to the second step. 

 

2.1.2 MOEA/D-DE 

 

It is a new version of MOEA/D to deal with continuous MOPs [33]. It uses a differential 

evolution operator and a polynomial-based mutation operator for creating new solutions. 

The algorithm, additionally to MOEA/D input, requires the following: 

 

 δ, the probability that parents are picked up from the neighborhood; 

 nr, the maximum number of solutions replaced by each new solution. 

 

As output, the algorithm gives an approximation to the Pareto front. MOEA/D-DE 

considers three steps as MOEA/D. The first step has the same actions as MOEA/D, except 

that it does not initialize an external population. The second step is the update where, for 

each solution in the population, the following is done: a range of mating or update is 

selected taking into account the δ value; two solutions are randomly selected on it, and are 

used to create a new child by applying the differential evolution operator and the 

polynomial-based mutation operator. If an element of the new solution is out of the 

decision space, its value is reset to be inside the boundary. Also, the reference point z is 

updated considering the new solution; the population solutions are updated using the value 

of nr and the aggregation function value. The third and last step consists in checking the 

stopping criterion. 

 

2.2 The preference model  
 

The model of preferences proposed by Fernandez et al. [3] uses the fuzzy outranking 

relation suggested by Roy [34] for modeling crisp preference relations. The crisp 

outranking relation represents the statement ‘x is at least as good as y’ and is denoted by 

xSy (x outranks y). The definition of the preference relations rests on the degree of 

credibility of xSy denoted by σ(x,y). This value of truth σ can be calculated using 

outranking methods, such as ELECTRE-III [34,35] and PROMETHEE [36]. The 

determination of one preference relation between a pair of solutions is based on a threshold 

of acceptable credibility λ (determines a level of requirement of the outranking relation), a 

symmetry parameter ε, and an asymmetry parameter β. For each pair of alternatives (x,y), 

the model establishes one of the preference relations shown in Table 1. 

The strict preference is defined when the DM has clear and well-defined reasons to prefer x 

over y. The indifference occurs when the DM notes a high degree of equivalence between x 

and y. The weak preference takes place when the DM hesitates between xPy or xIy. The 

incomparability arises when the DM perceives a high level of conflicting information when  

x is compared with y. The k-preference happens when the DM hesitates between xPy and 

xRy. 
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Table 1.  The binary preference relations between each pair of solutions (x, y) 

Outranking relation Conditions*  

Strict preference  

(xPy) 
x dominates y ∨ (σ (x, y) ≥ λ ∧ σ (y, x) < 0.5) ∨ 
(σ (x, y) ≥ λ ∧ [0.5 ≤ σ (y, x) < λ] ∧ [σ (x, y) − σ (y, x)] ≥ β) 

 

 (1) 

Indifference  

(xIy) 

 

σ (x, y) ≥ λ ∧ σ (y, x) ≥ λ ∧ |σ (x, y) − σ (y, x)| ≤ ε  

 (2) 

Weak preference  

(xQy) 

 

σ (x, y) ≥ λ ∧ σ (x, y) > σ (y, x) ∧ ¬ xPy ∧ ¬ xIy  

 (3) 

Incomparability  

(xRy) 

 

σ (x, y) < 0.5 ∧ σ (y, x) < 0.5  

 (4) 

k-preference  

(xKy) 
0.5 ≤ σ (x, y) < λ ∧ σ (y, x) < 0.5 ∧ 
σ (x, y) − σ (y, x) > β/2 

 

 (5) 

*Considering (0 ≤ ε ≤ β ≤ λ ≤ 1 and λ > 0.5). 

 

Let us consider a set of feasible solutions O; the preference model establishes the sets and 

measures shown in Table 2. 

 
Table 2.  Sets and measures defined by the preferential system 

Set / Measure Definition  

S(O, x) = {y ∈ O | yPx} Solutions that strictly outrank x (6) 

 

NS(O) = {x ∈ O | S(O, x) = Ø} Called the non-strictly-outranked frontier (7) 

 

W(O, x) = {y ∈ NS(O) | yQx ∨ yKx} Non-strictly-outranked solutions that are weakly 

preferred to x 

(8) 

 

 

NW(O) = {x ∈ NS(O) |W(O, x) = Ø} Named as the non-weakly-outranked frontier (9) 

 

𝐹𝑛(𝑥) = ∑ [𝜎(𝑥, 𝑦) − 𝜎(𝑦, 𝑥)]

𝑦∊𝑁𝑆(𝑂)\{𝑥}

 

 

 

The net flow score is an additional criterion to detect 

preferred solutions by the DM on the non-strictly-

outranked frontier, where Fn(x) > Fn(y) shows a certain 

preference for x over y 

(10) 

 

 

 

 

F(O, x) = {y ∈ NS(O) | Fn(y) > Fn(x)} Non-strictly-outranked solutions that have a greater net 

flow than x 

(11) 

 

 

NF(O) = {x ∈ NS(O) | F(O, x) = Ø} Denominated as the net-flow non-outranked frontier (12) 

 

In this paper, the degree of truth σ(x,y) is calculated as the ELECTRE-III method [34] (with 

some simplifications) and is used in the same way along the whole document. The 

computation of σ is detailed below: 

 

Let us consider that (x,y) is a pair of solutions defined by a set of N objective functions, G = 

{g1, g2, . . . , gj, . . . , gN}. Then,  

 

σ(x,y) = c(x,y) · N(d(x,y)),                  (13) 
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where c(x,y) expresses the degree of truth of the assertion “there is a strong coalition of 

criteria in favor to xSy”. N(d(x,y)) expresses the degree of truth of the assertion “there is no 

strong opposition to xSy”.  

This concordance degree c(x,y) is computed using a set of weights wj (w1 + w2 + … + wN = 

1) and an indifference threshold qj for each j-th objective as follows: 

 

𝑐(𝑥, 𝑦) = ∑ 𝑐𝑗(𝑥, 𝑦)

𝑗:𝑔𝑗∈𝐶𝑥𝑦

                                                                                                             (14) 

where 

𝑐𝑗(𝑥, 𝑦) = {
𝑤𝑗

0  
    

𝑖𝑓𝑓  𝑥𝑃𝑗𝑦 ∨   𝑥𝐼𝑗𝑦

otherwise
                                                                                             (15) 

 

such that       𝑥𝑃𝑗𝑦 = 𝑔𝑗(𝑥) > 𝑔𝑗(𝑦)  ∧  ¬𝑥𝐼𝑗𝑦,                                                                        (16) 

                      𝑥𝐼𝑗𝑦 = |𝑔𝑗(𝑥) − 𝑔𝑗(𝑦)| ≤ 𝑞𝑗 

 

P and I are the predicates of strict preference and indifference, respectively, when the j-th 

objective is evaluated.  

The criterion set Cxy = {gj ∊ G | xjPjyj ∨ xjIjyj} is the so-called concordance coalition with 

xSy. The set G–Cxy is the discordance coalition with xSy. 

 

The marginal discordance index dj(x,y) measures how much each criterion disagrees with 

the statement xSy. This index is calculated using a veto (vj) and a pre-veto (uj) thresholds 

assigned to the j-th objective (see Eq. (17), 

 

𝑑𝑗(𝑥, 𝑦) = {
0                           

(𝛻𝑗 − 𝑢𝑗)/(𝑣𝑗 − 𝑢𝑗)

1                          

    

𝑖𝑓𝑓 𝛻𝑗 ≤ 𝑢𝑗        

𝑖𝑓𝑓 𝑢𝑗 < 𝛻𝑗 < 𝑣𝑗

𝑖𝑓𝑓 𝛻𝑗 ≥ 𝑣𝑗         

                                                      (17) 

 

Finally, the degree of truth of  the predicate about the weakness of the discordance coalition 

is calculated by using the “min” operator combined with the strict negation  “1–*” operator 

as follows: 

 

𝑁(𝑑(𝑥, 𝑦)) = 𝑚𝑖𝑛
𝑗:𝑔𝑗∈𝐷𝑥𝑦

{1 − 𝑑𝑗(𝑥, 𝑦)}                                                                                 (18) 

 

where  

Dxy = G – Cxy; 

𝛻𝑗 = 𝑔𝑗(𝑦) − 𝑔𝑗(𝑥). 
 

2.3 A brief outline of two multi-criteria ordinal classification methods  

 

2.3.1 The THESEUS method 

 

The THESEUS method [37] is an approach based on outranking relations to solve multi-

criteria sorting problems. The term sorting refers to the assignment of a set of alternatives 

to preference-ordered classes, which are predefined in an ordinal way [38]. THESEUS 
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assigns multi-criteria objects to an element of the set of ordered classes by using the 

information from various preference and indifference relations. These relations are 

determined from an outranking relation defined on the universe of objects. The assignment 

is not a result of the object’s intrinsic characteristics, but rather a consequence of 

comparisons with other objects whose assignments are known. The THESEUS method is 

based on the following premises: 

 

 There is a limited number of ordered classes Ct = {C1, …, CM}, (M ≥ 2); where CM 

indicates to be the best class. 

 U represents the universe of objects x characterised by a set of N real-valued criteria, 

indicated as G = {g1, g2, . . . , gj, . . . , gN}, where N ≥ 3. 

 There is a set of reference objects T (also named reference set or training set), which 

is formed of objects bkh ∈ U assigned to classes Ck, (k = 1,..., M). 

 There is an outranking relation σ(x,y) defined on U×U (see Section 2.2), which 

models the degree of credibility of the declaration ‘x is at least as good as y’ from the 

DM’s point of view.  

 

The assignment of object x to a potential class is denoted as C(x). In line with THESEUS 

premises, C(x) should fulfill: 

 

xU, bkhT 

xPbkh  C(x) ≿ Ck         (19.a) 

bkhPx  Ck ≿ C(x) 

 

xQbkh  C(x) ≿ Ck         (19.b) 

bkhQx  Ck ≿ C(x)     

xIbkh  (C(x) ≿ Ck )  (Ck ≿ C(x))  C(x) = Ck     (19.c) 

 

The symbol ≿ expresses the statement ‘is at least as good as’ on the set of classes, which is 

associated with the decision-making framework. The relations P, Q, and I were previously 

formalized in Eqs. (1–3). THESEUS makes use of the inconsistencies with Eqs. (19.a–c) to 

examine the possible assignments of x. The sets of inconsistencies are defined below: 

 

 The set of P-inconsistencies for x and C(x) is defined as DP = {(x,bkh), (bkh,x), bkh ∈ 

T such that (19.a) is FALSE};  

 The set of Q-inconsistencies for x and C(x) is defined as DQ = {(x,bkh), (bkh,x), bkh ∈ 

T such that (19.b) is FALSE}; 

 The set of I-inconsistencies for x and C(x) is defined as DI = {(x,bkh), (bkh,x), bkh ∈ T 

such that (19.c) is FALSE}. 

 

Let us suppose that C(x) = Ck and bjh ∈ T. Some I-inconsistencies can be classified as 

follows: 
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 Second-order I-inconsistencies (D2I): they occur when x and bjh belong to adjacent 

classes and however xIbjh; then, this kind of inconsistency may be explained by 

‘discontinuity’ of the description; x may be close to the upper (lower) boundary of 

Ck and bjh may be close to the lower (upper) boundary of Cj. 

 First-order I-inconsistencies (D1I): they occur when x and bjh do not belong to 

adjacent classes and however xIbjh. D1I = DI – D2I. 

 

Let N1= nP + nQ + n1I, and N2 = n2I where nP, nQ, n1I, and n2I represent the cardinalities of 

inconsistency sets specified before. THESEUS recommends an assignment that minimizes 

the above inconsistencies with lexicographic priority for N1, which is the most relevant 

criterion. The THESEUS assignment rule is shown in Algorithm 1. 

 
Algorithm 1. THESEUS assignment rule. 

Input: U, T 

Output: objects assigned to classes 

Initialize: k ←1, assign the minimum credibility level λ > 0.5, Cj ← Ø, Caux ← Ø 

1 For each x ∈ U do 

2     Do 
3         For each bkh ∈ T do 

4             Caux ← Calculate N1 (Ck) 

5         k ← k +1 

6     Until k ≤ M 

7     Cj = argmin {Caux} 

8    𝐶𝑘∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
{𝐶𝑗}

{𝑁2(𝐶𝑖)}                                

9     Assign x to Ck* 

 

The outcome of applying the assignment rule may be i) a single class which is called a 

‘precise assignment’ or ii) a series of classes (multi-class) which is called an ‘imprecise 

assignment’. Multi-class emphasizes the highest (CH) and the lowest (CL) class; every class 

in this interval may be adequate for the assignment of the object. In this paper, we adopt a 

‘pessimistic’ attitude; the object will be assigned to CL. 

 

2.3.2 The ELECTRE-TRI method 

 

ELECTRE-TRI is one of the methods of the ELECTRE (ELimination Et Choix Traduisant 

la REalité) family, which are based on the construction and exploitation of an outranking 

relation applied to different problems (choice, ranking, and sorting) in multi-criteria 

decision analysis. ELECTRE-TRI is a multi-criteria ordinal classification method that 

assigns a set of actions (solutions) A = {a1, a2, …, al} to predefined ordered classes. The 

assignment process is based on the DM’s preferences which are modeled by a set of 

parameters, and is described below. The parameters are preference (pj), indifference (qj), 

and veto (vj) thresholds; a set of weights (wj), where j=1,…,N and N indicates the number 

of criteria; a set of reference profiles (bi), where i=1,…,n and n represents the total number 

of reference profiles; and a cutting-level λ ∈ [0.5, 1]. Each reference profile is described by 

N criterion values.  

There are n+1 classes, where C1 is the worst class and Cn+1 is the best one. Each class Ci is 

bounded by two reference profiles (bi-1 is the lower and bi is the upper one) where the upper 

profile of a class corresponds to the lower profile of the next class. The profiles b0 and bn+1 
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correspond to the ideal and anti-ideal profiles, respectively. All these elements are 

illustrated in Fig. 1. 

 

 
Fig. 1. Denotation of the classes and reference profiles [39] 

 

The assignment process of an action a to a class results from the comparison made between 

the action a and the reference profiles established by the DM. This process is performed in 

two main consecutive steps: 

 

 the construction of an outranking relation S, as described in Section 2.2, that defines 

how solutions compare to the reference profiles, and 

 the exploitation of this relation in order to assign each solution to a precise class. 

 

Exploitation procedure 

 

This process consists in determining the way in which an action a is compared to the 

reference profiles in order to define the class to which a should be assigned. The following 

two procedures can be used: 

 

Pessimistic procedure 

a) Compare a  to bi, for i = n, n-1,…, 0, 

b) Action a will be assigned to class Ci+1 (a → Ci+1) for which bi is the first profile 

such that aSbi  (aSbi  σ(a,bi) ≥ λ). 

 

Optimistic procedure 

a) Compare  a  to bi, for i = 1, 2, …, n, 

b) Action a will be assigned to class Ci (a → Ci) for which bi is the first profile such 

that bi≻a  (bi≻a  biSa and not (aSbi)). 

 

It is worth mentioning that the pessimistic procedure is used in this work. More information 

regarding the ELECTRE-TRI method can be found in [40]. 
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3 A multi-criteria ordinal classification method within an evolutionary 

algorithm 

 

The proposed approach aims to incorporate the DM's preferences into an evolutionary 

algorithm to guide the search process towards solutions more in agreement with his/her 

preferences, that is, the region of interest (ROI). In this paper, the solutions in the ROI are 

characterised by being non-dominated and belonging to the most preferred class. The DM's 

preference information is reflected on a set of parameters, a reference profile, and a 

reference set. The proposed procedure uses this preference information in a multi-criteria 

ordinal classification method, which is included in an evolutionary approach to lead the 

search towards the ROI. New solutions generated by the search process are assigned to a 

class by the multi-criteria classification method. In this work, ELECTRE-TRI [40] and 

THESEUS [37] are used independently as multi-criteria ordinal classification methods. The 

selective pressure of the evolutionary approach  is strengthened by using the classification 

of the solutions. Our proposed approach is a hybrid algorithm consisting of three main 

phases: 1) initialisation of reference solutions; 2) the preference elicitation phase, and 3) the 

selective pressure phase. The purpose of the first phase (initialisation) is to obtain a set of 

solutions. In the second phase (elicitation), the solutions of that set are classified by the 

DM, that is, (s)he express his/her judgments. This set is used to identify some good 

solutions during the third phase (selective pressure). Once the third phase finishes, the DM 

improves his/her understanding about what a satisfactory solution is and (s)he can update 

his/her preferences, returning to the second phase. Then, new assignments are made and the 

preference model is updated. The process can be repeated until the DM feels satisfaction 

with the solutions in the most preferred class. The hybrid approach is called Hybrid 

Evolutionary Algorithm guided by Preferences (HEAP) and, depending on whether the 

ELECTRE-TRI or the THESEUS method is used, HEAP-ELECTRE or HEAP-THESEUS, 

respectively. Fig. 2 illustrates the HEAP algorithm and schematizes in detail the relation 

between its phases. Section 3.1 describes the first two phases and section 3.2 describes the 

third one.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Hybrid Evolutionary Algorithm guided by Preferences (HEAP) 

  

Initialisation 

Preference elicitation 

Selective pressure 

No 
 Maximum number  
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3.1 Initialisation and Preference elicitation phase 

 

The purpose of the first two phases is to obtain i) a whole set of outranking model 

parameters (criterion weights and different thresholds); ii.1) a reference profile as limiting 

boundary between the ordered classes of solutions when ELECTRE-TRI is used; or ii.2)  a 

reference set with solutions assigned to the pre-defined classes when THESEUS is used. 

The classes considered in this work are two: ‘satisfactory’ and ‘unsatisfactory’. The 

initialisation and preference elicitation phases are illustrated in Fig. 3. When the hybrid 

procedure starts, the first step is to run a multi-objective metaheuristic to generate a subset 

of the approximated Pareto frontier (Processes 1−2 in Fig. 3). It should be mentioned that 

any metaheuristic can be used in the first phase. The output set of this metaheuristic will be 

assigned by the DM to the previously defined classes. Once this has been done, the DM 

will make a direct or an indirect elicitation of preference model parameters; in case of 

ELECTRE-TRI, these parameters are weights, thresholds and the limiting profile; in case of 

THESEUS, only weights and thresholds (Processes 3−4 in Fig. 3). In successive 

interactions, if needed, the DM makes judgments on solutions provided by the third phase 

and updates model parameters (Processes 3−4 in Fig. 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.  Flowchart of the first two phases of HEAP 
 

When direct elicitation is used, the DM is in charge of making a direct setting of the 

preference parameters values. According to Fernández et al. [29], the direct elicitation of 

veto thresholds can be a very hard task when ELECTRE type methods are used, since these 

parameters are very unfamiliar to typical decision makers. Particularly, ELECTRE-TRI has 

been criticized because of the difficulties coming from the appropriate definition of the 

limiting profiles. If a direct elicitation is performed within the first phase of the hybrid 

algorithm, the elicited model should be in agreement with the assignment of solutions 

(made by the DM) to the satisfactory and unsatisfactory classes; that is, the preference 

model should be consistent with the assignments made by the DM to avoid contradictions.  

Initialisation (Initialise reference solutions) 

Run a multi-objective  

metaheuristic approach 

Obtain an approximate subset of the 

Pareto frontier 

Preference elicitation 

Assign each solution to a class of the 

set ’unsatisfactory’, ‘satisfactory’ 

Obtain (or update) the whole set of 

decision model parameters 
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The alternative is the use of indirect elicitation methods. These are based on regression-

inspired procedures for inferring the model’s parameters from a set of decision examples. 

In this paradigm, the elicited model agrees with the known DM’s preferences expressed 

through the set of decision examples. Doumpos et al. [27] and Fernández et al. [29] 

proposed metaheuristic algorithms to infer the whole set of  the ELECTRE-TRI model 

parameters from assignment examples. Covantes et al. [28] proposed an evolutionary 

algorithm to infer the THESEUS model parameters.  

Let us remark that the experiments shown in this paper were performed without a real DM. 

Then, the DM was simulated by using the outranking model described in Section 2.2. Thus, 

the first phase of the hybrid algorithm is performed without real human judgments;  the 

experiments work as in a direct elicitation method in which an appropriate set of model 

parameters can be identified a priori. Algorithm 2 illustrates this process. The simulation 

proceeds as follows: let us take the solutions obtained by the  metaheuristic that runs in the 

first phase, to create a reference set by using the outranking model described in Section 2.2; 

this set will be used by THESEUS. The satisfactory class is created with some solutions 

that belong to the non-strictly-outranked frontier (Line 2) and fulfill one of the following 

conditions: i) to belong to the non-weakly and net-flow non-outranked frontier (Line 7), 

(this set is called the ‘Best Compromise’ (BC)); ii) to be indifferent to any solution in BC 

(Line 13); iii) to be a non-dominated solution (minimization) with respect to the counting 

of weakness (Eq. 8) and net flow score (Eq. 10), considered as two indirect objectives (Line 

17); iv) to be a solution with a positive net flow score (Line 21). The unsatisfactory class is 

created with some solutions that do not fulfill any of the conditions stated above.  

On the other hand, the solution considered as reference profile (called ‘ref_profile’ in Line 

25), which will be used by ELECTRE-TRI to identify the boundary between classes, is the 

one that meets the condition of belonging to the non-strictly-outranked frontier and being 

the last solution that has a positive net flow score (Line 25), without being a BC, indifferent 

to some BC, or a non-dominated solution with respect to the objectives’ weakness count 

and net flow score. We consider that this condition is enough to define the boundary 

between satisfactory and unsatisfactory classes.  
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Algorithm 2. Procedure for creating a reference set and a reference profile through a simulated DM. 

Input: A ← subset of the approximate Pareto frontier generated by any metaheuristic 

Output: a reference set {satisfactory, unsatisfactory}, a reference profile {ref_profile} 

Initialize: satisfactory ← Ø, unsatisfactory ← Ø, ref_profile← Ø, bestCompromise ← Ø, temp  ← Ø 

1. For each x ∈ A do 

2.  If |S(A, x)| = 0 then      // Eq. (6) 

3.   temp ← x 

4.  else 

5.   unsatisfactory ← x 

6. For each x ∈ temp do 

7.  If |W(A, x)| = 0 and |F(A, x)| = 0 then    // Eq. (8) and (11) resp. 

8.   bestCompromise ← x 

9.   Delete x from temp 

10. satisfactory ← bestCompromise 

11. For each x ∈ temp do 

12.  For each y ∈ bestCompromise do 

13.   If xIy then      // Eq. (2) 

14.   satisfactory ← x 

15.    Delete x from temp 

16. For each x ∈ temp do 

17.  Compute dominance (min) of x in temp with respect to |W(A, x)| and |F(A, x)| as objectives 

18.  If x is non-dominated in temp then                                                          

19.   satisfactory ← x 

20.   Delete x from temp 

21. For each x ∈ temp do 

22.  If net_flow of x > 0 then      // Eq. (10) 

23.   satisfactory ← x 

24.   Delete x from temp 

25. ref_profile ← satisfactory[last] 

26. unsatisfactory ← temp 

 

3.2 Selective pressure phase 

 

The selective pressure phase aims to lead the search for solutions that are non-dominated 

and satisfactory. To achieve this, we include multi-criteria classification in an evolutionary 

algorithm, which ranks its population in preference-ordered fronts (see Fig. 4). The search 

for non-dominated solutions is carried out as in NSGA-II, by creating non-dominated 

fronts. The difference in our approach is that the solutions of the first front are classified by 

a multi-criteria classification method. After classification, performed either by ELECTRE-

TRI or THESEUS, the first front is divided into two sub-fronts, i.e., one front per each 

class. Therefore, the first front is formed now by non-dominated solutions that belong to 

the best class (satisfactory), making selective pressure towards the ROI. Algorithm 3 

presents the selective pressure process. 
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Fig. 4. Selective pressure towards the ROI. Process using preferences to enhance selective pressure towards 

dominated and satisfactory solutions 

 
Algorithm 3. Selective pressure towards the ROI 

Input: output of the Algorithm 2 

Output: the new first front 

Initialize: first_front ← Ø, second_front ← Ø 

1. Create population ← parent  offsprings 

2. Create the fronts by non-dominance 

3. Sort the first front using a multi-criteria sorting method 

4. Divide the first front into two fronts by grouping solutions with the same class 

5.      first_front ← non-dominated solutions assigned as satisfactory 

6.      second_front ← non-dominated solutions assigned as unsatisfactory 

7. Reorder the remaining fronts considering the two new fronts 

 

4 Experimental results 

 

In this section, we describe the problems used as case study as well as the experimental 

conditions used for the analysis of the results. Let us underline that, in the absence of a real 

DM, we renounce to implement the learning process provided by several iterations of the 

elicitation preference phase. 

The performance of the proposed approach was tested on project portfolio optimisation 

problems and seven scalable DTLZ test problems. By using the DTLZ test problems we 

were able to evaluate the quality of the solutions concerning the closeness to the region of 

interest. Two metaheuristics representative of the state of the art MOEA/D and MOEA/D-

DE, were used for the first phase of the hybrid approach and for comparison of results. 

Selective pressure phase 

 
Optimisation process 

Assign to classes the solutions 

of the first front using a multi-

criteria sorting method  

Sorting process 

Divide the first front 

according to classes 
 

Assign the satisfactory 

solutions as the new first front 
 

Assign the unsatisfactory 

solutions as the new second 

front 

Re-order the remaining fronts 

considering the two new fronts 
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The reference sets used by THESEUS are composed of several elements per class. 

ELECTRE-TRI uses only one element as reference profile on the boundary between  

classes. The preferential model parameters (λ=0.67, β=0.2 and ε=0.1) have the same values 

as those suggested by Fernandez et al. [3].  

All algorithms used in the experiments were run 30 times for each instance on an Intel 

CORE i7, 2.80 GHz processor with 16 GB of RAM. Our hybrid approach was developed in 

the Java language, using the JDK 1.8 compiler, and NetBeans 8.0.2 as IDE. 

 

4.1 Scalable test problems 
 

This kind of problems has been widely used in the field of multi-objective evolutionary 

algorithms mainly to assess the performance of new algorithms and to compare different 

approaches. The scalability to any number of objectives and decision variables, and 

knowledge of the particular form and position of the resulting Pareto-optimal front, are only 

some of the features of these problems. We address the DTLZ1–DTLZ7 problems with 

three and eight objectives. The metaheuristic used in the elicitation phase of preferences to 

create the reference profile and the reference set, was MOEA/D-DE and was applied on 

both problems with three and eight objectives. We have used MOEA/D-DE because it has 

shown the ability to solve problems with a few and many objectives. For the same reason, 

our hybrid approach is compared with respect to MOEA/D-DE. 

 

4.1.1 Parameters settings 

 

Control parameters used specifically by MOEA/D-DE are shown in Table 3. Their values 

were set according to the original paper [33]. Table 4 shows the crossover parameters 

values used particularly by HEAP; they were retrieved from [41].  

 
Table 3. Control parameters used in MOEA/D-DE 

Parameter Values 

CR 1.0 

F 0.5 

pm 1/n 

T 20 

δ 0.9 

nr 2 

 

Table 4. Crossover parameters values used by HEAP 

Parameter Values 

SBX crossover probability  pc  1 

SBX crossover index ηc  30 

 

Some parameters values used in the optimisation phase are the same for both algorithms 

and were set according to [41,42]; these are provided by Table 5. In three-objective 

problems, the population size and the number of weight vectors were both set to 91. In 

eight-objective problems, the population size and the number of weight vectors were both 

set to 330. These values were the same for HEAP and MOEA/D-DE and were set according 

to [41,42]. It should be mentioned that for the same problem size (number of objectives), 

we adopted the same number of iterations for both algorithms. However, as HEAP has an 

Initialisation and a Selective pressure phases, for a fair evaluation, the total number of 
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iterations is divided between them by assigning half of the iterations to each phase. 

Polynomial mutation values used by HEAP and MOEA/D-DE were retrieved from [41] and 

are shown in Table 6. 

 
Table 5. Parameters used by HEAP and MOEA/D-DE in the optimisation phase 

Problem Three objectives  Eight objectives 

No. var. Iterations  No. var. Iterations 

DTLZ1 7 400  12 750 

DTLZ2 12 250  17 500 

DTLZ3 12 1000  17 1000 

DTLZ4 12 600  17 1250 

DTLZ5 12 500  17 1500 

DTLZ6 12 500  17 1500 

DTLZ7 22 500  27 1700 

 
Table 6. Polynomial mutation values used by HEAP and MOEA/D-DE 

Parameter Values 

Polynomial mutation probability pm  1/n 

Polynomial mutation index ηm  20 

 

The parameters for calculating the outranking relation used by both multi-criteria ordinal 

classification methods are indicated in Table 7. 

 
Table 7. The outranking model parameters in instances with three and eight objectives 

Thresholds Values to three objectives Values to eight objectives 

Weights 0.4 0.3 0.3 0.26 0.16 0.11 0.11 0.09 0.09 0.09 0.09 

Veto 0.3 0.4 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

Indifference 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

Pre-veto 0.15 0.2 0.2 0.15 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

 

Characterisation of the ROI 

 

The formulation of DTLZ1–DTLZ7 [43] allows knowing whether a generated solution 

corresponds to the true Pareto front (TPF). The TPFs used as reference fronts for each of 

the problems were taken from the literature*. The 10% of solutions from each TPF was 

used to characterise the ROI. This process is presented in Algorithm 4. Let us consider the 

following: for each solution x ∈ TPF we count the number of solutions that strictly outrank 

x (Line 2); the set TPF was arranged in ascending order based on the outranking count, 

which means that the solutions were ordered according to the number of solutions that 

strictly outrank them. The ROI was characterised by the less-strictly-outranked solutions. 

We established that ten percent of the solutions in TPF is enough to characterise the ROI. 
 

Algorithm 4. Characterisation of the ROI 

Input: Solution set TPF 

Output: A representation of the ROI 

1. For each x ∈ TPF do 

2.  Compute |S(TPF, x)|        //Eq. (6) 

3. Arrange the set TPF in ascending order according to |S(TPF, x)| 

4. roi ← select ten percent of the solutions in TPF (the first solutions in TPF) 

 

 

*https://github.com/jMetal/jMetal/tree/master/jmetal-core/src/main/resources/pareto_fronts 

 https://github.com/MOEAFramework/MOEAFramework/tree/master/pf 
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4.1.2 Results in scalable test problems 

 

The performance of Evolutionary Multi-Objective Optimisation (EMO) algorithms is 

assessed on two aspects:  convergence (how close the obtained non-dominated objective 

vectors are from the true Pareto optimal front), and the distribution of the obtained 

objective vectors. To assess the quality of Pareto fronts produced by algorithms, a certain 

number of quality indicators has been proposed and applied by the existing works, e.g., 

Generational Distance (GD) [44], Inverted Generation Distance [45], Hypervolume [46] 

and, Epsilon [47]. Most of these indicators involve not only the convergence towards the 

Pareto front but also the distribution. However, in preference-based MOEAs, the non-

dominated solutions are obtained from the ROI, and not from the entire Pareto front as in 

classical MOEAs. Therefore, algorithms that incorporate preferences are less interested in 

the distribution and focus more on closeness to the ROI. Therefore, the quality indicators to 

measure the performance of preference-based MOEAs should be selected or even designed, 

considering mainly the convergence towards the ROI [48,49]. As far as we know, there is 

still no quality indicator recognized by the scientific community to evaluate the solutions of 

the algorithms that incorporate preferences. 

Considering the above, in this work we have selected GD as the quality indicator because it 

measures, without regarding the distribution, the closeness between a portion of an 

approximated Pareto front and the corresponding portion on the true Pareto front. The fact 

that the GD as a convergence indicator does not measure the distribution is seen as a 

limitation by numerous researchers in MOEAs. Nevertheless, this situation is not a real 

drawback when the interest is to measure the closeness to the ROI. Also, according to 

[48,50], GD is considered as one of the most commonly used quality indicators, as shown 

by [49,51]. For these reasons, the GD to the ROI will be used in this work as our 

performance indicator. A lower distance value represents a better performance. 

The aim of our experiments is to discover which approach achieves a set of solutions 

closest to the characterised ROI. We conducted comparative tests between our hybrid 

approach (using both multi-criteria classification methods) and MOEA/D-DE. The mean, 

minimum and maximum GD values are reported, and the best performance is shown in 

boldface. Additionally, this work used the STAC Web Platform* to carry out non-

parametric statistical tests. The Friedman Aligned Ranks test was selected as our ranking 

test and the Holm’s test as the post-hoc method. The significance level was set at 0.05. In 

the Friedman ranking test, the null hypothesis H0 was: the means of the results of two or 

more algorithms are the same. In the Holm’s test, the null hypothesis H0 was: the mean of 

the results of each pair of groups is equal. 

Table 8 shows the results of the average GD to the ROI obtained by each algorithm, and in 

accordance with this distance, the results of the Friedman statistical test for multiple 

comparison are also shown. As can be seen in Table 8, HEAP-ELECTRE achieved the 

smallest GD to the ROI in most experiments. Only in DTLZ5, HEAP-THESEUS achieved 

the smallest GD to the ROI. The results obtained from the Friedman test reject the null 

hypothesis. Therefore, there are significant differences in the performance of different 

methods. However, this result does not indicate which is the best algorithm. We have 

applied the Holm’s post-hoc test to Friedman ranks, to determine if there are significant 

differences between pairs of algorithms and confirm rank ordering.  

  

*http://tec.citius.usc.es/stac/ 
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Table 8. Mean, minimum and maximum GD  to the ROI by HEAP-THESEUS, HEAP-ELECTRE and 

MOEA/D-DE on three-objective DTLZ test problems. The best values are shown in boldface 

Problem Algorithm Mean GD Min GD Max GD Friedman Aligned Ranks test 

     Rank p-value and 

result 

DTLZ1 HEAP-THESEUS 0.0733580 0.0723256 0.0743692 45.5 0, H0 is rejected 

HEAP-ELECTRE 0.0649435 0.0634274 0.0662011 15.5  

 MOEA/D-DE 0.1715672 0.1684358 0.1896797 75.5  

DTLZ2 HEAP-THESEUS 0.0589555 0.0571426 0.0603732 45.5 0, H0 is rejected 

HEAP-ELECTRE 0.0479993 0.0459080 0.0507352 15.5  

 MOEA/D-DE 0.1055179 0.1049708 0.1058200 75.5  

DTLZ3 HEAP-THESEUS 0.0503874 0.0489506 0.0516676 45.5 0, H0 is rejected 

HEAP-ELECTRE 0.0366177 0.0347426 0.0389850 15.5  

 MOEA/D-DE 0.1487710 0.1473552 0.1505630 75.5  

DTLZ4 HEAP-THESEUS 0.0706279 0.0670725 0.0751057 45.5 0, H0 is rejected 

HEAP-ELECTRE 0.0608331 0.0587930 0.0628753 15.5  

 MOEA/D-DE 0.1311452 0.1265166 0.1374707 75.5  

DTLZ5 HEAP-THESEUS 0.0762713 0.0748984 0.0771429 15.5 0, H0 is rejected 

HEAP-ELECTRE 0.0897435 0.0862568 0.0935900 45.5  

 MOEA/D-DE 0.6474479 0.6472327 0.6477862 75.5  

DTLZ6 HEAP-THESEUS 0.0912188 0.0895426 0.0930933 44.2 0, H0 is rejected 

HEAP-ELECTRE 0.0875286 0.0829908 0.0927482 16.7  

 MOEA/D-DE 0.5262535 0.5262254 0.5262941 75.5  

DTLZ7 HEAP-THESEUS 0.0433866 0.0426132 0.0445156 45.5 0, H0 is rejected 

HEAP-ELECTRE 0.0312654 0.0288854 0.0338405 15.5  

 MOEA/D-DE 0.0616323 0.0551616 0.0628087 75.5  

 

Table 9 exhibits the results of the Holm’s test upon comparing pairs of algorithms. The 

statistical tests resulted in the rejection of the null hypothesis in all cases, that is, there were 

significant differences in the performance of algorithms, confirming rank order validity of 

the pair. All these results correspond to problems with three objectives.  
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Table 9. Statistical test results of the comparison between pairs of algorithms with Holm’s post hoc analysis, 

on three-objective DTLZ test problems 

Problem Algorithms  Holm test 

   p-value Result 

DTLZ1 MOEA/D-DE vs HEAP-ELECTRE  0 H0 is rejected 

 MOEA/D-DE vs HEAP-THESEUS  0.00002 H0 is rejected 

 HEAP-THESEUS vs HEAP-ELECTRE  0.00002 H0 is rejected 

DTLZ2 MOEA/D-DE vs HEAP-ELECTRE  0 H0 is rejected 

 MOEA/D-DE vs HEAP-THESEUS  0.00002 H0 is rejected 

 HEAP-THESEUS vs HEAP-ELECTRE  0.00002 H0 is rejected 

DTLZ3 MOEA/D-DE vs HEAP-ELECTRE  0 H0 is rejected 

 MOEA/D-DE vs HEAP-THESEUS  0.00002 H0 is rejected 

 HEAP-THESEUS vs HEAP-ELECTRE  0.00002 H0 is rejected 

DTLZ4 MOEA/D-DE vs HEAP-ELECTRE  0 H0 is rejected 

 MOEA/D-DE vs HEAP-THESEUS  0.00002 H0 is rejected 

 HEAP-THESEUS vs HEAP-ELECTRE  0.00002 H0 is rejected 

DTLZ5 MOEA/D-DE vs HEAP-ELECTRE  0.00002 H0 is rejected 

 MOEA/D-DE vs HEAP-THESEUS  0 H0 is rejected 

 HEAP-THESEUS vs HEAP-ELECTRE  0.00002 H0 is rejected 

DTLZ6 MOEA/D-DE vs HEAP-ELECTRE  0 H0 is rejected 

 MOEA/D-DE vs HEAP-THESEUS  0.00001 H0 is rejected 

 HEAP-THESEUS vs HEAP-ELECTRE  0.00005 H0 is rejected 

DTLZ7 MOEA/D-DE vs HEAP-ELECTRE  0 H0 is rejected 

 MOEA/D-DE vs HEAP-THESEUS  0.00002 H0 is rejected 

 HEAP-THESEUS vs HEAP-ELECTRE  0.00002 H0 is rejected 

 

In order to display an example of the experimental results, we have plotted in Figs. 5 and 6 

the solutions of one run of the problems DTLZ3 and DTLZ7 with three objectives.     

 

 
 

Fig. 5. Results of one run of  the DTLZ3 problem 
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Fig. 6. Results of one run of the DTLZ7 problem 

 

In problems with eight objectives, HEAP-ELECTRE obtained the smallest average GD 

towards the ROI in DTLZ1, DTLZ2, DTLZ5, DTLZ6, whereas HEAP-THESEUS obtained 

it in DTLZ3, DTLZ4, DTLZ7. These results were statistically validated by the Friedman 

Aligned Ranks test and the null hypothesis was rejected in all cases (see Table 10). 

Therefore, there are significant differences in the performance of different methods.  

Table 11 shows Holm’s post hoc analysis of the comparison between pairs of algorithms. 

Statistical tests in most cases resulted in the rejection of the null hypothesis, that is, there 

were significant differences in the performance of the algorithms. Only in DTLZ3 and 

DTLZ7, H0 was accepted upon comparing HEAP-THESEUS vs HEAP-ELECTRE and 

MOEA/D-DE vs HEAP-ELECTRE, respectively, which means that the performance of 

these algorithms is similar. 
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Table 10. Mean, minimum and maximum GD to the ROI by HEAP-THESEUS, HEAP-ELECTRE and 

MOEA/D-DE on eight-objective DTLZ test problems. The best values are shown in boldface 

Problem Algorithm Mean GD Min GD Max GD Friedman Aligned Ranks test 

     Rank p-value and result 

DTLZ1 HEAP-THESEUS 0.0458314 0.0379639 0.0546373 43.5 0, H0 is rejected 

HEAP-ELECTRE 0.0270424 0.0256780 0.0290760 17.4  

 MOEA/D-DE 0.0795901 0.0606147 0.1592223 75.5  

DTLZ2 HEAP-THESEUS 0.0672396 0.0573536 0.0692370 75.1 0, H0 is rejected 

HEAP-ELECTRE 0.0497071 0.0473928 0.0509862 15.8  

 MOEA/D-DE 0.0565191 0.0493613 0.0633782 45.6  

DTLZ3 HEAP-THESEUS 0.0588044 0.0553938 0.0626393 33.5 0.00006, H0 is rejected 

HEAP-ELECTRE 0.0594392 0.0544581 0.0640900 37.7  

 MOEA/D-DE 1.0195812 0.0528981 5.8883738 65.2  

DTLZ4 HEAP-THESEUS 0.0485468 0.0442056 0.0563014 18.6 0, H0 is rejected 

HEAP-ELECTRE 0.0542395 0.0534894 0.0550693 67.1  

 MOEA/D-DE 0.0529739 0.0502216 0.0555352 50.6  

DTLZ5 HEAP-THESEUS 0.1056569 0.1034018 0.1086645 41.4 0, H0 is rejected 

HEAP-ELECTRE 0.0918547 0.0773312 0.1064385 19.5  

 MOEA/D-DE 1.4558328 1.4258210 1.5390851 75.5  

DTLZ6 HEAP-THESEUS 0.1187496 0.1147829 0.1221445 45.5 0, H0 is rejected 

HEAP-ELECTRE 0.0721288 0.0655664 0.0823243 15.5  

 MOEA/D-DE 3.3151160 3.2773026 3.4163744 75.5  

DTLZ7 HEAP-THESEUS 0.0490189 0.0400838 0.0595119 28.6 0.0009, H0 is rejected 

HEAP-ELECTRE 0.0510092 0.0493711 0.0524904 49.6  

 MOEA/D-DE 0.0519194 0.0485054 0.0582035 58.2  
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Table 11. Statistical test results of the comparison between pairs of algorithms with Holm’s post hoc analysis, 

on eight-objective DTLZ test problems 

Problem Algorithms  Holm test 

   p-value Result 

DTLZ1 MOEA/D-DE vs HEAP-ELECTRE  0 H0 is rejected 

 MOEA/D-DE vs HEAP-THESEUS  0 H0 is rejected 

 HEAP-THESEUS vs HEAP-ELECTRE  0.00011 H0 is rejected 

DTLZ2 MOEA/D-DE vs HEAP-ELECTRE  0.00002 H0 is rejected 

 MOEA/D-DE vs HEAP-THESEUS  0.00002 H0 is rejected 

 HEAP-THESEUS vs HEAP-ELECTRE  0 H0 is rejected 

DTLZ3 MOEA/D-DE vs HEAP-ELECTRE  0.00009 H0 is rejected 

 MOEA/D-DE vs HEAP-THESEUS  0.00001 H0 is rejected 

 HEAP-THESEUS vs HEAP-ELECTRE  0.54003 H0 is accepted 

DTLZ4 MOEA/D-DE vs HEAP-ELECTRE  0.01444 H0 is rejected 

 MOEA/D-DE vs HEAP-THESEUS  0 H0 is rejected 

 HEAP-THESEUS vs HEAP-ELECTRE  0 H0 is rejected 

DTLZ5 MOEA/D-DE vs HEAP-ELECTRE  0 H0 is rejected 

 MOEA/D-DE vs HEAP-THESEUS  0 H0 is rejected 

 HEAP-THESEUS vs HEAP-ELECTRE  0.00115 H0 is rejected 

DTLZ6 MOEA/D-DE vs HEAP-ELECTRE  0 H0 is rejected 

 MOEA/D-DE vs HEAP-THESEUS  0.00002 H0 is rejected 

 HEAP-THESEUS vs HEAP-ELECTRE  0.00002 H0 is rejected 

DTLZ7 MOEA/D-DE vs HEAP-ELECTRE  0.20408 H0 is accepted 

 MOEA/D-DE vs HEAP-THESEUS  0.00003 H0 is rejected 

 HEAP-THESEUS vs HEAP-ELECTRE  0.00358 H0 is rejected 

 

In order to know the robustness of the hybrid approach concerning the increment in the 

number of objectives, the Wilcoxon statistical tests were performed with a significance 

level of 0.05. The null hypothesis H0 was: The medians of the differences between the two 

group samples are equal. The generational distances obtained in each DTLZ problem were 

grouped according to the number of objectives (3 and 8), giving rise to two groups which 

were compared. This was done for each classifier. The results of the statistical test are 

shown in Table 12. For HEAP-ELECTRE, the analysis indicates that its overall 

performance in the DTLZ test problems does not vary significantly when the number of 

objectives increases. For HEAP-THESEUS, the test shows that there are significant 

differences in their overall performance when the number of objectives increases. 

 
Table 12. The overall performance of the hybrid approach when applying the Wilcoxon statistical test 

Algoritmo SD* three obj SD* eight obj Statistic p-value  Result 

HEAP-ELECTRE 0.0214275 0.01900082 10467 0.4886438  H0 is accepted 

HEAP-THESEUS 0.0152839 0.02769361 8189 0.0010517  H0 is rejected 

*Standard Deviation 

 

The statistical analysis for each problem is shown in Tables 13 and 14. In Table 13, the 

statistical test indicates that HEAP-ELECTRE results improve by increasing the number of 

objectives in the DTLZ1, DTLZ4 and DTLZ6 problems. The results are degraded in the 

DTLZ2, DTLZ3 and DTLZ7 problems. In the DTLZ5 problem, there are no significant 

differences. 
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Table 13. HEAP-ELECTRE statistical results for each DTLZ test problem 

Problem SD* three obj SD* eight obj Mean GD 

three obj 

Mean GD 

eight obj 

Statistic p-value Result 

DTLZ1 0.000746671 0.001034030 0.0649435 0.0270424 0 1.7344E-06 H0 is rejected 

DTLZ2 0.001040563 0.000956612 0.0479993 0.0497071 29 2.8434E-05 H0 is rejected 

DTLZ3 0.000972166 0.003820774 0.0366177 0.0594392 0 1.7344E-06 H0 is rejected 

DTLZ4 0.001067292 0.000425914 0.0608331 0.0542395 0 1.7344E-06 H0 is rejected 

DTLZ5 0.001764457 0.006998189 0.0897435 0.0918547 154 0.10639417 H0 is accepted 

DTLZ6 0.002537881 0.003677811 0.0875286 0.0721288 0 1.7344E-06 H0 is rejected 

DTLZ7 0.001410511 0.000799243 0.0312654 0.0510092 0 1.7344E-06 H0 is rejected 

 

Table 14 provides the results for HEAP-THESEUS. The statistical test indicates that the 

results in problems with eight objectives improve in DTLZ1 and DTLZ4, and degrade in 

the remaining problems. 

 
Table 14. HEAP-THESEUS statistical results for each DTLZ test problem 

Problem SD* three obj SD eight obj Mean GD 

three obj 

Mean GD 

eight obj 

Statistic p-value Result 

DTLZ1 0.000591581 0.004916545 0.0733580 0.0458314 0 1.7344E-06 H0 is rejected 

DTLZ2 0.000582953 0.004136502 0.0589555 0.0672396 9 4.2856E-06 H0 is rejected 

DTLZ3 0.000702218 0.002215381 0.0503874 0.0588044 0 1.7344E-06 H0 is rejected 

DTLZ4 0.001968730 0.003100972 0.0706279 0.0485468 0 1.7344E-06 H0 is rejected 

DTLZ5 0.000558477 0.001483283 0.0762713 0.1056569 0 1.7344E-06 H0 is rejected 

DTLZ6 0.000980083 0.001531944 0.0912188 0.1187496 0 1.7344E-06 H0 is rejected 

DTLZ7 0.000454796 0.004694310 0.0433866 0.0490189 16 8.4660E-06 H0 is rejected 

 

4.2 A multi-criteria project portfolio optimisation problem 
  

One of the main tasks of management in any organization is to evaluate and choose a set of 

projects competing for financial support to form a project portfolio. The DM is the entity in 

charge of selecting the portfolio that will be implemented by the corporation. The selected 

portfolio should satisfy budget constraints. The project portfolio problem is modeled as 

follows: 

 
𝑀𝑎𝑥(
𝑥∈𝑅𝐹

𝑧(𝑥)) 

where: 

 x = (x1, x2,..., xp) is a portfolio of p projects, each xi is a binary variable, xi = 1 if the 

ith project is financed and xi = 0 otherwise; 

 z(x) = (z1(x), z2(x), ... , zN(x)) is the union of the contribution of each of the projects 

that compose a portfolio x of N objectives, each 𝑧𝑗(𝑥) = ∑ 𝑥𝑖𝑓𝑗(𝑖)𝑝
𝑖=1 ; 

 f(i) = (f1(i), f2(i),..., fN(i)) is an N-dimensional vector that denotes a project, each fj(i) 

is the contribution of project i to the jth objective; 

 each project f(i) is characterised by a cost (ci), classifiable in m activity areas ai 

(i=1,…,m) such as health, education, etc., and n geographic regions gi (i=1,…,n); 

 RF is a feasible region; 
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s.t. 

 a budget constraint defined as (∑ 𝑥𝑖𝑐𝑖
𝑝
𝑖=1 ) ≤ 𝐵where B is a total budget; 

 an area constraint 𝐿𝐴𝑘 ≤ ∑ 𝑥𝑖𝑞𝑖(𝑘)𝑐𝑖 ≤ 𝑈𝐴𝑘
𝑝
𝑖=1 where LAk and UAk are lower and 

upper limits, respectively, qi(k) = 1 if ai = k and qi(k) = 0 otherwise; 

 a geographic region constraint 𝐿𝑅𝑘 ≤ ∑ 𝑥𝑖𝑡𝑖(𝑘)𝑐𝑖 ≤ 𝑈𝑅𝑘
𝑝
𝑖=1  where LRk and URk are 

lower and upper limits, respectively, ti(k) = 1 if gi = k and ti(k) = 0 otherwise. 

 

In this experiment, the comparison was performed between MOEA/D and HEAP and it was 

carried out by pairs of methods. The different approaches were compared in order to know 

which was able to get a better representation of the known ROI, that is, non-dominated 

(ND) and satisfactory solutions. 

 

4.2.1 Parameters settings 

 

We experimented with the project portfolio problem on three and eight objectives, using 

three instances for each problem. The parameters are the same for HEAP and MOEA/D, 

where the index of the T closest vectors was set to 10, according to [32]. The parameters of 

the evolutionary process and the configuration of each problem are shown in Tables 15 and 

16, respectively. As mentioned previously, the hybrid algorithm used half of the total 

number of iterations in the first phase and the other half in the second phase. The 

parameters used to calculate the outranking relation used by both classification methods are 

indicated in Table 17. 
 
Table 15. Parameters used in the evolutionary process 

Parameter Values 

Crossover probability 1 

Mutation probability 0.01 

 
Table 16.  Configuration of instances 

Parameter Instance configuration 

No. objectives 3 8 

No. projects 100 100 

Weight vectors 105 120 

Population size 105 120 

Total iterations 500 500 

 
Table 17. The outranking model parameters in instances with three and eight objectives 

Thresholds Values to three objectives Values to eight objectives 
Weights 40 11 49 10 13 10 12 7 13 10 7 
Veto 102000 30000 1100 120000 90000 150000 100000 168000 120000 200000 156000 

Indifference 3750 750 37.5 3750 3000 4500 3000 6000 3750 6000 5250 

Pre-veto 54750 15750 587.5 63750 48000 79500 53000 90000 63750 106000 83250 

 

4.2.2 Results in the project portfolio optimisation problem 

 

The solutions obtained by the algorithms are combined in a single set to determine which of 

them gets a greater number of solutions corresponding to the approximated ROI, that will 

be called ROI for simplicity in what follows. It is worth mentioning that the solutions of 

MOEA/D were classified by the multi-criteria sorting methods (see section 2.3), used by 
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the hybrid approach, with the aim of identifying which solutions belong to the ROI. That is, 

the solutions were sorted by ELECTRE-TRI and THESEUS in comparison with HEAP-

ELECTRE and HEAP-THESEUS, respectively. 

 

In instances with three objectives, the first comparison was performed between HEAP-

ELECTRE and HEAP-THESEUS. The results showed that HEAP-THESEUS obtained a 

better representation of the ROI in instances 2 and 3 as it kept a higher percentage of non-

dominated and satisfactory solutions than HEAP-ELECTRE. HEAP-THESEUS dominated 

between 0%–45% of the solutions generated by HEAP-ELECTRE. Meanwhile, the 

solutions obtained by HEAP-ELECTRE dominated between 2%–3% of the HEAP-

THESEUS solutions. This information can be seen in Table 18. 

 
Table 18. Results between HEAP-THESEUS and HEAP-ELECTRE in problems with three objectives 

Instance Algorithm Average of 30 runs 

Solution set size Solutions in the known 

ROI (T  E)* 

% Solutions in the known 

ROI 

1 HEAP- THESEUS  108 106 98% 

 HEAP- ELECTRE 18 18 100% 

2 HEAP- THESEUS  39 38 97% 

 HEAP- ELECTRE 7 5 71% 

3 HEAP- THESEUS  106 104 98% 

 HEAP- ELECTRE 11 6 55% 

*T and E are the solution sets generated by HEAP-THESEUS and HEAP-ELECTRE, respectively. 
 

Table 19 shows the comparison between MOEA/D and HEAP-THESEUS in three 

objectives. It allows us to observe that HEAP-THESEUS preserves more non-dominated 

solutions than MOEA/D (fifth column). Between 0%–6% of MOEA/D’s solutions achieved 

to characterise the ROI, whereas 99%–100% of the solutions generated by HEAP-

THESEUS do represent the ROI (seventh column). 

 
Table 19. Comparative results between HEAP-THESEUS and MOEA/D in problems with three objectives  

Instance Algorithm Average of 30 runs 

Solution 

set size 

ND 

solutions 

% ND 

solutions 

Solutions in the 

known ROI 

% Solutions in 

the known ROI 

1 HEAP-THESEUS 108 108 100% 108 100% 

 MOEA/D 156 84 54% 9 6% 

2 HEAP-THESEUS 39 39 100% 39 100% 

 MOEA/D 134 85 63% 0 0% 

3 HEAP-THESEUS 106 105 99% 105 99% 

 MOEA/D 136 69 51% 6 4% 

 

The comparison between MOEA/D and HEAP-ELECTRE in three objectives is presented 

in Table 20. It shows that HEAP-ELECTRE is able to maintain a larger number of 

solutions as non-dominated (fifth column). This happens although the average number of 

obtained solutions by HEAP-ELECTRE is smaller than that generated by MOEA/D. 

MOEA/D generated a poor representation of the ROI, whereas HEAP-ELECTRE was able 

to perform a good representation of this set (seventh column). 
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Table 20. Comparative results between HEAP-ELECTRE and MOEA/D in problems with three objectives  

Instance Algorithm Average of 30 runs 

Solution 

set size 

ND 

solutions 

% ND 

solutions 

Solutions in the 

known ROI 

% Solutions in 

the known ROI 

1 HEAP-ELECTRE 18 18 100% 18 100% 

 MOEA/D 156 124 79% 3 2% 

2 HEAP-ELECTRE 7 7 100% 7 100% 

 MOEA/D 134 108 81% 0 0% 

3 HEAP-ELECTRE 11 11 100% 11 100% 

 MOEA/D 136 131 96% 4 3% 

 

Afterwards, we used the Wilcoxon’s signed ranked test on solutions belonging to the ROI 

to validate the results. Table 21 shows the Wilcoxon test results in instances with three 

objectives. The comparison of pairs of algorithms shows that the null hypothesis is rejected 

in all cases, that is, there are significant differences in the performance of procedures in 

instances with three objectives. 

 
Table 21. Results of the Wilcoxon test applied to solutions of the ROI in instances with three objectives 

Instance Algorithm Wilcoxon test (significance level of 0.05) 

p-value Result 

1 HEAP-THESEUS 1.723E-06 H0 is rejected 

 HEAP-ELECTRE   

2 HEAP-THESEUS 1.722E-06 H0 is rejected 

 HEAP-ELECTRE   

3 HEAP-THESEUS 1.696E-06 H0 is rejected 

 HEAP-ELECTRE   

1 HEAP-THESEUS 1.701E-06 H0 is rejected 

 MOEA/D   

2 HEAP-THESEUS 1.719E-06 H0 is rejected 

 MOEA/D   

3 HEAP-THESEUS 1.688E-06 H0 is rejected 

 MOEA/D   

1 HEAP-ELECTRE 7.631E-06 H0 is rejected 

 MOEA/D   

2 HEAP-ELECTRE 9.05E-07 H0 is rejected 

 MOEA/D   

3 HEAP-ELECTRE 0.0002435 H0 is rejected 

 MOEA/D   

 

Figs. 7−9 show the graphs corresponding to one run of the project portfolio problems with 

three objectives. 
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Fig. 7. Results of the instance no. 1 of the project portfolio problem with three objectives 
 

 

 

 

 
 

Fig. 8. Results of the instance no. 2 of project portfolio problem with three objectives 
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Fig. 9. Results of the instance no. 3 of the project portfolio problem with three objectives 
 

The comparative results between HEAP-ELECTRE and HEAP-THESEUS solving the 

problem with eight objectives are shown in Table 22. We observe that both algorithms 

obtain a similar percentage of solutions that belong to the ROI. 

 
Table 22. Results between HEAP-THESEUS and HEAP-ELECTRE in problems with eight objectives 

Instance Algorithm Average of 30 runs 

Solution set size Solutions in the known 

ROI (T  E)* 

% Solutions in the 

known ROI 

1 HEAP- THESEUS  126 125 99% 

 HEAP- ELECTRE 123 123 100% 

2 HEAP- THESEUS  124 124 100% 

 HEAP- ELECTRE 23 22 96% 

3 HEAP- THESEUS  126 126 100% 

 HEAP- ELECTRE 126 126 100% 

*T and E are the solution sets generated by HEAP-THESEUS and HEAP-ELECTRE, respectively. 
 

Table 23 shows that HEAP-THESEUS always maintains its solutions as non-dominated, 

whereas MOEA/D conserves between 90%–98% of its solutions as non-dominated (fifth 

column). Furthermore, all solutions obtained by HEAP-THESEUS characterise the ROI, 

whereas MOEA/D only obtained between 0%–1% of solutions belonging to this region 

(seventh column). 
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Table 23. Comparative results between HEAP-THESEUS and MOEA/D in problems with eight objectives 

Instance Algorithm Average of 30 runs 

Solution 

set size 

ND 

solutions 

% ND 

solutions 

Solutions in the 

known ROI 

% Solutions in 

the known ROI 

1 HEAP-THESEUS 126 126 100% 126 100% 

 MOEA/D 3162 3102 98% 7 0% 

2 HEAP-THESEUS 124 124 100% 124 100% 

 MOEA/D 2575 2408 94% 20 1% 

3 HEAP-THESEUS 126 126 100% 126 100% 

 MOEA/D 3775 3403 90% 5 0% 

 

The results given in Table 24 show a better performance of HEAP-ELECTRE than 

MOEA/D, since it maintained a slightly higher percentage of solutions as non-dominated in 

the problems with eight objectives (fifth column). MOEA/D did not get solutions belonging 

to the ROI. In contrast, HEAP-ELECTRE was able to perform a good characterisation by 

getting 100% of solutions belonging to the ROI (seventh column). 

 
Table 24. Comparative results between HEAP-ELECTRE and MOEA/D in problems with eight objectives 

Instance Algorithm Average of 30 runs 

Solution set 

size 

ND 

solutions 

% ND 

solutions 

Solutions in the 

known ROI 

% Solutions in the 

known ROI 

1 HEAP-ELECTRE 123 123 100% 123 100% 

 MOEA/D 3162 3113 98% 4 0% 

2 HEAP-ELECTRE 23 23 100% 23 100% 

 MOEA/D 2575 2558 99% 4 0% 

3 HEAP-ELECTRE 126 126 100% 126 100% 

 MOEA/D 3775 3453 91% 3 0% 

 

Table 25 exhibits the statistical results of the Wilcoxon test for instances with eight 

objectives. We can see that in all but one case, the null hypothesis is rejected. The case 

where the null hypothesis is accepted was in the comparison between HEAP-ELECTRE 

and HEAP-THESEUS on the instance three, which confirms the results shown in Table 22. 

It means that both algorithms have a similar performance. 
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Table 25. Results of Wilcoxon test applied to solutions in the ROI in instances with eight objectives 

Instance Algorithm Wilcoxon test (significance level of 0.05) 

p-value Result 

1 HEAP-THESEUS 0.00073375 H0 is rejected 

 HEAP-ELECTRE   

2 HEAP-THESEUS 1.7224E-06 H0 is rejected 

 HEAP-ELECTRE   

3 HEAP-THESEUS 0.6229019 H0 is accepted 

 HEAP-ELECTRE   

1 HEAP-THESEUS 1.6721E-06 H0 is rejected 

 MOEA/D   

2 HEAP-THESEUS 1.7181E-06 H0 is rejected 

 MOEA/D   

3 HEAP-THESEUS 1.703E-06 H0 is rejected 

 MOEA/D   

1 HEAP-ELECTRE 1.6731E-06 H0 is rejected 

 MOEA/D   

2 HEAP-ELECTRE 2.98E-05 H0 is rejected 

 MOEA/D   

3 HEAP-ELECTRE 1.6742E-06 H0 is rejected 

 MOEA/D   

 

5 Concluding remarks 

 

This paper presents a hybrid evolutionary algorithm to explore the effectiveness of using 

multi-criteria ordinal classification methods to incorporate the DM’s preferences into the 

optimisation process to lead the search towards the ROI, that is, the region of the Pareto 

frontier where solutions that are more in agreement with the DM’s preferences are located. 

The preferences are reflected by the parameters of an outranking relation, by a reference 

profile and by a reference set of assignment examples. In practice, this information should 

be elicited (directly or indirectly) by the DM, but with the purpose of evaluating our 

proposal, in the absence of a real DM, (s)he was simulated by an outranking model. 

 

The proposal fulfills several desirable characteristics of a method of preferences 

incorporation: 

 

a) an easy interaction between the DM and the solution generator algorithm, minimizing 

the cognitive effort from the DM when (s)he classifies solutions as “satisfactory” and 

“unsatisfactory”; 

b) no requirement of comparability and transitivity of preferences; 

c) the outranking model of multi-criteria preferences is compatible with relevant 

characteristics of real DMs, such as non-transitive and non-compensatory preferences 

(veto effects);  

d) we have several tools to infer the decision model parameters from the assignment 

examples provided by the DM during the interactive process. 

 

ELECTRE and THESEUS were used as multi-criteria ordinal classification approaches 

combined with an evolutionary algorithm, giving rise to the HEAP-ELECTRE and HEAP-

THESEUS hybrid procedures, respectively. These classification methods are in charge of 

assigning the new solutions generated during the evolutionary process to one of the ordered 
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classes. To a certain extent, the ordinal classification method replaces the DM during the 

optimisation process. 

 

Our approach provides as output a set of non-dominated solutions which were assigned to 

the best class. We carried out experiments with scalable benchmark problems (DTLZ1-

DTLZ7) and with a project portfolio optimisation problem. We used instances with three 

and eight objectives in both types of problems. The results obtained by HEAP-ELECTRE 

and HEAP-THESEUS approaches were compared with each other as well as against 

MOEA/D and MOEA/D-DE. All the results were validated by analyzing their statistical 

significance using non-parametric tests. 

 

Our experiments allow to rise the following conclusions: 

 

1. Our proposal achieves a good convergence to the ROI in the DTLZ1–DTLZ7 

problems with three and eight objectives; this can be argued from the lower values of 

the mean and maximum generational distance to the ROI. 

2. In  the DTLZ test problems, using ELECTRE TRI as a classification method,  the 

convergence to the ROI is not degraded when the number of objectives increases from 

three to eight;  

3. In the test instances of project portfolio optimization, the proposed method was able 

to maintain a larger number of non-dominated solutions than MOEA/D.  

4. In the same instances mentioned above, MOEA/D identified only a few solutions of 

the known ROI (non-dominated and satisfactory solutions). 

5. The larger generational distances obtained by MOEA/D in DTLZ test problems 

indicate that more solutions are far from the ROI in comparison to the solutions 

identified by our approach. 

 

Point 3 suggests that in some problems the search with preferences already incorporated can 

identify solutions closer to the Pareto Frontier than metaheuristics representative of the state 

of the art. Points 4 and 5 strongly suggest that incorporating preferences allows a better 

characterization of the ROI. This is relevant when the DM’s preferences are incorporated a 

posteriori. For example, in three instances shown in Table 19 MOEA/D only found 9, 0 and 

6 solutions in the known ROI; in comparison, 108, 39 and 105 were identified by our method. 

In an a posteriori incorporation of preferences, the DM can hardly identify the best 

compromise solution since the ROI has not been well-characterized. Something similar can 

be seen in Tables 20, 23 and 24. 

 

The hybrid approach obtained a better performance than a metaheuristic representative of the 

state of the art in all the test problems adopted for comparison, regardless of the specific 

multi-criteria ordinal classification method. The use of ELECTRE-TRI in the hybrid 

approach achieved a better performance than THESEUS in most of the DTLZ problems. In 

several DTLZ test problems, HEAP-ELECTRE improves its convergence when the number 

of objectives increases from three to eight. THESEUS slightly outperforms ELECTRE-TRI 

in some instances of project portfolio problems. 

Let us remark that our results were obtained with a single run of the preference elicitation 

phase, since in the absence of a real DM, we renounced to the interactive process of 

updating the concept of what a satisfactory solution is, as well as to update the setting of 
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preference model parameters. We hope that, through several preference elicitation phases, 

even better results can be obtained. 

 

Handling of constraints is an important issue that was not explicitly addressed in this paper. 

It is rather obvious that constraints (both in the decision and objective spaces) can be 

handled by HEAP through a version of the constrained dominance principle (e.g. Ma and 

Wang [52]); that is, an unfeasible solution cannot belong to the first non-dominated front. 

There could be more elaborated approaches, based on a re-definition of the concept of what 

a satisfactory solution is. This is a subjective preference statement in which some kind of 

compensation between objective values and fulfilment of constraints may be acceptable.  

So, unfeasible solutions (although close to the feasible region) with very good values of 

some objectives, may be classified by the decision maker as satisfactory solutions. This 

could lead to a more flexible balance between objective values and constraint satisfaction. 

More research is needed in this direction, and the tests proposed by Ma and Wang [52] and 

Liu and Wang [53] should be applied. 

 

As another avenue for future research, the proposed hybrid algorithm should be proved by 

addressing real problems with real DMs. 
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