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Resumen del reporte técnico en español (máximo 250 palabras)

Este trabajo presenta un modelo de control para un robot de 6 DOF que incluye
generación y seguimiento de trayectorias para un robot manipulador de 6 grados
de libertad. El sistema reconoce ataduras de ensamblaje de arnés mediante una
cámara RGB que utiliza una red neuronal artificial Hopfield bicapa para procesar
los datos de las placas de ensamblaje para el reconocimiento de las zonas de
ensamblaje. Asimismo, se deduce el diseño cinemático de la estructura robótica
para  manipular  y  controlar  el  sistema.  Este  documento  realiza  un  análisis
matemático del modelo cinemático que describe la estructura, articulaciones, y
eslabones  lo  que  permite  obtener  las  coordenadas  xyz  del  efector  final.  Se
deducen y prueban dos métodos de control. Se integra el método Tau-jerk con el
método Newton-Rapson para obtener la cinemática inversa. Asimismo, se utiliza
un  método  algebraico,  adaptativo  y  variante  en  el  tiempo  cuyo  control  no
requiere  matrices  cuadradas,  así  como  la  integración  de  un  método  de
cinemática inversa.

Resumen del reporte técnico en inglés (máximo 250alabras):

This work presents a control model for a 6 DOF robot that includes trajectory
generation and tracking. The system recognizes harness assembly ties using an
RGB camera that uses a Hopfield bilayer artificial neural network to process data
from the assembly plates for assembly zone recognition. Likewise, the kinematic
design of the robotic structure to manipulate and control the system is deduced.
This document performs a mathematical  analysis of  the kinematic model  that
describes  the  structure,  joints,  and  links,  which  allows  obtaining  the  xyz
coordinates of the end effector. Two control methods are deduced and tested.
The Tau-jerk method is integrated with the Newton-Rapson method to obtain the
inverse  kinematics.  Likewise,  an  adaptive,  time-varying  algebraic  method  is
used,  the  control  of  which  does not  require  square  matrices,  as  well  as  the
integration of an inverse kinematics method.
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tau-jerk

Usuarios potenciales (del proyecto de investigación)

Industria manufacturera de arneses



Reconocimientos
Al alumno de maestria en computo aplicado Ivan Carvajal Carlos por el 
desarrollo de este proyecto, y a la empresa Flextronics por el trabajo conjunto y 
planteamiento de problema y proveer la información requerida del proyecto. Así 
como también a los miembros del Laboratorio de Robótica que se involucraron 
parcialmente con algun tópico de este proyecto.

Productos generados
Capitulo de libro internacional
I. Carvjal Carlos, E.A. Martinez-Garcia, V.M. Carrillo Saucedo, R. Torres 
Cordoba, Chap: Bioinspired Robotic Arm Planning by Tau-Jerk Theory and 
Recurrent Multilayered ANN, Book:Deep Learning for Unmanned Systems, 
Springer LNCS, Germany, 2020



RT-LR-13-20

Model-Based Control of a 6 DOF Robotic
Arm with Visual Recurrent Bilayer ANN

Ivan Carvajal Carlos (M4)
Asesor: Edgar A. Martínez García, Rafael Torres Cordova

Laboratorio de Robótica
Instituto de Ingeniería y Tecnología

Universidad Autónoma de Ciudad Juárez

Resumen
This work presents an arranging model control for a 6 DOF

robot that allows generation, monitoring, and control systems is
developed for a robotic manipulator with six degrees of freedom
that allows the manufacturing process to be carried out. The sys-
tem must recognize a harness assembly tie utilizing an RGB ca-
mera that uses Hopfield’s Artificial Neural Network to process the
data from the assembly boards for the recognition of the assembly
zones. Also, the kinematic design of the robotic structure is propo-
sed to manipulate and control the system. This document performs
a mathematical analysis of the kinematic model that describes the
structure, joints, and links, which allows obtaining the x y and
z coordinates of the end effector. Two control methods are de-
duced and tested. Tau-jerk method with Newton-Rapson method
is integrated to obtain the inverse kinematics. Also, an algebraic
method is used, which is adaptive and variant in time whose con-
trol does not require square matrices, as well as the integration of
an inverse kinematics method.

1. Introduction
Robotic manipulators allow the integration of different

features in workstations, this is known as flexible robo-

tics manufacturing [1]. Manipulators can perform diffe-

rent tasks and even more if sensors are integrated that

increase their capacities and even allow them autonomy,

since many of these sensors currently operate "blindly",

which is why vision systems have been integrated that

allow feedback with the environment in which they ope-

rate.

Vision systems not only allow robots to recognize the

environment, but it is also possible for them to recog-

nize objects [9], which allows different industrial proces-

ses such as classifying objects, welding, or manipulating

them different ways.

One of the challenges for a robot is the generation and

tracking of trajectories, this not only implies manipula-

ting the position of the robot. Furthermore, there may

be obstacles that must be avoided. That is why various

methods allow generating a trajectory between two points

[3] who carried out a trajectory generation method based

on geometric models, his method was used in Robocup,

an international competition of robotics.

For the development of this project, a robotic manipula-

tor is made to carry out the manufacturing process in a

assembly plant. The process that requires generating and

controlling the trajectory of the manipulator. Furthermo-

re, it must be able to detect the area where the target is,

as shown in figure 1. The detection of the area is obtai-

ned by employing a RGB camera with a Hopfield ANN.

The generation and control of the trajectory are carried
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out from a mathematical model programmed (c ++) that

is connected to the robotic manipulator and the vision

sensor.

Figura 1: Trimetric view

1.1. Mechanical Design
The manipulator to be used is shown in 2, it is one of

the most common manipulators in the industry because

it resembles a human arm.

Figura 2: 6 DOF Manipulator

The manipulator’s higher-order derivatives are deduced

based on the arm’s link-joints geometry in order to obtain

the direct and inverse solutions.

x =l1C(φ1
.S(φ0

+ l2(C(φ1+φ3
.S(φ0

C(φ2
+ Sφ1+φ3

.S(φ2)

+ l3Cφ1+φ3+φ5
.S(φ0

C(φ2
C(φ4

+ Sφ1+φ3
C(φ2

S(φ4

− Cφ1+φ3+φ5
S(φ0

S(φ2
S(φ4

+ Sφ1+φ3+φ5
S(φ2C(φ4)

(1)

y = (l1Cφ1
+ l2Cφ1+φ3

+ l3Cφ1+φ3+φ5
)Cφ0

(2)

z =l1S1 + l2(−Cφ1+φ3
Sφ0

Sφ2
+ Sφ1+φ3

Cφ2
)

+ l3(−Cφ1+φ3+φ5
Sφ0

Sφ2
Cφ4

+ Sφ1+φ3+φ5
Sφ2

Sφ4

− Cφ1+φ3+φ5
Sφ0

Cφ2
Sφ4

+ Sφ1+φ3+φ5
Cφ2

Cφ4
)

(3)

This equations can be tested by making a graph. For

example a graph of two rotations φ3 = 90
◦
and φ5 =

−90
◦
, as it can see in fig 3

Figura 3: Trajectory

It follows from past position articulations that the prin-

cipal request subordinates depicting the robot arm’s Car-

tesian rates p
.
, as far as the joints turning speeds Φ

.
, can

be expressed in the direct kinematics equation p
.
= J · Φ

.
.

The grid J is a nonfixed time-fluctuating Jacobian matrix.

J =


∂x
∂φ0

∂x
∂φ1

∂x
∂φ2

∂x
∂φ3

∂x
∂φ4

∂x
∂φ5

∂y
∂φ0

∂y
∂φ1

∂y
∂φ2

∂y
∂φ3

∂y
∂φ4

∂y
∂φ5

∂z
∂φ0

∂z
∂φ1

∂z
∂φ2

∂z
∂φ3

∂z
∂φ4

∂z
∂φ5


(4)

Then the angular position can be expressed in the li-

near matrix form p = J _φ

~P′ = J(~φ).~φ′
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Inverse Jacobian matrix is used in order to find the

approximate function of ~φ

J(~φ)−1.~P′ = J(~φ)−1.J(~φ).~φ′

. The Jacobian matrix is non stationary time-varying.

Thus a integration is need it in order to find discrete

values

~φ′ = J(~φ)−1.~P′

∫φf

φi

~φ

dt
= J(~φ)−1.

∫
f

i

~P′

dt

φf − φi = J
1~φ.(~Pf − Pi) (5)

2. Tau-Jerk Control
Tau theory is a bio-inspired method developed by Da-

vid N Lee in 1976 [4] based on the perception of the

human eye. Later, based on this theory, the movement of

living beings is described calling the generalized theory

of tau [5]. Zhen Zhang tested the general theory of tau

using a robotic arm using the jerk of tau. In this papper

this theory is recreated for a 3D manipulator with New-

ton Rapson’s method for inverse kinematics. The equa-

tion that describes a Tau-jerk method to find Cartesian

position 6 and angular position 7

p(t) =
4p

T 3/kp,q
(T 3 − t3)1/kqp

(6)

φ(t) =
4φ

T 3/kp,q
(T 3 − t3)1/kqp

(7)

However, if it is required to find the angles from a

reference position, a method is necessary to find the in-

verse kinematics, because the Tau-Jerk method does not

relate the position to its angles. Newton-Rapshon method

can be used.

xn+1 = xn −
f(xn)

f′(xn)
(8)

Following the previous step, a graph of the movement

can be seen with an acceleration at the beginning and

end of the movement.

Figura 4: Tau-Jerk

3. Time variant Controller

According to algebra, solving an inverse kinematic

equation 5 an adaptive control could be deducted like

this:

~φt+1 = ~φt + J~φ−1.(~Pref − ~Pt) (9)

~Pt+1 = ~Pt + J~φ−1.(~φt+1 − ~φt) (10)

If what you have are the reference angles, you simply

invert the equations. For the reduction of the error, it

is given by the difference of the position, and in this

experiment when it is less than 0.1. In addition, to make

the simulation more similar to reality, it is multiplied

by an attenuation constant, because a real motor cannot

have such large changes. This constant is α and it can

be from 0 to 1, with 1 being the highest value.

~φt+1 = ~φt + α.J~φ−1.(~Pref − ~Pt)

~Pt+1 = ~Pt + α.J~φ−1.(~φt+1 − ~φt)

Error is calculated with goal position

error = Pgoal − Pt

Then a graph shows a linear behavior with more pre-

cision towards the end position
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Figura 5: Algebraic adaptive and variant time

method

Cartesian target positions are optimized, taking as a

criteria the minimization of the distances of the roads

and the number of turning points along a road. The sma-

ller the number of inflection points, the more linear is

a path, therefore closer than the other assembly target.

where a polynomial with minimum and maximum values

(inflection points). Set the roots through its derivative to

detect the places of inflection points as roots. One second

derivative establishes whether these roots are minimum

or maximum values. For the top view, the polynomial as-

sumes a Cartesian coordinate function y (x) processing a

total of nT Cartesian measurement points,

Therefore, let [y(x) = a0+a1x+a2x
2+a3x

3+.....a(n)xn be

a measure of the Cartesian trajectory for positions in the

XY plane, the coefficients of the third degree polynomial

are


a0

a1

a2

a3

 =


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∑
i xi

∑
i x

2

i

∑
i x
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i∑
i xi

∑
i x

2

i

∑
i x

3

i

∑
i x

4

i∑
i x

2

i

∑
i x

3

i

∑
i x

4

i

∑
i x

5

i∑
i x

3

i

∑
i x

4

i

∑
i x

5

i

∑
i x

6

i

 ·

∑
i yi∑
i yixi∑
i yix

2

i∑
i yix

3

i


(11)

Y axis is calculated in function of x coordinate

y(x) = a0 + a1x + a2x
2 + a3x

3

First derivate

y′(x) = a1 + 2a2x + 3a3x
2

Newton Rapson method

x̂t+1 = x̂t −
y′x

y′′(x)
= x̂t −

a1 + 2a2x + 3a3x
2

2a2 + 6a3x
(12)

Therefore, the optimized y is y(x̂) = a0 + a1x + a2x
2 +

a3x
3
, to know the maximum and minimum we use the

second derivative y′′(x̂) = 2a2 + 6a3x therefore:{
max if y′′(x̂) < 0

min if y′′(x̂) > 0
(13)

The absolute minimum with the shortest magnitude

among all polynomials is chosen as a function. And this

model applies to xy or yz planes separately

4. Hopfield ANN
RGB camera is used to obtain the images of the

assembly area. An RGB camera is a visual sensor that

allows images to be obtained in their primary red, green

and blue color values in a range of 8 bits (0-255) for

each pixel (th).

An image can be represented as I = IR ∪ IG ∪ IB, where I

is a pixels matrix with size mxn. To segment a channel,

for example red we would have to discriminate channels

G and B so we have Ic = IR ∪ (IG ∩ IB), For white

and black colors we have the same logical inference

IR ∩ IG ∩ IB, but white have a high RGB values thhigh
and black have low RGB values thlow. We consider

a high threshold thhigh = 200 and the low threshold

thlow = 50 everything between that is gonna be gray.

In the board we have four different types of objects to

classify.

Figura 6: Example board for assembly

1. Board, Iwhite = IR ∩ IG ∩ IB, RGB channel range

thhigh

2. Cable, Iblack = IR ∩ IG ∩ IB, RGB range thlow

3. Connector, Iblue = IB ∪ (IG ∩ IR), B range thhigh
and RG thlow

58



25
o
S  R A, S  P, 27/Noviembre/2020 Carvajal Carlos, I.

4. Cable Tie, Ired = IR ∪ (IG ∩ IB), R range thhigh and

GB thlow

The Hopfield network architecture is made up of a la-

yer with all the neurons connected to each other, whose

information travels back and forth. The inputs xi(t) are

binary or polar ({0, 1} or {−1, 1}). To Trains weights, we

use a matrix W given by.

Wij =

M−1∑
i=0

xTi · xj (14)

such that, k = 1, 2, . . . , m

W =W0 +W1 + ... +Wm (15)

Hence the total weights training matrix with vector

input xi = (x1, x2, x3, y1, y2)T and three neurons with

feedback of the first single layer Hopfield ANN is

wi =


x1
x2
x3
y1
y2

 _(x1, x2, x3, x1, y2) (16)

Where, y1 and y2 are both of the other feedback neu-

rons’ output. When it’s expected ya = 1 ⇒ y1 = yb, y2 =
yc When it’s expected yb = 1 ⇒ y1 = ya, y2 = yc and

when expected yc = 1⇒ y1 = ya, y2 = yb. Therefore,

w =


W1,1,W1,2,W1,3,W1,4,W1,5

W2,1,W2,2,W2,3,W2,4,W2,5

W3,1,W3,2,W3,3,W3,4,W3,5

W4,1,W4,2,W4,3,W4,4,W4,5

W5,1,W5,2,W5,3,W5,4,W5,5

 (17)

A neuron’s inner vector si

si = W − Xi (18)

The neuron’s output yi produces [+1, 1]. Any component

sj of the vector si , either sj <0 will produce a negative

output yj = 1, thus

y =

{
1 sj > 0

−1 otherwise
(19)

To perform the once processed classification, the nxm

image matrix is classified using the hopfield neural net-

work where each class is a channel of the RGB image. x1

= R, x2 = G and x3 = B. The Hopfield network uses bi-

nary or polar values and the values in the RGB channels

have a range of (0-255) so half 127.5 is used as threshold

th. To improve results the Hopfield network will be used

as a multilayer, having the network output as the input

of the next layer in this way.

Figura 7: Hopfield Network

Class 1 Cables Ties

x1 > th ∩ x2 <= th ∩ x3 <= th (20)

Class 2 Connectors

x1 <= th ∩ x2 < th ∩ x3 > th (21)

Class 3 Board

x1 > th ∩ x2 > th ∩ x3 > th (22)

Class 4 Cables

x1 <= th ∩ x2 <= th ∩ x3 <= th (23)

Figura 8: RGB Data at first layer
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Then, we train the "w"matrix, and with results we ma-

ke a truth table for the next clasify

ya yb yc Class

1 1 1 Board

1 1 0 Fails

1 0 1 Fails

1 0 0 Target

0 1 1 Fails

0 1 0 Fails

0 1 0 Connector

0 0 0 Cables

Figura 9: Hopfield Network graph

Then the position of ties is determined by the center

of these points.

Figura 10: Board with goal points

5. Simulation and Results
There are different simulators for robotics that are

regularly based on physics engines that allow simulating

the kinematics and dynamics of the robot to simulate

the behavior of the robot in the most realistic way.

Several simulators were considered, such as Project

Chrono, which uses a real-time 3D engine that is

programmed in c ++. In addition to taking advantage

of the boost Chrono libraries, among other physics

simulation packages. Also, this gazebo is a simulator

specialized in robotics and player stage evolution that

includes the controllers for several real robotic systems,

allowing them to test them after the simulation. Finally,

ROS was considered a package that unites several tools

including gazebo. In addition to other packages that

allow the design, simulation, and testing of robotic

systems. A Yaskawa montoman manipulator was used,

which is available for download on the MoveIt oficial

web page.

To obtain the target areas, the image is first processed,

in this work a png image is used simulating the taking

of a real camera, and through a Hopfield network the

objects are classified to obtain the desired points. For

this, a new module called ANN was created within the

ROS work-space where moveit is installed. This ANN

network uses Armadillo, openCV, and various boost

libraries which were appended to the cmake of the new

ANN module together with its package.xml to run. When

it obtains the destination zones, it creates the .txt file

and communicates through a ROS node to the move

group Taujerk / algebraic to notify it that the .txt file is

already updated.

Then Tau-jerk module and the algebraic module solve

the equations to obtain the position. Each new position

obtained is sent to the manipulator with RVIz and

this is in charge of performing the inverse kinematics

and reaching the desired position, until reaching the

desired destination area. In addition, an obstacle is

simulated, which must be evaded by the manipulator. A

T = 20 was used, so there were 20 iterations for each

destination zone but only 10 positions since the first 10

are unreachable for the manipulator (close to 0). The

target zones are obtained by communicating with the

Hopfield neural network.

Robotic projects integrate different areas of knowledge to

solve a complex problem, in this case, the trajectory was

generated by classifying destination areas in a Hopfield

network. Obtained from RGB image processing. The

Hopfield network is a recurring single layer. However,
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the process is carried out twice to use it as if it were

multilayer. The network turned out to be able to detect

the ties by means of their colors. In addition, failures are

reduced thanks to its second layer, although the results

show some repeated points, the layers and the number

of neurons can be increased to improve the results. You

can also look for manufacturing solutions such as using

white ties and red markers to mark specific areas.

(a) Tau-Jerk

(b) Time Variant Controller

Figura 11: ROS Simulation

Due to the complexity of multiple operations and the

amount of data in the image processing, the use of pa-

rallel computing was required, which was implemented

with a shared memory that runs in c++ code and the

boost libraries.

The manipulator positions were calculated with the alge-

braic method of successive approximations. The monito-

ring of the positions in a linear way and control of the

variables over time is a better option than the Tau-Jerk

method in redundant manipulators.

For the simulation, both control methods were used by

means of the Tau-jerk method, they find the positions

and ROS is in charge of finding the inverse kinematics

and the trajectory to be executed. Through the algebraic

system we find the angular position of the robot and ros

simulates the proposed path.

6. Conclusions
An algorithm was developed that allows the genera-

tion of trajectories through areas detected by a Hopfield

network, which classifies different objects based on the

pattern of colors obtained by RGB images. The data is

transmitted through a shared memory, and trajectory mo-

nitoring and control for a robotic arm with 6 degrees

of freedom are achieved with the method of successive

approximations, feedback by the simulation of an RGB

camera. The results are simulations based on the mathe-

matical abstraction of the problem in question, and it is

possible to theoretically prove that a 6-degree-of-freedom

manipulator can perform a task in manufacturing auto-

nomously through feedback from a vision system.

It is intended to implement the system in a real way for a

company in Cd. Juarez, Chihuahua. In the Hopfield mo-

del, the recognition of the target areas by patterns formed

by the shape of the object and adding it to a third layer

of the neural network is proposed. Besides, the processes

will be transferred to a prototype card such as parallel,

cerebot, or to a process in the cloud.
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