
Handbook of Research
on Natural Language
Processing and Smart
Service Systems

Rodolfo Abraham Pazos-Rangel
Tecnológico Nacional de México, Mexico & Instituto Tecnológico de Ciudad
Madero, Mexico

Rogelio Florencia-Juarez
Universidad Autónoma de Ciudad Juárez, Mexico

Mario Andrés Paredes-Valverde
Tecnológico Nacional de México, Mexico & Instituto Tecnológico de Orizaba,
Mexico

Gilberto Rivera
Universidad Autónoma de Ciudad Juárez, Mexico

A volume in the Advances in Computational
Intelligence and Robotics (ACIR) Book Series

Table of Contents

Foreword... xxiv

Preface.. xxv

Acknowledgment.. xxxi

Section 1
Smart Interactive Systems

Chapter 1
NaturalLanguageInterfacestoDatabases:ASurveyonRecentAdvances... 1

Rodolfo A. Pazos-Rangel, Tecnológico Nacional de México, Mexico & Instituto Tecnológico
de Ciudad Madero, Mexico

Gilberto Rivera, Universidad Autónoma de Ciudad Juárez, Mexico
José A. Martínez F., Tecnológico Nacional de México, Mexico & Instituto Tecnológico de

Ciudad Madero, Mexico
Juana Gaspar, Tecnológico Nacional de México, Mexico & Instituto Tecnológico de Ciudad

Madero, Mexico
Rogelio Florencia-Juárez, Universidad Autónoma de Ciudad Juárez, Mexico

Chapter 2
MispronunciationDetectionandDiagnosisThroughaChatbot... 31

Marcos E. Martinez, Universidad Autónoma de Ciudad Juárez, Mexico
Francisco López-Orozco, Universidad Autónoma de Ciudad Juárez, Mexico
Karla Olmos-Sánchez, Universidad Autónoma de Ciudad Juárez, Mexico
Julia Patricia Sánchez-Solís, Universidad Autónoma de Ciudad Juárez, Mexico

Chapter 3
StorySummarizationUsingaQuestion-AnsweringApproach.. 46

Sanah Nashir Sayyed, Dr. Babasaheb Ambedkar Marathwada University, India
Namrata Mahender C., Dr. Babasaheb Ambedkar Marathwada University, India

Chapter 4
TwoNewChallengingResourcestoEvaluateNaturalLanguageInterfacestoDatabases
GeneratedBasedonGeobaseandGeoquery.. 70

Juan Javier González-Barbosa, Tecnológico Nacional de México, Mexico & Instituto
Tecnológico de Ciudad Madero, Mexico

Juan Frausto Solís, Tecnológico Nacional de México, Mexico & Instituto Tecnológico de
Ciudad Madero, Mexico

Juan Paulo Sánchez-Hernández, Universidad Politécnica del Estado de Morelos, Mexico
Julia Patricia Sanchez-Solís, Universidad Autónoma de Ciudad Juárez, Mexico

Chapter 5
ChatbotfortheImprovementofConversationalSkillsofJapaneseLanguageLearners................... 101

Ossiel Villanueva-Mendoza, Universidad Autónoma de Ciudad Juárez, Mexico
Martha Victoria González, Universidad Autónoma de Ciudad Juárez, Mexico
Maritza Varela, Universidad Autónoma de Ciudad Juárez, Mexico
Lucero Zamora, Universidad Autónoma de Ciudad Juárez, Mexico

Chapter 6
DevelopingChatbotsforSupportingHealthSelf-Management... 135

Jesús Fernández-Avelino, Tecnológico Nacional de México, Mexico & Instituto Tecnológico
de Orizaba, Mexico

Giner Alor-Hernández, Tecnológico Nacional de México, Mexico & Instituto Tecnológico de
Orizaba, Mexico

Mario Andrés Paredes-Valverde, Tecnológico Nacional de México, Mexico & Instituto
Tecnológico de Orizaba, Mexico

Laura Nely Sánchez-Morales, Tecnológico Nacional de México, Mexico & Instituto
Tecnológico de Orizaba, Mexico

Chapter 7
IssuesintheSyntacticParsingofQueriesforaNaturalLanguageInterfacetoDatabases............... 157

Alexander Gelbukh, Instituto Politécnico Nacional, Mexico
José A. Martínez F., Tecnológico Nacional de México, Mexico & Instituto Tecnológico de

Ciudad Madero, Mexico
Andres Verastegui, Tecnológico Nacional de México, Mexico & Instituto Tecnológico de

Ciudad Madero, Mexico
Alberto Ochoa, Universidad Autónoma de Ciudad Juárez, Mexico

Chapter 8
PreservationofCulturalHeritageinanEthnicMinorityUsingInternetofThingsandSmart
Karaoke... 180

Alberto Ochoa, Universidad Autónoma de Ciudad Juárez, Mexico
Roberto Contreras-Masse, Tecnológico Nacional de México, Mexico & Instituto Tecnológico

de Ciudad Juárez, Mexico
Jose Mejia, Universidad Autónoma de Ciudad Juárez, Mexico
Diego Oliva, Universidad de Guadalajara, Mexico

Chapter 9
InterfaceforComposingQueriesThatIncludeSubqueriesforComplexDatabases......................... 196

José A. Martínez F., Tecnológico Nacional de México, Mexico & Instituto Tecnológico de
Ciudad Madero, Mexico

Juan Javier González-Barbosa, Tecnológico Nacional de México, Mexico & Instituto
Tecnológico de Ciudad Madero, Mexico

German Castillo, Tecnológico Nacional de México, Mexico & Instituto Tecnológico de
Ciudad Madero, Mexico

Section 2
Text Analytics Systems

Chapter 10
NewsClassificationtoNotifyAboutTrafficIncidentsinaMexicanCity.. 227

Alejandro Requejo Flores, Universidad Autónoma de Ciudad Juárez, Mexico
Alejandro Ruiz, Universidad Autónoma de Ciudad Juárez, Mexico
Abraham López, Universidad Autónoma de Ciudad Juárez, Mexico
Raul Porras, Universidad Autónoma de Ciudad Juárez, Mexico

Chapter 11
AuthorProfilingUsingTextsinSocialNetworks... 245

Iqra Ameer, Instituto Politécnico Nacional, Mexico
Grigori Sidorov, Instituto Politécnico Nacional, Mexico

Chapter 12
AComparisonofPersonalityPredictionClassifiersforPersonnelSelectioninOrganizations
BasedonIndustry4.0... 266

Roberto Contreras-Masse, Tecnológico Nacional de México, Mexico & Instituto Tecnológico
de Ciudad Juárez, Mexico

Juan Carlos Bonilla, Universidad Autónoma del Estado de Morelos, Mexico
Jose Mejia, Universidad Autónoma de Ciudad Juárez, Mexico
Alberto Ochoa, Universidad Autónoma de Ciudad Juárez, Mexico

Chapter 13
ImprovingtheK-MeansClusteringAlgorithmOrientedtoBigDataEnvironments......................... 289

Joaquín Pérez Ortega, Tecnológico Nacional de México, Mexico & CENIDET, Mexico
Nelva Nely Almanza Ortega, Tecnológico Nacional de México, Mexico & Instituto

Tecnológico de Tlalnepantla, Mexico
Andrea Vega Villalobos, Tecnológico Nacional de México, Mexico & CENIDET, Mexico
Marco A. Aguirre L., Tecnológico Nacional de México, Mexico & Instituto Tecnológico de

Ciudad Madero, Mexico
Crispín Zavala Díaz, Universidad Autónoma del Estado de Morelos, Mexico
Javier Ortiz Hernandez, Tecnológico Nacional de México, Mexico & CENIDET, Mexico
Antonio Hernández Gómez, Tecnológico Nacional de México, Mexico & CENIDET, Mexico

Chapter 14
PronominalAnaphoraResolutiononSpanishText.. 309

Alonso García, Universidad Autónoma de Ciudad Juárez, Mexico
Martha Victoria González, Universidad Autónoma de Ciudad Juárez, Mexico
Francisco López-Orozco, Universidad Autónoma de Ciudad Juárez, Mexico
Lucero Zamora, Universidad Autónoma de Ciudad Juárez, Mexico

Chapter 15
GeospatialSituationAnalysisforthePredictionofPossibleCasesofSuicideUsingEBK:ACase
StudyintheMexicanStateofAguascalientes.. 327

Carlos Manuel Ramirez López, Universidad Politécnica de Aguascalientes, Mexico
Martín Montes Rivera, Universidad Politécnica de Aguascalientes, Mexico
Alberto Ochoa, Universidad Autónoma de Ciudad Juárez, Mexico
Julio César Ponce Gallegos, Universidad Autónoma de Aguascalientes, Mexico
José Eder Guzmán Mendoza, Universidad Politécnica de Aguascalientes, Mexico

Chapter 16
LocationExtractiontoInformaSpanish-SpeakingCommunityAboutTrafficIncidents.................. 347

Alejandro Requejo Flores, Universidad Autónoma de Ciudad Juárez, Mexico
Alejandro Ruiz, Universidad Autónoma de Ciudad Juárez, Mexico
Ricardo Mar, Universidad Autónoma de Ciudad Juárez, Mexico
Raúl Porras, Universidad Autónoma de Ciudad Juárez, Mexico

Chapter 17
TextSummarizationandItsTypes:ALiteratureReview... 368

Namrata Kumari, National Institute of Technology, Hamirpur, India
Pardeep Singh, National Institute of Technology, Hamirpur, India

Chapter 18
ExtractiveTextSummarizationMethodsintheSpanishLanguage... 379

Irvin Raul Lopez Contreras, Universidad Autónoma de Ciudad Juárez, Mexico
Alejandra Mendoza Carreón, Universidad Autónoma de Ciudad Juárez, Mexico
Jorge Rodas-Osollo, Universidad Autónoma de Ciudad Juárez, Mexico
Martiza Concepción Varela, Universidad Autónoma de Ciudad Juárez, Mexico

Section 3
Text Mining Systems

Chapter 19
NLPandtheRepresentationofDataontheSemanticWeb... 393

Jose L. Martinez-Rodriguez, Universidad Autónoma de Tamaulipas, Mexico
Ivan Lopez-Arevalo, CINVESTAV Tamaulipas, Mexico
Jaime I. Lopez-Veyna, Tecnológico Nacional de México, Mexico & Instituto Tecnológico de

Zacatecas, Mexico
Ana B. Rios-Alvarado, Universidad Autónoma de Tamaulipas, Mexico
Edwin Aldana-Bobadilla, Conacyt, Mexico & Cinvestav Tamaulipas, Mexico

Chapter 20
OpinionMiningforInstructorEvaluationsattheAutonomousUniversityofCiudadJuarez............ 427

Rafael Jiménez, Universidad Autónoma de Ciudad Juárez, Mexico
Vicente García, Universidad Autónoma de Ciudad Juárez, Mexico
Abraham López, Universidad Autónoma de Ciudad Juárez, Mexico
Alejandra Mendoza Carreón, Universidad Autónoma de Ciudad Juárez, Mexico
Alan Ponce, Universidad Autónoma de Ciudad Juárez, Mexico

Chapter 21
AnOpinionMiningApproachforDrugReviewsinSpanish... 445

Karina Castro-Pérez, Tecnológico Nacional de México, Mexico & IT Orizaba, Mexico
José Luis Sánchez-Cervantes, CONACYT, Mexico & Instituto Tecnológico de Orizaba,

Mexico
María del Pilar Salas-Zárate, Tecnológico Nacional de México, Mexico & ITS Teziutlán,

Mexico
Maritza Bustos-López, Tecnológico Nacional de México, Mexico & Instituto Tecnológico de

Orizaba, Mexico
Lisbeth Rodríguez-Mazahua, Tecnológico Nacional de México, Mexico & Instituto

Tecnológico de Orizaba, Mexico

Chapter 22
IdentifyingSuggestionsinAirline-UserTweetsUsingNaturalLanguageProcessingandMachine
Learning.. 481

Rafael Jiménez, Universidad Autónoma de Ciudad Juárez, Mexico
Vicente García, Universidad Autónoma de Ciudad Juárez, Mexico
Karla Olmos-Sánchez, Universidad Autónoma de Ciudad Juárez, Mexico
Alan Ponce, Universidad Autónoma de Ciudad Juárez, Mexico
Jorge Rodas-Osollo, Universidad Autónoma de Ciudad Juárez, Mexico

Compilation of References... 499

About the Contributors.. 542

Index... 552

1

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1

DOI: 10.4018/978-1-7998-4730-4.ch001

ABSTRACT

This chapter consists of an update of a previous publication. Specifically, the chapter aims at describing
the most decisive advances in NLIDBs of this decade. Unlike many surveys on NLIDBs, for this chap-
ter, the NLIDBs will be selected according to three relevance criteria: performance (i.e., percentage of
correctly answered queries), soundness of the experimental evaluation, and the number of citations. To
this end, the chapter will also include a brief review of the most widely used performance measures and
query corpora for testing NLIDBs.

Natural Language
Interfaces to Databases:

A Survey on Recent Advances

Rodolfo A. Pazos-Rangel
Tecnológico Nacional de México, Mexico & Instituto Tecnológico de Ciudad Madero, Mexico

Gilberto Rivera
 https://orcid.org/0000-0002-2365-4651

Universidad Autónoma de Ciudad Juárez, Mexico

José A. Martínez F.
Tecnológico Nacional de México, Mexico & Instituto Tecnológico de Ciudad Madero, Mexico

Juana Gaspar
 https://orcid.org/0000-0002-9762-2660

Tecnológico Nacional de México, Mexico & Instituto Tecnológico de Ciudad Madero, Mexico

Rogelio Florencia-Juárez
 https://orcid.org/0000-0002-5208-6577

Universidad Autónoma de Ciudad Juárez, Mexico

https://orcid.org/0000-0002-2365-4651
https://orcid.org/0000-0002-9762-2660
https://orcid.org/0000-0002-5208-6577

2

Natural Language Interfaces to Databases

INTRODUCTION

In the last decades, the volume of information has grown exponentially. For manipulating such vast
amounts of information, databases have been widely used by businesses and organizations. For accessing
database information, different types of software tools have been developed. One type of such tools are
database query languages; for example, SQL, which allows users to access data with ample flexibility,
because of the high expressiveness of SQL. Unfortunately, SQL is a computer language that is difficult
to utilize by users that are not computer professionals.

In order to facilitate casual and inexperienced users accessing database information, graphical form-
based applications have been developed. These tools are very easy to use; however, they do not offer
flexibility for accessing information in ways different from those for which they are developed.

Natural language interfaces to databases (NLIDBs) are software applications that allow inexperienced
users to formulate queries in natural language for obtaining information stored in databases. NLIDBs
have the advantages of both types of database querying tools: they are easy to use and offer high flex-
ibility for accessing information.

Several surveys on NLIDBs have been published; some of the most important and recent are the
following:

1. Natural language interfaces to databases - An introduction by Androutsopoulos (1995).
2. Natural language interface for database: A brief review by Nihalani (2011).
3. A survey of natural language interface to database management system by Sujatha (2012).
4. Natural language interfaces to databases: An analysis of the state of the art by Pazos (2013).
5. Natural language interface to databases: A survey by Tyagi (2014).

The purpose of this chapter is to describe the most relevant advances in NLIDBs of this decade. Unlike
many surveys on NLIDBs, for this chapter, the NLIDBs have been selected according to three relevance
criteria: performance (i.e., percentage of correctly answered queries), soundness of the experimental
evaluation, and the number of citations. To this end, the chapter will also include a brief review of the
most widely used query corpora for testing NLIDBs. The focus of this chapter is on approaches that
translate queries in natural language to SQL expressions; so, other database query languages are out of
the scope (e.g., Porras, Florencia-Juárez, Rivera & García, 2018).

BACKGROUND

NLIDBs are software applications that allow users to formulate queries in natural language for obtaining
information stored in databases. This is accomplished by translating a natural language expression into
an SQL statement. Unfortunately, the translation from a natural language query to SQL is an extremely
complex problem. This difficulty explains the slow development of NLIDB technology, which is sum-
marized next.

Chomsky (1957) published a monograph titled Syntactic Structures, which has been considered a
landmark of modern linguistics. He proposed a formal approach to natural language syntax, which consists
of symbols and rules and is the origin of the constituency grammar approach. In the decades of the 60s
and 70s, the first natural language querying systems were developed, and they were basically interfaces

3

Natural Language Interfaces to Databases

for expert systems implemented for specific domains. Some of the most famous are BASEBALL (Green,
Wolf, Chomsky, & Laughery, 1961) and LUNAR (Woods, Kaplan, & Webber, 1972). Most of those
NLIDBs were developed for a particular database, and consequently, they could not be easily modified
for querying different databases. These systems are called domain-dependent NLIDBs, and many of
them achieved good results: accuracy (percentage of correctly translated queries) of around 95%.

The development of an NLIDB for a specific database was time consuming, and it was similar to
developing an information system before database management systems were available. Therefore, the
next step in NLIDB technology was to develop domain-independent systems, i.e., NLIDBs that can be
used for querying many different databases. LADDER (Hendrix, Sacerdoti, Sagalowicz, & Slocum,
1978) is considered one of the first systems that could be configured for querying different databases.
It was until 1990 that IBM introduced SAA LanguageAcess (its first commercial NLIDB), which was
withdrawn from marketing in 1993. In 2000 Microsoft included English Query in SQL Server 2000,
which had a similar fate because it was no longer included in SQL Server 2005. Developing domain-
independent systems has proven to be very difficult: they still have deficiencies in the translation process
and have attained accuracies in the interval of 80-90%.

NATURAL LANGUAGE INTERFACES TO DATABASES

This section includes brief descriptions of the most relevant NLIDBs developed from 2010 to 2019.
Descriptions are grouped according to the approach used for the interfaces: neural networks, syntax
based, semantic grammar, and pattern matching, as well as systems for languages different from English.
Additionally, the performance obtained (mainly accuracy or precision) and the databases/benchmarks
used for testing are mentioned. Additionally, for each approach, the systems are ordered from the most
recent to the oldest.

Neural network NLIDBs use deep neural networks (based on recurrent neural networks), which are
powerful machine learning techniques that have been used for natural language processing. In particular,
a type of deep neural networks, called sequence-to-sequence recurrent neural networks, has been used
for translating from a natural language query to SQL. It is important to mention that, like statistical
approaches, interfaces based on neural networks have to be trained with very large datasets (tens of
thousands of sentences for training the neural network and hundreds of thousands for testing).

Syntax-based systems use a grammar that consists of symbols and rules, which are applied to a natural
language expression for determining its structure and grouping syntactically related words. The following
is an example of a simple grammar for parsing Which river passes through Illinois? (Pazos et al., 2013):

S → WQ VP
Wh → “what” | “which”
WQ → Wh “river” | Wh “state”
VP → V ValN
V → “passes through” | “borders”
ValN → “Illinois” | “Missouri” | “Indiana”

4

Natural Language Interfaces to Databases

Semantic grammar systems are similar to syntax based systems, except that nonterminal symbols may
be different from syntactic concepts (noun phrases, prepositional phrases). The following is an example
of a semantic grammar (Pazos et al., 2013):

S → River_question Flow_through
River_question → “which river”
Flow_through → “passes through” State
State → “Illinois” | “Missouri” | “Indiana”

Pattern matching uses a simple technique based on patterns or rules that are applied to the user query.
The following is an example of a rule that could be used:

“Which river passes through” <State>

The corresponding SQL statement (see Figure 3) is

SELECT State.state_name
FROM State, RiverState, River
WHERE State.abreviation = RiverState.abreviation
AND RiverState.river_id = River.river_id
AND State.state_name = <State>

Neural Network Systems

NADAQ System

NADAQ is an NLIDB that combines deep learning and traditional techniques of SQL parsing (Xu et al.,
2019). To this end, the system adds to the decoding phase new dimensions of schema-understanding bits
and includes new neurons controlled by a finite state automaton for supervising the grammatical states in
the decoder part. Additionally, the NLIDB includes a technique that allows the neural network to reject
user queries that are irrelevant for the database domain and suggests candidate queries in natural language.

NADAQ consists of three major modules, which are described next:

1. Data Storage: This module includes MySQL as a database management system, from which it
extracts table metadata for training the translation model, and which processes SQL statements for
presenting results to the users.

2. Model Management: This module constitutes the NLIDB kernel, which uses several models for
bidirectional translation between natural language and SQL, as well as models for rejecting irrelevant
user queries. The module provides information from the models to the User Interface module.

3. User Interface: This module consists of the interfaces for user-computer interaction.

The most important module of NADAQ is the User Interface, which performs most of the translation
processes. The main components are explained next:

5

Natural Language Interfaces to Databases

1. Speech Recognition: The task of this component is converting a spoken user query into text. To
this end, it uses the voice-to-text translator iFlytek. Additionally, it provides manual correction so
that the user can review the translator output to adapt it to his/her intention.

2. Translation: This component uses a machine learning model based on a recurrent neural network
coder-decoder, which is a state-of-the-art technique for machine translation. The innovation of this
component consists in the integration of hidden states to the model by using a finite state machine
for supervising the grammar states for SQL parsing. These hidden states are useful for discarding
invalid output words in the decoder part and providing useful suggestions for improving neural-
network training.

3. Rejection: This component allows NADAQ to reject incoherent user questions. In order to deter-
mine the relevance of user queries to the database, the system includes a rejection model in addition
to the translation model. Rejection decisions are made based on the uncertainty of the translation
model when choosing tables, columns, and search conditions for the SQL statements.

4. Recommendation: This component increases the effectiveness of the interface by providing can-
didate queries to the user for refinement and selection. For helping users without SQL knowledge,
the interface translates the candidate queries to natural language, so that users can easily understand
the exact meaning (according to the database domain) of the candidate queries and improving the
effectiveness of the user-computer interaction.

NADAQ was evaluated using three databases: MAS (Microsoft Academic Search), IMDb, and
Geobase. The tests involved the comparison of three methods: convolutional neural network machine,
attention-based sequence-to-sequence machine translation, and semantic parsing model with feedback.
The NLIDB obtained F1 scores of 83.9% for Geobase and greater than 80% for IMDb.

Cross-Domain NLI Based on Adversarial Text Method

The NLIDB uses a general-purpose question tagging method and a multi-lingual neural network transla-
tion model that allows obtaining domain independence (Wang, 2019). For question tagging, each domain
is treated equally by using a recurrent neural network. An approach is proposed where different types
of natural language queries and different domains share the same components. To this end, the NLIDB
performs a preprocessing that consists in separating the domain-specific information from the query.

Given an NL-SQL pair, the key approach consists in inserting predesigned symbols and annotat-
ing DB elements (tables, columns, values, keywords, etc.) mentioned in the question for treating each
sample (of different domains and types) uniformly. The approach used by the NLIDB is described next:

1. The NLIDB includes a binary classifier BC, which detects elements for predicting if a data ele-
ment e is present in a question q corresponding to an SQL statement p according to the semantic
meaning of the question. The classifier takes q and e, without referencing p.

2. The system looks for the most influential phrase in the query by using gradient-based adversarial
text methods.

3. Symbols are inserted in question q for annotating phrases that describe DB elements, which are
denoted by q’.

6

Natural Language Interfaces to Databases

4. A multi-lingual cross-domain sequence-to-sequence (seq2seq) model is constructed for translating
q’ to p’, where p’ denotes a query where the DB elements are replaced by SQL symbols inserted
in q.

5. The symbols inserted are replaced by DB elements for generating the original query; i.e., conver-
sion from p’ to p.

This NLIDB has an encoder that uses a stacked bi-directional multi-layer recurrent neural network.
It uses a prefix symbol for dealing with different types of queries and treating each type equally.

Experiments were carried out for this NLIDB using the WikiSQL, OVERNIGHT, and Geoquery880
datasets. The metrics used were query-match accuracy denoted by Accqm, and the execution results Ac-
cex. For WikiSQL, the interface obtained an Accqm of 74.5% and an Accex of 82.7%, for OVERNIGHT
attained an Accqm of 76.8%, and for Geoquery880 obtained an Accqm of 84.1%.

DBPal System

DBPal is based on deep learning models for achieving more robust natural language query understanding
in two ways (Utama, 2018). First, DBPal uses a deep model for translating NL questions to SQL, making
the translation process more robust to wording variations. DBPal provides a learned auto-completion
model that suggests partial extensions of queries to users when formulating questions. Second, DBPal
has two important features that are based on neural network models: robust query translation and inter-
active auto-completion.

DBPal consists of two major components, which are explained next.

1. Neural query translation: For achieving robust query translation, DBPal proposes a translation
method based on a sequence-to-sequence recurrent neural network model. The robustness of the
translation process allows to effectively map natural language varying expressions to predefined
relational database operations. An important challenge for NLIDBs that use neural networks is to
select a comprehensive training set. The main innovation of this NLIDB is a synthetic generation
approach, which takes as input the database schema with minimal annotations and generates a
large set of natural language questions and their translation to SQL statements. The generation of
the training set consists of two steps: generator and augmentation. The first step uses the database
schema and a set of base templates that describe NL-SQL pairs and slot-filling dictionaries for
generating from 1 to 2 million pairs. The second step automatically increases the initial set of NL-
SQL pairs, using existing language models for automatically modifying the NL part of each pair
by using different linguistic variations.

2. Interactive auto-completion: DBPal provides a real-time auto-completion tool and question sug-
gestion for helping users that are not familiar with the database schema, thus helping them to write
complex queries.

For comparing DBPal versus other approaches, the Geoquery benchmark was used, which has been
utilized for evaluating other NLIDBs. Additionally, for testing linguistic variations, another benchmark
was generated called Patients, which is a database of hospital patients, which consists of one table and
290 queries. Also, a comparison versus NaLIR and NSP was conducted. The accuracies attained by
DBPal for the Patients and Geoquery benchmarks were 75.93% and 48.9%, respectively.

7

Natural Language Interfaces to Databases

Syntax-Based Systems

NaLIR System

NaLIR (Natural Language Interface to Relational database) is an interactive NLIDB that explains the
user how the interface interprets his/her question step by step (Li, 2017). When ambiguities are detected,
the interface shows the user various interpretations with explanations for the user to choose from, which
allows to solve ambiguities by interacting with the user. A training example is collected each time the
user makes a choice and confirms its interpretation.

This system consists of three components, which are described next:

1. Query interpretation: This component includes a parse tree node mapper and a structure adjus-
tor, which performs the interpretation of the natural language query and the representation of the
interpretation as a query tree.

2. Interactive communicator: The task of this component is to handle the interaction with the user
in order to make sure that the resulting interpretation is correct.

3. Query tree translator: This component carries out the translation of a query tree to an SQL state-
ment and sends the SQL query to a database management system.

More specifically, the query interpretation component consists of three modules, which are explained
next:

1. Dependency parser: The system uses a dependency parser (Stanford Parser) for generating a parse
tree from the natural language query. In this tree, each node represents a word/phrase in the query,
and each edge is a linguistic dependency relationship between two words/phrases.

2. Parse tree node mapper: This module identifies the tree nodes that can be mapped to SQL com-
ponents and tokenizes them. Additionally, several nodes may have various mappings, which causes
ambiguities when interpreting these nodes. For such nodes, the parse tree node mapper sends the
best mapping to the parse tree structure adjustor and transmits all candidate mappings to the inter-
active communicator.

3. Parse tree structure adjustor: This module verifies the correctness of the parse tree, specifically,
if the tree is coherent with the database schema and there are no ambiguities in the interpretation.
In case the parse is incoherent or ambiguous, the system adjusts the tree structure in two steps. In
the first step, the tree nodes are reformulated to make the tree coherent with the semantic coverage
of the NLIDB. If there exist several correct candidate trees, the best one is selected for the second
step. In this step, the selected parse tree is semantically analyzed, and implicit nodes are inserted
to make it more semantically coherent. This process is performed under user supervision.

NaLIR was evaluated using 98 queries of the Microsoft Academic Search dataset, and it achieved an
accuracy of 89.79% (88 correct answers).

8

Natural Language Interfaces to Databases

NLI Based on Layered Architecture

This NLIDB is based on an approach that uses a layered architecture (Pazos et al., 2016). The election of
this method originates from the following premise: translation from a natural language query to an SQL
statement is an extremely complex problem. Systems whose design is based on functionality layers (like
the OSI model for communication networks) provide the flexibility and modularity for implementing
more complex processing strategies than systems designed otherwise. A layered architecture is recom-
mended for dealing with complex problems; therefore, in this NLIDB, each functionality layer deals
with a different problem in the translation process.

The Semantic Information Dictionary (SID) is the keystone of the NLIDB since it stores the infor-
mation necessary for the interface to interpret a query. Initially, the system carries out an automatic
configuration, which populates the SID based on the descriptions of DB tables and columns and the
information of relations between tables, which are stored in the data dictionary of the DB management
system. Additionally, the SID can keep information on words and phrases that refer to tables, columns,
relations between tables, imprecise values, alias values, which allows to have the necessary information
and facilitates query interpretation.

The core of the interface consists of three layers, whose description is the following:

1. Lexical Analysis: The task of this layer is to divide the user query into tokens, search query words
in the lexicon and assign (one or more) POS tags to the words found. In case a word is not found
in the lexicon, it is considered as a possible search value.

2. Syntactic Analysis: This layer consists of a shallow parser that uses a heuristics for determining
one syntactic category for those words with multiple categories and ignoring irrelevant words.

3. Semantic Analysis: This is the most important layer, and it performs several tasks for understand-
ing the user query and translating it to SQL.

The Semantic Analysis layer is constituted by five sub-layers that are described next:

1. Treatment of imprecise and alias values: This sub-layer detects and deals with words that denote
imprecise values (i.e., words that represent value ranges, such as afternoon, evening) and aliases (i.e.,
words for referring to search values, such as noon, couple, fifth, or Philly instead of Philadelphia).
To this end, the process scans each word of the input question and searches the SID to determine
if the word is declared as an imprecise or alias value.

2. Identification of tables and columns: This sub-layer is responsible for identifying the DB tables
and columns referred to by words/phrases in the user query, which can be nominal, verbal, adjec-
tival, or prepositional. Specifically, this sub-layer scans each word/phrase of the input question and
searches the SID to determine if the word is associated to a table or column.

3. Identification of the Select and Where phrases: From the identification of tables, columns, and
search values, this sub-layer uses a heuristics for determining the segments of the question that
constitute the Select and Where phrases. To this end, each search value is associated to a column
according to the proximity and coincidence of data type. The pairs column-search value constitute
the WHERE clause of the SQL statement and the remaining columns constitute the SELECT clause.

4. Treatment of aggregate functions and grouping: The task of this sub-layer is to identify and
deal with the words/phrases of the query used for referring to aggregate functions and grouping

9

Natural Language Interfaces to Databases

(Group By); for example, words such as average, how many, minimal, maximal, smallest, largest,
first, best, for each, etc. This process is carried out by scanning each word of the input question
and searching the SID to determine if the word/phrase is associated with an aggregate function or
grouping clause. Since the values stored in different columns may be of different natures, different
words/phrases are associated to each column.

5. Determining implicit joins: For constructing the SQL statement, it is necessary that the graph
consisting of the tables involved in the query and the join conditions (search conditions constituted
by a column in one table and a column in another table) be a connected graph. When the graph
does not satisfy this condition, this sub-layer generates a connected graph by using a heuristics that
adds a minimal number of join conditions. Once a connected graph is constructed, the generation
of the SQL statement is straightforward.

An experimental evaluation of this NLIDB was conducted using 71 queries for the ATIS database, and
it achieved an accuracy of 90% when configured by the implementers (Pazos et al., 2016). Additionally,
comparative tests were performed versus ELF and C-Phrase and using the Geoquery250 benchmark;
the accuracies obtained were 56.4% for the NLIDB, 35.6% for ELF, and 56.4% for C-Phrase. There are
very few publications that report NLIDB performance when the interfaces are not configured by the
implementers. An experiment was carried out with two groups of undergraduate students, who configured
the interface for the ATIS database, and the accuracies attained were 44.69% for one group and 77.05%
for the other. Finally, a Wizard was developed for semi-automatically fine-tuning the configuration. An
experiment was performed with another two groups of undergraduate students, who used the Wizard,
and the accuracies obtained were 80.53% and 84.82%.

NALI System

NALI is an NLIDB which uses methods for simplifying the configuration without reducing linguistic
coverage and accuracy (Mvumbi, 2016). To this end, it uses two authoring frameworks for reducing the
work needed for configuring the system for querying different databases.

The first authoring framework is called top-down, and it uses an unannotated corpus of sample natural
language queries for extracting lexical terms for simplifying the NLIDB configuration. This strategy
reduces the work for configuring the interface by automatically including the semantic information for
verbs in negative form, comparative and superlative adjectives in the configuration model.

The second authoring framework is called bottom-up, and it examines the possibility of constructing
a configuration model without manual intervention using the information from the database schema and
a dictionary.

NALI uses SQL as output language and English as input language. This system assumes that natural
language queries are written without spelling and grammatical errors. The syntactic parser is based on
a symbolic method for analyzing natural language queries.

The process for translating a question to SQL consists of four main phases, which are described next:

1. Lexical analysis: The task of this phase is to scan the question tokens and perform POS tagging,
lemmatization, and named entity recognition.

2. Syntactic analysis: This phase uses a dependency parser (Stanford Parser) for generating a parse
tree from the natural language query.

10

Natural Language Interfaces to Databases

3. Semantic analysis: This phase is responsible for translating the question to an intermediate rep-
resentation language, which uses first-order logic to express the question meaning.

4. SQL translation: This phase constructs the SQL statement from the logical query.

NALI was evaluated using Geoquery250 and attained an accuracy of 74.5% and a precision of 77.4%.

Ontology-Based NLI to Relational DBs

This NLIDB is based on a generic system that consists of several phases and uses an ontology imple-
mented for a customer database (Sujatha, Raju, & Viswanadha, 2016). This system allows accessing
information independently of the underlying database. Additionally, the design of the interface allows
the scalability and robustness of the system. Word sense disambiguation is performed by using n-grams.

The proposed approach of this NLIDB takes a natural language query and translates it to an SQL
statement by using six phases, which are described next.

1. Stop word removal: This phase removes stop words from the natural language query according
to a predefined list of stop words.

2. Stemming: The task of this phase is to determine the root words of the remaining words.
3. Content word extraction: This phase assigns POS tags to words by using a natural language

toolkit.
4. Syntactic analysis: This phase is responsible for parsing the question using a top-down parser.

Parsing is performed by applying syntactic rules expressed in Backus-Naur Form.
5. Semantic analysis: This phase uses an ontology and n-grams. The ambiguity of a word meaning

is resolved by using n-grams and the ontology constructed from the database schema.
6. Candidate query formulation: This phase uses the EFFECN algorithm, which performs the

division of the natural language question, joining of tables, and selection of multiple tables and
columns according to the search conditions specified in the question.

This NLIDB was evaluated using a set of 100 queries to a customer database, and it obtained an ac-
curacy of 84% and a precision of 86%.

Query Builder Based on Dependency Parsing

The main objective of this NLIDB is to allow users to access information stored in a database, without
the need of learning a database query language (Kokare & Wanjale, 2015). Constituency and dependency
parsing are two techniques widely used in natural language processing. The NLIDB uses dependency
parsing for extracting POS tags and typed dependencies. In dependency parsing, the parse tree connects
words according to the relation among words. Each node in the tree represents a word, and the children
of a node are words that depend on the parent. The labels of the arcs describe the relationship between
parent and child.

The translation of a natural language query to SQL is described next:

1. Lexical analysis: The task of this phase is to scan the user question for detecting stop words and
punctuation marks, which are discarded. Next, the question is separated into tokens.

11

Natural Language Interfaces to Databases

2. Syntactic analysis: This phase uses a dependency parser (Stanford Parser) for generating a parse
tree from the user query. Nouns, adjectives, etc. are related pairwise for constituting the arcs of the
dependency tree. Additionally, POS tags and typed dependencies are determined.

3. Semantic analysis: This phase is responsible for analyzing the typed dependencies for determin-
ing the meaning of the question; specifically, the tokens and nouns are mapped to database tables,
columns, and search values. Next, a logic query is generated by including the tables, attributes,
and search values.

4. Translation: This phase translates the natural language query to SQL using the tables, columns,
and values previously determined. Finally, the SQL statement is sent to the database management
system for returning the results to the user.

Additionally, the NLIDB uses a buffering strategy that stores user questions and the corresponding
SQL translations, so that when a previously processed question is detected, the NLIDB uses the stored
SQL statement for avoiding all the translation process.

The accuracy reported for this NLIDB is 91.66%. However, the benchmark used for the evaluation
is not specified.

Restricted NL Querying of Clinical DBs

The NLIDB uses an approach based on the Top-k algorithm for translating queries in restricted natural
language to SQL (Safari & Patrick, 2014). This interface was designed for querying a specific purpose
database of a Clinical Information System (CIS) by using a special-purpose language (CliniDAL) for
clinical data analytics, which has six classes of query templates. The mapping and translation algorithms
are generic, and therefore, they can be used for querying clinical databases designed in any of the three
data models: Entity-Relationship (ER), Entity-Attribute-Value (EAV) and XML.

This NLIDB allows a user to compose a question using the CliniDAL restricted natural language,
without requiring any knowledge of the CIS database schema, SQL or XML. CliniDAL is a generic query
language, and its associated processes for parsing, mapping, translation, and interpretation of temporal
expressions are generic and do not depend on the CIS.

The main components of the NLIDB are explained next:

1. Query Processor: This component takes a query expressed in CliniDAL as input and processes
it by using its sub-components (Parser, Categorizer and Optimizer) for generating a parse tree of
the query. Afterward, the parse tree is processed by the Query Translator.

2. Query Translator: This component translates the parse tree of a CliniDAL query to SQL, and
it consists of four sub-components. The first subcomponent is Mapper, which tries to map the
tokens detected in the CliniDAL query to CIS database elements (tables and columns) using the
similarity-based algorithm Top-k along with some NLP tools that include tokenization, abbreviation
expansion and lemmatization for preparing information for the automatic mapping. The Translator
sub-component performs two classes of translations related to the general CIS data model. If the
CIS uses an EAV or ER data model, the CliniDAL query is translated to SQL, while if the CIS
stores XML documents, the query is translated to XML. The Temporal Analyzer finds and maps
the temporal entity (database table) corresponding to the mapped terms of the query to the data
elements of the CIS model.

12

Natural Language Interfaces to Databases

The NLIDB was evaluated using a database of a Clinical Information System and a corpus of 108
queries, and it obtained an accuracy above 84%.

AskMe System

AskMe is a domain-independent NLIDB that uses previously proposed approaches, such as an ontology
for describing the database schema, a template-based method for the dynamic generation of the lexical
analyzer, syntactic parser and semantic analyzer (Llopis & Ferrández, 2013). Additionally, it provides
an innovative characteristic: services for generating queries that reduce the learning time for users. The
design of AskMe allows it to be automatically reconfigurable for multiple domains while achieving ac-
curacy comparable to domain-specific NLIDBs.

AskMe consists of two main components, which are described next:

1. Ontology builder: After connecting to a database, AskMe looks in the ontology repository for an
ontology that describes the database schema. The repository consists of a dictionary that contains
ontology references for any pair <server, database> for which the interface has been used. If the
ontology for the database is not in the repository, then the system automatically extracts informa-
tion on tables, columns, and relations from the database schema for building the ontology.

2. Dynamic parser generator: This component automatically creates the lexical, syntactic parser,
and semantic analyzer, which allows to interpret natural language queries and to translate them
into SQL statements for being executed by the database management system. This component has
three sub-components: Lexicon, Syntactic parser, and Semantic Analyzer. The lexicon consists of
the set of words/phrases that are used in questions for referring to database tables and columns.
The NLIDB uses a Link Grammar Parser for parsing operations. The semantic parser uses semantic
templates that are filled with the concepts defined in the database ontology.

AskMe was evaluated using the ATIS database and a set of the 448 queries in the ATIS “Scoring Set
A”. The NLIDB achieved an accuracy of 94.8%.

Semantic Grammar Systems

Intelligent System for Relational DBs

The NLIDB has a general architecture for an intelligent database system, including an implementation
that provides domain independence (Gunjal, Rathod, & Pise, 2017). Another feature of this system
is that it can be easily configured. The interface uses a semantic matching technique for converting a
natural language query to SQL using a dictionary and a set of production rules. The dictionary consists
of semantic sets for tables and columns. The SQL query generated by the NLIDB is executed, and the
result is presented to the user. This interface was tested using the Northwind database and a Suppliers-
Parts database.

The NLIDB is domain independent, which is achieved by an automatic configuration process. Ad-
ditionally, the interface can be easily configured; to this end, it uses a set of metadata and a semantic set
for tables and columns. The system has an intelligent layer that allows to query any database. The layer
carries out the processing of information and allows to answer a large variety of questions.

13

Natural Language Interfaces to Databases

The main functionality is based on semantic sets and rules, which can be modified by the database
administrator. The proposed system consists of two modules, which are explained next:

1. Preprocessor: The task of this module is to generate the domain dictionary, which is built auto-
matically, and it also generates rules, which are used by a semantic parser, The rules are based on
the database schema, WordNet and feedback from the database administrator. The administrator
can add, modify, and delete rules.

2. Run time processor: This module uses the rules and tries to match words of the user question
to predefined data structures, tables, and columns of the database schema. The rules describe the
relations between the table and its attributes.

This NLIDB was evaluated using the Northwind database and the Suppliers and Parts database, and
a group of five students was asked to formulate queries in English for the two databases. The query sets
consisted of 40 questions for Northwind and 20 questions for Suppliers and Parts. The results from the
evaluation were: accuracy of 70% for Northwind and accuracy of 75% for Suppliers and Parts.

Pattern-Matching Systems

nQuery System

nQuery is a domain-independent NLIDB that is based on an approach that focuses on incorporating
complex natural language requests (questions and data manipulation operations) together with simple
requests (Sukthankar, Maharnawar, Deshmukh, Haribhakta, & Kamble, 2017). The interface allows to
process requests that involve aggregate functions, multiple conditions in the Where clause, and clauses
such as Order by, Group by and Having. The system has been developed for the MySQL database man-
agement system.

nQuery translates requests to SQL before retrieving data from the database. This system focuses on
retrieving data, but it also allows the translation of other data manipulation operations (Insert, Delete,
and Update). However, the interface translates requests that can be processed by MySQL in order to
reduce the complexity of the database requests.

The NLIDB takes as input a natural language request, which is translated to SQL through several
phases, which are explained next:

1. Tokenize and tag: This phase divides the request into tokens and assigns them POS tags by using
the NLTK tokenizer package.

2. Analyze tagged tokens: This phase scans the tagged tokens and generates a noun map and a list of
verbs. Additionally, the type of SQL statement (Select, Insert, Delete, and Update) is determined.

3. Map to table names and attributes: This phase uses the noun map and verb list for generating
the table set, which specifies the tables that will be needed for building the SQL statement. This
strategy is based on the observation that table names are usually referred to by nouns and verbs in
requests. Furthermore, the noun map is used to determine the table columns that are needed in the
SQL expression.

14

Natural Language Interfaces to Databases

4. Filter redundancy and finalize clause mapping: This phase obtains information for the Group
by and Having clauses from information from previous phases and the basic rules of SQL. In ad-
dition, redundant tables and attributes are removed using some filter algorithms.

5. SQL formation: This phase selects the appropriate SQL statement template according to the type
of SQL statement determined in the second phase. Finally, the SQL statement is generated by
filling in the selected template the information on the clauses previously gathered and tables and
columns stored in the table and attribute map.

nQuery was evaluated using a corpus of synthetic requests to a bank database and a university database,
which respectively have 11 and 6 tables. The NLIDB performance was assessed with 75 requests for
the university DB and 50 requests for the bank DB, and it obtained approximately an accuracy of 86%.

Aneesah System

Aneesah is an NLIDB based on the combination of a pattern matching approach and dialog interaction
with the user for dealing with natural language complexities and ambiguities for dynamically gener-
ating SQL statements (Shabaz, O’Shea, Crockett, & Latham, 2015). The NLIDB has conversational
capabilities for providing an interactive and friendly environment to help users to access information in
relational databases.

The NLIDDB architecture was designed using a pattern matching technique. Additionally, Aneesah
implements a conversational agent based on a scripting language, a knowledge base, and an SQL query
engine. The interface has a modular architecture that provides flexibility for querying databases of dif-
ferent domains by configuring the NLIDB. The architecture consists of three components, which are
explained next:

Component 1: This component is constituted by a Conversation Manager, User Interface, Temporary
Memory, and Conversational Agent (constituted by Controller, Pattern Matching Engine, Pattern
Matching Scripting Language, and Response Analyzer). The Controller plans and conducts the
interaction with the user for guiding him/her in specifying the information the user wants from
the database. The Pattern Matching Engine determines the coincidence of user questions with the
scripts in the system knowledge base. Additionally, the NLIDB uses a Pattern Matching Scripting
Language that allows dialog with the user.

Component 2: This component consists of a Knowledge Base, which allows Aneesah to interact with
the database to be queried (a sales history database), and it can be configured for interacting with
different databases.

Component 3: This component consists of an SQL Query Engine, which is constituted by an SQL
Configurator, SQL Execution, and SQL Analyzer. This component retrieves information from the
database.

This NLIDB was evaluated using a sales history database. In the experiments, two groups of par-
ticipants were used: group A consisted of participants without SQL skills, while group B consisted of
participants familiar with SQL. The overall accuracy was 85.01%, and the overall precision was 92.96%.

15

Natural Language Interfaces to Databases

Systems Based on Other Approaches

Transfer-Learnable NLIDB

This work proposes an NLIDB that is domain independent and transferable to other databases, which
is achieved by learning one model that can be applied to any other relational database (Wang, Tian,
Xiong, Wang, & Ku, 2018). The approach adopts the principle of separating data and database schema
and adding support for the particularities and complexity of natural language. Specifically, the strategy
consists in separating the idiosyncrasy of natural language and focusing on the semantics of SQL queries
in order to develop a domain-independent and transferable NLIDB.

For obtaining this objective, the information is separated into specific components: the database
schema and the use of natural language specific to the schema. The approach used consists of three
stages: conversion of a natural language question q to its annotated form qa, use of a sequence-to-sequence
(seq2seq) model for translating qa to an annotated SQL statement sa, and conversion of the annotated
SQL statement sa to a normal SQL statement s.

The annotation of the natural language query is performed for detecting words/phrases in the ques-
tion for referring to DB elements (tables, columns, and values). However, sometimes words/phrases for
referring to DB elements depend largely on the context, and sometimes they are not explicitly specified
(semantic ellipsis).

The NLIDB uses the information of the database metadata: database schema, database statistics of
each column, and natural language expressions specific for a database, a column, and column values.

This NLIDB was trained and evaluated using the WikiSQL dataset that contains 87,673 natural
language queries and their respective translations to SQL and 26,521 tables. The interface attained an
accuracy of 82%. For evaluating the transferability aspect, the NLIDB was tested using the OVERNIGHT
dataset after being trained with WikiSQL. For this test, the query accuracy was 60% (a reduction of 22%).

NLI Based on Semantic Representations Using Ontologies

This NLIDB is based on a proposed approach that uses semantic representations to model the knowledge
of the NLIDB using the Ontology Web Language (OWL). The semantically modeled knowledge allows
the system to deal with discourse (a sequence of related questions) and to be used for querying databases
of different domains (González et al., 2015).

The most important component of this system is the Customization Module. The configuration of
the NLIDB is performed in two phases, which are described next:

1. Database Schema Extraction: Knowledge is automatically generated by a configuration module,
which extracts metadata from the database schema and identifies the elements that integrate the
structure of a relational database, such as table names, column names, data type of the columns
and existing relations between tables. To generate the NLIDB knowledge, the database administra-
tor must only indicate to the configuration module the connection parameters to his/her relational
database. Subsequently, the configuration module automatically models the knowledge and stores
it in an ontology, which is a .owl file.

2. NLIDB Customization: Once these elements have been identified, the Customization Module
analyzes the name of each of them to generate the vocabulary of the NLIDB, which is extended

16

Natural Language Interfaces to Databases

using lemmas and synonyms. All these elements are modeled by the Customization Module using
the proposed semantic representations.

In order to improve the performance of the NLIDB, the configuration module allows the database
administrator to manage the knowledge generated, i.e., add, delete, or update knowledge. In addition, it
allows the administrator to define the use of superlatives. Specifically, the configuration process consists
of the following steps:

1. Associate language words to database tables and columns, which may occur in user questions for
referring to tables and columns.

2. Define superlative words, as well as an indication of whether they refer to a maximal or minimal
value and the columns to which the superlative can be applied.

3. Indicate which database columns store information that could be used by users as search values in
natural language queries.

Classes, object properties, and data properties were defined to design the proposed semantic repre-
sentations. Classes to model the name of tables and the name of columns extracted from the relational
database were defined. Object properties to semantically relate each of the tables to their respective
columns were defined, as well as the relations among tables (for representing referential integrity). Fi-
nally, data properties to store the data type of each of the columns were defined. In this way, semantic
modeling based on the relational schema of the database is generated.

In order to model the relations between natural language and the semantic schema, classes and object
properties were also defined. A class to identify the vocabulary words was defined, as well as an object
property to relate each word to the elements of the semantic schema it refers to. A class to model super-
lative words was also defined. Additionally, data properties to indicate the columns of the database on
which the superlative can be used and to define the aggregate function to be applied (max or min) were
also defined. In this way, all the semantic knowledge of the NLIDB is generated.

The ontology generated by the configuration module is used by the NLIDB to interpret user queries
expressed in natural language, as well as to generate the corresponding SQL query, with which the in-
formation requested by the user is extracted from his/her relational database.

An experimental evaluation of this NLIDB was conducted using the Geoquery250 benchmark, which
also included other NLIDBs (ELF, NLP-Reduce, and FREyA). The results obtained indicate that the
proposed semantic representations, used to model the knowledge of the NLIDB, allowed the interface
to obtain a good performance, specifically, an accuracy of 85.2%.

NLI Concordant with Knowledge Base

The NLIDB uses an approach for translating natural language questions to a formal language query by
using a graph-based knowledge base, i.e., an ontology (Han, Park, & Park, 2016). This method considers
a subgraph of the knowledge base as a formal query. The method is based on the principle that a natural
language expression (answerable question) has a one-to-one mapping to a formal query; therefore, the
natural language question is translated to a formal query by comparing the question to NL expressions
and finding the most adequate. If the confidence level of this comparison is not high enough, the interface
rejects the question and does return an answer.

17

Natural Language Interfaces to Databases

This NLIDB performs the translation of a natural language question to a formal query in two phases,
which are explained next.

1. Generation of system-interpretable expressions from a knowledge base: This phase prepares
all the NL expressions that will be compared to the natural language question. These NL expres-
sions are generated from an ontology. The ontology was designed in such a way that allows each
subgraph of the ontology to be expressed in natural language, and at least one NL expression can
be generated for each subgraph. For each expression, a sequence of NL tokens is generated for
being compared to natural language questions. The sequence is called normalized expression.

2. Translation of user questions into formal queries by using the generated expressions: In this
phase of the process, a natural language question is translated to a formal query. To this end, the
normalized expression that is equivalent to the question is determined. First, for a natural language
question, one or more normalized expressions are generated, because of various possible interpreta-
tions of the question. Next, pairs of normalized expressions are generated, where one element of
the pair is generated from the knowledge base and the other element is derived from the question.
Afterward, the meaning of the question is determined by selecting the adequate pair of normalized
expressions. Finally, a formal query is generated by using the selected pair.

The NLIDB was evaluated using the Geoquery880 and the Geoquery250 benchmarks and the perfor-
mance metrics precision and accuracy. For Geoquery880, the interface attained an accuracy of 83.2% and
a precision of 86.6%, and for Geoquery250, it achieved an accuracy of 86.6% and a precision of 90.6%.

Question Translation with Generative Parser

This NLIDB takes advantage of the database schema for generating a set of candidate SQL queries,
which are classified by an SVM-ranker based on tree kernels (Giordani & Moschitti, 2012). In the gen-
eration phase, the system uses lexical dependencies and the database schema for constructing a set of
SELECT, FROM, and WHERE clauses and also joins. Additionally, clauses are combined by applying
rules and a heuristic weighting mechanism, which generates a list of sorted candidate SQL statements.
This method can be recursively applied for processing complex queries that involve nested SELECT
statements. Finally, a reranker is used for reordering the list of pairs of questions and candidate SQL
statements, where both members are represented by syntactic trees.

Ambiguity and errors may affect the interpretation of the user query; however, information of the
database schema can be used for verifying the correctness of the selected interpretation. The strategy
consists in generating all the possible SQL queries by using information from the database schema (for
example, primary keys, foreign keys, data types, etc.) for selecting the most likely using a ranking method.

The NLIDB translates natural language queries that involve nested SQL queries and complex natural
language questions that have subordinate phrases, conjunctions, and negations. To this end, an algorithm
is used that is based on coincidences between lexical dependencies and SQL structure, which allows to
generate a viable set of queries.

This interface gets the lexical relations of a question by using the Stanford Dependency Parser, which
obtains the set of binary word relations between a governor and a dependent (gov, dep), where gov and
dep denote a parent node and child node in the parse tree.

18

Natural Language Interfaces to Databases

This NLIDB was evaluated using three subsets of Geoquery and attained an accuracy of 87.2%, a
precision of 82.8%, and an F-measure of 85%.

Systems for Languages Different from English

Hindi NLIDB

This is a domain-specific NLIDB that uses natural language processing techniques (Nichante, Giripunje,
Nikam, Arsod, & Sonwane, 2017). The input for this interface is a natural language request (question or
data manipulation operation) in Hindi. This request is translated to English using a semantic matching
technique. Next, a semantically equivalent SQL statement is generated from the English request, which
is sent to a database management system, and the result is presented to the user in the Hindi language.
The interface is a domain-specific NLIDB that facilitates access to data, insertion, updating, and deletion
of information of a transport database.

The approach used for translating a natural language request to SQL consists of the following steps:

1. Generation of a transport database, which stores information on transport services.
2. Identification of the type of request (select, insert, delete, update, and aggregate functions).
3. Mapping of tokens of the Hindi question to database elements (tables and columns).
4. Generation of SQL statements by mapping input requests with the assistance of stored values in

the database.
5. Execution of the SQL statement and presenting the result in the Hindi language.

This NLIDB has two databases: a Compiler Database and a Transport Database. The system also has
four important modules: Tokenizer, Mapper, SQL Query Generator, and database management system.
The process performed by these modules is explained next:

1. The Tokenizer divides the Hindi language request into tokens and stores these tokens in an array.
These Hindi tokens are stored in the lexicon (system dictionary) with their corresponding English
words.

2. The Mapper sequentially compares the extracted tokens with tokens stored in the lexicon (system
dictionary), where the mapping is performed. Those tokens that match the corresponding English
words are saved together with their type, and all the remaining tokens are discarded as useless.

3. With the table and column names, the SQL statement is generated.
4. The generated SQL instruction is executed in the database management system and the answer is

presented to the user.

There are no experimental results reported for this NLIDB; the article only mentions that it was tested
with a transport database designed by the NLIDB implementer.

GANLIDB System

GANLIDB is an NLIDB that translates queries in the Arabic language to SQL; it is domain independent
and can improve through experience its knowledge base (Bais, Machkour, & Koutti, 2016). This NLIDB

19

Natural Language Interfaces to Databases

allows users to access data stored in a database by answering queries in Arabic. The interface uses natural
language processing techniques for translating queries into SQL statements. The most important advan-
tage of this system is that it is independent of language, content, and model of the database.

The operation of this interface uses an approach based on an intermediate representation language,
which translates a natural language query to a logical query in XML. Expressing the logical query in
XML allows the interface to operate independently of language, content, and model (relational, object-
oriented, relational-object, XML) of the database.

The architecture of GANLIDB consists of three modules, which are explained next:

1. Linguistic component: This module performs several analyses (morphological, syntactic, and
semantic) of the natural language query and generates the logical interpretation of the question in
an XML expression.

2. Database knowledge component: This module translates the logical query resulting from the
first module to an SQL statement. Next, the SQL statement is sent to the database management
system for generating the result in tabular form. The strategy of separating the database knowledge
component from the linguistic component allows the interface to query different domain databases.

3. Natural language query definition: This module helps the interface to reuse previously processed
queries for reducing translation time.

The NLIDB was evaluated using a corpus of 1,300 synthetic questions. The interface answered cor-
rectly 1,166 questions, which is equivalent to an accuracy of 95.1%.

Vietnamese NLIDB

This NLIDB has two main components: Question Analysis module y Result Computing module (Nguyen,
Hoang, & Pham, 2012). The first component determines the type of user query and extracts informa-
tion from it. The second component identifies the information requested by the user y calculates query
statistics. This is a domain-specific interface for a survey database for individuals and businesses that
want to know economic information from economic surveys.

The NLIDB has two main components, which are explained next:

1. Question Analysis Component: In the application domain of the NLIDB, a typical natural lan-
guage query consists of three parts: question term indicates the type of question, question type
specifies the statistical measure that users are interested in, and question information is the type
of information requested and that will be used for determining the corresponding table columns
that store the information. The purpose of this component is to determine Question Term, Type
of Question and Question Information from a user question. Considering that user questions not
only specify the requested information, but they include special words and phrases, the NLIDB
uses JAPE (Java Annotation Patterns Engine) rules for detecting question terms and integrates the
results into a Vietnamese word segmentation VNTokenizer so that the question terms are correctly
identified as words. There exist many types of questions in Vietnamese; some of the types are Yes/
No, Calculate, Give Reason (Why) y Comparing; therefore, for treating these types, the system
uses a statistical question answering system that satisfies user’s need of information stored in the
database.

20

Natural Language Interfaces to Databases

2. Result Computing Component: This component determines the database columns that correspond
to the question information part of the user query. This system analyzes the survey questionnaires
and sorts the information of each question of the survey; this process is called Relevant Data
Retrieval. This system has a synonym dictionary for the economic and statistical domain.

This NLIDB was evaluated using a database of economic surveys. The corpus of queries consists
of 500 questions formulated by users, 300 of these questions were used for training the system and 200
questions were used for evaluation. Out of the 200 questions, 157 were correctly answered, which is
equivalent to an accuracy of 78.5%.

COMMERCIAL NATURAL LANGUAGE INTERFACES TO DATABASES

Available Commercial Natural Language Interfaces

Access ELF

Access ELF is an existing commercial NLIDB for translating natural language queries to SQL for Ac-
cess databases (ELF, 2009). It is considered one of the best commercial interfaces. It is important to
mention that, since ELF can only be used for Access, it cannot be used for large databases. It has several
important characteristics:

1. Domain independence: Once ELF is installed on a computer, it is able to interact with any database
(after configuring the interface).

2. Automatic configuration: The system can automatically obtain the structure of the database;
therefore, its initial configuration is easy and simple. The automatic configuration examines the
words in the names of tables and columns, and it uses them for generating the dictionary. These
words are called synonyms and are used by ELF as references for tables and columns when they
occur in natural language queries. The automatic configuration also stores for each column its data
type and the table it belongs to.

3. Configuration edition: The configuration is performed by assigning new synonyms to tables
and columns or by assigning synonyms to the words that have already been related to tables and
columns.

4. Database semantics: During the analysis of the user query, ELF examines the terms (called syn-
onyms) used for describing database tables and columns, and it uses its dictionary for trying to
predict the synonyms used in questions.

The evaluation described by Conlon, Conlon and James (2004) involved users who are human
resource professionals (administrators and staff). The success rate reported (presumably recall) was
70–80%. Additionally, ELF was evaluated using the Northwind database and achieved 91% of accuracy
(Githiari, 2014).

21

Natural Language Interfaces to Databases

EasyAsk

EasyAsk is an existing commercial NLIDB that is used for querying eCommerce databases (FinancesOn-
line, 2019). This is a software search tool that integrates natural language technology (Quiri) and analyses.
Users can utilize keywords or terms to filter search results. This system provides product concepts, which
yield specific groups of products that match the description of user requests. Additionally, this interface
provides assistance when formulating queries by offering options to users when writing their questions.

The most important features are semantic processing that relates various text descriptions to concepts,
automatic word stemming and spell-correction, automatic association of attributes to product concepts,
and relaxation (ignoring irrelevant or unknown words).

A major component of EasyASk is Quiri, which is a natural language technology that combines
linguistic processing with the understanding of data. Quiri divides a user question into words, and then
it groups them into phrases and normalizes the content for interpreting the question. Additionally, it
provides spell correction, stemming, and synonyms.

EasyAsk was evaluated using the Northwind database and attained an accuracy of 31% and a preci-
sion of 48.4% (Githiari, 2014).

Prototype Natural Language Interfaces

ATHENA

ATHENA is a prototype NLIDB developed by IBM, whose main feature is the ability to process com-
plex nested SQL queries for business applications (Sen et al., 2019). The system uses domain ontologies
that describe the semantic entities and their relationships in a domain. This system does not need user
training nor feedback.

For processing a user question that involves several nested queries, this interface uses the following
components:

1. Evidence Annotator: This component scans all the tokens of the natural language query and
gathers evidence that one or more ontology elements (concepts, properties, and relations between
concepts) have been referred to in the user question. Tokens that are mapped to some ontology
elements are called entities (database tables and columns).

2. Nested Query Detector: A reasoning submodule obtains information from a linguistic analyzer
and semantic annotators for identifying a possible nested query.

3. Subquery Formation: In the case of a nested query, this component uses lexicon-based techniques
to divide the user question into two segments: the first segment for the outer query, and the second
for the inner query. Specifically, this component determines the correct sets of tokens associated
to each query by using a set of rules applicable to the query, which use the annotator outputs
and domain elements. The result of this component is two queries expressed in Ontology Query
Language (OQL).

4. Subquery Join Condition: For a nested query, this component generates the join condition that
involves the inner and outer queries for constructing the complete query in OQL. Join generation
depends on linguistic analysis and domain reasoning.

5. Query Translator: The task of his component is to convert an OQL query into an SQL statement.

22

Natural Language Interfaces to Databases

ATHENA was tested using a FIBEN dataset that contains realistic business intelligence queries and
combines data from two different financial sub-domains: SEC (Securities and Exchange Commission)
dataset and TPoX (XML transaction processing benchmark). No performance results (accuracy or preci-
sion) are reported for this test.

Discontinued Natural Language Interfaces

English Query

English Query (developed by Microsoft) is commercial software that includes a set of tools, which da-
tabase administrators can use for setting up an NLIDB (Microsoft, 2010). This interface was no longer
included in SQL Server 2005. English Query applications allow users to formulate ad hoc questions to
a database using English expressions. This system provides an environment for developing an English
Query model. However, since databases are different and users formulate a large variety of questions,
defining a model for answering user queries can be a complex process.

The task of the English Query engine is to perform the translation from a natural language query
to SQL. The engine uses a domain file that contains the database model. The model contains specific
information of the database to be queried, specifically, the database schema, a semantic abstraction
layer constructed on top of the schema, and a mapping between them. In the model, database tables and
columns are represented by entities, and joins are represented by relations. Entities and relations defined
in a model allow English Query to translate a question to SQL.

English Query has a wizard that helps to configure the interface by automatically defining some
entities and relations based on the structure of the database. Database administrators can define other
entities and relations by using the development environment. The environment allows defining joins and
change/define entity properties; for example, associated words, entity type, field, help text.

The evaluation of English Query described by Conlon et al. (2004) involved users who are human
resource professionals (administrators and staff). The success rate reported (presumably recall) was
70–80%. Additionally, it was evaluated using the Northwind database and obtained an accuracy of 39%
and a precision of 46.1% (Githiari, 2014).

SAA LanguageAccess

In 1990 IBM introduced SAA LanguageAccess (IBM, 1990). This interface uses other tools developed
by IBM, such as Application System (AS) and Query Management Facility (QMF) for showing results
to users. These results are shown in different ways: a pie chart, a table or a histogram. This NLIDB was
withdrawn from marketing in 1993.

This interface is based on the use of grammar and dictionaries for translating a natural language
query to an SQL statement. To this end, it consists of three main components, which are described next:

1. Query Interface: This component is based on AS or QMF, which allows the user to formulate
queries in natural language. Additionally, the system uses these tools for showing results to the
user.

2. Natural Language Engine: The task of this component is to syntactically parse the user question,
interpret its meaning, and ensure accurate answers. This component involves the following ele-

23

Natural Language Interfaces to Databases

ments/aspects. Lexicons or dictionaries for storing basic and domain-specific vocabulary. Syntax
or grammar for taking into account the structure of the user question, which is used for performing
a syntactic parsing and verifying the correct grammatical form of a question. Semantics for help-
ing to understand the exact meaning of the natural language query; for example, determining the
adequate meaning of a word with several meanings. Pragmatics for solving situation-dependent
interpretation of the user question; for example, for identifying the references of pronouns in the
question.

3. Customization Tool: This tool is used for defining the vocabulary utilized by users when formu-
lating questions. Typically, this tool is used by the database administrator, since he/she knows the
database structure and the vocabulary used in the organization by specific users. Specifically, it is
used for including in the lexicon specific terms and acronyms likely to be used in user questions
for referring to database elements (tables and columns).

EVALUATION BENCHMARKS

ATIS Database

ATIS (Air Travel Information Services) database is a relational database that has information on flights,
flight fares, aircraft, airlines, airports, and cities in the USA, and ground services. From 1990 to 1994,
SRI International used this database for conducting annual evaluations for research sponsored by DARPA
for spoken natural language (SRI International, 2019).

The ATIS database contains information obtained from the Official Airline Guide, which is organized
as a relational database. The database consists of 28 tables and a total of 125 columns, and its schema
is shown in figure 1. The most used corpus to query ATIS for evaluating NLIDBs is the ATIS0 Pilot,
which was designed in 1990 by SRI and consists of 2884 of queries. This corpus is available at https://
catalog.ldc.upenn.edu/docs/LDC93S4B/trn_prmp.html.

Geobase Database

Geobase is a database that contains geographical information of the United States of America, and it
is used by many NLIDBs as a test benchmark since the 90s. It includes information on cities, states,
mountains, rivers, lakes, and highways. Originally, Geobase was used by the Geobase system, which was
an application example included in the Prolog commercial system, mainly in Turbo Prolog 2.0 version
distributed by Borland International (Borland, 1988). It first appeared in 1988 as a deductive database
implemented in Prolog, which was complemented with a natural language interface for querying the
database.

The schema of the original Geobase is the following:

state(name, abbreviation, capital, area, admit, population, city, city, city, city)
city(state, abbreviation, name, population)
river(name, length, statestringlist)
border(state, abbreviation, statelist)
highlow(state, abbreviation, point, height, point, height)

24

Natural Language Interfaces to Databases

mountain(state, abbreviation, name, height)
lake(name, area, statelist)
road(number, statelist)

Since the 90s, Geobase (sometimes referred to as Geoquery) has been used for evaluating many
NLIDBs; some of the most recent are C-Phrase, Precise, and WASP. Therefore, many researchers have
adapted Geobase to the relational model.

Unfortunately, there exist different versions of the relational schemas, which differ from the original
schema; for example, the addition of an extra column density to table state, the division of table highlow
into tables high and low, the elimination of the four city columns from table state. Additionally, most of
the versions lack a foreign key from column capital to table city, which is necessary because every state
capital is a city. This situation complicates comparing the performance reported for different NLIDBs,
despite being evaluated using Geobase. Figure 2 shows a database schema for Geobase proposed by
the authors.

There exist two query corpora for testing: Geoquery880 and Geoquery250, which were designed by
Mooney for training a system for semantic analysis. These corpora are available at http://www.cs.utexas.
edu/users/ml/nldata/geoquery.html.

Figure 1. ATIS database schema

Figure 2. The proposed relational schema for Geobase

25

Natural Language Interfaces to Databases

Northwind Database

Northwind is a database used by Microsoft for showing the features of some of its products, including
SQL Server and Microsoft Access. The database contains information on sales of the Northwind Trad-
ers company, a food import, and export company. This database has 13 tables, as shown in Figure 3
(Borker, 2006).

Spider Dataset

Spider is a text-to-SQL dataset for large scale semantic analysis and contains complex and cross-domain
queries. It was developed at Yale University with the participation of 11 computer science students. It
consists of 10,181 natural language questions and 5,693 complex queries on 200 databases with multiple
tables that span 138 different domains (Yu et al., 2018).

The query corpus comprises a large variety of clauses and operations: SELECT, WHERE, GROUP
BY, HAVING, ORDER BY, LIMIT, JOIN, INTERSECT, EXCEPT, UNION, NOT IN, OR, AND,
EXISTS, LIKE, as well as subqueries. Spider is an extensive query corpus designed for training neural
networks used in NLIDBs. The corpus comprises 200 databases covering 138 different domains, 10,181
questions, and 5,693 complex SQL queries. This dataset is available at https://github.com/taoyds/spider.

IMDb Database

The Internet Movie Database (IMDb) is an online database that stores information on movies, direc-
tors, producers, actors, television shows, and series. IMDb makes available for public access subsets
of IMDb data at https://datasets.imdbws.com/. Each dataset is in tsv format and can be accessed using
a spreadsheet. Because the information is not compatible with the relational model, some relational
database versions have been developed, which vary in the number of tables and columns. One of these
is available at https://relational.fit.cvut.cz/dataset/IMDb.

Figure 3. Northwind database schema

26

Natural Language Interfaces to Databases

WikiSQL Database

WikiSQL is a dataset published in 2017 by Zhong, Xiong and Socher (2017) for training Seq2SQL, an
NLIDB based on deep neural networks. WikiSQL consists of 80,654 annotated natural language queries
and SQL queries involving 24,241 tables from Wikipedia. It is important to mention that the WikiSQL
database has no foreign keys, and each domain has only one table. This database is available at https://
github.com/salesforce/WikiSQL.

SOLUTIONS AND RECOMMENDATIONS

As mentioned before, the slow development of NLIDB technology, from 1961 to 2019, shows that
translating a natural language query to SQL has proven to be very difficult. In particular, developing
domain-independent systems that achieve accuracies above 95% is an extremely complex problem.

The accuracies reported for neural network NLIDBs are below 85%, which is still far from 95%. The
best results for syntax-based interfaces are in the range of 90% to 95% for accuracy. The accuracy obtained
by a semantic grammar system is 75%, which is very far from 95%. For pattern-matching interfaces, the
accuracies reported are around 85%. The best accuracies obtained by systems based on other approaches
is 87%. Finally, the best performance reported for commercial NLIDBs is 80%, which is far from 95%.

The results summarized in the previous paragraph show that more work is needed for increasing the
effectiveness of NLIDBs, particularly for neural network systems, which is a new approach for translat-
ing from natural language to SQL.

The descriptions of NLIDBs show that there are no widely accepted benchmarks for evaluation, which
makes it very difficult to compare the performance of different systems. Although Geobase is one of
the most used databases, unfortunately, there exist several versions of the relational schema. Therefore,
figure 2 shows a proposed schema for Geobase.

There exist several metrics for measuring NLIDB performance: accuracy (also called recall), preci-
sion, and F1. One of the most widely used metrics is precision, which is defined as the percentage of
correctly answered queries with respect to the number of translated queries. However, end users are
more interested in accuracy, which is the percentage of correctly answered queries with respect to all
the input queries. Unfortunately, several systems do not report accuracies, which makes it difficult to
compare the performance of NLIDBs that only report precision and/or F1. Therefore, it is recommended
that accuracy be always reported.

FUTURE RESEARCH DIRECTIONS

After almost 60 years of development of NLIDB technology, the challenge for achieving accuracies close
to 100% still remains. Most of the problems found in translating from natural language are linguistic; for
example, modifier attachment, conjunction and disjunction, and semantic ellipsis.

The following example illustrates the problem of modifier attachment: Which Delta flights depart to
Washington at night? In this sentence, at night could be considered as a modifier of Washington, which
is syntactically correct, but semantically incorrect, because it should be a complement of the verb depart.
The word and, which is a conjunction, is often used to denote logical disjunction, whose meaning is usually

27

Natural Language Interfaces to Databases

difficult to determine. Ellipsis is the omission of important words (in the wording of a natural language
query) that are necessary for an NLIDB to understand the query fully. The following query for the ATIS
database illustrates this problem: How many engines does an M80 have? In this query, a value M80 is
specified; however, no table name is mentioned nor a column name associated to the specified value.

Other problems are related to database schemas and usability. The evaluations reported are for NLIDBs
that have been configured by the implementers, who are the experts. However, for practical applications,
it is more important the performance obtained when the interface is configured by database administra-
tors. Unfortunately, very few NLIDBs report results of systems configured by users different from the
implementers; therefore, more work is needed for addressing this problem.

CONCLUSION

The current challenge for domain-independent NLIDBs consists of developing systems whose accuracy
is above 95% and that can be easily configured for obtaining this accuracy.

The development of domain-independent NLIDBs has proven to be more difficult than initially
thought. By way of comparison, it has been shown that the problem of determining if a natural language
expression is grammatical (i.e., it satisfies the rules of grammar) is an NP-complete problem (Koller &
Striegnitz, 2002). Therefore, the syntactic parsing of natural language is an NP-hard problem, whose
exact solution requires an algorithm whose computational complexity is exponential.

In order to improve NLIDB performance, the authors propose a layered approach, which is recommended
for dealing with complex problems. Systems whose design is based on functionality layers provide the
flexibility and modularity for implementing more complex processing strategies than systems designed
otherwise. Complex systems that have been developed using a layered architecture are communication
networks that use the seven-layered architecture of the OSI model, and database management systems
that use the three-level ANSI-SPARC architecture.

The architecture of the NLIDB described by Pazos et al. (2016) has allowed to include more layers
for dealing with additional problems. For example, a Wizard for semi-automatically fine-tuning the
configuration, which allowed undergraduate students to configure the system for obtaining accuracies
in the range of 80.53% to 84.82%.

Another layer has been recently developed for dealing with a difficult semantic ellipsis problem
that involves Boolean columns. These are columns that can only store two possible values: true/false,
yes/no, 1/0. Natural language queries that involve Boolean columns do not specify search values; for
example, consider the following query to the ATIS database Which flights are in wide body airplanes?
Table aircraft has a column wide_body, whose values are YES or NO, but the search value YES is not
specified in the query.

Finally, a new layer is being developed for querying databases that have design anomalies, such as the
absence of primary and foreign keys, use of surrogate keys instead of primary keys, columns for storing
aggregate function calculations, repeated columns in two or more tables, tables that are not in second
normal form, and tables not in third normal form. Dealing with this problem is important because there
are many databases that have design anomalies; therefore, many NLIDBs do not perform correctly with
a large number of databases that have this problem.

28

Natural Language Interfaces to Databases

REFERENCES

Androutsopoulos, I., Ritchie, G. D., & Thanisch, P. (1995). Natural language interfaces to databases – An
introduction. Journal of Natural Language Engineering, 1(1), 29–81. doi:10.1017/S135132490000005X

Bais, H., Machkour, M., & Koutti, L. (2016). An independent-domain natural language interface for rela-
tional database: Case Arabic language. In Proceedings of 2016 IEEE/ACS 13th International Conference
of Computer Systems and Applications (pp. 1-7). Agadir. Morocco: IEEE. 10.1109/AICCSA.2016.7945786

Borker, S. (2006). Business intelligence data warehousing an open source approach (Report). Kansas
State University, Manhattan, KS.

Borland International. (1988). Turbo Prolog 2.0 reference guide. Scotts Valley, Borland International.

Chomsky, N. (1957). Syntactic Structures (463-480). The Hage: Mouton & Co.

Conlon, S. J., Conlon, J. R., & James, T. L. (2004). The economics of natural language interfaces: Natu-
ral language processing technology as a scarce resource. Decision Support Systems, 38(1), 141–159.
doi:10.1016/S0167-9236(03)00096-4

FinancesOnline. (2019). EasyAsk review. Retrieved on December 16, 2019, from https://reviews.fi-
nancesonline.com/p/easyask/

Giordani, A., & Moschitti, A. (2012). Translating questions to SQL queries with generative parsers dis-
criminatively reranked. In Proceedings of the International Conference on Computational Linguistics
(COLING) (pp. 401-410). Mumbai, India: Academic Press.

Githiari, L. M. (2014). Natural Language Access to Relational Databases: An Ontology Concept Map-
ping (OCM) Approach. PhD dissertation.

González, J. J., Florencia-Juarez, R., Fraire, H. J., Pazos, R. A., Cruz-Reyes, L., & Gómez, C. (2015).
Semantic representations for knowledge modelling of a natural language interface to databases using
ontologies. International Journal of Combinatorial Optimization Problems and Informatics, 6(2), 28–42.

Green, B. F., Wolf, A. K., Chomsky, C., & Laughery, K. (1961). BASEBALL: An automatic question
answerer. In Proceedings of the Western Joint Computer Conference (pp. 207-216). Los Angeles, CA:
Academic Press.

Gunjal, U. P., Rathod, V., & Pise, N. N. (2017). An intelligent system for relational databases. Interna-
tional Journal of Scientific Research (Ahmedabad, India), 6(3), 1546–1550.

Han, Y. J., Park, S. B., & Park, S. Y. (2016). A natural language interface concordant with a knowledge base.
Computational Intelligence and Neuroscience, 2016, 1–15. doi:10.1155/2016/9174683 PMID:26904105

Hendrix, G. G., Sacerdoti, E. D., Sagalowicz, D., & Slocum, J. (1978). Natural language interfaces to databas-
es – An introduction. ACM Transactions on Database Systems, 3(2), 105–147. doi:10.1145/320251.320253

IBM. (1990). IBM SAA LanguageAccess: A straighter way to your information. Retrieved December
16, 2019, from https://archive.org/details/TNM_IBM_SAA_Language_Access_-_IBM_20171017_0041

https://reviews.financesonline.com/p/easyask/
https://reviews.financesonline.com/p/easyask/
https://archive.org/details/TNM_IBM_SAA_Language_Access_-_IBM_20171017_0041

29

Natural Language Interfaces to Databases

International, S. R. I. (2019). Air Travel Information Service (ATIS). Retrieved December 2, 2019, from
http://www.ai.sri.com/natural-language/projects/arpa-sls/atis.html

Tyagi, M. (2014). Natural Language Interface to Databases: A Survey. International Journal of Scientific
Research (Ahmedabad, India), 3(5), 1443–1445.

Kokare, R., & Wanjale, K. (2015). A natural language query builder interface for structured databases
using dependency parsing. International Journal of Mathematical Sciences and Computing, 1(4), 11–20.
doi:10.5815/ijmsc.2015.04.02

Koller, A., & Striegnitz, K. (2002). Generation as dependency parsing. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics (pp. 17-24). Philadelphia, PA: Academic Press.

Li, F. (2017). Querying RDBMS using natural language (Doctoral dissertation). University of Michigan,
Ann Arbor, MI.

Llopis, M., & Ferrández, A. (2013). How to make a natural language interface to query databases ac-
cessible to everyone: An example. Computer Standards & Interfaces, 35(5), 470–481. doi:10.1016/j.
csi.2012.09.005

Microsoft. (2010). Chapter 32 - English Query Best Practices. Retrieved December 16, 2019, from
http://technet.microsoft.com/es-mx/library/cc917659(en-us,printer).aspx

Mvumbi, T. (2016). Natural language interface to relational database: A simplified customization ap-
proach (Master thesis). University of Cape Town. Cape Town, South Africa.

Nguyen, D. T., Hoang, T. D., & Pham, S. B. (2012). A Vietnamese natural language interface to database.
In Proceedings of 2012 IEEE Sixth International Conference on Semantic Computing (pp. 130-133).
Palermo, Italy: IEEE. 10.1109/ICSC.2012.33

Nichante, R., Giripunje, S., Nikam, A., Arsod, S., & Sonwane, N. (2017). Hindi language as a graphical
user interface to relational database for transport system. International Research Journal of Engineering
and Technology, 4(3), 349–353.

Nihalani, N., Silakari, S., & Motwani, M. (2011). Natural language interface for database: A brief review.
International Journal of Computer Science Issues, 8(2), 600–608.

Pazos, R. A., Aguirre, M. A., González, J. J., Martínez, J. A., Pérez, J., & Verástegui, A. A. (2016).
Comparative study on the customization of natural language interfaces to databases. SpringePlus, 5(553),
1–30. doi:10.118640064-016-2164-y

Pazos, R. A., González, J. J., Aguirre, M. A., Martínez, J. A., & Fraire, H. J. (2013). Natural Language
Interfaces to Databases: An Analysis of the State of the Art. In Recent Advances on Hybrid Intelligent
Systems (pp. 463–480). Springer-Verlag. doi:10.1007/978-3-642-33021-6_36

Porras, J., Florencia-Juárez, R., Rivera, G., & García, V. (2018). Interfaz de lenguaje natural para con-
sultar cubos multidimensionales utilizando procesamiento analítico en línea. Research in Computing
Science, 147(6), 153–165. doi:10.13053/rcs-147-6-12

http://www.ai.sri.com/natural-language/projects/arpa-sls/atis.html
http://technet.microsoft.com/es-mx/library/cc917659(en-us,printer).aspx

30

Natural Language Interfaces to Databases

Safari, L., & Patrick, J. D. (2014). Restricted natural language based querying of clinical databases.
Journal of Biomedical Informatics, 52, 338–353. doi:10.1016/j.jbi.2014.07.012 PMID:25051402

Sen, J., Ozcan, F., Quamar, A., Stager, G., Mittal, A., Jammi, M., ... Sankaranarayanan, K. (2019). Natural
Language Querying of Complex Business Intelligence Queries. In Proceedings of the 2019 International
Conference on Management of Data, SIGMOD Conference (pp. 1997-2000). 10.1145/3299869.3320248

Shabaz, K., O’Shea, J. D., Crockett, K. A., & Latham, A. (2015). Aneesah: A conversational natural
language interface to databases. In Proceedings of the World Congress on Engineering (pp. 227-232).
London, UK: Academic Press.

Software, E. L. F. (2009). ELF Software Documentation Series. Retrieved December 16, 2019, from
http://www.elfsoft.com/help/accelf/Overview.htm

Sujatha, B., & Raju, S. V. (2016). Ontology based natural language interface for relational databases.
Procedia Computer Science, 92, 487–492. doi:10.1016/j.procs.2016.07.372

Sujatha, B., Raju, S. V., & Shaziya, H. (2012). A Survey of Natural Language Interface to Database
Management System. International Journal of Science and Advanced Technology, 2(6), 56–60.

Sukthankar, N., Maharnawar, S., Deshmukh, P., Haribhakta, Y., & Kamble, V. (2017). nQuery - A natural
language statement to SQL query generator. In Proceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics, Student Research Workshop (pp. 17-23). 10.18653/v1/P17-3004

Utama, P., Weir, N., Basık, F., Binnig, C., Cetintemel, U., Hättasch, B., . . . Usta, A. (2018). DBPal: An end-
to-end neural natural language interface for databases. Retrieved from https://arxiv.org/abs/1804.00401

Wang, W. (2019). A cross-domain natural language interface to databases using adversarial text method.
In Proceedings of the Very Large Data Bases PhD Workshop. Los Angeles, CA: Academic Press.

Wang, W., Tian, Y., Xiong, H., Wang, H., & Ku, W. (2018). A transfer-learnable natural language
interface for databases. Retrieved from https://arxiv.org/abs/1809.02649

Woods, W. A., Kaplan, R. M., & Webber, B. N. (1972). The lunar sciences natural language information
System (BBN Report 2378). Bolt Beranek and Newman Inc.

Xu, B., Cai, R., Zhang, Z., Yang, X., Hao, Z., Li, Z., & Liang, Z. (2016). NADAQ: Natural language
database querying based on deep learning. IEEE Access: Practical Innovations, Open Solutions. Advance
online publication. doi:10.1109/access.2019.2904720

Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li, Z., … Radev, D. R. (2018). Spider: A large-
scale human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task.
Retrieved from https://arxiv.org/abs/1809.08887

Zhong, V., Xiong, C., & Socher, R. (2017). Seq2SQL: Generating structured queries from natural lan-
guage using reinforcement learning. Retrieved from https://arxiv.org/abs/1709.00103

http://www.elfsoft.com/help/accelf/Overview.htm
https://arxiv.org/abs/1804.00401
https://arxiv.org/abs/1809.02649
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/1709.00103

	Title Page
	Table of Contents
	Section 1: Smart Interactive Systems
	Chapter 1: Natural Language Interfaces to Databases

