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ABSTRACT: In this work, we show that in order to fabricate coherent
titania (TiO2) films with precise thickness control, it is critical to generate
a complete polymer brush monolayer. To date, demonstrations of such
dense polymer monolayer formation that can be utilized for inorganic
infiltration have been elusive. We describe a versatile bottom-up approach
to covalently and rapidly (60 s processing) graft hydroxyl-terminated
poly(2-vinyl pyridine) (P2VP-OH) polymers on silicon substrates. P2VP-
OH monolayer films of varying thicknesses can subsequently be used to
fabricate high-quality TiO2 films. Our innovative strategy is based upon
room-temperature titanium vapor-phase infiltration of the grafted P2VP-
OH polymer brushes that can produce TiO2 nanofilms of 2−4 nm
thicknesses. Crucial parameters are explored, including molecular weight
and solution concentration for grafting dense P2VP-OH monolayers from
the liquid phase with high coverage and uniformity across wafer-scale areas (>2 cm2). Additionally, we compare the P2VP-OH
polymer systems with another reactive polymer, poly(methyl methacrylate)-OH, and a relatively nonreactive polymer, poly(styrene)-
OH. Furthermore, we prove the latter to be effective for surface blocking and deactivation. We show a simple process to graft
monolayers for polymers that are weakly interacting with one another but more challenging for reactive systems. Our methodology
provides new insight into the rapid grafting of polymer brushes and their ability to form TiO2 films. We believe that the results
described herein are important for further expanding the use of reactive and unreactive polymers for fields including area-selective
deposition, solar cell absorber layers, and antimicrobial surface coatings.

■ INTRODUCTION

Continued miniaturization of semiconductor devices has led to
cost and integration issues1 which challenge the manufacture
of a 3 nm node as envisaged by semiconductor foundries for
2023.2,3 Gate voltage scaling at these dimensions necessitates
state-of-the-art architectures beyond fin field-effect transistors
(FETs) such as the gate-all-around FET technology, leading to
further integration complexity.4 Approaches complimenting
photolithography include nanoimprint lithography,5,6 block
copolymer lithography,7−15 and, recently, area-selective depo-
sition (ASD).16−18 Such methods are favorable in enabling
future device integration and help alleviate fabrication
demands, for example, litho-etch−litho-etch.
In particular, the ability of ASD to selectively include diverse

material sets including oxides, dielectrics, and metals provides a
route to produce material patterns and reduce the number of
processing steps. The capacity of ASD to produce uniform
metal and oxide layers can assist in the development of silicon

device technologies,19 and ASD is promising for implementa-
tion and cost reduction in fields beyond complementary
metal−oxide−semiconductor (CMOS) processing, where
stacked or patterned layers are required, for example, energy-
harvesting surfaces20 and catalysis.21

Various innovative ASD approaches have been reported and
are typically based on self-assembled monolayers (SAMs) and
atomic layer deposition (ALD) or molecular layer deposition.
Others have examined unreactive polymeric resist layers
combined with ALD of metal and dielectric films. For example,
Leskela ̈ et al. designed an approach using patterned SAMs to
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generate features on copper and silicon substrates22−24 as well
as patterned organic films for activation25,26 and deactiva-
tion27,28 layers with various ALD depositions (Ru, Ir, Pt, Al2O3,
and TiO2). Bent et al. have championed SAM use to mask and
pattern copper lines on silicon29,30 and several other substrate
materials31−35 together with ALD metallization. Furthermore,
the Bent group has demonstrated a process for topographic
selective anisotropic deposition of platinum via ALD by
deactivating horizontal regions with (ion-implanted) fluoro-
carbons.36 More recent ASD research has used ASD solely to
fabricate defined materials at site-specific areas. For instance,
Kessels and co-workers have incorporated area-selective ALD
approaches that use organic inhibitors with ALD precursors,37

surface activation via reactive plasma micropatterning,38 and
tuning of the oxygen ALD cycle exposure to selectively
nucleate platinum on wafer regions.39 The research has been
extended to area-selective ALD on graphene surfaces (resist-
free)40 and ASD of ZnO by area activation using electron
beam-induced deposition.41 Kessels and co-workers have used
ALD with catalytic oxygen activation of noble-metal surfaces42

using a triple-step ALD cycle with a selective organic inhibitor,
a precursor, and reactive plasma.43 The group has also
demonstrated selective deposition of ruthenium on the Pt/
SiO2 line space using ALD and atomic layer etching (ALE)
cycles.44 Parsons et al. have demonstrated selective deposition
of diverse material sets (e.g., Ru, TiN, TiO2, and HfO2) via
ALD on silicon nitride and silicon substrates by deactivating
wafer areas with SAMs45 using patterned amorphous carbon46

and by exploiting inherent substrate selectivity.47−49 They have
also developed a TiO2 ASD approach using ALD/ALE
cycles.50 More recently, Bates et al. introduced precise design
rules for a new ASD technique known as “spin dewetting” that
exploits modification of surface energies of line-space
patterns.51,52 Selectivity is induced by tuning polymer design
to promote preferential dewetting from one substrate material
and uniform wetting on the other.
Our previous work demonstrated the feasibility of covalently

grafting polymer brush films to selectively deactivate the
patterned Cu/SiO2 line space for ASD of metal layers.53 We
demonstrated rapid grafting of reactive polymer brush films
and subsequent conversion to various oxides (Al2O3,

54

Co3O4,
55 and CuO56,57) via liquid-phase metal-ion insertion.

Liquid-phase deposition of metal ions on grafted brushes has
many benefits because of the multitude of readily available,
low-cost, and easily prepared (water-soluble) salt precursors.
However, developing a vapor-phase brush infiltration approach
can be beneficial for a wide array of applications, both ASD
and blanket layers in the semiconductor industry. Moreover,
achieving dense inorganic films in a simple one-step inclusion
method at low temperatures is very appealing for industrial
demands. TiO2 films are routinely fabricated by sol−gel,58
pulsed laser deposition (PVD),59 chemical vapor deposition
(CVD),60 and ALD.61,62 Significantly, a vapor-phase inclusion
technique can deposit uniform ultrathin films compared to
relatively high-temperature routes such as CVD and PVD.
Evaporation and CVD-based techniques cannot achieve high-
quality two-dimensional nanofilms with precise thickness
control over large areas.63

In this article, a proof-of-concept technique for vapor-phase
infiltration of covalently grafted polymer brushes to produce
wafer-scale (>2 cm2) TiO2 with high uniformity is demon-
strated on Si substrates. To fabricate coherent inorganic films
with precise thickness control, it is critical to generate high-

quality polymer brush films, that is, a complete monolayer. The
definition of a polymer monolayer with complete coverage can
be achieved and is straightforward for polymers which are
weakly interacting with one another and the substrate (apart
from the reactive terminal group used for grafting). Creating a
complete monolayer is considerably more challenging for
reactive systems with metal binding sites such as hydroxy-
terminated poly-2-vinyl pyridine (P2VP-OH). The crucial
parameters necessary for grafting poly-2-vinyl pyridine (P2VP)
monolayers from the liquid phase with very high coverage and
uniformity are explored. Factors such as polymer molecular
weight (4−16 kg mol−1), concentration of the casting solution
(0.01−6 wt %), and quantity of end groups (monohydroxy-/
dihydroxy-terminated) are examined (see Table 1). Finally, the

potential of a hydroxy-terminated polystyrene (PS-OH) brush
for substrate deactivation by limiting titanium tetraisoprop-
oxide (TTIP) infiltration is highlighted. Precisely controlling
polymer brushes for activating (P2VP-OH) and deactivating
(PS-OH) semiconductor surfaces is a critical milestone for
fulfilling future device scaling and three-dimensional (3D)
architectures. The techniques discussed herein can have
considerable importance because of the low process temper-
ature (<500 °C) needed for CMOS fabrication.64 The
fundamental insights obtained can illuminate ways to utilize
polymer brush films for vapor-phase film and ASD device-
fabrication strategies.

■ EXPERIMENTAL SECTION
Materials. Functionalized Polymers. P2VP-OH: 4 kg mol−1

(P18796-2VPOH) [polydispersity index (PDI): 1.06], 6.2 kg mol−1

(P7544-2VPOH) (PDI: 1.05), 9.6 kg mol−1 (P19125-2VPOH) (PDI:
1.07), 16 kg mol−1 (P19128-2VPOH) (PDI: 1.11); dihydroxy-
terminated P2VP: 4 kg mol−1 (P18798-2VPOH) (PDI: 1.06);
hydroxy-terminated poly(methyl methacrylate) (PMMA-OH): 6.3
kg mol−1 (P1763-MMAOH) (PDI: 1.06); PS-OH: 6 kg mol−1

(P11116-SOH) (PDI: 1.05), 10 kg mol−1 (P18787-SOH) (PDI:
1.09), 16 kg mol−1 (P13135-SOH) (PDI: 1.09). The polymers have
glass-transition temperatures of Tg = 95, 91, and 85 °C for PS-OH,
P2VP-OH, and PMMA-OH, respectively.

Homopolymers. P2VP (P41306-2VP) (PDI: 1.04); polystyrene
(P9405-S) (PDI: 1.03). All polymers were purchased from Polymer
Source (Canada) and used without further purification.

Solvents. Tetrahydrofuran (THF) (inhibitor-free), toluene
(Merck, Ireland) of high-performance liquid chromatography grade,
and deionized water (ρ = 18.2 MΩ cm) were used as received.

Precursor. TTIP (99.999%) (Merck, Ireland) was used as received.
Pure P2VP, Polystyrene, Poly(methyl methacrylate), and

SiO2 Reference Substrates. Unfunctionalized P2VP, polystyrene
(PS), and poly(methyl methacrylate) (PMMA) homopolymers were
used to fabricate reference substrates. The powders were each dry-
pressed into disc-shaped pellets (≈2 mm thick) at 350 MPa in a 13
mm diameter steel pellet die (Specac, a 13 mm evacuable pellet die).

Table 1. Polymer Properties and Annealing Conditions

polymer Mn (kg mol−1) end group (−OH) annealing conditions

P2VP-OH 4.0 mono/di 60 s (230 °C)
6.2 mono 60 s (230 °C)
10.0 mono 60 s (230 °C)
16.0 mono 60 s (230 °C)

PS-OH 6.0 mono 60 s (150 °C)
10.0 mono 60 s (150 °C)
16.0 mono 60 s (150 °C)

PMMA-OH 6.3 mono 90 s (190 °C)
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The pellets were exposed to solvent vapors (THF for P2VP and
toluene for PS and PMMA) until a smooth mirrorlike surface was
produced, similar to our previous work.54 These fabricated substrates
were used to determine the baseline contact angles (CAs) for pure
polymer surfaces to infer brush coverage on Si substrates. Plasma-
cleaned SiO2 was used as a reference (60 s, 40 kHz, 50 W, Barrel
Asher).
Polymer Brush Grafting. Silicon substrates (with a native oxide)

were cleaned and hydroxyl-functionalized using an oxygen plasma
treatment for 60 s (40 kHz, 50 W, Barrel Asher). P2VP-OH was
dissolved in THF, and PMMA-OH and PS-OH were dissolved in
toluene by stirring at room temperature (12 h). Polymer−solvent
casting solutions were prepared at concentrations ranging from 0.01
to 6 wt % and spin-coated at 3000 rpm for 30 s. Samples were placed
on a hot plate and annealed at 150 °C for 60 s (PS-OH), 190 °C for
90 s (PMMA-OH), and 230 °C for 60 s (P2VP-OH) for covalent
grafting on SiO2 via condensation reactions.65,66 Figure S1 shows
thermogravimetric analysis (TGA) showing maximum process
temperatures for each polymer. Following baking periods, samples
were sonicated in the respective solvents for 20 min (2 × 10 min
washes) to remove the physisorbed, ungrafted polymer material.
Titanium Dioxide Fabrication. For the TTIP infiltration

process, grafted monolayer films of 0.2 wt % P2VP (4 and 6 kg
mol−1) and 0.2 wt % PS were used (6 kg mol−1). Samples were placed
upside-down in a sealed glass chamber (height: 50 mm, diameter: 24
mm) containing ≈1 mL of TTIP for 2 h at 20 °C (partial pressure ≈
53 Pa).67 Polymer ashing and conversion to titanium dioxide were
achieved by UV/ozone exposure (3 h) (Novascan PDSP-UV4).
Characterization. Field emission scanning electron microscopy

(FESEM, Carl Zeiss Ultra) was performed using a secondary electron
detector (InLens) with an accelerating voltage 1−2 kV. Focused ion
beam etching (FIB, Helios NanoLab 460) was used for preparing a
lamella specimen using standard high kilovolt milling and a low
kilovolt final polish, and this rendered the lamella electron
transparent, indicating an appropriate thickness for transmission
electron microscopy (TEM). A capping layer of e-beam platinum
(∼100 nm) and ion-beam Pt (∼2 μm) was used for FIB lamella. TEM
(FEI Osiris) was performed using bright-field and scanning TEM
(STEM) imaging. During STEM, the detector lengths were 220, 550,
and 770 mm. The accelerating voltage was 200 kV. The energy-
dispersive X-ray (EDX) beam current was 1 nA, and the acquisition
time was 30 min. Atomic force microscopy (AFM, Park Systems XE7)
was used with a noncontact cantilever (AC160TS, force constant ≈
26 Nm−1, resonant frequency ≈ 300 kHz).
X-ray photoelectron spectroscopy (XPS, VG Scientific ESCALAB

Mk II) was performed under ultrahigh vacuum conditions (<5 ×
10−10 mbar) using a hemispherical analyzer and Al Kα X-rays (1486.7
eV). The emitted photoelectrons were collected at a takeoff angle of
90° from the sample surface. The analyzer pass energy was set to 100
eV for survey scans and 20−40 eV for high-resolution core scans,
yielding an overall resolution of 1.5 eV. Photoemission peak positions
were corrected to C 1s at a binding energy of 284.8 eV.68

Dynamic CA measurements (a custom-built system) were recorded
on five different regions of each sample using a high-speed camera (a
60 Hz sampling rate) to capture the advancing and receding CAs of
three probe liquids (water, diiodomethane, and glycerol). Liquids
were dispensed with a flow rate of 5 nL s−1 using a 35 gauge needle (a
Ø135 μm optical density) with droplet volumes between 40 and 100
nL. Surface energy analysis was performed from the advancing CAs of
the three probe liquids using the Lifshitz−van der Waals/acid−base
approach.69

Dynamic light scattering (DLS, Malvern Zetasizer Nano ZSP) was
performed on the polymer casting solutions.
TGA (Pyris 1) was performed on the functionalized polymers at a

temperature range of 25−700 °C for 90 min.

■ RESULTS AND DISCUSSION

Monolayer Point of a Grafted Polymer Brush. We
choose P2VP-OH (Figure 1a) because of the strong metal−

pyridine binding interactions observed for a myriad of metal
ions including Ti.70,71 We have compared grafting parameters
to those of another reactive polymer, PMMA-OH (Figure 1b),
and a relatively nonreactive polymer, PS-OH (Figure 1c). The
high-quality grafted P2VP brushes were exposed to vapor-
phase TTIP (Figure 1d). Conversion to TiO2 is performed
using UV/ozone processing. Control over the final oxide
thickness (≈2−4 nm) is demonstrated by adjusting the
polymer molecular weight. This organometallic precursor
(and the component of the Sharpless epoxidation) was chosen
for its ability to selectively deposit Ti4+ cations within the
hydrophilic domains of self-assembled block copolymers in our
previous work.72

The Hansen approach was used to identify selective
polymer−solvent casting solutions (P2VP/THF and PS/
toluene) and is described in detail elsewhere.54 Figure 2

shows examples of the 6 kg mol−1 P2VP-OH polymer grafted
from solutions of solvents above and below the critical
agglomerate concentration (CAC) to silicon substrates. The
SEM image in Figure 2a is characteristic of a well-grafted brush
monolayer, cast from a 0.2 wt % solution. Figure S2 shows
higher-magnification SEM images. The TEM image in Figure
2a (inset) shows that the brush film has high uniformity and a
thickness of ≈4 nm (see Figure S3 for TEM of the 4 kg mol−1

grafted monolayer of ≈3.4 nm). By contrast, the SEM image in
Figure 2b cast from a 2.0 wt % solution is an example of a
poorly grafted P2VP-OH film with a molecular weight of 6.2
kg mol−1. Polymer coverage is uneven and shown in more
detail in Figure S4. The uneven nature of the P2VP-OH
material shown in Figure 2b suggests that ideal conditions are
not satisfied to define the observed structure as a brush film.
Dihydroxy-terminated P2VP (Mn = 4 kg mol−1) was end-

grafted, but uniform monolayer coverage was not achieved (see

Figure 1. Chemical structures of the polymers and the inorganic
material studied here include hydroxy-terminated (a) P2VP, (b)
PMMA, and (c) PS and (d) TTIP.

Figure 2. SEM image of a grafted P2VP-OH (Mn = 6 kg mol−1) cast
(a) below the CAC (with the TEM image in the inset) showing a
uniform monolayer and (b) above the CAC with uneven coverage.
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Figure S5a). Large agglomerates are present throughout the
film, consistent with hydroxy end groups grafting to adjacent
polymer end groups during annealing. We also note that the
P2VP-OH polymer with molecular weights of 10 and 16 kg
mol−1 did not form uniform monolayers (Figure S5b,c). DLS
studies were performed on the casting solutions to elucidate
the impact of concentration and molecular weight on the
grafting mechanism. DLS of P2VP-OH (Mn = 6 kg mol−1)
casting solutions shows an increase in agglomerate size with
concentration (Figure S6a,b). Figure S6c shows an increase in
agglomerate size with molecular weight at a fixed concentration
(0.2 wt %). The increase in agglomerate size in the casting
solutions with concentration or molecular weight is consistent
with the particularly strong pyridine−pyridine stacking
interactions of the P2VP molecular system.73 Figure 3 shows

a schematic of the proposed grafting mechanism above and
below the CAC. As the casting solution concentration or
polymer molecular weight increases, larger-sized agglomerates
deposit on the substrate following spin coating. Above the
CAC, the agglomerates are sufficiently large that steric
repulsion effects begin to prevent the formation of a uniform
coating, that is, gaps develop between agglomerates. Upon
annealing, the chains near the substrate reptate and
successfully locate the surface to overcome the thermodynamic
reaction barrier to condensation. As the size of grafted polymer
chains approaches the distance between adjacent grafting sites,
the grafted chains overlap and transition between a single
grafted chain and a brush regime.74 The physisorbed overlayers
are removed during the solvent wash to reveal an uneven
coating. Below the CAC, a uniform brush monolayer can be
prepared for TTIP vapor infiltration.
Figure 4 shows optimization data used to determine the

monolayer point for grafting 4 kg mol−1 and 6 kg mol−1 P2VP-
OH to silicon substrates. Solutions (0.01−6 wt %) were cast
and grafted via baking, and the advancing water CA (WCA)
measurements were immediately recorded, as shown in Figure
4a. The control reference SiO2 sample has an average
advancing WCA of θSiO2

= 4.0 ± 0.4°. At 0.01 wt %, the
average advancing WCA increases to θP2VP(4k) = 47.4 ± 0.8°
and θP2VP(6k) = 57.1 ± 2.6°, respectively. Above 0.05 wt %, the
advancing WCAs rapidly asymptote and saturate with an
average advancing WCA of θa ≈ 77°, similar to the value
obtained for the pressed P2VP pellet (θP2VP(max) = 76.7 ±
1.6°). This trend holds for the 4 kg mol−1 polymer; however,

above a concentration of ≈1 wt %, the 6 kg mol−1 P2VP-OH
polymer rapidly transitions to a highly wetting surface
(θP2VP(6k) < 10°), consistent with the very low grafting density.
The observed θa behavior of the P2VP-OH brush surfaces is

correlated to surface coverage using the Cassie−Baxter
equation75,76 with the assumption of surface energy hetero-
geneity at the molecular scale77

θ
θ
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Φ = − −
i

k
jjjjjj
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where Φ is the apparent surface coverage of the grafted
polymer brush, θconc is θa measured at a given grafting
concentration, and θP2VP(max) is θa of the pure P2VP pellet.
Figure 4b shows the change of surface coverage with solution
concentration for the brush samples, calculated from eq 1. The
increased Φ at the low dilution limit (0.01 wt %) for the 6 kg
mol−1 versus 4 kg mol−1 P2VP-OH brush is consistent with a
longer chain length, that is, more surface coverage for
equivalent condensation reactions. Additionally, we used XPS
in order to provide further confirmation of the grafting
behavior of the 4 kg mol−1 and 6 kg mol−1 P2VP-OH systems.
The N 1s signal (∼401 eV) from grafted brushes was tracked
over the concentration range in Figure 4c. A strikingly similar
evolution profile to Figure 4a,b is observed from the N 1s data,
consistent with the coverage level determined by the WCA and
the Cassie−Baxter equation. Figure 4d−f shows AFM images
of the 4 kg mol−1 P2VP-OH-grafted brush (0.2, 2.0, and 6.0 wt
%). The films are very smooth with high coverage, with a root-
mean-square (rms) roughness of ≈ 0.6 nm (the average of
three AFM scans). The roughness factor r, defined as the ratio
of actual surface area to projected area, was calculated from the
height images <1.04, representing minimal contribution to
surface wettability as per the Wenzel equation, cos θapparent = r
cos θ.78 For the 6 kg mol−1 brush (Figure 4g−i), only the film
cast from a 0.2 wt % solution shows good uniformity and
coverage. Figure S7 shows detailed surface energy analysis of
the grafted brushes. At high coverage, the dispersive and polar
components match those of the pure polymer pellet and the
silicon control at low coverage (Figure S7a). The same trend is
observed for the Lewis acid and Lewis base interactions
(Figure S7b). Grafting kinetics experiments were performed at
lower temperatures for the polymers and reported in our
previous work.54

The grafting process was tested with PS-OH (Mn = 6.0−16.0
kg mol−1), as shown in Section S2. Grafting high-quality
uniform monolayers was achievable at all molecular weights
and concentrations (>0.01 wt %). PMMA-OH (Mn = 6.3 kg
mol−1) was tested (Section S3) with high-quality monolayers
observed even for 6.0 wt % grafting solutions. These less
reactive brushes can graft monolayers at a higher molecular
weight and concentration compared with polyvinylpyridine
(PVP), where stronger intermolecular forces exist between the
molecules because of substantial π-orbital interactions.73

Casting at elevated temperature, or using a more selective
solvent, is also a possible route to high-molecular-weight PVP-
based monolayer films. Further characterization techniques
such as small-angle neutron scattering and small-angle X-ray
scattering can help elucidate the chain conformation in the
polymer brush79 and will be reported in due course.

Polymer Brush Exposure/Infiltration to Titanium
Isopropoxide. The optimized 4 kg mol−1 and 6 kg mol−1

P2VP-OH brush monolayers were exposed to TTIP vapors

Figure 3. Schematic representation of the grafting process above and
below the CAC for P2VP-OH (molecular weight: 6 kg mol−1). Poor
coverage occurs above the CAC because of strong pyridine−pyridine
stacking interactions. The P2VP monolayer brush can be infiltrated
with TTIP and converted to TiO2 with a sub-5 nm thickness using
UV/ozone.
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and converted to TiO2 films (see the Experimental Section for
TTIP infiltration conditions). The Ti 2p XPS spectra in Figure
5a show the TTIP-infiltrated brushes and their conversion to
TiO2. Both brushes were treated under the same TTIP

processing conditions; however, an ≈50% more precursor
uptake is measured in the 6 kg mol−1 brush. Figure S15 shows
the corresponding survey spectra showing an increase in the Ti
signal from 6.2 to 9.0%. TiO2 is formed after UV/ozone
exposure with the Ti 2p3/2 and Ti 2p1/2 peaks at ≈458 and 464
eV, respectively.80 A slight reduction in the Ti signal occurs
following ashing because of partial removal of the TTIP
precursor. The O 1s spectra in Figure 5b display the TTIP-
infiltrated P2VP-OH brush (Mn = 6.2) before and after UV/
ozone exposure. Before and after UV/ozone exposure, the Si−
O and Ti−O peaks are observed at ≈532.7 and ≈530.7 eV,
respectively, consistent with literature values.81,82 Post UV/
ozone exposure, there is an increase in the SiO2 peak because
of reduced attenuation of the substrate signal. Before UV/
ozone exposure, the N 1s region (Figure 5c) has a peak at
≈399 eV associated with CN−C pyridine bonds,83,84 while
after UV/ozone exposure, the pyridine signal is absent (within
XPS detection limits), indicating total removal/conversion of
the brush material.
The TEM image in Figure 6a shows a TiO2 film (≈4 nm

thick) produced using a 6 kg mol−1 P2VP-OH brush. EDX
elemental maps in Figure 6b show the film with titanium and
oxygen signals present. Figure S16 shows the film before UV/
ozone exposure, and Figures S17 and S18 show the process
applied to the 4 kg mol−1 P2VP-OH brush. Moreover, a
thinner TiO2 film (≈2 nm) is fabricated using the 4 kg mol−1

brush, showing that our process can be used to tune TiO2 films
with nanometer control. For comparison, the TTIP infiltration
process was applied to the 6 kg mol−1 PS-OH grafted brush
(Figure S19). PS-OH-grafted brushes exhibit excellent

Figure 4. (a) Advancing WCAs of the 4 kg mol−1 and 6 kg mol−1 P2VP brush samples grafted on silicon substrates over a range of concentrations
with corresponding coverage (b). (c) XPS nitrogen (N 1s) atomic percentage of the grafted polymers as a function of concentration. AFM
topographic images of the P2VP brushes grafted from 0.2 to 6 wt % solutions for (d−f) 4 kg mol−1 and (g−i) 6 kg mol−1 P2VP-OH.

Figure 5. XPS high-resolution spectra (raw counts) of grafted 4 kg
mol−1 and 6 kg mol−1 P2VP-OH brushes exposed to TTIP and
following UV/ozone exposure for (a) titanium 2p, (b) oxygen 1s, and
(c) nitrogen 1s.
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potential for blocking TTIP infiltration, with EDX maps
confirming that the precursor is inhibited by the PS brush with
no Ti present at the substrate interface. The TTIP infiltration
process can be further optimized by developing a vapor
annealing chamber to precisely control precursor saturation
conditions. Titanium is an attractive model species for vapor-
phase brush infiltration given its use in a variety of far-reaching
applications, for example, TiO2 coatings are widely used in self-
cleaning technologies,85 as an electrode support,86 as a
dielectric medium,87 and in photocatalysis.88 ALD-grown
TiO2 nanofilms have been used in many applications:
corrosion protection layers on copper,89 high-κ dielectrics,
solar cells (perovskite),90 carbon nanotubes,91 and composite
nanostructures for water splitting to name a few.92

■ CONCLUSIONS
High-quality TiO2 films were fabricated using a simple
apparatus that allowed the definition of precise polymer films
for hosting titanium precursors using a facile vapor-phase
infiltration technique. It was shown that high-coverage, pin
hole-free, homogeneous TiO2 films with a tunable thickness
could be produced, as confirmed by extensive SEM and TEM
analysis. We have established the precise parameters required
for end-grafting monolayer P2VP-OH polymer brushes (i.e.,
polymer molecular weight, casting solution concentration, and
terminal group density). The brush layer deposition/attach-
ment requires careful optimization to allow monolayer
formation, which subsequently facilitates the regularity of the
inorganic film. As the P2VP brushes contain active groups that
bind to the metal, there is a propensity for coordination of the
polymer to form aggregates in solution and 3D films that
mitigate against precise monolayer formation. This work shows
that process conditions and treatments can be created to
mitigate these difficulties.
A vapor-phase approach involving Ti precursor inclusion

into monolayer brush films was demonstrated on grafted
P2VP-OH. A grafting comparison of P2VP with PS and
PMMA highlights the strong pyridine-stacking interactions
that inhibit film formation above the CAC. The results show
that the initial polymer films need very careful tuning for
developing uniform inorganic films. High-quality grafted
P2VP-OH brushes were exposed to vapor-phase TTIP, and
conversion to TiO2 is performed using UV/ozone processing,
as confirmed by XPS and EDX characterization. Control over
the final oxide thickness (≈2−4 nm) is demonstrated by
adjusting the polymer molecular weight. One should note that

although P2VP is an ideal system for metal incorporation,
developing thicker films with PVP brushes is quite prohibitive
because of strong intermolecular forces. Therefore, less
reactive brushes such as PMMA may be more suitable for
fabricating thick inorganic films, and studies are currently
underway. In parallel, we have shown that PS brushes
demonstrate excellent potential for surface deactivation,
where TTIP deposition was completely prevented from
reaching the substrate. In summary, we precisely controlled
polymer brushes for activating (P2VP-OH) and deactivating
(PS-OH) semiconductor surfaces, which is a first achievement
of this critical milestone for fulfilling future device scaling and
3D architectures. We envisage that our deposition and brush
process could also find use in other sectors that rely on
uniform nanometer inorganic films, for example, glass coating
technologies (self-cleaning, anticondensation, low emissivity,
etc.), digital display (electrode and conductive and emissive
LCD/LED/OLED layers).
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