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ABSTRACT

This chapter consists of an update of a previous publication. Specifically, the chapter aims at describing 
the most decisive advances in NLIDBs of this decade. Unlike many surveys on NLIDBs, for this chap-
ter, the NLIDBs will be selected according to three relevance criteria: performance (i.e., percentage of 
correctly answered queries), soundness of the experimental evaluation, and the number of citations. To 
this end, the chapter will also include a brief review of the most widely used performance measures and 
query corpora for testing NLIDBs.
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INTRODUCTION

In the last decades, the volume of information has grown exponentially. For manipulating such vast 
amounts of information, databases have been widely used by businesses and organizations. For accessing 
database information, different types of software tools have been developed. One type of such tools are 
database query languages; for example, SQL, which allows users to access data with ample flexibility, 
because of the high expressiveness of SQL. Unfortunately, SQL is a computer language that is difficult 
to utilize by users that are not computer professionals.

In order to facilitate casual and inexperienced users accessing database information, graphical form-
based applications have been developed. These tools are very easy to use; however, they do not offer 
flexibility for accessing information in ways different from those for which they are developed.

Natural language interfaces to databases (NLIDBs) are software applications that allow inexperienced 
users to formulate queries in natural language for obtaining information stored in databases. NLIDBs 
have the advantages of both types of database querying tools: they are easy to use and offer high flex-
ibility for accessing information.

Several surveys on NLIDBs have been published; some of the most important and recent are the 
following:

1.  Natural language interfaces to databases - An introduction by Androutsopoulos (1995).
2.  Natural language interface for database: A brief review by Nihalani (2011).
3.  A survey of natural language interface to database management system by Sujatha (2012).
4.  Natural language interfaces to databases: An analysis of the state of the art by Pazos (2013).
5.  Natural language interface to databases: A survey by Tyagi (2014).

The purpose of this chapter is to describe the most relevant advances in NLIDBs of this decade. Unlike 
many surveys on NLIDBs, for this chapter, the NLIDBs have been selected according to three relevance 
criteria: performance (i.e., percentage of correctly answered queries), soundness of the experimental 
evaluation, and the number of citations. To this end, the chapter will also include a brief review of the 
most widely used query corpora for testing NLIDBs. The focus of this chapter is on approaches that 
translate queries in natural language to SQL expressions; so, other database query languages are out of 
the scope (e.g., Porras, Florencia-Juárez, Rivera & García, 2018).

BACKGROUND

NLIDBs are software applications that allow users to formulate queries in natural language for obtaining 
information stored in databases. This is accomplished by translating a natural language expression into 
an SQL statement. Unfortunately, the translation from a natural language query to SQL is an extremely 
complex problem. This difficulty explains the slow development of NLIDB technology, which is sum-
marized next.

Chomsky (1957) published a monograph titled Syntactic Structures, which has been considered a 
landmark of modern linguistics. He proposed a formal approach to natural language syntax, which consists 
of symbols and rules and is the origin of the constituency grammar approach. In the decades of the 60s 
and 70s, the first natural language querying systems were developed, and they were basically interfaces 
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for expert systems implemented for specific domains. Some of the most famous are BASEBALL (Green, 
Wolf, Chomsky, & Laughery, 1961) and LUNAR (Woods, Kaplan, & Webber, 1972). Most of those 
NLIDBs were developed for a particular database, and consequently, they could not be easily modified 
for querying different databases. These systems are called domain-dependent NLIDBs, and many of 
them achieved good results: accuracy (percentage of correctly translated queries) of around 95%.

The development of an NLIDB for a specific database was time consuming, and it was similar to 
developing an information system before database management systems were available. Therefore, the 
next step in NLIDB technology was to develop domain-independent systems, i.e., NLIDBs that can be 
used for querying many different databases. LADDER (Hendrix, Sacerdoti, Sagalowicz, & Slocum, 
1978) is considered one of the first systems that could be configured for querying different databases. 
It was until 1990 that IBM introduced SAA LanguageAcess (its first commercial NLIDB), which was 
withdrawn from marketing in 1993. In 2000 Microsoft included English Query in SQL Server 2000, 
which had a similar fate because it was no longer included in SQL Server 2005. Developing domain-
independent systems has proven to be very difficult: they still have deficiencies in the translation process 
and have attained accuracies in the interval of 80-90%.

NATURAL LANGUAGE INTERFACES TO DATABASES

This section includes brief descriptions of the most relevant NLIDBs developed from 2010 to 2019. 
Descriptions are grouped according to the approach used for the interfaces: neural networks, syntax 
based, semantic grammar, and pattern matching, as well as systems for languages different from English. 
Additionally, the performance obtained (mainly accuracy or precision) and the databases/benchmarks 
used for testing are mentioned. Additionally, for each approach, the systems are ordered from the most 
recent to the oldest.

Neural network NLIDBs use deep neural networks (based on recurrent neural networks), which are 
powerful machine learning techniques that have been used for natural language processing. In particular, 
a type of deep neural networks, called sequence-to-sequence recurrent neural networks, has been used 
for translating from a natural language query to SQL. It is important to mention that, like statistical 
approaches, interfaces based on neural networks have to be trained with very large datasets (tens of 
thousands of sentences for training the neural network and hundreds of thousands for testing).

Syntax-based systems use a grammar that consists of symbols and rules, which are applied to a natural 
language expression for determining its structure and grouping syntactically related words. The following 
is an example of a simple grammar for parsing Which river passes through Illinois? (Pazos et al., 2013):

S → WQ VP
Wh → “what” | “which”
WQ → Wh “river” | Wh “state”
VP → V ValN
V → “passes through” | “borders”
ValN → “Illinois” | “Missouri” | “Indiana”
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Semantic grammar systems are similar to syntax based systems, except that nonterminal symbols may 
be different from syntactic concepts (noun phrases, prepositional phrases). The following is an example 
of a semantic grammar (Pazos et al., 2013):

S → River_question Flow_through
River_question → “which river”
Flow_through → “passes through” State
State → “Illinois” | “Missouri” | “Indiana”

Pattern matching uses a simple technique based on patterns or rules that are applied to the user query. 
The following is an example of a rule that could be used:

“Which river passes through” <State>

The corresponding SQL statement (see Figure 3) is

SELECT State.state_name
FROM State, RiverState, River
WHERE State.abreviation = RiverState.abreviation
AND RiverState.river_id = River.river_id
AND State.state_name = <State>

Neural Network Systems

NADAQ System

NADAQ is an NLIDB that combines deep learning and traditional techniques of SQL parsing (Xu et al., 
2019). To this end, the system adds to the decoding phase new dimensions of schema-understanding bits 
and includes new neurons controlled by a finite state automaton for supervising the grammatical states in 
the decoder part. Additionally, the NLIDB includes a technique that allows the neural network to reject 
user queries that are irrelevant for the database domain and suggests candidate queries in natural language.

NADAQ consists of three major modules, which are described next:

1.  Data Storage: This module includes MySQL as a database management system, from which it 
extracts table metadata for training the translation model, and which processes SQL statements for 
presenting results to the users.

2.  Model Management: This module constitutes the NLIDB kernel, which uses several models for 
bidirectional translation between natural language and SQL, as well as models for rejecting irrelevant 
user queries. The module provides information from the models to the User Interface module.

3.  User Interface: This module consists of the interfaces for user-computer interaction.

The most important module of NADAQ is the User Interface, which performs most of the translation 
processes. The main components are explained next:
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1.  Speech Recognition: The task of this component is converting a spoken user query into text. To 
this end, it uses the voice-to-text translator iFlytek. Additionally, it provides manual correction so 
that the user can review the translator output to adapt it to his/her intention.

2.  Translation: This component uses a machine learning model based on a recurrent neural network 
coder-decoder, which is a state-of-the-art technique for machine translation. The innovation of this 
component consists in the integration of hidden states to the model by using a finite state machine 
for supervising the grammar states for SQL parsing. These hidden states are useful for discarding 
invalid output words in the decoder part and providing useful suggestions for improving neural-
network training.

3.  Rejection: This component allows NADAQ to reject incoherent user questions. In order to deter-
mine the relevance of user queries to the database, the system includes a rejection model in addition 
to the translation model. Rejection decisions are made based on the uncertainty of the translation 
model when choosing tables, columns, and search conditions for the SQL statements.

4.  Recommendation: This component increases the effectiveness of the interface by providing can-
didate queries to the user for refinement and selection. For helping users without SQL knowledge, 
the interface translates the candidate queries to natural language, so that users can easily understand 
the exact meaning (according to the database domain) of the candidate queries and improving the 
effectiveness of the user-computer interaction.

NADAQ was evaluated using three databases: MAS (Microsoft Academic Search), IMDb, and 
Geobase. The tests involved the comparison of three methods: convolutional neural network machine, 
attention-based sequence-to-sequence machine translation, and semantic parsing model with feedback. 
The NLIDB obtained F1 scores of 83.9% for Geobase and greater than 80% for IMDb.

Cross-Domain NLI Based on Adversarial Text Method

The NLIDB uses a general-purpose question tagging method and a multi-lingual neural network transla-
tion model that allows obtaining domain independence (Wang, 2019). For question tagging, each domain 
is treated equally by using a recurrent neural network. An approach is proposed where different types 
of natural language queries and different domains share the same components. To this end, the NLIDB 
performs a preprocessing that consists in separating the domain-specific information from the query.

Given an NL-SQL pair, the key approach consists in inserting predesigned symbols and annotat-
ing DB elements (tables, columns, values, keywords, etc.) mentioned in the question for treating each 
sample (of different domains and types) uniformly. The approach used by the NLIDB is described next:

1.  The NLIDB includes a binary classifier BC, which detects elements for predicting if a data ele-
ment e is present in a question q corresponding to an SQL statement p according to the semantic 
meaning of the question. The classifier takes q and e, without referencing p.

2.  The system looks for the most influential phrase in the query by using gradient-based adversarial 
text methods.

3.  Symbols are inserted in question q for annotating phrases that describe DB elements, which are 
denoted by q’.
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4.  A multi-lingual cross-domain sequence-to-sequence (seq2seq) model is constructed for translating 
q’ to p’, where p’ denotes a query where the DB elements are replaced by SQL symbols inserted 
in q.

5.  The symbols inserted are replaced by DB elements for generating the original query; i.e., conver-
sion from p’ to p.

This NLIDB has an encoder that uses a stacked bi-directional multi-layer recurrent neural network. 
It uses a prefix symbol for dealing with different types of queries and treating each type equally.

Experiments were carried out for this NLIDB using the WikiSQL, OVERNIGHT, and Geoquery880 
datasets. The metrics used were query-match accuracy denoted by Accqm, and the execution results Ac-
cex. For WikiSQL, the interface obtained an Accqm of 74.5% and an Accex of 82.7%, for OVERNIGHT 
attained an Accqm of 76.8%, and for Geoquery880 obtained an Accqm of 84.1%.

DBPal System

DBPal is based on deep learning models for achieving more robust natural language query understanding 
in two ways (Utama, 2018). First, DBPal uses a deep model for translating NL questions to SQL, making 
the translation process more robust to wording variations. DBPal provides a learned auto-completion 
model that suggests partial extensions of queries to users when formulating questions. Second, DBPal 
has two important features that are based on neural network models: robust query translation and inter-
active auto-completion.

DBPal consists of two major components, which are explained next.

1.  Neural query translation: For achieving robust query translation, DBPal proposes a translation 
method based on a sequence-to-sequence recurrent neural network model. The robustness of the 
translation process allows to effectively map natural language varying expressions to predefined 
relational database operations. An important challenge for NLIDBs that use neural networks is to 
select a comprehensive training set. The main innovation of this NLIDB is a synthetic generation 
approach, which takes as input the database schema with minimal annotations and generates a 
large set of natural language questions and their translation to SQL statements. The generation of 
the training set consists of two steps: generator and augmentation. The first step uses the database 
schema and a set of base templates that describe NL-SQL pairs and slot-filling dictionaries for 
generating from 1 to 2 million pairs. The second step automatically increases the initial set of NL-
SQL pairs, using existing language models for automatically modifying the NL part of each pair 
by using different linguistic variations.

2.  Interactive auto-completion: DBPal provides a real-time auto-completion tool and question sug-
gestion for helping users that are not familiar with the database schema, thus helping them to write 
complex queries.

For comparing DBPal versus other approaches, the Geoquery benchmark was used, which has been 
utilized for evaluating other NLIDBs. Additionally, for testing linguistic variations, another benchmark 
was generated called Patients, which is a database of hospital patients, which consists of one table and 
290 queries. Also, a comparison versus NaLIR and NSP was conducted. The accuracies attained by 
DBPal for the Patients and Geoquery benchmarks were 75.93% and 48.9%, respectively.



7

Natural Language Interfaces to Databases
 

Syntax-Based Systems

NaLIR System

NaLIR (Natural Language Interface to Relational database) is an interactive NLIDB that explains the 
user how the interface interprets his/her question step by step (Li, 2017). When ambiguities are detected, 
the interface shows the user various interpretations with explanations for the user to choose from, which 
allows to solve ambiguities by interacting with the user. A training example is collected each time the 
user makes a choice and confirms its interpretation.

This system consists of three components, which are described next:

1.  Query interpretation: This component includes a parse tree node mapper and a structure adjus-
tor, which performs the interpretation of the natural language query and the representation of the 
interpretation as a query tree.

2.  Interactive communicator: The task of this component is to handle the interaction with the user 
in order to make sure that the resulting interpretation is correct.

3.  Query tree translator: This component carries out the translation of a query tree to an SQL state-
ment and sends the SQL query to a database management system.

More specifically, the query interpretation component consists of three modules, which are explained 
next:

1.  Dependency parser: The system uses a dependency parser (Stanford Parser) for generating a parse 
tree from the natural language query. In this tree, each node represents a word/phrase in the query, 
and each edge is a linguistic dependency relationship between two words/phrases.

2.  Parse tree node mapper: This module identifies the tree nodes that can be mapped to SQL com-
ponents and tokenizes them. Additionally, several nodes may have various mappings, which causes 
ambiguities when interpreting these nodes. For such nodes, the parse tree node mapper sends the 
best mapping to the parse tree structure adjustor and transmits all candidate mappings to the inter-
active communicator.

3.  Parse tree structure adjustor: This module verifies the correctness of the parse tree, specifically, 
if the tree is coherent with the database schema and there are no ambiguities in the interpretation. 
In case the parse is incoherent or ambiguous, the system adjusts the tree structure in two steps. In 
the first step, the tree nodes are reformulated to make the tree coherent with the semantic coverage 
of the NLIDB. If there exist several correct candidate trees, the best one is selected for the second 
step. In this step, the selected parse tree is semantically analyzed, and implicit nodes are inserted 
to make it more semantically coherent. This process is performed under user supervision.

NaLIR was evaluated using 98 queries of the Microsoft Academic Search dataset, and it achieved an 
accuracy of 89.79% (88 correct answers).
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NLI Based on Layered Architecture

This NLIDB is based on an approach that uses a layered architecture (Pazos et al., 2016). The election of 
this method originates from the following premise: translation from a natural language query to an SQL 
statement is an extremely complex problem. Systems whose design is based on functionality layers (like 
the OSI model for communication networks) provide the flexibility and modularity for implementing 
more complex processing strategies than systems designed otherwise. A layered architecture is recom-
mended for dealing with complex problems; therefore, in this NLIDB, each functionality layer deals 
with a different problem in the translation process.

The Semantic Information Dictionary (SID) is the keystone of the NLIDB since it stores the infor-
mation necessary for the interface to interpret a query. Initially, the system carries out an automatic 
configuration, which populates the SID based on the descriptions of DB tables and columns and the 
information of relations between tables, which are stored in the data dictionary of the DB management 
system. Additionally, the SID can keep information on words and phrases that refer to tables, columns, 
relations between tables, imprecise values, alias values, which allows to have the necessary information 
and facilitates query interpretation.

The core of the interface consists of three layers, whose description is the following:

1.  Lexical Analysis: The task of this layer is to divide the user query into tokens, search query words 
in the lexicon and assign (one or more) POS tags to the words found. In case a word is not found 
in the lexicon, it is considered as a possible search value.

2.  Syntactic Analysis: This layer consists of a shallow parser that uses a heuristics for determining 
one syntactic category for those words with multiple categories and ignoring irrelevant words.

3.  Semantic Analysis: This is the most important layer, and it performs several tasks for understand-
ing the user query and translating it to SQL.

The Semantic Analysis layer is constituted by five sub-layers that are described next:

1.  Treatment of imprecise and alias values: This sub-layer detects and deals with words that denote 
imprecise values (i.e., words that represent value ranges, such as afternoon, evening) and aliases (i.e., 
words for referring to search values, such as noon, couple, fifth, or Philly instead of Philadelphia). 
To this end, the process scans each word of the input question and searches the SID to determine 
if the word is declared as an imprecise or alias value.

2.  Identification of tables and columns: This sub-layer is responsible for identifying the DB tables 
and columns referred to by words/phrases in the user query, which can be nominal, verbal, adjec-
tival, or prepositional. Specifically, this sub-layer scans each word/phrase of the input question and 
searches the SID to determine if the word is associated to a table or column.

3.  Identification of the Select and Where phrases: From the identification of tables, columns, and 
search values, this sub-layer uses a heuristics for determining the segments of the question that 
constitute the Select and Where phrases. To this end, each search value is associated to a column 
according to the proximity and coincidence of data type. The pairs column-search value constitute 
the WHERE clause of the SQL statement and the remaining columns constitute the SELECT clause.

4.  Treatment of aggregate functions and grouping: The task of this sub-layer is to identify and 
deal with the words/phrases of the query used for referring to aggregate functions and grouping 
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(Group By); for example, words such as average, how many, minimal, maximal, smallest, largest, 
first, best, for each, etc. This process is carried out by scanning each word of the input question 
and searching the SID to determine if the word/phrase is associated with an aggregate function or 
grouping clause. Since the values stored in different columns may be of different natures, different 
words/phrases are associated to each column.

5.  Determining implicit joins: For constructing the SQL statement, it is necessary that the graph 
consisting of the tables involved in the query and the join conditions (search conditions constituted 
by a column in one table and a column in another table) be a connected graph. When the graph 
does not satisfy this condition, this sub-layer generates a connected graph by using a heuristics that 
adds a minimal number of join conditions. Once a connected graph is constructed, the generation 
of the SQL statement is straightforward.

An experimental evaluation of this NLIDB was conducted using 71 queries for the ATIS database, and 
it achieved an accuracy of 90% when configured by the implementers (Pazos et al., 2016). Additionally, 
comparative tests were performed versus ELF and C-Phrase and using the Geoquery250 benchmark; 
the accuracies obtained were 56.4% for the NLIDB, 35.6% for ELF, and 56.4% for C-Phrase. There are 
very few publications that report NLIDB performance when the interfaces are not configured by the 
implementers. An experiment was carried out with two groups of undergraduate students, who configured 
the interface for the ATIS database, and the accuracies attained were 44.69% for one group and 77.05% 
for the other. Finally, a Wizard was developed for semi-automatically fine-tuning the configuration. An 
experiment was performed with another two groups of undergraduate students, who used the Wizard, 
and the accuracies obtained were 80.53% and 84.82%.

NALI System

NALI is an NLIDB which uses methods for simplifying the configuration without reducing linguistic 
coverage and accuracy (Mvumbi, 2016). To this end, it uses two authoring frameworks for reducing the 
work needed for configuring the system for querying different databases.

The first authoring framework is called top-down, and it uses an unannotated corpus of sample natural 
language queries for extracting lexical terms for simplifying the NLIDB configuration. This strategy 
reduces the work for configuring the interface by automatically including the semantic information for 
verbs in negative form, comparative and superlative adjectives in the configuration model.

The second authoring framework is called bottom-up, and it examines the possibility of constructing 
a configuration model without manual intervention using the information from the database schema and 
a dictionary.

NALI uses SQL as output language and English as input language. This system assumes that natural 
language queries are written without spelling and grammatical errors. The syntactic parser is based on 
a symbolic method for analyzing natural language queries.

The process for translating a question to SQL consists of four main phases, which are described next:

1.  Lexical analysis: The task of this phase is to scan the question tokens and perform POS tagging, 
lemmatization, and named entity recognition.

2.  Syntactic analysis: This phase uses a dependency parser (Stanford Parser) for generating a parse 
tree from the natural language query.



10

Natural Language Interfaces to Databases
 

3.  Semantic analysis: This phase is responsible for translating the question to an intermediate rep-
resentation language, which uses first-order logic to express the question meaning.

4.  SQL translation: This phase constructs the SQL statement from the logical query.

NALI was evaluated using Geoquery250 and attained an accuracy of 74.5% and a precision of 77.4%.

Ontology-Based NLI to Relational DBs

This NLIDB is based on a generic system that consists of several phases and uses an ontology imple-
mented for a customer database (Sujatha, Raju, & Viswanadha, 2016). This system allows accessing 
information independently of the underlying database. Additionally, the design of the interface allows 
the scalability and robustness of the system. Word sense disambiguation is performed by using n-grams.

The proposed approach of this NLIDB takes a natural language query and translates it to an SQL 
statement by using six phases, which are described next.

1.  Stop word removal: This phase removes stop words from the natural language query according 
to a predefined list of stop words.

2.  Stemming: The task of this phase is to determine the root words of the remaining words.
3.  Content word extraction: This phase assigns POS tags to words by using a natural language 

toolkit.
4.  Syntactic analysis: This phase is responsible for parsing the question using a top-down parser. 

Parsing is performed by applying syntactic rules expressed in Backus-Naur Form.
5.  Semantic analysis: This phase uses an ontology and n-grams. The ambiguity of a word meaning 

is resolved by using n-grams and the ontology constructed from the database schema.
6.  Candidate query formulation: This phase uses the EFFECN algorithm, which performs the 

division of the natural language question, joining of tables, and selection of multiple tables and 
columns according to the search conditions specified in the question.

This NLIDB was evaluated using a set of 100 queries to a customer database, and it obtained an ac-
curacy of 84% and a precision of 86%.

Query Builder Based on Dependency Parsing

The main objective of this NLIDB is to allow users to access information stored in a database, without 
the need of learning a database query language (Kokare & Wanjale, 2015). Constituency and dependency 
parsing are two techniques widely used in natural language processing. The NLIDB uses dependency 
parsing for extracting POS tags and typed dependencies. In dependency parsing, the parse tree connects 
words according to the relation among words. Each node in the tree represents a word, and the children 
of a node are words that depend on the parent. The labels of the arcs describe the relationship between 
parent and child.

The translation of a natural language query to SQL is described next:

1.  Lexical analysis: The task of this phase is to scan the user question for detecting stop words and 
punctuation marks, which are discarded. Next, the question is separated into tokens.
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2.  Syntactic analysis: This phase uses a dependency parser (Stanford Parser) for generating a parse 
tree from the user query. Nouns, adjectives, etc. are related pairwise for constituting the arcs of the 
dependency tree. Additionally, POS tags and typed dependencies are determined.

3.  Semantic analysis: This phase is responsible for analyzing the typed dependencies for determin-
ing the meaning of the question; specifically, the tokens and nouns are mapped to database tables, 
columns, and search values. Next, a logic query is generated by including the tables, attributes, 
and search values.

4.  Translation: This phase translates the natural language query to SQL using the tables, columns, 
and values previously determined. Finally, the SQL statement is sent to the database management 
system for returning the results to the user.

Additionally, the NLIDB uses a buffering strategy that stores user questions and the corresponding 
SQL translations, so that when a previously processed question is detected, the NLIDB uses the stored 
SQL statement for avoiding all the translation process.

The accuracy reported for this NLIDB is 91.66%. However, the benchmark used for the evaluation 
is not specified.

Restricted NL Querying of Clinical DBs

The NLIDB uses an approach based on the Top-k algorithm for translating queries in restricted natural 
language to SQL (Safari & Patrick, 2014). This interface was designed for querying a specific purpose 
database of a Clinical Information System (CIS) by using a special-purpose language (CliniDAL) for 
clinical data analytics, which has six classes of query templates. The mapping and translation algorithms 
are generic, and therefore, they can be used for querying clinical databases designed in any of the three 
data models: Entity-Relationship (ER), Entity-Attribute-Value (EAV) and XML.

This NLIDB allows a user to compose a question using the CliniDAL restricted natural language, 
without requiring any knowledge of the CIS database schema, SQL or XML. CliniDAL is a generic query 
language, and its associated processes for parsing, mapping, translation, and interpretation of temporal 
expressions are generic and do not depend on the CIS.

The main components of the NLIDB are explained next:

1.  Query Processor: This component takes a query expressed in CliniDAL as input and processes 
it by using its sub-components (Parser, Categorizer and Optimizer) for generating a parse tree of 
the query. Afterward, the parse tree is processed by the Query Translator.

2.  Query Translator: This component translates the parse tree of a CliniDAL query to SQL, and 
it consists of four sub-components. The first subcomponent is Mapper, which tries to map the 
tokens detected in the CliniDAL query to CIS database elements (tables and columns) using the 
similarity-based algorithm Top-k along with some NLP tools that include tokenization, abbreviation 
expansion and lemmatization for preparing information for the automatic mapping. The Translator 
sub-component performs two classes of translations related to the general CIS data model. If the 
CIS uses an EAV or ER data model, the CliniDAL query is translated to SQL, while if the CIS 
stores XML documents, the query is translated to XML. The Temporal Analyzer finds and maps 
the temporal entity (database table) corresponding to the mapped terms of the query to the data 
elements of the CIS model.
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The NLIDB was evaluated using a database of a Clinical Information System and a corpus of 108 
queries, and it obtained an accuracy above 84%.

AskMe System

AskMe is a domain-independent NLIDB that uses previously proposed approaches, such as an ontology 
for describing the database schema, a template-based method for the dynamic generation of the lexical 
analyzer, syntactic parser and semantic analyzer (Llopis & Ferrández, 2013). Additionally, it provides 
an innovative characteristic: services for generating queries that reduce the learning time for users. The 
design of AskMe allows it to be automatically reconfigurable for multiple domains while achieving ac-
curacy comparable to domain-specific NLIDBs.

AskMe consists of two main components, which are described next:

1.  Ontology builder: After connecting to a database, AskMe looks in the ontology repository for an 
ontology that describes the database schema. The repository consists of a dictionary that contains 
ontology references for any pair <server, database> for which the interface has been used. If the 
ontology for the database is not in the repository, then the system automatically extracts informa-
tion on tables, columns, and relations from the database schema for building the ontology.

2.  Dynamic parser generator: This component automatically creates the lexical, syntactic parser, 
and semantic analyzer, which allows to interpret natural language queries and to translate them 
into SQL statements for being executed by the database management system. This component has 
three sub-components: Lexicon, Syntactic parser, and Semantic Analyzer. The lexicon consists of 
the set of words/phrases that are used in questions for referring to database tables and columns. 
The NLIDB uses a Link Grammar Parser for parsing operations. The semantic parser uses semantic 
templates that are filled with the concepts defined in the database ontology.

AskMe was evaluated using the ATIS database and a set of the 448 queries in the ATIS “Scoring Set 
A”. The NLIDB achieved an accuracy of 94.8%.

Semantic Grammar Systems

Intelligent System for Relational DBs

The NLIDB has a general architecture for an intelligent database system, including an implementation 
that provides domain independence (Gunjal, Rathod, & Pise, 2017). Another feature of this system 
is that it can be easily configured. The interface uses a semantic matching technique for converting a 
natural language query to SQL using a dictionary and a set of production rules. The dictionary consists 
of semantic sets for tables and columns. The SQL query generated by the NLIDB is executed, and the 
result is presented to the user. This interface was tested using the Northwind database and a Suppliers-
Parts database.

The NLIDB is domain independent, which is achieved by an automatic configuration process. Ad-
ditionally, the interface can be easily configured; to this end, it uses a set of metadata and a semantic set 
for tables and columns. The system has an intelligent layer that allows to query any database. The layer 
carries out the processing of information and allows to answer a large variety of questions.
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The main functionality is based on semantic sets and rules, which can be modified by the database 
administrator. The proposed system consists of two modules, which are explained next:

1.  Preprocessor: The task of this module is to generate the domain dictionary, which is built auto-
matically, and it also generates rules, which are used by a semantic parser, The rules are based on 
the database schema, WordNet and feedback from the database administrator. The administrator 
can add, modify, and delete rules.

2.  Run time processor: This module uses the rules and tries to match words of the user question 
to predefined data structures, tables, and columns of the database schema. The rules describe the 
relations between the table and its attributes.

This NLIDB was evaluated using the Northwind database and the Suppliers and Parts database, and 
a group of five students was asked to formulate queries in English for the two databases. The query sets 
consisted of 40 questions for Northwind and 20 questions for Suppliers and Parts. The results from the 
evaluation were: accuracy of 70% for Northwind and accuracy of 75% for Suppliers and Parts.

Pattern-Matching Systems

nQuery System

nQuery is a domain-independent NLIDB that is based on an approach that focuses on incorporating 
complex natural language requests (questions and data manipulation operations) together with simple 
requests (Sukthankar, Maharnawar, Deshmukh, Haribhakta, & Kamble, 2017). The interface allows to 
process requests that involve aggregate functions, multiple conditions in the Where clause, and clauses 
such as Order by, Group by and Having. The system has been developed for the MySQL database man-
agement system.

nQuery translates requests to SQL before retrieving data from the database. This system focuses on 
retrieving data, but it also allows the translation of other data manipulation operations (Insert, Delete, 
and Update). However, the interface translates requests that can be processed by MySQL in order to 
reduce the complexity of the database requests.

The NLIDB takes as input a natural language request, which is translated to SQL through several 
phases, which are explained next:

1.  Tokenize and tag: This phase divides the request into tokens and assigns them POS tags by using 
the NLTK tokenizer package.

2.  Analyze tagged tokens: This phase scans the tagged tokens and generates a noun map and a list of 
verbs. Additionally, the type of SQL statement (Select, Insert, Delete, and Update) is determined.

3.  Map to table names and attributes: This phase uses the noun map and verb list for generating 
the table set, which specifies the tables that will be needed for building the SQL statement. This 
strategy is based on the observation that table names are usually referred to by nouns and verbs in 
requests. Furthermore, the noun map is used to determine the table columns that are needed in the 
SQL expression.
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4.  Filter redundancy and finalize clause mapping: This phase obtains information for the Group 
by and Having clauses from information from previous phases and the basic rules of SQL. In ad-
dition, redundant tables and attributes are removed using some filter algorithms.

5.  SQL formation: This phase selects the appropriate SQL statement template according to the type 
of SQL statement determined in the second phase. Finally, the SQL statement is generated by 
filling in the selected template the information on the clauses previously gathered and tables and 
columns stored in the table and attribute map.

nQuery was evaluated using a corpus of synthetic requests to a bank database and a university database, 
which respectively have 11 and 6 tables. The NLIDB performance was assessed with 75 requests for 
the university DB and 50 requests for the bank DB, and it obtained approximately an accuracy of 86%.

Aneesah System

Aneesah is an NLIDB based on the combination of a pattern matching approach and dialog interaction 
with the user for dealing with natural language complexities and ambiguities for dynamically gener-
ating SQL statements (Shabaz, O’Shea, Crockett, & Latham, 2015). The NLIDB has conversational 
capabilities for providing an interactive and friendly environment to help users to access information in 
relational databases.

The NLIDDB architecture was designed using a pattern matching technique. Additionally, Aneesah 
implements a conversational agent based on a scripting language, a knowledge base, and an SQL query 
engine. The interface has a modular architecture that provides flexibility for querying databases of dif-
ferent domains by configuring the NLIDB. The architecture consists of three components, which are 
explained next:

Component 1: This component is constituted by a Conversation Manager, User Interface, Temporary 
Memory, and Conversational Agent (constituted by Controller, Pattern Matching Engine, Pattern 
Matching Scripting Language, and Response Analyzer). The Controller plans and conducts the 
interaction with the user for guiding him/her in specifying the information the user wants from 
the database. The Pattern Matching Engine determines the coincidence of user questions with the 
scripts in the system knowledge base. Additionally, the NLIDB uses a Pattern Matching Scripting 
Language that allows dialog with the user.

Component 2: This component consists of a Knowledge Base, which allows Aneesah to interact with 
the database to be queried (a sales history database), and it can be configured for interacting with 
different databases.

Component 3: This component consists of an SQL Query Engine, which is constituted by an SQL 
Configurator, SQL Execution, and SQL Analyzer. This component retrieves information from the 
database.

This NLIDB was evaluated using a sales history database. In the experiments, two groups of par-
ticipants were used: group A consisted of participants without SQL skills, while group B consisted of 
participants familiar with SQL. The overall accuracy was 85.01%, and the overall precision was 92.96%.
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Systems Based on Other Approaches

Transfer-Learnable NLIDB

This work proposes an NLIDB that is domain independent and transferable to other databases, which 
is achieved by learning one model that can be applied to any other relational database (Wang, Tian, 
Xiong, Wang, & Ku, 2018). The approach adopts the principle of separating data and database schema 
and adding support for the particularities and complexity of natural language. Specifically, the strategy 
consists in separating the idiosyncrasy of natural language and focusing on the semantics of SQL queries 
in order to develop a domain-independent and transferable NLIDB.

For obtaining this objective, the information is separated into specific components: the database 
schema and the use of natural language specific to the schema. The approach used consists of three 
stages: conversion of a natural language question q to its annotated form qa, use of a sequence-to-sequence 
(seq2seq) model for translating qa to an annotated SQL statement sa, and conversion of the annotated 
SQL statement sa to a normal SQL statement s.

The annotation of the natural language query is performed for detecting words/phrases in the ques-
tion for referring to DB elements (tables, columns, and values). However, sometimes words/phrases for 
referring to DB elements depend largely on the context, and sometimes they are not explicitly specified 
(semantic ellipsis).

The NLIDB uses the information of the database metadata: database schema, database statistics of 
each column, and natural language expressions specific for a database, a column, and column values.

This NLIDB was trained and evaluated using the WikiSQL dataset that contains 87,673 natural 
language queries and their respective translations to SQL and 26,521 tables. The interface attained an 
accuracy of 82%. For evaluating the transferability aspect, the NLIDB was tested using the OVERNIGHT 
dataset after being trained with WikiSQL. For this test, the query accuracy was 60% (a reduction of 22%).

NLI Based on Semantic Representations Using Ontologies

This NLIDB is based on a proposed approach that uses semantic representations to model the knowledge 
of the NLIDB using the Ontology Web Language (OWL). The semantically modeled knowledge allows 
the system to deal with discourse (a sequence of related questions) and to be used for querying databases 
of different domains (González et al., 2015).

The most important component of this system is the Customization Module. The configuration of 
the NLIDB is performed in two phases, which are described next:

1.  Database Schema Extraction: Knowledge is automatically generated by a configuration module, 
which extracts metadata from the database schema and identifies the elements that integrate the 
structure of a relational database, such as table names, column names, data type of the columns 
and existing relations between tables. To generate the NLIDB knowledge, the database administra-
tor must only indicate to the configuration module the connection parameters to his/her relational 
database. Subsequently, the configuration module automatically models the knowledge and stores 
it in an ontology, which is a .owl file.

2.  NLIDB Customization: Once these elements have been identified, the Customization Module 
analyzes the name of each of them to generate the vocabulary of the NLIDB, which is extended 
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using lemmas and synonyms. All these elements are modeled by the Customization Module using 
the proposed semantic representations.

In order to improve the performance of the NLIDB, the configuration module allows the database 
administrator to manage the knowledge generated, i.e., add, delete, or update knowledge. In addition, it 
allows the administrator to define the use of superlatives. Specifically, the configuration process consists 
of the following steps:

1.  Associate language words to database tables and columns, which may occur in user questions for 
referring to tables and columns.

2.  Define superlative words, as well as an indication of whether they refer to a maximal or minimal 
value and the columns to which the superlative can be applied.

3.  Indicate which database columns store information that could be used by users as search values in 
natural language queries.

Classes, object properties, and data properties were defined to design the proposed semantic repre-
sentations. Classes to model the name of tables and the name of columns extracted from the relational 
database were defined. Object properties to semantically relate each of the tables to their respective 
columns were defined, as well as the relations among tables (for representing referential integrity). Fi-
nally, data properties to store the data type of each of the columns were defined. In this way, semantic 
modeling based on the relational schema of the database is generated.

In order to model the relations between natural language and the semantic schema, classes and object 
properties were also defined. A class to identify the vocabulary words was defined, as well as an object 
property to relate each word to the elements of the semantic schema it refers to. A class to model super-
lative words was also defined. Additionally, data properties to indicate the columns of the database on 
which the superlative can be used and to define the aggregate function to be applied (max or min) were 
also defined. In this way, all the semantic knowledge of the NLIDB is generated.

The ontology generated by the configuration module is used by the NLIDB to interpret user queries 
expressed in natural language, as well as to generate the corresponding SQL query, with which the in-
formation requested by the user is extracted from his/her relational database.

An experimental evaluation of this NLIDB was conducted using the Geoquery250 benchmark, which 
also included other NLIDBs (ELF, NLP-Reduce, and FREyA). The results obtained indicate that the 
proposed semantic representations, used to model the knowledge of the NLIDB, allowed the interface 
to obtain a good performance, specifically, an accuracy of 85.2%.

NLI Concordant with Knowledge Base

The NLIDB uses an approach for translating natural language questions to a formal language query by 
using a graph-based knowledge base, i.e., an ontology (Han, Park, & Park, 2016). This method considers 
a subgraph of the knowledge base as a formal query. The method is based on the principle that a natural 
language expression (answerable question) has a one-to-one mapping to a formal query; therefore, the 
natural language question is translated to a formal query by comparing the question to NL expressions 
and finding the most adequate. If the confidence level of this comparison is not high enough, the interface 
rejects the question and does return an answer.
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This NLIDB performs the translation of a natural language question to a formal query in two phases, 
which are explained next.

1.  Generation of system-interpretable expressions from a knowledge base: This phase prepares 
all the NL expressions that will be compared to the natural language question. These NL expres-
sions are generated from an ontology. The ontology was designed in such a way that allows each 
subgraph of the ontology to be expressed in natural language, and at least one NL expression can 
be generated for each subgraph. For each expression, a sequence of NL tokens is generated for 
being compared to natural language questions. The sequence is called normalized expression.

2.  Translation of user questions into formal queries by using the generated expressions: In this 
phase of the process, a natural language question is translated to a formal query. To this end, the 
normalized expression that is equivalent to the question is determined. First, for a natural language 
question, one or more normalized expressions are generated, because of various possible interpreta-
tions of the question. Next, pairs of normalized expressions are generated, where one element of 
the pair is generated from the knowledge base and the other element is derived from the question. 
Afterward, the meaning of the question is determined by selecting the adequate pair of normalized 
expressions. Finally, a formal query is generated by using the selected pair.

The NLIDB was evaluated using the Geoquery880 and the Geoquery250 benchmarks and the perfor-
mance metrics precision and accuracy. For Geoquery880, the interface attained an accuracy of 83.2% and 
a precision of 86.6%, and for Geoquery250, it achieved an accuracy of 86.6% and a precision of 90.6%.

Question Translation with Generative Parser

This NLIDB takes advantage of the database schema for generating a set of candidate SQL queries, 
which are classified by an SVM-ranker based on tree kernels (Giordani & Moschitti, 2012). In the gen-
eration phase, the system uses lexical dependencies and the database schema for constructing a set of 
SELECT, FROM, and WHERE clauses and also joins. Additionally, clauses are combined by applying 
rules and a heuristic weighting mechanism, which generates a list of sorted candidate SQL statements. 
This method can be recursively applied for processing complex queries that involve nested SELECT 
statements. Finally, a reranker is used for reordering the list of pairs of questions and candidate SQL 
statements, where both members are represented by syntactic trees.

Ambiguity and errors may affect the interpretation of the user query; however, information of the 
database schema can be used for verifying the correctness of the selected interpretation. The strategy 
consists in generating all the possible SQL queries by using information from the database schema (for 
example, primary keys, foreign keys, data types, etc.) for selecting the most likely using a ranking method.

The NLIDB translates natural language queries that involve nested SQL queries and complex natural 
language questions that have subordinate phrases, conjunctions, and negations. To this end, an algorithm 
is used that is based on coincidences between lexical dependencies and SQL structure, which allows to 
generate a viable set of queries.

This interface gets the lexical relations of a question by using the Stanford Dependency Parser, which 
obtains the set of binary word relations between a governor and a dependent (gov, dep), where gov and 
dep denote a parent node and child node in the parse tree.
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This NLIDB was evaluated using three subsets of Geoquery and attained an accuracy of 87.2%, a 
precision of 82.8%, and an F-measure of 85%.

Systems for Languages Different from English

Hindi NLIDB

This is a domain-specific NLIDB that uses natural language processing techniques (Nichante, Giripunje, 
Nikam, Arsod, & Sonwane, 2017). The input for this interface is a natural language request (question or 
data manipulation operation) in Hindi. This request is translated to English using a semantic matching 
technique. Next, a semantically equivalent SQL statement is generated from the English request, which 
is sent to a database management system, and the result is presented to the user in the Hindi language. 
The interface is a domain-specific NLIDB that facilitates access to data, insertion, updating, and deletion 
of information of a transport database.

The approach used for translating a natural language request to SQL consists of the following steps:

1.  Generation of a transport database, which stores information on transport services.
2.  Identification of the type of request (select, insert, delete, update, and aggregate functions).
3.  Mapping of tokens of the Hindi question to database elements (tables and columns).
4.  Generation of SQL statements by mapping input requests with the assistance of stored values in 

the database.
5.  Execution of the SQL statement and presenting the result in the Hindi language.

This NLIDB has two databases: a Compiler Database and a Transport Database. The system also has 
four important modules: Tokenizer, Mapper, SQL Query Generator, and database management system. 
The process performed by these modules is explained next:

1.  The Tokenizer divides the Hindi language request into tokens and stores these tokens in an array. 
These Hindi tokens are stored in the lexicon (system dictionary) with their corresponding English 
words.

2.  The Mapper sequentially compares the extracted tokens with tokens stored in the lexicon (system 
dictionary), where the mapping is performed. Those tokens that match the corresponding English 
words are saved together with their type, and all the remaining tokens are discarded as useless.

3.  With the table and column names, the SQL statement is generated.
4.  The generated SQL instruction is executed in the database management system and the answer is 

presented to the user.

There are no experimental results reported for this NLIDB; the article only mentions that it was tested 
with a transport database designed by the NLIDB implementer.

GANLIDB System

GANLIDB is an NLIDB that translates queries in the Arabic language to SQL; it is domain independent 
and can improve through experience its knowledge base (Bais, Machkour, & Koutti, 2016). This NLIDB 
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allows users to access data stored in a database by answering queries in Arabic. The interface uses natural 
language processing techniques for translating queries into SQL statements. The most important advan-
tage of this system is that it is independent of language, content, and model of the database.

The operation of this interface uses an approach based on an intermediate representation language, 
which translates a natural language query to a logical query in XML. Expressing the logical query in 
XML allows the interface to operate independently of language, content, and model (relational, object-
oriented, relational-object, XML) of the database.

The architecture of GANLIDB consists of three modules, which are explained next:

1.  Linguistic component: This module performs several analyses (morphological, syntactic, and 
semantic) of the natural language query and generates the logical interpretation of the question in 
an XML expression.

2.  Database knowledge component: This module translates the logical query resulting from the 
first module to an SQL statement. Next, the SQL statement is sent to the database management 
system for generating the result in tabular form. The strategy of separating the database knowledge 
component from the linguistic component allows the interface to query different domain databases.

3.  Natural language query definition: This module helps the interface to reuse previously processed 
queries for reducing translation time.

The NLIDB was evaluated using a corpus of 1,300 synthetic questions. The interface answered cor-
rectly 1,166 questions, which is equivalent to an accuracy of 95.1%.

Vietnamese NLIDB

This NLIDB has two main components: Question Analysis module y Result Computing module (Nguyen, 
Hoang, & Pham, 2012). The first component determines the type of user query and extracts informa-
tion from it. The second component identifies the information requested by the user y calculates query 
statistics. This is a domain-specific interface for a survey database for individuals and businesses that 
want to know economic information from economic surveys.

The NLIDB has two main components, which are explained next:

1.  Question Analysis Component: In the application domain of the NLIDB, a typical natural lan-
guage query consists of three parts: question term indicates the type of question, question type 
specifies the statistical measure that users are interested in, and question information is the type 
of information requested and that will be used for determining the corresponding table columns 
that store the information. The purpose of this component is to determine Question Term, Type 
of Question and Question Information from a user question. Considering that user questions not 
only specify the requested information, but they include special words and phrases, the NLIDB 
uses JAPE (Java Annotation Patterns Engine) rules for detecting question terms and integrates the 
results into a Vietnamese word segmentation VNTokenizer so that the question terms are correctly 
identified as words. There exist many types of questions in Vietnamese; some of the types are Yes/
No, Calculate, Give Reason (Why) y Comparing; therefore, for treating these types, the system 
uses a statistical question answering system that satisfies user’s need of information stored in the 
database.
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2.  Result Computing Component: This component determines the database columns that correspond 
to the question information part of the user query. This system analyzes the survey questionnaires 
and sorts the information of each question of the survey; this process is called Relevant Data 
Retrieval. This system has a synonym dictionary for the economic and statistical domain.

This NLIDB was evaluated using a database of economic surveys. The corpus of queries consists 
of 500 questions formulated by users, 300 of these questions were used for training the system and 200 
questions were used for evaluation. Out of the 200 questions, 157 were correctly answered, which is 
equivalent to an accuracy of 78.5%.

COMMERCIAL NATURAL LANGUAGE INTERFACES TO DATABASES

Available Commercial Natural Language Interfaces

Access ELF

Access ELF is an existing commercial NLIDB for translating natural language queries to SQL for Ac-
cess databases (ELF, 2009). It is considered one of the best commercial interfaces. It is important to 
mention that, since ELF can only be used for Access, it cannot be used for large databases. It has several 
important characteristics:

1.  Domain independence: Once ELF is installed on a computer, it is able to interact with any database 
(after configuring the interface).

2.  Automatic configuration: The system can automatically obtain the structure of the database; 
therefore, its initial configuration is easy and simple. The automatic configuration examines the 
words in the names of tables and columns, and it uses them for generating the dictionary. These 
words are called synonyms and are used by ELF as references for tables and columns when they 
occur in natural language queries. The automatic configuration also stores for each column its data 
type and the table it belongs to.

3.  Configuration edition: The configuration is performed by assigning new synonyms to tables 
and columns or by assigning synonyms to the words that have already been related to tables and 
columns.

4.  Database semantics: During the analysis of the user query, ELF examines the terms (called syn-
onyms) used for describing database tables and columns, and it uses its dictionary for trying to 
predict the synonyms used in questions.

The evaluation described by Conlon, Conlon and James (2004) involved users who are human 
resource professionals (administrators and staff). The success rate reported (presumably recall) was 
70–80%. Additionally, ELF was evaluated using the Northwind database and achieved 91% of accuracy 
(Githiari, 2014).
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EasyAsk

EasyAsk is an existing commercial NLIDB that is used for querying eCommerce databases (FinancesOn-
line, 2019). This is a software search tool that integrates natural language technology (Quiri) and analyses. 
Users can utilize keywords or terms to filter search results. This system provides product concepts, which 
yield specific groups of products that match the description of user requests. Additionally, this interface 
provides assistance when formulating queries by offering options to users when writing their questions.

The most important features are semantic processing that relates various text descriptions to concepts, 
automatic word stemming and spell-correction, automatic association of attributes to product concepts, 
and relaxation (ignoring irrelevant or unknown words).

A major component of EasyASk is Quiri, which is a natural language technology that combines 
linguistic processing with the understanding of data. Quiri divides a user question into words, and then 
it groups them into phrases and normalizes the content for interpreting the question. Additionally, it 
provides spell correction, stemming, and synonyms.

EasyAsk was evaluated using the Northwind database and attained an accuracy of 31% and a preci-
sion of 48.4% (Githiari, 2014).

Prototype Natural Language Interfaces

ATHENA

ATHENA is a prototype NLIDB developed by IBM, whose main feature is the ability to process com-
plex nested SQL queries for business applications (Sen et al., 2019). The system uses domain ontologies 
that describe the semantic entities and their relationships in a domain. This system does not need user 
training nor feedback.

For processing a user question that involves several nested queries, this interface uses the following 
components:

1.  Evidence Annotator: This component scans all the tokens of the natural language query and 
gathers evidence that one or more ontology elements (concepts, properties, and relations between 
concepts) have been referred to in the user question. Tokens that are mapped to some ontology 
elements are called entities (database tables and columns).

2.  Nested Query Detector: A reasoning submodule obtains information from a linguistic analyzer 
and semantic annotators for identifying a possible nested query.

3.  Subquery Formation: In the case of a nested query, this component uses lexicon-based techniques 
to divide the user question into two segments: the first segment for the outer query, and the second 
for the inner query. Specifically, this component determines the correct sets of tokens associated 
to each query by using a set of rules applicable to the query, which use the annotator outputs 
and domain elements. The result of this component is two queries expressed in Ontology Query 
Language (OQL).

4.  Subquery Join Condition: For a nested query, this component generates the join condition that 
involves the inner and outer queries for constructing the complete query in OQL. Join generation 
depends on linguistic analysis and domain reasoning.

5.  Query Translator: The task of his component is to convert an OQL query into an SQL statement.
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ATHENA was tested using a FIBEN dataset that contains realistic business intelligence queries and 
combines data from two different financial sub-domains: SEC (Securities and Exchange Commission) 
dataset and TPoX (XML transaction processing benchmark). No performance results (accuracy or preci-
sion) are reported for this test.

Discontinued Natural Language Interfaces

English Query

English Query (developed by Microsoft) is commercial software that includes a set of tools, which da-
tabase administrators can use for setting up an NLIDB (Microsoft, 2010). This interface was no longer 
included in SQL Server 2005. English Query applications allow users to formulate ad hoc questions to 
a database using English expressions. This system provides an environment for developing an English 
Query model. However, since databases are different and users formulate a large variety of questions, 
defining a model for answering user queries can be a complex process.

The task of the English Query engine is to perform the translation from a natural language query 
to SQL. The engine uses a domain file that contains the database model. The model contains specific 
information of the database to be queried, specifically, the database schema, a semantic abstraction 
layer constructed on top of the schema, and a mapping between them. In the model, database tables and 
columns are represented by entities, and joins are represented by relations. Entities and relations defined 
in a model allow English Query to translate a question to SQL.

English Query has a wizard that helps to configure the interface by automatically defining some 
entities and relations based on the structure of the database. Database administrators can define other 
entities and relations by using the development environment. The environment allows defining joins and 
change/define entity properties; for example, associated words, entity type, field, help text.

The evaluation of English Query described by Conlon et al. (2004) involved users who are human 
resource professionals (administrators and staff). The success rate reported (presumably recall) was 
70–80%. Additionally, it was evaluated using the Northwind database and obtained an accuracy of 39% 
and a precision of 46.1% (Githiari, 2014).

SAA LanguageAccess

In 1990 IBM introduced SAA LanguageAccess (IBM, 1990). This interface uses other tools developed 
by IBM, such as Application System (AS) and Query Management Facility (QMF) for showing results 
to users. These results are shown in different ways: a pie chart, a table or a histogram. This NLIDB was 
withdrawn from marketing in 1993.

This interface is based on the use of grammar and dictionaries for translating a natural language 
query to an SQL statement. To this end, it consists of three main components, which are described next:

1.  Query Interface: This component is based on AS or QMF, which allows the user to formulate 
queries in natural language. Additionally, the system uses these tools for showing results to the 
user.

2.  Natural Language Engine: The task of this component is to syntactically parse the user question, 
interpret its meaning, and ensure accurate answers. This component involves the following ele-
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ments/aspects. Lexicons or dictionaries for storing basic and domain-specific vocabulary. Syntax 
or grammar for taking into account the structure of the user question, which is used for performing 
a syntactic parsing and verifying the correct grammatical form of a question. Semantics for help-
ing to understand the exact meaning of the natural language query; for example, determining the 
adequate meaning of a word with several meanings. Pragmatics for solving situation-dependent 
interpretation of the user question; for example, for identifying the references of pronouns in the 
question.

3.  Customization Tool: This tool is used for defining the vocabulary utilized by users when formu-
lating questions. Typically, this tool is used by the database administrator, since he/she knows the 
database structure and the vocabulary used in the organization by specific users. Specifically, it is 
used for including in the lexicon specific terms and acronyms likely to be used in user questions 
for referring to database elements (tables and columns).

EVALUATION BENCHMARKS

ATIS Database

ATIS (Air Travel Information Services) database is a relational database that has information on flights, 
flight fares, aircraft, airlines, airports, and cities in the USA, and ground services. From 1990 to 1994, 
SRI International used this database for conducting annual evaluations for research sponsored by DARPA 
for spoken natural language (SRI International, 2019).

The ATIS database contains information obtained from the Official Airline Guide, which is organized 
as a relational database. The database consists of 28 tables and a total of 125 columns, and its schema 
is shown in figure 1. The most used corpus to query ATIS for evaluating NLIDBs is the ATIS0 Pilot, 
which was designed in 1990 by SRI and consists of 2884 of queries. This corpus is available at https://
catalog.ldc.upenn.edu/docs/LDC93S4B/trn_prmp.html.

Geobase Database

Geobase is a database that contains geographical information of the United States of America, and it 
is used by many NLIDBs as a test benchmark since the 90s. It includes information on cities, states, 
mountains, rivers, lakes, and highways. Originally, Geobase was used by the Geobase system, which was 
an application example included in the Prolog commercial system, mainly in Turbo Prolog 2.0 version 
distributed by Borland International (Borland, 1988). It first appeared in 1988 as a deductive database 
implemented in Prolog, which was complemented with a natural language interface for querying the 
database.

The schema of the original Geobase is the following:

state(name, abbreviation, capital, area, admit, population, city, city, city, city)
city(state, abbreviation, name, population)
river(name, length, statestringlist)
border(state, abbreviation, statelist)
highlow(state, abbreviation, point, height, point, height)
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mountain(state, abbreviation, name, height)
lake(name, area, statelist)
road(number, statelist)

Since the 90s, Geobase (sometimes referred to as Geoquery) has been used for evaluating many 
NLIDBs; some of the most recent are C-Phrase, Precise, and WASP. Therefore, many researchers have 
adapted Geobase to the relational model.

Unfortunately, there exist different versions of the relational schemas, which differ from the original 
schema; for example, the addition of an extra column density to table state, the division of table highlow 
into tables high and low, the elimination of the four city columns from table state. Additionally, most of 
the versions lack a foreign key from column capital to table city, which is necessary because every state 
capital is a city. This situation complicates comparing the performance reported for different NLIDBs, 
despite being evaluated using Geobase. Figure 2 shows a database schema for Geobase proposed by 
the authors.

There exist two query corpora for testing: Geoquery880 and Geoquery250, which were designed by 
Mooney for training a system for semantic analysis. These corpora are available at http://www.cs.utexas.
edu/users/ml/nldata/geoquery.html.

Figure 1. ATIS database schema

Figure 2. The proposed relational schema for Geobase
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Northwind Database

Northwind is a database used by Microsoft for showing the features of some of its products, including 
SQL Server and Microsoft Access. The database contains information on sales of the Northwind Trad-
ers company, a food import, and export company. This database has 13 tables, as shown in Figure 3 
(Borker, 2006).

Spider Dataset

Spider is a text-to-SQL dataset for large scale semantic analysis and contains complex and cross-domain 
queries. It was developed at Yale University with the participation of 11 computer science students. It 
consists of 10,181 natural language questions and 5,693 complex queries on 200 databases with multiple 
tables that span 138 different domains (Yu et al., 2018).

The query corpus comprises a large variety of clauses and operations: SELECT, WHERE, GROUP 
BY, HAVING, ORDER BY, LIMIT, JOIN, INTERSECT, EXCEPT, UNION, NOT IN, OR, AND, 
EXISTS, LIKE, as well as subqueries. Spider is an extensive query corpus designed for training neural 
networks used in NLIDBs. The corpus comprises 200 databases covering 138 different domains, 10,181 
questions, and 5,693 complex SQL queries. This dataset is available at https://github.com/taoyds/spider.

IMDb Database

The Internet Movie Database (IMDb) is an online database that stores information on movies, direc-
tors, producers, actors, television shows, and series. IMDb makes available for public access subsets 
of IMDb data at https://datasets.imdbws.com/. Each dataset is in tsv format and can be accessed using 
a spreadsheet. Because the information is not compatible with the relational model, some relational 
database versions have been developed, which vary in the number of tables and columns. One of these 
is available at https://relational.fit.cvut.cz/dataset/IMDb.

Figure 3. Northwind database schema
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WikiSQL Database

WikiSQL is a dataset published in 2017 by Zhong, Xiong and Socher (2017) for training Seq2SQL, an 
NLIDB based on deep neural networks. WikiSQL consists of 80,654 annotated natural language queries 
and SQL queries involving 24,241 tables from Wikipedia. It is important to mention that the WikiSQL 
database has no foreign keys, and each domain has only one table. This database is available at https://
github.com/salesforce/WikiSQL.

SOLUTIONS AND RECOMMENDATIONS

As mentioned before, the slow development of NLIDB technology, from 1961 to 2019, shows that 
translating a natural language query to SQL has proven to be very difficult. In particular, developing 
domain-independent systems that achieve accuracies above 95% is an extremely complex problem.

The accuracies reported for neural network NLIDBs are below 85%, which is still far from 95%. The 
best results for syntax-based interfaces are in the range of 90% to 95% for accuracy. The accuracy obtained 
by a semantic grammar system is 75%, which is very far from 95%. For pattern-matching interfaces, the 
accuracies reported are around 85%. The best accuracies obtained by systems based on other approaches 
is 87%. Finally, the best performance reported for commercial NLIDBs is 80%, which is far from 95%.

The results summarized in the previous paragraph show that more work is needed for increasing the 
effectiveness of NLIDBs, particularly for neural network systems, which is a new approach for translat-
ing from natural language to SQL.

The descriptions of NLIDBs show that there are no widely accepted benchmarks for evaluation, which 
makes it very difficult to compare the performance of different systems. Although Geobase is one of 
the most used databases, unfortunately, there exist several versions of the relational schema. Therefore, 
figure 2 shows a proposed schema for Geobase.

There exist several metrics for measuring NLIDB performance: accuracy (also called recall), preci-
sion, and F1. One of the most widely used metrics is precision, which is defined as the percentage of 
correctly answered queries with respect to the number of translated queries. However, end users are 
more interested in accuracy, which is the percentage of correctly answered queries with respect to all 
the input queries. Unfortunately, several systems do not report accuracies, which makes it difficult to 
compare the performance of NLIDBs that only report precision and/or F1. Therefore, it is recommended 
that accuracy be always reported.

FUTURE RESEARCH DIRECTIONS

After almost 60 years of development of NLIDB technology, the challenge for achieving accuracies close 
to 100% still remains. Most of the problems found in translating from natural language are linguistic; for 
example, modifier attachment, conjunction and disjunction, and semantic ellipsis.

The following example illustrates the problem of modifier attachment: Which Delta flights depart to 
Washington at night? In this sentence, at night could be considered as a modifier of Washington, which 
is syntactically correct, but semantically incorrect, because it should be a complement of the verb depart. 
The word and, which is a conjunction, is often used to denote logical disjunction, whose meaning is usually 
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difficult to determine. Ellipsis is the omission of important words (in the wording of a natural language 
query) that are necessary for an NLIDB to understand the query fully. The following query for the ATIS 
database illustrates this problem: How many engines does an M80 have? In this query, a value M80 is 
specified; however, no table name is mentioned nor a column name associated to the specified value.

Other problems are related to database schemas and usability. The evaluations reported are for NLIDBs 
that have been configured by the implementers, who are the experts. However, for practical applications, 
it is more important the performance obtained when the interface is configured by database administra-
tors. Unfortunately, very few NLIDBs report results of systems configured by users different from the 
implementers; therefore, more work is needed for addressing this problem.

CONCLUSION

The current challenge for domain-independent NLIDBs consists of developing systems whose accuracy 
is above 95% and that can be easily configured for obtaining this accuracy.

The development of domain-independent NLIDBs has proven to be more difficult than initially 
thought. By way of comparison, it has been shown that the problem of determining if a natural language 
expression is grammatical (i.e., it satisfies the rules of grammar) is an NP-complete problem (Koller & 
Striegnitz, 2002). Therefore, the syntactic parsing of natural language is an NP-hard problem, whose 
exact solution requires an algorithm whose computational complexity is exponential.

In order to improve NLIDB performance, the authors propose a layered approach, which is recommended 
for dealing with complex problems. Systems whose design is based on functionality layers provide the 
flexibility and modularity for implementing more complex processing strategies than systems designed 
otherwise. Complex systems that have been developed using a layered architecture are communication 
networks that use the seven-layered architecture of the OSI model, and database management systems 
that use the three-level ANSI-SPARC architecture.

The architecture of the NLIDB described by Pazos et al. (2016) has allowed to include more layers 
for dealing with additional problems. For example, a Wizard for semi-automatically fine-tuning the 
configuration, which allowed undergraduate students to configure the system for obtaining accuracies 
in the range of 80.53% to 84.82%.

Another layer has been recently developed for dealing with a difficult semantic ellipsis problem 
that involves Boolean columns. These are columns that can only store two possible values: true/false, 
yes/no, 1/0. Natural language queries that involve Boolean columns do not specify search values; for 
example, consider the following query to the ATIS database Which flights are in wide body airplanes? 
Table aircraft has a column wide_body, whose values are YES or NO, but the search value YES is not 
specified in the query.

Finally, a new layer is being developed for querying databases that have design anomalies, such as the 
absence of primary and foreign keys, use of surrogate keys instead of primary keys, columns for storing 
aggregate function calculations, repeated columns in two or more tables, tables that are not in second 
normal form, and tables not in third normal form. Dealing with this problem is important because there 
are many databases that have design anomalies; therefore, many NLIDBs do not perform correctly with 
a large number of databases that have this problem.
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