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A B S T R A C T

This paper proposes a modal statistical inference algorithm to define multivariable operational stability limits of
time-delay perturbed dynamic systems by employing remote sensor signals. Our proposal overcomes the
drawbacks of linear independence and inter-area geometry of time-delays to analyze multiple-input, multiple-
output dynamic systems. The manuscript contributes with: (a) the study of stability margins under distributed
uncertainty and time-delays for large power systems, (b) the determination of stability conditions of inter-area
oscillations through a new probabilistic modeling approach under the influence of intermissions, and (c) the
usage of the proposed methodology to derive controlled stability limits and assess the modal resilience of per-
turbed power systems. Studies on the multi-scale signals sensitivity and multivariable polynomial intersection
from empirical perspectives in modal stability analysis are also explored. Results on an IEEE 16-generator 68-bus
system are presented to illustrate the effectiveness of the proposed algorithm. The estimation of multivariable
operational stability limits and time-delays of inter-area oscillation modes are verified with the vector fitting
procedure and first-order Padé approximation.

1. Introduction

Uncertainty and decision analysis are natural conditions at the
proper operation of power systems. Today, modern power networks,
sometimes with limited operation and control infrastructures, are
widespread on large geographical zones. This condition allows pro-
posing new methods of coordination in protection, control, monitoring,
and communication to enhance the distributed reliability and security
using remote sensor signals. In addition, the time-delay derived by
distributed transmission and processing of large datasets have become
more relevant in remote operating functions of large networks.
Recently, algorithms based on nonlinear Koopman modes [1], adaptive
stochastic subspace identification [2], forward and backward extended
Prony method [3], dynamic mode decomposition [4], and transient
energy metrics [5], have been applied for modeling power systems and
monitoring their multivariable modal stability conditions in order to
assess the power system health considering measurement data.

However, the main enhancements in practical application of these al-
gorithms is to define and ensure operational stability margins of wide-
area oscillations when the interconnected systems are subjected to
inter-area intermissions and distributed uncertainties. Henceforth, the
inter-area intermissions are considered as pre-existing events involving
network topology changes, such as scheduled maintenance of gen-
erators and power electronic devices, distributed generation and
transmission system expansion, the interconnection of isolated systems
or international energy cooperation, among others. Several probabil-
istic analysis methods, as proposed in [6,7], are an effective tool to
study power systems with random factors, which mainly aims to derive
causal relationship variables intrinsically correlated between them. For
instance, [6] has developed a nonlinear analytical method for small-
signal stability analysis used to approximate the relationship between
modal damping factor ratios and multiple wind generations in a large
scope. In [7], a nonlinear contribution method is also derived, which is
based on the idea of a sensitivity analysis to identify the fault variables
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after a disturbance is detected. In the method, an independent com-
ponent analysis is proposed, where dominant process variations are
discriminated on the estimated probabilities and assigned with large
weights to capture the significant information during online fault de-
tection. Many extensions of statistical methods based on Gaussian
mixture models [8], mean spectral radius [9], asymptotic variance
[10], k-nearest neighbor analysis [11], and complex empirical ortho-
gonal functions [12], have been developed to improve monitoring
performance by taking different process characteristics in considera-
tion. However, these methods only consider the statistical information
derived by the system response, without modeling in conjunction the
perturbed time-delay and dynamic causality of inter-area intermissions
from system stability studies. This condition is considered as a draw-
back to define coordinated studies of system stability margins in large
power systems considering proximity to vulnerability from operating
limits. Therefore, an algorithm of prediction and tuning at intelligent
decision schemes to centralized monitoring centers should also be de-
veloped. Furthermore, the perturbed time-delay derived by distributed
transmission and processing of large datasets has become more relevant
for predictive stability studies. To address these issues, an adaptive
time-delay compensation scheme for a flexible AC transmission system
has been suggested in [13]. In this approach, a time-delay compensa-
tion technique using Padé approximation has been presented, where it
is demonstrated that the performance evaluations are significantly de-
teriorated without any coordinated time-delay compensation. This fact
motivates us to innovate in the present topic. In [14], the delayed
communication is compensated by a time-delay compensator designed
using Simevents toolbox available with MATLAB, where the geometric
measures of controllability and observability, the choice of location and
the selection of their respective input signals are obtained. The author
in [15] employs a hybrid procedure to design a robust central mon-
itoring system considering distributed uncertainties and resiliency
during the permanent failure of remote communication channels. Many
researches have contributed to integrate the time-delay in central
monitoring schemes defining their operating margins in power system
stabilizers (PSS) [16–21]. Their contributions are focused on the feed-
back signal delay problem derived by route switches or communication
load increases, without modeling to detail the distributed uncertainty
and inter-area geometry of time-delays to wide-area systems. The in-
corporation of operational stability limits to time-delay perturbed dy-
namic systems has been considered as a manner effective to treat the
electromechanical oscillations in synchronized power systems. There-
fore, a statistical inference algorithm is here proposed to define co-
ordinated modal stability margins employing the dynamic causality of
distributed uncertainties and perturbed time-delays in power systems.
The method provides a simplified manner to infer modal stability re-
gions for interconnected power systems considering the coordinated
operational stability of inter-area intermissions via datasets. Ad-
ditionally, a probabilistic modeling approach for recognition of em-
pirical redundant-patterns modes is also developed. Therefore, data-
bases of historical information collected during distributed
perturbations are here employed to quantify modal resilience in power
systems. Thus, regions and margins of dynamic security to inter-area
modal instability are inferred as causal relationship forecasting by ex-
perticies of past events. Our proposal uses a distributed empirical
modeling of time-delay dynamic systems through rational function
fitting via datasets, where the uncertainty at both, coefficients of the
characteristic equation and perturbed time-delays are analyzed from
statistical models. Studies on the multi-scale signals sensitivity and
multivariable polynomial intersection from empirical perspectives in
modal stability analysis are also explored. Results on an IEEE 16-gen-
erator 68-bus system are presented to illustrate the proposed method.

The contributions of this work are:

• The statistical inference of operational stability margins of time-
delay perturbed dynamic systems.

• A stability analysis of inter-area oscillations in power systems under
a probabilistic approach that considers intermissions.
• The development of an algorithm that quantifies modal resilience by
using historical information of faults.

The paper is organized as follows. Section 2 introduces the modeling
to time-delay dynamic systems. Section 3 describes the proposed
method, where an algorithm to study vulnerability based on the inter-
area geometry of perturbed time-delays is presented. Test results and
conclusions are given in Sections 4 and 5, respectively.

2. Modeling of time-delay dynamic systems

2.1. General description

Let consider the study of a multivariable time-delay dynamic
system, with the following structure [22–25]:
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where A0, Aj are matrices, B and C are vectors of appropriate dimen-
sions, and j with < < < <0 1 2 is a real positive number used to
quantify time-delays, whereas x t( ) m, y t( ) n, u t( ) q are the
state vector, the output and the input of the system, respectively. The
stability of the system (1) is determined by the loci of the roots of the
characteristic equation:
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with + delimiting the set of complex numbers, i e. ., = +s i , of
lesser or real part equal to zero, while the operator indicates the
universal quantifier. Although new methods have been proposed to
infer the guaranteed stability regions of (1), such as those outlined in
[22–25], the modal stability problem under distributed uncertainty and
perturbed time-delay in multimachine power systems is still an open
research topic. Essentially, the stable system condition using time-
synchronized measurements and historical databases have been poorly
explored employing these methods. With the rapid advancements in
synchronized phasor measurement technologies, developing novel
multivariable stability monitoring algorithms for inter-area electro-
mechanical oscillations has become a hot topic in recent years. Several
works reported in [1–5], which involve a recursive analysis of eigen-
value movements from Hurwitz matrices, have been carried out to
measure the modal dynamic stability. However, one of the main en-
hancements in the practical application of these algorithms is to define
and ensure margins, by causal relationships prediction, of the multi-
variable modal stability under distributed uncertainties and perturbed
time-delays. Thus, in this paper is proposed new studies to define inter-
area modal stability margins and monitoring using empirical ap-
proaches as models. From time-synchronized measurements obtained
by system response, the multi-scale signals sensitivity, perturbed time-
delays, and distributed dynamic causality are treated in conjunction to
derive guaranteed regions of dynamic security under multivariable
modal instability conditions for interconnected power systems.

2.2. Problem formulation

Let us define the dynamic response of system (1) as:

= +y y yt t t( ) ( ) ( )h p (3)

with y t( )h and y t( )p denoting the response of the homogeneous and
non-homogeneous part, respectively, of the linear system. It is well-
known that the dynamic response associated to j-th system input of (1),
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i.e., y t( )j can be fitted in a linear combination of L parametric signals at
rational functions from the frequency domain, with the form of (3), as
follows [22]:
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where denotes the union set relation, and
= +d d h hs s( ) ( ) ( )j . For (4), the poles a{ }k and the residues

r{ }k are either real or complex conjugate pairs, d, h are real coefficient
matrices, whereas the operator accordingly denotes the changes at
nominal operating points or the uncertainty of (1). Therefore, the aim
of this paper is to determine the conditions under which the dynamical
responses of (1) becomes stable considering multiple system inputs by
using a proper rational equivalent model with the form of (4). To this
end, it is essential to consider that
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are proper rational function approximations of (1) with form (4) fitted
from its dynamic response in the frequency domain, where

=D s D s D s e( ) ( ) ( )p h h
sj , with D s( ), M s( ) denoting the numerator

and denominator polynomial, respectively. In this approach, we assume
that (5) and (6) are strictly proper rational functions in the sense of
linear system theory, which is considering no response at y t( )
with asymptotic value =d 0, i e. ., =s( ) 0.

In order to delimit the piecewise linear models from (6), the poles at
( )e1/ 1 sj can be estimated considering that =e cos( )s

jj

=isin( ) 1j at = ± n2j for =n a b( 0, , , ...), and = 0; thereby, the
poles are mapping on the complex plane in = ±s i n2 / j. Thus, the
proximity and movements to points (holes) of instability at time-delay
dynamic systems can be defined by the loci of the roots from the de-
nominator polynomial function =p s M s e( , ) ( )(1 ) 0j

sj , in the
interval =s i i{( 2 / , 0) (0, 2 / )}j j , where

±
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as it is illustratively shown in Fig. 1. It is sufficient to define that in
= 0j , =y s( ) { }p , with symbol { } denoting the empty set. Then, it

should be noticed that the parametric variations at controlled condi-
tions of (1), i e. ., the amplitude of the coefficients of the characteristic
equation and time-delays between some interval, regions and margins
of dynamic security during inter-area modal instability by causal re-
lationships might be forecasted, so that variables intrinsically corre-
lated between them can be derived.

3. Proposed method

3.1. Multivariable polynomial intersection

In what follows, it is important noting that in case of multiple
system outputs with random spatial distribution of their input signals,
the k-th rational function fitting of y s( , . .. )p 1 , in the interval

=s i i{( 2 / , 0) (0, 2 / )}j j , is modeled from (4) as:

= =

=
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Therefore, to infer the stability region and conditions generated by
variation of the coefficients ak and j in some intervals during dis-
tributed perturbations of causal relationships, it is sufficient to check
the family of multivariable polynomials with spectral overlap [22–25].
Roughly speaking, it is considered that =p s( , )|c s ak
p s p s p s{ ( , ) ( , ) ... ( , )} 01 2 , with denoting the polynomial
intersection set relation, is associated to a stable region of time-delay
perturbed systems which is depending of the linear combinations with
common factor c in { ... }1 2 . This is illustratively shown in
Fig. 2.

Essentially, =p s M s a e( , ) ( , )(1 )j
sj , with =M s a( , )

+ + +s s s...n
n

n
n

1
1

1 0 of arbitrary polynomial order n, constant
coefficients and roots a{ }k , briefly introduces the development of the
problem described above. It is worth pointing out that the method of
the frequency-domain empirical orthogonal functions (FD-EOFs) has
been used in this paper to design the polynomial intersection set rela-
tion and its linear independence [26–28]. Thereby, having time-domain
data series, these are transformed to frequency-domain data series using
algorithms based in the Fourier transform [29]. Therefore, considering
multiple system inputs, their multiple responses are included as a two-
dimensional array with data structure Y x( , )p j , as follows:

=Y y y yx s s s( , ) [ ( , ), ( , ), ..., ( , )]p j p p p1 2 (9)

where xj to =j 1, 2, ..., represents the spatial distribution of sensors in
variable data fields; whereas the superscript denotes vectorial
transposition. Thus, the optimal decomposition of (9) using FD-EOFs is
approximated in a linear combination of Q proper orthogonal modes
from both optimal orthogonal eigenfunctions x( ), and spectral coef-
ficients v( ) of average-inertia frequency, for the q-th partial model
according to [26–28], as:

=
Y x x Q mv( , ) ( ) ( ), ( )p

q

Q

q q
H

1 (10)

for all , and with the superscript H denoting complex conjugation
of a complex matrix. In the method, the optimal spatial basis functions

x( )q are obtained as the orthogonal eigenvectors of a cross-spectral
matrix xC ( ) , i e. .

= Y Yx x xC ( ) ( , ) ( , )p p
H (11)Fig. 1. Left: Equivalent diagram. Right: Piecewise dynamic responses.

Fig. 2. Polynomial intersection set relation. Left: Region generated. Right: Loci
of the roots.
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by solving the eigenvalue problem with form

=x x xC ( ) ( ) ( )q q (12)

where x( )q is the eigenfunction corresponding to the eigenvalue q
of a particular bandwidth with spectral energy overlap in

< < < <0 . .. Q1 2 . Furthermore, by orthonormality condition and
using the property of the inner product, one obtains that

= Yx xv ( ) ( ), ( , ) .q q p (13)

Additionally, it can be shown that the eigenvalues of v ( )q , i.e.
= v ( )q q

2 , where · is the L2-norm, and · implies the use of an
average operation, is also a measure of how much the mode participates
in generating the system response. Then, the coefficients v ( )q of
average-inertia frequency can be fitted in a proper rational function
model with form [22,28,30]:
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with = r xr̃ ˜ ( )k k q q
H . Consequently, it is possible to obtain an equivalent

linear state-space model through (16) using a diagonal canonical re-
presentation, where studies regarding to sensor optimal locations and
system observability analysis can be developed as described in
[10,14,15,31,32]. Thus, in order to define the dissipativity analysis and
inter-area geometry of perturbed time-delays under modal stability
conditions using this approach, we consider that p s( , )q c has the form

=p s M s a e( , ) ( , ˜)(1 )q c q
sc q( ) , { ... }c q( ) 1 2 of stable in-

terval = [ , ]c q( ) min max , as it was illustrated in Fig. 2. This approach
overcomes the drawbacks of computational burden, optimization cri-
terion, orthogonality condition, linear independence, and inter-area
geometry of time-delays to analyze through conventional methods the
characteristic equation of multiple-output, multiple-input dynamic
systems, for instance, presented in [22–25,33].

3.2. Multi-scale signal sensitivity analysis

It can be seen from (12) that (0, 1], with conditions:

> =
=

0, 1q
q

Q

q
1 (17)

and that this has a spectral energy distribution (SED) given by

=
=

SED( ) .q
q

q
Q

q1 (18)

Additionally, it is noticed that p s( , )q c in (16) is an orthogonal subspace
in p s p s p s{ ( , ) ( , ) ... ( , )}1 2 denoted by operator , e.g.,

p s p s p s p s{ ( , )} { ( , ) ( , ) ... ( , )}q c 1 2 , of property
= +a ec c c

i /2, with =a a{ ˜ }c k and > 0c , where the superscript
denotes the orthogonal condition. Hence, by assuming that p s( , )q c and
p s( , )j are stables, essentially with spectral symmetries overlapped in

eq
sc q( ) derived from (12), it is shown the multi-scale signal sensi-

tivity and inter-area geometry of perturbed time-delays to dynamic
systems for:

= +p s p s p s( , ) (1 ) ( , ) ( , ) 0j q j q q c (19)

where p s( , )j denotes a set of independent polynomial coefficients
among perturbations under uncertainties spatially distributed. There-
fore, the first order (eigenvalue) spectral energy sensitivity is given by

p s/ ( , )j . Thus, the stability regions can be established by con-
sidering phase shifting and movements of p s( , )j regarding to p s( , )q c ;
being it a main contribution presented in this paper. The analysis above
indicates that the proposed approach describes a more general class of
linear perturbations or it can be used to approximate nonlinear (in-
cluding multilinear) perturbations among interconnected subsystems.

3.3. Modal stability approach of time-delay perturbed dynamic systems

Given a finite number of open-loop transfer functions
=G y ys s s( , ) ( ) ( )j h p for =j 1, 2, ..., , and an uncertainty model

consisting of all linear combinations:

= =
= =

G Gs s( , ) ( , ), 1
j

j j
j

j
1 1 (20)

the stability of the closed-loop system with a unit feedback can be re-
duced to the multivariable analysis from the denominator polynomials
expressed as:

= + +P G Gs s p s s p s( , ) {( ( , ) 1) ( , ) ,..., ( ( , ) 1) ( , )}j1 1 (21)

where p s( , )j is the least common denominator of +G s( ( , ) 1)j
[22,32]. Suppose now that the coefficients of p s( , )j in (21) involve
uncertain parameters with form (19), then it is of interest to determine
the stability regions of the system for all admissible perturbations. Thus,
from the proposal described into subsections 3.1 and 3.2, it is assumed
that there exists a common factor p s p s p s( , ) { ( , ) ( , ) ...j c 1 2

p s( , )} of stable conditions to each j in (20) by decomposition in FD-
EOFs, such that P s( , ) might be written as:

=P P Ps s s( , ) { ( , )} { ( , )}c (22)

where with form (4), it is straightforward to show that:

=G G Gs s s( , ) { ( , )} { ( , )} .c (23)

Note that in this approach, the polynomial intersection is considered,
for which P s( , )c is derived, as the linear combinations of a family of
multivariable polynomials spatially distributed and of stable conditions
to generalize the inter-systems stability. Therefore, the stability pro-
blem of G s( , ) in (23) becomes a special case of multivariable linear
systems, where the loci of all roots to each polynomial in P s( , ) must
be guaranteed in the open left-half complex plane and adjusted to be
passive ensuring numerical stability, e g. ., >G seig(Re{ ( , )| }) {0}s ak to

= +a ik k k with > 0k [34,35]. Thus, the stability of this model is
ensured by defining that the dynamic response based at perturbations
lead to stable regions, is to say, to post-disturbance steady-state oper-
ating points under base frequency conditions (natural modes) and op-
erating equilibrium. For understanding how multiple inputs excite the
natural dynamics of the systems, maybe altering its stability condition,
in this paper is explored the relation of multivariable function compo-
sition described by:

= ==f g fs s s{( )( )} { ( )| } { ( )}gs s( ) (24)

where the operator ( ) denotes the composition relation s( ) between
arbitrary functions f s( ) and g s( ) [36]. With the definition above, it
should be noticed that if and only if = =g fs s{ ( )| } { ( )| }s a s ac c , then

f ga s s{ ( ) ( )}c . Thus, the proximity and movements to system in-
stability points from the distributed uncertainty are treated by con-
sidering a detailed analysis to (22) with form (24), as follows:

=P
P P

s
s s
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{{ ( , )| } { ( , )| } } {0}.

s a a

c s a s a
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P. Esquivel, et al. Electric Power Systems Research 181 (2020) 106186

4



Given that P s{ ( , )| } {0}s a{ }k in pre-disturbance steady-state oper-
ating points, then it is assumed that the loci of all roots of P s{ ( , )}c are
guaranteed in the open left-half complex plane, e g. .,

= s a{ ( ˜ )| } {0}k
L

k s a1 { ˜ }k with <˜ 0k . To the case in that
P s{ ( , )| } { }s ak , the condition (25) can be defined under the

following restriction:

P Ps s{ ( , )| } {{ ( , )| } {0}}.s a c s ãk k (26)

Thus, to obtain the stability condition of (23) using the real and ima-
ginary part of P s{ ( , )| }c s ãk and P s{ ( , )| }s ak , hereafter denoted by
Re and Im respectively, it is convenient to write that:

= +
= +

P
P

s m n
s m n

{ ( , )| }
{ ( , )| }

c s a c c

s a

˜k

k (27)

where m m{ , }c and n n{ , }c are the even and odd parts of the poly-
nomial functions in s. Then, we have that the multivariable function
composition is given by:

= + +P s m n m n{ ( , )| } {{ } { }},s a a c c{ ˜ }k k (28)

with

= + +P s m n n m n nRe { ( , )| } {{ } { } { }}s a a c c c{ }k k (29)

and

=P s m mIm{ ( , )| } { }.s a a c{ ˜ }k k (30)

Therefore, as it was illustrated in Fig. 1 and defining that
= P Ps s s( , ) tan (Im{ ( , )}/Re{ ( , )})1 represents the phase angular of

P s{ ( , )}, by checking whether

=

=

{ } { }e s i s| cos( ( , )| ) ·sin( ( , )| )

1,

s
s a a s a a s a a{ ˜ } { ˜ } { ˜ }c

k k k k k k

in the interval =s i i{( 2 / , 0) (0, 2 / )}c c , the modal stability
property of (23) can be assessed. In addition, graphical tests of opera-
tional stability regions by the loci of the roots of the polynomial func-
tion P s{ ( , )| }s a a{ ˜ }k k can also be generated. The derivation of (29) and
(30) are associated with the distributed dynamic causality of inter-area
intermissions from the proposed approach. Note that the intervals to
varying the coefficients a s˜ ( )k and time-delays c at a guaranteed region
of controlled stability conditions are given by

+a s a s a s a s a s{( ˜ ( ) ( )) ˜ ( ) ( ˜ ( ) ( ))}k k k k k and { }cmin max , re-
spectively.

3.4. Statistical representation of the operational stability condition

In order to give a deeper insight of stability conditions in time-delay
perturbed power systems using statistical representations, it is assumed
that a spectral model overlap with mixture components occurs, as pro-
posed in [6,8,12]. Thus, a parametric-probability density function re-
presented as a weighted sum of multiple averaged densities, to a set of
hidden random variables x , is presented as:

=
=

f x
x µ

( ) 1
2

exp 1
2d

j
j

x

c

x1
2

2

(31)

to == 1j j1 , where each component has three sets of parameters:
weight ( j), average mean (µc), and standard deviation ( x). Thus, the
parameters to characterize (31) are selected from (20) as ,j j

= =Pµ s{ ( , )| }c c s ãk , = =P s{ ( , )| }x c s a a˜k k , respectively. Thereafter
the joint-probability distribution function with respect to random changes
at a selected equilibrium point is consequently constructed. The method
operates by selecting the component with the largest weight as the prin-
cipal component to generate a cluster of data under modal stability con-
ditions and merging all components that fall on a particular bandwidth
having spectral energy overlap. Therefore, the probabilistic modeling of
the distributed modal stability here developed also represents a novel

contribution in this paper. The adopted approach in (31) is a widely-used
technique for modeling probabilistic uncertainties with multivariate dis-
tribution in power systems. A more detailed discussion on the develop-
ment of this method can be found in references [6,8].

3.5. Proposed algorithm

The proposed method is illustrated in Fig. 3, which is summarized
step-by-step as follows:

1. Consider the databases of historical information collected during
distributed perturbations in power systems.

2. Determine a rational equivalent model by empirical response fitting
of average-inertia frequency.

3. Estimate the independent polynomial coefficients among perturba-
tions under distributed uncertainties.

4. Define the intervals to varying the coefficients a s˜ ( )k and time-delays
c at a guaranteed region of controlled stability conditions.

5. Assessing the system stability region at an arbitrary operating point.

Thus, the following considerations are introduced from it:

• It is assumed that there is spatial overlap among measurement data.
• The time step remains fixed during the process of data collection by
sensors.
• The arrays are databases of the same variable and spatio-temporal
dimension.
• The power system under study will not have unknown changes in its
structure to consider historical perturbations.

4. Performance evaluation

4.1. Illustrative case

This section provides an illustrative test to define the properties of
the proposed method. The linear system here employed is described in
[24] as:

= + +
=

x
y

x x u
x

t
t

t t t
t

A A B
C

( )
( )

( ) ( ) ( )
( )

0

(32)

Fig. 3. Proposed algorithm to the stability analysis of perturbed systems.
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where

= =

= =

qA A

B C

0 1
1 1 , 0

0 1
,

[1, 1] , [1, 1].

0

Therefore, system (32) has uncertainty in the parameter q [0, 2]
and also in the delay (0, 0.5], of the characteristic equation:

= +I As e sAdet( ) 0 .s
0 (33)

Developing this equation, the following multivariable polynomial
function is obtained:

= + + + +p s s s s q e
q

( , ) 1 ( ) ,
[0, 2], (0, 0.5].

s2

(34)

For testing the procedure described in Section 3, 25 equally spaced
points in the interval =q{ } {[0, 2] (0, 0.5]} are applied to (32), and
1024 time samples into the range =t [0, 10] seconds are used. By il-
lustration, the impulse function is defined as its input signal. In Fig. 4
are shown their dynamic responses associated to multiple system out-
puts, where the variations caused by the parametric uncertainty are
mapping as time-domain data series. Then, an array consisting of a
collection of dynamic measurements with form (9) and of dimension

×50 1024 is structured. Thus, the proposed method is validated

employing frequency-domain data series, which are derived from time-
domain measurements. This step is developed using algorithms based
on the Fourier transform. It should be noticed that the cross-spectral
between multivariable functions are correlations of spatial variations at
phase shifting and amplitude derived through optimal basis functions,
e g. ., these are scattered as movements in its spectral mode shape esti-
mated from the orthogonal eigenvector, x( ), accordingly to (10).
Therefore, in Fig. 5 are shown the phase shifting distribution and am-
plitude estimated to the dominant-inertia frequency mode, where the
contributions of spectral energy are also illustrated. From Fig. 5, note
that the eigenvectors showing the mode shape variations are generators
of every G s( , )j under parametric uncertainty. Thus, when the mag-
nitude of every vector x( ) does not vanish, this is equivalent to the
assumption that the set of the multivariable coefficients of the gen-
erators G s( , )j are on one side of some line through the origin in the
plane complex. For the case of modal stability analysis using P s( , )j ,
this requires that the multivariable coefficients ofG s( , )j have the same
direction between them with spectral overlap at a particular band-
width. Hence, to verify whether all roots of every polynomial function
in (34) belong to a guaranteed region of dynamic security, it is vali-
dated from results derived by application of a vector fitting (VF) pro-
cedure [28], and results previously presented in reference [24] by first-
order Padé approximation. Regarding to stability conditions, results are

Fig. 4. Time-domain system response associated with multiple parametric uncertainties. Left: state 1. Right: state 2.

Fig. 5. Variations associated to modal stability conditions in the interval {[0, 2] (0, 0.5]}. Left: mode shape. Right: spectral energy.

Fig. 6. Movements to the loci of the roots in the complex plane. Left: spectral coefficient. Right: Loci of the roots.
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shown in Fig. 6, where the fitting to the spectral coefficients and loci of
the roots are given by restriction eig

>G Gs s(Re{ ( , )| ( , )| }) {0}c s a s ac to = +a ic c c with > 0c
[34]. From these results, we identify a set of parameters to (32), which
guarantees the modal stability conditions in intervals

={[ , ]} {[0, 0.82]}min max and =q q{[ , ]} {[0, 2.42]}min max . Thus, the sub-
scripts min and max denote, respectively, the lower and upper bounds
of the generated stability margins. In consideration, this illustrative test
helps to assess the proposed approach into perturbed systems applica-
tions with the equivalent representation of linear state-space models,

where multivariable datasets from multiple system responses and sta-
bility conditions are treated. The EOFs analysis and vector fitting pro-
cedure are algorithms of low computational burden. This fact allows the
proposed algorithm to be used in wide-area systems applications for
processing large databases. New studies and tests applying the proposed
approach to nonlinear systems responses will be considered as future
work.

4.2. IEEE 16-generator 68-bus test system

Results of new studies on perturbed time-delays and sensitivity
analysis using multivariable signals and its inter-area dissipativity at
interconnected power networks are here presented. The IEEE 16-gen-
erator 68-bus system shown in Fig. 7, with network characteristics
given in [37] is used as test network. The system consists of five areas
interconnected between them, as it is also illustrated. Table 1 synthe-
sizes the eigenvalues for the base case condition. To the proposed
analysis, the system modeling is structured considering that each gen-
erator is represented by a subtransient model. The load models are
defined as constant impedances and the interconnected transmission
network is reduced to generator internal nodes. Several three-phase
fault scenarios on tie-lines are simulated as transient conditions altering
its operating equilibrium to study the system vulnerability and modal
resilience by distributed perturbations. In Table 2, are given the buses
and the number of faults that have been arbitrarily involved, which are
highlighted in Fig. 7. The voltage magnitudes recorded in all system's
buses as discrete data series, using a sampling interval of =t 0.01 s
over a =t 100 s window, have been analyzed as demonstrative

Fig. 7. Single line diagram to the IEEE 16-generator 68-bus system.

Table 1
Inter-area modes

Mode Eigenvalue base case Eigenvalue with PSS

1 0.0546 ± 2.5093 i 1.3341 ± 2.44 i
2 0.0468 ± 3.0628 i 0.4538 ± 3.16 i
3 0.1542 ± 3.9711 i 0.6356 ± 4.49 i
4 0.2391 ± 4.9545 i 0.5499 ± 5.36 i

Table 2
Locations of faults

Fault from bus to bus Fault from bus to bus

1 1 47 5 26 27
2 8 9 6 34 36
3 13 14 7 43 44
4 22 23 8 46 49

Fig. 8. Variations associated with the dominant oscillation mode. Left: perturbed time-delays. Right: energy distribution.
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provision. Additionally, the machine speed deviations have also been
considered. For illustration, the multiple faults are applied at time

=t 1.1 s and clearing in time =t 1.15 s by opening their tie-lines. It is
assumed that there is space-time overlap between measurements and
sensors locations to define the spectral overlap among multiple system
responses. In order to examine the potential usefulness of the algorithm
proposed in Section 3.5, Fig. 8 shows the estimated distribution of
perturbed time-delays and energy contributions. These results have
been determined for each transient condition regarding to identified
dominant inter-area oscillation mode. Note that during random inter-
area transient conditions, there exists several intervals of time-delays
and energy contributions. The multivariable time-delay margins to infer
the stable system condition associate to delayed communication chan-
nels, the processing of large datasets, waveforms propagation, and
other factors are possible from the proposed methodology since we are
considering a time-delay interval based on the spatial geometry of
multiple system responses. Thus, distributed margins of controlled dy-
namic security by multivariable modal instability regarding to energy
contributions and intervals of phase shifting from inter-area perturba-
tions can be inferred. Therefore, the lower and upper bounds of security
margins are given in intervals ={[ , ]} {[0, 1.25]}min max seconds, and

={[Energy , Energy ]} {[0, 32.5]}min max in percentage of the total energy
liberated by the transient processes. Hence, the distributed uncertainty
of time-delay perturbed power systems have been used to determine
stable system conditions. In addition to this, it is noted that by multiple
linear combinations among these intervals, and maintaining the
average balance of energy contributions and resulting geometric dis-
tribution of spatial phase shifting, the modal dynamic security might be

preserved. Then, to illustrate this, in Fig. 9 and Table 1, are shown
several test results under stable system condition considering the bal-
ance of modal energy contribution due to multiple distributed varia-
tions in damping factor rations. However, the resulting geometry of
phase shifting from a controllable geometric phase shifting filter can
also be implemented as future research. This condition is validated from
the structured mode shape, machine speed deviation and movements to
the loci of roots also included in Fig. 9. These findings were generated
employed the multiple transient responses via emulation of PSS devices
that usually work with speed variation of the generators as proposed in
[14]. For simplicity and assuming proper conditions of the metho-
dology developed in this paper, the implementation of PSS devices have
been arbitrarily considered in buses {13 16}, without employing op-
timal search algorithms. Note that Fig. 9 shows the multivariable local
distribution and variation of the perturbed time-delays, where our re-
sult indicates that faults {2, 6} have major time-delay and that these are
associated to tie-lines between areas 4 and 5, respectively. Likewise, the
probabilistic analysis of the modal instability condition and modal re-
silience is shown in Fig. 10, where the joint-probability density function
estimated by form (31) is presented. From the statistical representations
given in Fig. 10, it can be noticed that the modal instability and stability
condition are inferred by the causal variability regarding to multiple
perturbations in several locations. Thus, both conditions are associated
to the distributed causality derived by faults {5, 7}, and faults c{2, , 8}
respectively. Therefore, these variations are used to define margins of
proximity and vulnerability to modal instability as causal relationships
prediction. From it, we note that faults {5, 7} are associated to areas 4
and 5, which presents the most significant effects in proximity to inter-
area modal instability condition by distributed uncertainty. The results
given in Fig. 10 quantitatively measure modal resilience in power
systems, which can be used for network restoration planning or wide-
area damping control design from energy control centers through ex-
perticies of past events. Specifically, the density function illustrates the
impact of the modal oscillation using the distributed resilience for in-
terconnected power systems. The main drawbacks of the proposed
method during its practical application are associated to treat the modal
observability, in which case should be considered in detail and as
special attention the types and numbers of faults to use, including their
spatial locations and directions. Additionally, the identification of inter-
area coherence between generators from an empirical perspective will
be also considered. These enhancements will be developed in future
research.

Fig. 9. Left-upper: Intervals of time-delays. Right-upper: Loci of the roots. Left-lower: phase shifting distribution (mode shape). Right-lower: rotor speed deviation in
generator 1.

Fig. 10. Joint-probability density function to the modal instability condition.
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5. Conclusion

This paper has presented a statistical inference algorithm to em-
pirically evaluate and analyze the operational stability condition of
time-delay perturbed power systems. The proposed approach employs
the empirical modeling of time-delay dynamic systems through rational
function fitting treating the distributed uncertainty and perturbed time-
delays by multivariable polynomial intersection and function compo-
sition via datasets. This approach overcomes the drawbacks of com-
putational burden, linear independence, and inter-area geometry of
time-delays in conventional methods to analyze multiple-input, mul-
tiple-output dynamic systems. The proposed algorithm, which com-
bines both statistical aspects and vulnerability studies, contributes to
infer controlled security conditions and the distributed dynamic caus-
ality of coordinated inter-area intermissions for interconnected power
systems. From the simulation results, it is shown that the proposed
method can be efficiently used to analyze large datasets collected from
multiple sources. A practical analysis of multi-scale signal sensitivity by
spectral energy overlap at frequency-domain empirical orthogonal
functions to assess the modal resilience and quantify distributed un-
certainties of interconnected power systems is also presented. It is
worth mentioning that this approach helps to define detailed studies on
the inter-area geometry of perturbed time-delays in wide-area mon-
itoring schemes.
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