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Abstract
This paper presents robust weighted variants of batch and online standard Gaussian
processes (GPs) to effectively reduce the negative impact of outliers in the correspond-
ingGPmodels. This is done by introducing robust dataweighers that rely on robust and
quasi-robust weight functions that come from robust M-estimators. Our robust GPs
are compared to various GP models on four datasets. It is shown that our batch and
online robust weighted GPs are indeed robust to outliers, significantly outperforming
the corresponding standard GPs and the recently proposed heteroscedastic GPmethod
GPz. Our experiments also show that our methods are comparable to and sometimes
better than a state-of-the-art robust GP that uses a Student-t likelihood.

Keywords Machine learning · Online learning · Robust regression · Outlying data

1 Introduction

Given a dataset D = {
(xi , yi ) : xi ∈ X , X ⊆ R

l , yi ∈ R, i = 1, 2, . . . , N
}
, where

l ∈ N, a common problem in statistics and machine learning consists of modeling the
functional relationship between the independent variables xi and the corresponding
dependent variable yi . A main goal on statistics is inference, while machine learning
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typically focuses on obtaining algorithms that learn a regression model from D that
can be used to predict the most likely y values corresponding to arbitrary x values in
X .

Gaussian processes (GPs) have been used successfully as a powerful and flexible
Bayesian regression tool in many fields. GPs are nonparametric kernel-based function
estimation techniques that model a probability distribution over a space F of functions
f : X → R, where X ⊆ R

l is a continuous l-dimensional input space (Bishop 2006;
MacKay 1998; Rasmussen and Williams 2006).

The expression for the GP posterior is obtained analytically when the likelihood is
Gaussian. This simple case of GP Bayesian regression is called standard GP regres-
sion. It has been shown (Rasmussen and Williams 2006; Seeger 2004), that standard
GPs provide performance gains and theoretical benefits when compared to other suc-
cessful regression techniques, such as splines (de Boor 2001), support vectormachines
(Drucker et al. 1997) and relevance vector machines (Tipping 2000). GPs can be
obtained from a training dataset D using a batch learning algorithm. Additionally,
there are algorithms that allow learning GP models incrementally, such as Online GP
(Csató and Opper 2002).

In practice, it is commonly found that a regression model with independent normal
errors describes the majority of observations, except for a few that are located far
from the bulk of the data, which are called outliers. Even a single outlier can have a
large distorting influence on most regression models. Noteworthy, obtaining effective
predictions using standard GP models in the presence of outliers has been shown to
be difficult or impossible in many cases (Neal 1997).

A common approach to address outliers within a Bayesian framework is to use a
robust non-Gaussian likelihood to obtain robust posterior distributions. For instance,
robust pseudo-likelihoods (Greco et al. 2008) and likelihoods corresponding to heavy-
tailed distributions, such as Laplace and Student-t distributions, have been used
(Geweke 1993; West 1984). The Student-t distribution has also been used to obtain
robust GPs, e.g., Tipping and Lawrence (2005), Kuss 2006, and Jylänki et al. (2011).
For example, in Jylänki et al. (2011) a modified expectation propagation (EP) (Minka
2001) is proposed as an approximation technique to obtain the GP posteriors, to elim-
inate numerical instabilities. Ranjan et al. (2016) introduces a robust GP that uses
Laplace or Student-t likelihoods using expectation-maximization (EM). In Kuss et al.
(2005), a Gaussian mixture likelihood (two-model model) for robust GP regression is
proposed. In order to handle the intractability of the non-Gaussian likelihood they use
the EP for doing approximate inference.

In Mattos et al. (2015), it is shown that robust GPs that use heavy-tailed likelihoods
outperform standard GPs when compared using root mean square errors (RMSE).
However, non-Gaussian likelihoods lead to analytically intractable inferences, which
require approximation techniques such as Laplace approximation (Williams and
Barber 1998) and EP. These approximation techniques are generally complex, com-
putationally expensive and convergence is not generally guaranteed.

In Agostinelli and Greco (2013), an approach is presented to address outliers
within the Bayesian framework by means of weighted likelihoods. Given a set of i.i.d.
observations y = {y1, y2, . . . , yN }, drawn from a random variable Y with unknown
probability (density) function p(y|θ), which is an element of a parametric family
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Robust weighted Gaussian processes

{p(y|θ) : θ ∈ Θ ⊂ R
p}. A weight is given to each likelihood term to limit the

effect of outliers. The weights are determined by a bounded, differentiable and non-
negative functionw(y; η̂, F̂N ), where η̂ denotes estimates of unknown parameters and
F̂N stands for an empirical cumulative distribution function. From this, a weighted
likelihood function Lw(y|θ) is proposed, where the weights w are based on the dis-
crepancy between the observed sample and the assumed model. The estimated θ̂ has
a high breakdown point. However, this type of weight function may be expensive to
compute, given its dependency on estimating multiple parameters and F̂N .

We introduce an effective approach to obtain robust weighted GP (RWGP) models
that is inspired by the framework proposed in Agostinelli and Greco (2013). How-
ever, our approach is simpler, given that we only require computing a weight for
each observation based on the robust mean and variance of a small neighborhood
around the observation, instead of imposing strong sufficient conditions on the weight
functions, as done in Agostinelli and Greco (2013). The proposed RWGP does not
require approximation techniques thanks to the use of a weighted Gaussian likelihood.
Additionally, our weighted Gaussian likelihood is a proper Gaussian likelihood. This
guarantees that Gaussian posteriors are obtained analytically. This is done without
altering the computational complexity of the corresponding standard GP.

The use of weights in GP regression has been proposed before in the context of
learning non-stationary system dynamics (Rottmann and Burgard 2010), where data
are heteroscedastic. For instance, the weighted GP proposed in Rottmann and Burgard
(2010) has been used to represent the uncertainty in a robot’s model of an outdoor
environment (Murphy et al. 2012). The approach described in Rottmann and Burgard
(2010) consists of assigning a weight to each observation and estimating a noise level
for each training point. Weights are used exclusively to estimate the hyperparameters
of the GP model using weighted cross-validation (Sugiyama et al. 2007). In Rottmann
andBurgard (2010), the set ofGP hyperparameters is very large, because the individual
noise levels are also consideredhyperparameters. In ourwork,weights are not usedout-
side of theGPmodel as part of a computationally expensiveweighted cross-validation.

Le et al. (2005) also proposes an heteroscedastic GP regression model. It pro-
vides non-parametric estimates of the mean and variance. To avoid solving a
non-convex optimization problem, they estimate the parameters μ(x)/σ 2(x) and
1/σ 2(x) of the exponential family representation of the normal distribution, which
leads to a convex problem. Another relevant work is GPz (Almosallam et al.
2016), which combines sparseness and heteroscedasticity. The underlying assump-
tion is a basis function model (BFM) yi = φ(xi )Tw + εi , i = 1, 2, . . . , N ,
where φ(xi ) = (φ1(xi ), φ2(xi ), . . . , φm(xi ))T , m << N and εi has a zero-
mean Gaussian distribution. GPz achieves sparsity by applying a sparsity-inducing
prior over the coefficients w = (w1, w2, . . . , wm)T . To deal with heteroscedas-
tic noise, the likelihood is subsequently redefined as p(y|w) = N (y|Φw, B−1),
where Φ = [φ(x1),φ(x2), . . . φ(xm)]T and B is a diagonal matrix with elements
βi = exp(φ(xi )u + b). As done with w, a sparsity-inducing prior is assigned to u to
obtain simple expressions for the precision values βi .

Our work shows some similarities to the heteroscedastic models described above,
i.e., weights are used in a similar way. However, our weights are calculated differently,
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as they are based on the “outlierness” of the corresponding observations using robust
statistics (Hampel et al. 1986; Huber and Ronchetti 1981; Rey 1983), to assess the
dissimilarity of each observation from the central tendency of neighboring data. This
differs from the heteroscedastic approach where the variance of the data is modeled
throughout the space, without considering outliers. These differences make a clear
distinction between heteroscedatic models and ours.

Outlier detection is a problem related to our work. It consists of modeling a normal
class and subsequently using that model to assign outlier scores to new observations.
Various works have proposed GPs for outlier detection, where outlier scores are func-
tions of the GP’s mean and variance (Kemmler et al. 2010; Ramirez-Padron et al.
2013; Ramirez-Padron 2015; Wang and Mao 2019). Robust methods such as those
mentioned above are usually employed to model the normal class as a first step in out-
lier detection. However, our focus in this work is to learn robust GP models without
the need to determine whether observations are outliers or not.

Summarizing, the main contributions of our work are:

1. A novel method to compute weights called here robust data weighers, which rely
on robust and quasi-robust weight functions from robust statistics.

2. A weighted Gaussian likelihood that employs robust data weighers in order to
provide robustness.

3. A batch RWGP that extends the batch standard GP by relying on our weighted
Gaussian likelihood.

4. An extension of our approach to the case of online learning, resulting in online
RWGP.

5. Proof that the computational complexities of our RWGPs remain the same as that
of the corresponding standard GPs; i.e., O(N 3).

6. Multiple experiments using simulated and real-life data show that our RWGPs
outperform the corresponding standard GPs and GPz in all cases where datasets
were contaminated with outliers. The experiments also show that RWGPs compare
favorably to a state-of-the-art robust GP that uses a Student-t likelihood.

The rest of this paper is structured as follows: Sect. 2 provides an overview of related
work, upon which our research was developed. In Sect. 3 we introduce our robust data
weighers, the robust weighted Gaussian likelihood, and RWGPs. Section 4 shows
that the computational complexities of RWGPs are the same as the corresponding
standard GPs. Sections 5 and 6 provide an experimental comparison between RWGPs,
standard GPs and other robust GP methods. Section 7 explores why the MMLmethod
is not appropriate in general to estimate GP hyperparameters. Conclusions and future
research directions are given in Sect. 8.

2 Mathematical preliminaries

In this work, the observation model is y(x) = f (x)+ε, where f (x) is a latent random
function that is modeled by a GP and the noise ε is independent and identically
distributed (i.i.d.) N (0, σ 2). A GP is defined as follows:
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Definition 1 (GaussianProcess) (Rasmussen andWilliams 2006).AGP is a collection
of random variables { f (x)}x∈X ,X ⊆ R

l , such that given any finite subcollection

{x′
i }Mi=1, the random vector f = [

f (x′
1), f (x′

2), . . . , f (x′
M )

]T has a multivariate
Gaussian distribution.

Given a random vector f , the probability p0(f) = N (μ0(f), K 0), where μ0(f) =[
μ0(x′

1), . . . , μ0(x′
M )

]T , μ0(x) = E(f(x)), and K 0 = (
k(x′

i , x′
j )

)
i, j is a M × M

covariance matrix. Any positive-definite kernel function k : X × X → R (Shawe-
Taylor and Cristianini 2004) can be used as the GP’s covariance function, which
determines the characteristics of the GP’s realizations, such as smoothness.

Throughout this paper, the points x are assumed to be non-random and noise-free, X
denotes the N×lmatrix [x1, x2, . . . , xN ]T and y denotes the vector

[
y1, y2, . . . , yN

]T .
Given any other collection (x′

1, x′
2, . . . , x′

M ) of points, X ′ denotes the matrix[
x′

1, x′
2, . . . , x′

M
]T .

In the following subsections, we describe batch and online standard GPs, as for-
mulated in Csató and Opper (2002) and Rasmussen andWilliams (2006), and provide
a review of robust and quasi-robust weight functions (Huber and Ronchetti 1981;
Maronna et al. 2006; Rey 1983).

2.1 Batch GP regression

Bayesian GP regression is concerned with estimating the predictive distribution
p(y(x)|x, D) for any x ∈ X , given a GP prior p0(f). It is computed as

p(y(x)|x,D) =
∫

p(y(x)| f (x))ppost ( f (x))d f (x), (1)

where the GP posterior ppost ( f (x)) is calculated as

ppost ( f (x)) = p(D| f (x))po( f (x))
p(D)

=
∫
p(y|fD) po( f (x), fD)dfD

E0[p(y|fD)] . (2)

In (2), fD = [ f (x1), f (x2), . . . , f (xN )]T and E0 denotes expected value with
respect to the GP prior. Calculating the GP posterior ppost ( f (x)) generally implies
approximating an N-dimensional integral that is analytically intractable if p(y|fD) is
not Gaussian. However, in the case of a standard GP, the mean and variance of the
posterior at a new input x have the following expressions (Rasmussen and Williams
2006):

μpost = μ0(x) + kTx q, (3)

σ 2
post = k(x, x) + kTx Rkx, (4)
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where

q =
(
K D + σ 2 I

)−1
(y − μ0(X)), (5)

R = −
(
K D + σ 2 I

)−1
, (6)

with μ0(X) := [μ0(x1), μ0(x2), . . . , μ0(xN )]T and K D = (
k(xi , x j )

)
i, j denotes the

N × N prior covariance matrix.

2.2 Online GP

Online GP (Csató and Opper 2002) is based on the Bayesian online learning frame-
work proposed in Opper (1998). Given a new learning observation (xt+1, yt+1), its
corresponding likelihood p(yt+1| f (xt+1)) is combined with the GP posterior pt (f)
that was obtained from the previous step t to obtain the GP posterior pt+1(f). Specifi-
cally, the following recursive expressions are obtained in Csató and Opper (2002) for
the moments of the GP posterior at step t + 1:

μt+1(x) = μt (x) + kt (x, xt+1)qt+1, (7)

kt+1(x, x′) = kt (x, x′) + kt (x, xt+1)rt+1kt (xt+1, x′). (8)

where the coefficients qt+1 and rt+1 are obtained as

qt+1 = ∂

∂Et
[
f (xt+1)

] lnEt
[
p(yt+1| f (xt+1))

]
, (9)

rt+1 = ∂2

∂2Et
[
f (xt+1)

] lnEt
[
p(yt+1| f (xt+1))

]
, (10)

withEt
[
p(yt+1| f (xt+1))

] = ∫
p(yt+1| f (xt+1))pt ( f (xt+1))d f (xt+1).A full descrip-

tion of how this result is obtained is given in Csató and Opper (2002).
By unfolding the recursive Eqs. (7) and (8), the iterative formulations for estimating

the moments of the online GP at step t + 1 are written as follows:

μt+1(x) = μ0(x) + kTx,t+1αt+1, (11)

kt+1(x, x′) = k(x, x′) + kTx,t+1C t+1kx′,t+1, (12)

where kx,t+1 := [
k(x, x1), . . . , k(x, xt+1)

]T and the vector αt+1 and the matrix C t+1
are computed recursively using the following expressions:

st+1 =
[
C t kxt+1,t

1

]
, αt+1 =

[
αt

0

]
+ qt+1st+1,

C t+1 =
[
C t 0
0 0

]
+ rt+1st+1sTt+1,
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whereα1 = q1 andC1 = r1. For the particular case of aGPwith aGaussian likelihood,
the coefficients qt+1 and rt+1 are expressed as follows (Csató and Opper 2002):

qt+1 = yt+1 − mt+1

σ 2
t+1 + σ 2

, rt+1 = − 1

σ 2
t+1 + σ 2

,

where mt+1 = μt (xt+1) and σ 2
t+1 = kt (xt+1, xt+1).

2.3 Robust and quasi-robust weight functions

Robust statistics (Huber and Ronchetti 1981; Maronna et al. 2006) yields estimation
methods that are not greatly affected by outliers.Given a set of real-valued observations
yi , i = 1, 2, . . . , N that depend on an unknown parameter μ, let us assume a location
model yi = μ + εi , where the additive errors εi , i = 1, 2, . . . , N are i.i.d. random
variables. Frequently, a small percentageof errors donot obey the assumeddistribution.
A common approach to estimate μ under this condition is to obtain theM-estimate of
location

μ̂ = argmin
N∑

i=1

ρ(yi − μ), (13)

where ρ : R −→ R
+ satisfies the following two properties:

Symmetry : ρ(−z) = ρ(z), (14)

Robustness : lim
z→+∞

ψ(z)

z
= 0, (15)

with ψ(z) = ρ′(z), which is known as the influence function (Hampel et al. 1986;
Maronna et al. 2006). The solution μ̂ of (13) is obtained by means of the following
iterative expression:

μn+1 =
∑N

i=1 w(yi − μn)yi
∑N

j=1 w(y j − μn)
, (16)

where the following expression is called here robust weight function

w(z) :=
{

ψ(z)/z, if z �= 0
ψ ′(0), if z = 0

. (17)

In general, w(z) is a non-increasing function of |z|. Because of the robustness
property in (15), outlying observations receive smaller weights. Therefore their con-
tribution to the model is small.

There are many ψ-functions that can be found in the literature, such as Huber’s
function (Huber 1964), Cauchy’s function (Maronna et al. 2006) and the Welsh’s
function (Dennis and Welsch 1978). For some ψ-functions, w(z) → 0 very rapidly
when z → +∞. Consequently, observations that are not too distant from μ might
have a very small influence in the estimation process. Additionally, the robustness

123

Author's personal copy



R. Ramirez-Padron et al.

property can yield numerical algorithms that are ill-posed (Rey 1983). An effective
approach to overcome these two issues is to define ψ so that the robustness property
is changed to

lim
z→+∞

ψ(z)

z
= γ, γ ∈ (0, 1). (18)

where γ is a very small value. Functions ρ that satisfies (18) are called quasi-robust
ρ-functions (Rey 1983) and are denoted here by ρQ . Commonly, a quasi-robust ρ-
function is expressed asρQ(z) = (1−γ )ρ(z)+0.5γ z2 (Rey 1983). The corresponding
weight function, which we call here quasi-robust weight function wQ are given by

wQ(z) = (1 − γ )w(z) + γ. (19)

3 Robust weighted Gaussian processes

This section introduces our approach to obtain RWGPs. It includes our definition of
robust data weigher and the expressions for batch and online RWGPs.

3.1 Robust weighted Gaussian likelihood

Here we extend the Gaussian likelihood p(D|fD) by making it dependent on a collec-
tion of weights wD = [w1,w2, . . . ,wN ], as follows:

Definition 2 (Weighted Gaussian likelihood) Given a dataset D = {(xi , yi )}, where
xi ∈ X , X ⊆ R

l , yi ∈ R, i = 1, 2, . . . , N , and given a collection of weights
wD = [w1,w2, . . . ,wN ], such that wi ∈ (0, 1], for i = 1, 2, . . . , N , we call

p(D|fD;wD) = 1
√

(2π)N |W|
e− 1

2 zTDW
−1

zD , (20)

aweightedGaussian likelihood, whereW = σ 2diag
(

1
w1

, 1
w2

, . . . , 1
wN

)
, zD = y−fD ,

and |W| is the determinant of W.

To add robustness to a weighted Gaussian likelihood, weights should satisfy the
following two conditions: outlying observations receive weights that are closer to zero
and non-outlying observations should receive weights that are closer to 1. Informally,
we call a weighted Gaussian likelihood that uses weights that satisfy these conditions
a robust weighted Gaussian likelihood. In our case, the weights wi are calculated by
evaluating a robust weight function w(·) on a standardized value of yi with respect to
data in a neighborhood of xi , as described in the following section.

The smaller a weight wi the more irrelevant is the effect of yi − f (xi ) on the cor-

responding likelihood term
√

wi√
2πσ 2

e− wi
2σ2

(yi− f (xi ))2 , in the sense that f (xi ) has more
room to change without greatly impacting the value of the corresponding likelihood
term. Consequently, predictions of GPmodels that employ this robust weighted Gaus-
sian likelihood will be more robust to outliers than standard GPs. This is depicted in
Fig. 1 by the plots of likelihood terms for different weight values.
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Fig. 1 Plot of likelihood terms from the weighted Gaussian likelihood for different values of w, using
σ 2 = 1

3.2 Robust data weighers

Here we introduce a novel method to compute weights that we call robust data
weighers. For each observation (xi , yi ) in D, we determine a neighborhood Ni of
xi in order to compute the corresponding weight wi , which is calculated based on
the relationship of yi to robust estimations of mean μi and variance vi of the set
{y j : x j ∈ Ni }. Small weights are given to observations (xi , yi ) for which yi signifi-
cantly deviate from μi .

The neighborhood of an observation can be defined based on a distance to the
observation or a fixed number of its nearest neighbors. Using the latter approach could
lead to neighborhoods where data points are far away from each other. Consequently,
those neighborhoods might not properly reflect the context of the observations, i.e.,
they would not take into account how observations are distributed across the input
space. The impact of this issue is greatly reduced when a distance is used to define
the neighborhoods. Therefore, we resort to neighborhoods that are defined based on
distance. Sometimes a weight function may not be practical for neighborhoods that
contain so few data points that weights could not be estimated effectively. To address
this issue, we introduce a default weight η, γ ≤ η < 1, which denotes the uncertainty
associated with lack of data in Ni . These considerations lead to the following:
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Definition 3 (Robust data weigher). Given a training set D, a robust data weigher is
a function that assigns a weight to each observation in D, according to the expression:

wxi = wi =
{

η, if |Ni | < s

w
(
yi−μi√

vi

)
, otherwise

(21)

where w is either a robust weight function or a quasi-robust weight function; Ni

denotes a distance-based neighborhood of xi ; μi and vi are a robust mean and robust
variance of the set

{
y j : x j ∈ Ni

}
; and s is a positive integer.

In our implementation of robust data weighers, we use a fixed radius r to con-
struct the neighborhoods Ni of points (xi , yi ). They are defined as the hypersphere{
x j : d(xi , x j ) ≤ r , j = 1, 2, . . . , N

}
, where d stands for a distance that is fitted to

the geometry of the data X. In our case, we employed the popular Mahalanobis dis-
tance (Mahalanobis 1936), to allow a better fit of the neighborhood to the geometry of
the data, in a way that should lead to having more elements for an effective calculation
of weights.

The threshold parameter s plays an important role in the definition of robust data
weigher. If s is large, it is likely that the vast majority of the data points are given
the default weight η. This should make the RWGP model behave similar to the corre-
sponding standard GP. If the value of s was small thenmost points would be assigned a
non-default weight, which should lead to a robust function estimation by our models.
This will generally be the case when the neighborhoods have an appropriate radius r .
In this work we experimented with various combinations of s and r , which allowed
us to obtain good preliminary results from our proposed methods.

The experiments described in this work employed weights that were calculated
using a quasi-robust weight function, to avoid the numerical instabilities generally
associated to robust weight functions. The default weight η was set to 0.5. We used
the highly robust estimator of location and scatter minimum covariance determinant
(MCD) (Rousseeuw 1984), from the MATLAB library LIBRA (Verboven and Hubert
2005), to calculate μi and vi .

3.3 Robust weighted GPs

Here we propose a simple and computationally efficient framework to make standard
GPs robust to outliers without resorting to using an intractable likelihood. We call a
standard GP that employs the robust weighted Gaussian likelihood a robust weighted
GP (RWGP). In the following subsections, we derive the expressions for the posterior
moments of batch and online RWGPs.

3.3.1 Batch Robust Weighted GP

Tocalculate theGPposterior,which is a normal distribution,weneed itsmeanμpost and
the covarianceσ 2

post . Theparameterization lemma (Csató 2002;Csató andOpper 2002)
allows calculating these posterior moments for any likelihood, based on derivatives of

123

Author's personal copy



Robust weighted Gaussian processes

the log marginal likelihood

ln
∫

p(y|fD;wD)po(fD)dfD.

Note that p(y|fD;wD)po(fD) is the jointGaussian distribution p(fD, y;wD),which
is given by (section 2.3.3 of Bishop (2006)):

p(fD, y;wD) = N
(
fD, y|

[
E0 [fD]
E0 [fD]

]
,

[
K D K D

K D K D + W

])
. (22)

Employing (22) and properties of multivariate Gaussian distributions, we find an ana-
lytic expression for the log marginal likelihood:

ln
∫

p(y|fD;wD)po(fD)dfD = ln
∫

p(y, fD;wD)dfD (23)

= ln (N (E0 [fD] , KD + W)) . (24)

Specifically

ln
∫

p(y|fD;wD)po(fD)dfD = −1

2
(y − E0 [fD])T [K D + W]−1 (y − E0 [fD])

− 1

2
ln |K D + W| − N

2
ln (2π) . (25)

Deriving (25) as specified in the parameterization lemma (Csató 2002; Csató and
Opper 2002), we obtain the following expressions for q and R:

q = [K D + W]−1 (y − μ0 (X)) , (26)

R = −[K D + W]−1 (27)

which allow the calculation of the first two moments μpost and σ 2
post of the RWGP

posterior prob_post , using (3) and (4) respectively.
Once we have the RWGP posterior, the corresponding predictive distribution is

given by

prob(y(x)|x,D) =
∫

p(y(x)| f (x);wx)prob_post ( f (x))d f (x) (28)

Applying eqs. (2.109) and (2.110) from section 2.3.3 of Bishop (2006), we obtain
that

prob(y(x)|x,D) = N (y(x)|μpost, σ
2
post + σ 2/wx) (29)

The expressions for derivatives of the logmarginal likelihood that allows the estima-
tion of hyperparameters ofRWGPusing theMMLmethod are given in the “Appendix”.
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3.3.2 Robust weighted online GP

The expressions for the online RWGP are the same as in online GP, except that the
expressions for the terms qt+1 and rt+1 are calculated differently, based on the robust
weighted Gaussian likelihood. To obtain the values of qt+1 and rt+1, the integral that
appears in (9) and (10) is rewritten as follows:

Et [p (yt+1| f (xt+1))] =
∫

N
(
f (xt+1),

σ 2

wt+1

)
N (mt+1, σ

2
t+1)d f (xt+1)

=
∫

N
([

mt+1
mt+1

]
,

[
σ 2
t+1 σ 2

t+1

σ 2
t+1 σ 2

t+1 + σ 2

wt+1

])

d f (xt+1)

= N
(
mt+1, σ

2
t+1 + σ 2

wt+1

)
. (30)

Consequently, qt+1 and rt+1 are rewritten as:

qt+1 = yt+1 − mt+1

σ 2
t+1 + σ 2

wt+1

, rt+1 = − 1

σ 2
t+1 + σ 2

wt+1

,

where wt+1 is the robust weight assigned to observation (xt+1, yt+1), based
on a neighborhood of xt+1 as described previously, but restricted to the set
{(xi , yi ) : i= 1, 2, . . . , t + 1}. These expressions for qt+1 and rt+1 are employed to
update model parameters α and C at each step of the training algorithm in the same
way that is done in standard online GP.

There is a subtlety related to howweights are calculated in the online setting:weights
for previously learned observations would likely have changed at any learning step
if they were recalculated taking the new observations into account. Ideally, α and
C would reflect such change at each learning step t . However, this is very difficult
given the recursive nature of the learning algorithm and should be considered future
work. Note however, that weights should tend to stabilize after learning a large number
of observations if there was not significant concept drift in our data. Therefore, our
approach (i.e., not updating the weights of previously learned data) should not impose
a great limitation on the effectiveness of online RWGP.

4 Computational complexities

This section shows that our RWGPs can be implemented in a way that their computa-
tional complexities are the same as that of the corresponding standard models.

The reliance of RWGPs on neighborhoods of data points leads to employ space-
partitioning data structures on D, such as k-d trees (Bentley 1980), which have a
computational complexity of O(N logN ) (Wald and Havran 2006). Once a k-d tree is
built, the complexity of determining the N neighborhoods is O(N logN ). Given that
applying the MCD method to a single neighborhood on m-dimensional data takes
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O(N
m(m+3)

2 ) (Bernholt and Fischer 2004), using MCD on each neighborhood in our
case takes O(N 2) (i.e. m = 1). This leads to a final complexity of O(N 3) for apply-
ing MCD to N neighborhoods. These complexities are used below to determine the
complexities of RWGPs.

4.1 Batch robust weighted GP

The computational complexity associated to training a batch standard GP model is
O(N 3) (Rasmussen and Williams 2006). In the case of our batch RWGP, we must
add the complexities of constructing a k-d tree, determining the neighborhoods of all
points in D and calculating the corresponding N weights. This leads to a combined
computational complexity of O(N 3) for processing the training data and calculating
weights. The complexities of calculating our posterior RWGPs are not affected by
the presence of weights in the likelihoods, therefore, the batch RWGP and the batch
standard GP have the same computational complexity.

4.2 Online robust weighted GP

Training an online standard GP model on N data points also has a computational
complexity of O(N 3) (Csató and Opper 2002). In the case of online RWGP, a k-d tree
should be constructed progressively by processing one observation at a time. Adding
an observation to a k-d tree that already contains t observations has O(log(t + 1))
complexity. Consequently, iteratively building a k-d tree for N observations sums up
to O(log(N !)). Additionally, the complexity of determining the neighborhood of each
observation t+1 is O(log(t+1)) and it takesO((t + 1)2) to obtain theMCDestimates.
Summing up these complexities for N observations, we obtain that determining N
neighborhoods takes O(log(N !)) and the complexity of using the MCD estimator on
N neighborhoods is O(N 3). Given that these independent processing steps have a
computational complexity that is not greater than that of online GP, the computational
complexity of online RWGP is also O(N 3).

5 Experimental setup

This section is divided in three parts. The first subsection describes the datasets used in
our experiments. The second subsection describes how we determined the parameters
of the dataweigher and the hyperparameters of the standard and the proposedweighted
GPs. The last subsection explains the procedure that we employed to compare the
following methods: batch standard GP (batch GP), online GP and our corresponding
weighted variants, the robust GP method based on Student-t (Jylänki et al. 2011) and
the heteroscedastic GP named GPz (Almosallam et al. 2016).
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5.1 Data sets

We designed four experiments. The first experiment used a 1-dimensional simulated
dataset. The second used the “motorcycle” real-life dataset (Silverman 1985), which
is also 1-dimensional. The third considered the real-life 2-dimensional dataset called
“galaxy” (Buta 1987). The fourth experiment employed the “concrete” dataset (Yeh
1998), which has eight attributes. The following paragraphs briefly describe these
datasets.
Simulated This is a simple dataset that we built based on the ground-truth function

y(x) = sin

(
1

2
x

) (
10 log (x + 2)

x

)
+ x2

200
. (31)

This function was randomly sampled at 60 points from the interval [0.25, 30],
adding a Gaussian noise with variance equal to 0.1 to the corresponding y values.
Motorcycle This dataset was obtained from simulated motorcycle crashes that were
carried out to assess the efficacy of helmets (Schmidt et al. 1981). The dataset contains
133 observations of accelerometer readings and their corresponding reading times.
The regression problem consists of learning the relationship between time as the
independent variable and acceleration as the dependent variable.
Galaxy This dataset contains 323 measurements of the radial velocities of a spiral
galaxy, measured in km/s. The measurements were taken over seven lines drawn over
the sky, all crossing at the origin of the galaxy. In our experiment we want to learn the
relationship between the radial velocities and the two independent variables EastWest
and NorthSouth, which describe the location of the readings.
Concrete This dataset contains 1030 observations that relate concrete compressive
strength (MPa) of different mixtures of concrete to eight independent attributes. Seven
attributes correspond to the amounts of mixture ingredients and the last attribute is
the age of the mixture. The eight attributes were normalized by using their standard
scores. This was done to achieve the same scale across dimensions, which facilitated
determining effective values for the kernel parameters.

5.2 Data weigher parameters and GP hyperparameters

We implemented the standard and weighted variants of batch GP and online GP
regression models in MATLAB. The well-known exponential kernel k(x, x′) =
e− 1

2

∑l
i=1 θi (xi−x′

i )
2
was used in our experiments, where the kernel hyperparameters

θi , i = 1, 2, . . . , l are considered scale factors.
The employed robust data weigher used the quasi-robust weight function associated

with theWelsh’sρ-function (Dennis andWelsch1978), i.e.,wQ(z) = (1−γ )e−λz2+γ ,
where λ is a scale parameter that was set to 1 in our case because its role is assumed
by the robust variance vi , as can be seen in (21).

Regarding the parameters of the weight functions, we wanted to employ values of r
and s for each dataset that would maximize the use of the quasi-robust weights in our
experiments. For that purpose, we set s = 5 after some preliminary experimentation
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Table 1 Optimized hyperparameter values for batch standard GP and batch RWGP methods

Data set Methods

Batch standard GP Batch RWGP

Simulated σ 2 = 0.13309, a1 = 0.11043 σ 2 = 0.058388, a1 = 0.10792

Motorcycle σ 2 = 0.2, a1 = 0.03 σ 2 = 0.008, a1 = 0.02

Galaxy σ 2 = 0.01, a1 = 0.005, a2 = 0.001 σ 2 = 0.007, a1 = 0.005, a2 = 0.008

Concrete σ 2 = 0.007, a1 = · · · = a8 = 0.6 σ 2 = 0.002, a1 . . . a8 = 0.5

across all datasets, expecting that a small s valuewould keep a local approach. For each
dataset, we determined r by following a two-step procedure. First, we obtained a set S
that contains the Mahalanobis distances from each observation to the farthest of its s
nearest neighbors. Second, we set r equal to a value slightly greater than the maximum
element of S. Following this approach, the r values corresponding to the first, second,
third and fourth datasets were 0.25, 0.5, 1 and 4, respectively. The parameter γ was
set to 0.005 for all experiments, as we were able to obtain good results with this value.

The hyperparameters for the batch standard GPs and batch RWGPs (i.e. σ 2 and
θk) were estimated initially using the MML method on all datasets. However, this
method only provided effective hyperparameter values for the simulated dataset of the
first experiment (in Sect. 7 we give some insight into why the MML method failed
in general). For the other three datasets the hyperparameter values obtained by the
MML method led to inadequate predicted posterior means. This was evidenced by
relatively high RMSE values and visualizations of the corresponding posterior means
that were just a flat line for the Motorcycle and Galaxy datasets. Consequently, we
estimated GP hyperparameters for the last three experiments by using five runs of
tenfold cross-validation (CV), minimizing the root mean squared errors (RMSE).
Each hyperparameter took values in following range: [0.001 : 0.001 : 0.01, 0.02 :
0.01 :0.1, 0.2 :0.1 :1, 2 :1 :10].

Estimating hyperparameters for online GPs is a difficult problem, as a critical mass
of training data is generally needed to obtain reliable estimates. Therefore, for online
GP and online RWGP we employed the values of hyperparameters estimated for the
corresponding batch GP method. Table 1 lists the hyperparameter values estimated
for each dataset for batch standard GP and batch RWGP.

5.3 Model comparison

Having estimated GP hyperparameters, we implemented a tenfold CV approach to
obtain RMSE values for the GPs under comparison. The CVwas run 30 times on each
GP, in order to obtain 30 RMSE values for each model. Here we followed a well-
accepted convention, that it is reasonable to expect that the average RMSE values
would be approximately normally distributed.

The experimental setup just describedwas applied to the datasets and also to various
versions of the datasets that were obtained by randomly contaminating the original
data with outliers. To obtain the contaminated versions of each dataset, we randomly
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selected the following percentages of observations andmodified them in order to make
them outliers: 5%, 10%, 15% and 20%. Specifically, for each observation (x, y) we
randomly subtracted or added to its original y value a random number between three
and five times the standard deviation of the y values in the original dataset. The dif-
ferent types of GPs where trained on the contaminated versions of the datasets using
the same hyperparameter values that were estimated for the corresponding uncontam-
inated versions of the data.

The contamination process described above was applied to the original datasets
before executing each of the 30 tenfold CV runs. Specifically, the models were com-
pared under exactly the same conditions within each CV run, including the same
original or contaminated datasets and exactly the same CV folds. This allowed us
to compare the RMSE values of the GP models at each contamination level (includ-
ing the original data that correspond to 0% contamination) by employing one-way
repeated measures ANOVA (Girden 1992). The RMSE values were computed using
the y values of the corresponding original datasets as ground-truth. For each dataset
(contaminated or not) the CV runs are seen as subjects and the different GPs constitute
the within-subjects factors. This approach was used to compare the following models:
batch standard GP to batch RWGP; online GP to online RWGP; and GPz to batch
RWGP. The significance level α for all ANOVAs was set to 0.01 to compensate for
the multiple inferences.

Wewere unable to use one-way repeatedmeasuresANOVA to compare the Student-
t GP (Jylänki et al. 2011) implemented in GPStuff to our batch RWGP due to multiple
convergence failures experienced byGPStuff. However, we obtained RMSE values for
GPStuff by separately running the contamination and CV procedures explained above,
discarding all cases of failed convergence, until we reached the desired 30 RMSE val-
ues per contamination level corresponding to good hyperparameter estimates. Hence,
we resorted to standard two-way ANOVA to compare the performance of Student-t
GP to our RWGP, also using 0.01 as the significance level.

6 Experimental results

This section summarizes the results from the ANOVAs for each dataset and each
contamination level. The results from our experiments are shown in Tables 2, 3, 4
and 5, where average RMSE values have been rounded to three significant digits. The
tables include the p values that show whether differences in RMSE were significant
or not.

Table 2 shows the results for the simulated dataset. In the case of 0% outlier con-
tamination, our batch RWGP performed significantly better than GPz and our online
RWGP showed the same performance than online GP. In contrast, batch GP and
Student-t GP significantly outperformed our batch RWGP in the case of data without
outlier contamination. For contamination levels of 5%, 10% and 15% our RWGPs
outperformed all other methods, and this result was statistically significant in all cases
except for Student-t GP. Finally, for 20% contamination, RWGPs significantly outper-
formed other models except Student-t GP. However, the observed better performance
of Student-t GP when compared to our method was not statistically significant.
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The experimental results for the motorcycle dataset are shown in Table 3. As in the
first experiment, the standard GPs significantly outperformed RWGPs on the original
data. However, RWGPs outperformed GPz and Student-t GP in this case, significantly
only when compared with GPz. For 5% contamination, RWGPs outperformed all
models except online GP, although this result was not significant for Student-t GP. For
10% contamination, RWGPs outperformed all models except Student-t GP, signifi-
cantly in the case of GPz and batch GP. For Student-t GP the average RMSE values
were almost identical. For contaminations of 15% and 20% RWGPs outperformed all
other models, significantly in half of the cases.

The results for the galaxy data are listed in Table 4. When compared on the original
dataset, RWGPs significantly outperformed other models except for online GP, which
significantly outperformed online RWGP. Our RWGPs outperformed all other models
for the rest of contamination levels. This result was significant in all cases except for
Student-t GP for contaminations 10%, 15% and 20%.

Table 5 shows results for concrete data. For the original dataset, the standard GPs
significantly outperformed RWGPs, while RWGP outperformedGPz.Wewere unable
to obtain hyperparameter values for Student-t GP using GPStuff for the uncontami-
nated data due to repeated failures to converge. For other contamination levels, RWGPs
significantly outperformed standard GPs and GPz. Student-t GP outperformed RWGP
for 5%, 10% and 15% contaminations, significantly in the cases of 10% and 15%. In
the case of 20% contamination, RWGP outperformed Student-t GP although not sig-
nificantly.

Taking statistics for all tables and contamination levels from 5% onwards, we note
that our proposed method outperformed the other methods 58 times out of 64. From
those 58 cases, 45 were statistically significant. Specifically for positive levels of
contamination:

– RWGPs outperformed the corresponding batch and online standard GPs in 31 out
of 32 comparisons. This result was statistically significant in 29 of the 31 cases.

– RWGPs outperformed Student-t GP in 11 out of 16 cases. Of those 11 cases, only
one is statistically significant. Of the 5 cases in which Student-t GP outperformed
our method, only 2 are significant.

– RWGPs always outperformed GPz and this outcome was statistically significant
in all cases but one.

Looking at regressions on data without contamination, the results show a slightly
better average RMSE values in favor of the standard GPs. Our proposed method
outperformed Student-t GP in 2 out 3 cases with only one being significant. On the
other hand Student-t GP outperformed RWGP significantly in one case. Our proposed
method significantly outperformed GPz on all datasets without contamination.

In summary, the benefits of using RWGPs on data that contain outliers have been
clearly stated through the statistical analysis of our experimental results, from simple
one-dimensional datasets to real-life multidimensional data such as the “concrete”
dataset.
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Fig. 2 Optimization surfaces for the first experiment (simulated data). a Batch standard GP. bBatch RWGP

7 On hyperparameter estimation

This section explores why the MML method gave us ineffective GP hyperparameter
estimates in general, which led us to follow a cross-validation approach. Here we
plot the surfaces of the negative log marginal likelihood functions corresponding to
the simulated and motorcycle datasets, to contrast the effective parameter estimation
usingMMLon the first dataset to the failure of theMMLmethod on the second dataset.

Figure 2a, b show the optimization surfaces for the simulated datawithin a neighbor-
hood of our GP hyperparameter estimates, for the batch GP and batch RWGP models
respectively. In both cases there is only oneminimumwithin the chosen neighborhood,
which correspond to the solutions thatwe found. In general, the logmarginal likelihood
might have multiple local optima when using exponential kernels; see Rasmussen and
Williams (2006), Sec. 5.4.1. Although the existence of a single optimum in our first
experiment cannot be fully guaranteed, we repeated the MML estimation procedure
100 times, starting from different points chosen uniformly within the neighborhood
plotted in Fig. 2, and we consistently obtained the same estimates. Additionally, we
expanded the plots in Fig. 2 to larger neighborhoods, and we again obtained the same
unique minimum in all cases.

In the case of the motorcycle data, Fig. 3a, b show the optimization surfaces for
the batch GP and batch RWGP models, respectively. In this case both surfaces seem
to lack a global minimum within a region that should contain optimal values for
the hyperparameters. Figure 3 confirms that the MML method cannot be applied
successfully in this case, regardless of the optimization method of choice.

For the sake of completeness, Figs. 4 and 5 show the surfaces of average RMSE
values for the hyperparameters values employed by theCVprocedure for the simulated
and motorcycle datasets. The existence of a minimum average RMSE value within
each optimization area was apparent in the two cases.
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Fig. 3 Optimization surfaces for the second experiment (motorcycle). a Batch standard GP. bBatch RWGP.
Both surfaces show regions that suggest the lack of minimum

Fig. 4 Surfaces of average RMSE for the first experiment (simulated data). a Batch standard GP. b Batch
RWGP

8 Conclusion

This work has introduced batch and online robust weighted GPs (RWGPs) by using a
weighted version of the standard Gaussian likelihood. Weights are calculated relying
on either a robust weight function or a quasi-robust weight function.We have presented
the mathematical expressions for batch RWGPs and online RWGPs. Remarkably, the
computational complexity of our RWGPs are the same as that of the correspond-
ing standard GPs. Robustness is achieved without applying complex approximation
techniques that have been proposed in previous approaches.
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Fig. 5 Surfaces of average RMSE for the second experiment (motorcycle). a Batch standard GP. b Batch
RWGP

The experimental sections show that our methods can outperform standard GPs
and a very recent heteroscedastic GP model when trained in data that contain outliers.
Additionally, our methods are shown to provide results that are comparable to and
sometimes better than a state-of-the-art robust GP that uses Student-t likelihood.

Effective estimation of the parameters r and s andγ to calculate the robustweights is
difficult in general. As future research, we will explore automatically estimating these
parameters, using the Bayesian framework, and how sensitive RWGPs are to varia-
tions of these parameters. Similarly, we would like to include an effective approach to
automatically estimate the GP hyperparameters by means of defining appropriate pri-
ors and applying efficient Bayesian estimation methods. Finally, the relation between
percentage of outliers and input dimensions is also an interesting question worth of
exploration in future work.

Appendix: Estimation of weighted GP hyperparameters

Here we derive the expressions for the derivatives of the log marginal likelihood of
the batch RWGP with respect to the GP hyperparameters θ = (θ0, θk)

T = (σ 2, θk)
T ,

where θk = (θ1, θ2, . . . , θl), with l ≥ 0 (i.e. θk might be empty), denotes the kernel
hyperparameters. Given the training set D, the MML method consists of finding the
hyperparameter values that maximize the log marginal likelihood given by (25):

L(θ) = −1

2
(y − E0 [fD])T K−1

p (y − E0 [fD]) ,
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where K p = K D + W . The derivatives of L with respect to each θi , i = 0, 1, . . . , l
are written as:

∂L
∂θi

= 1

2
(y − E0 [fD])T K−1

p
∂K p

∂θi
K−1

p (y − E0 [fD]) − 1

2
tr

(
K−1

p
∂K p

∂θi

)
, (32)

where the derivatives of K p are as follows:

∂K p

∂σ 2 = ∂W
∂σ 2 = diag

(
1

w1
,
1

w2
, . . . ,

1

wN

)
, (33)

∂K p

∂θi
= ∂K D

∂θi
, i = 1, 2, . . . , l. (34)
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