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In the present paper binary configurations of identical corotating Kerr-Newman black holes separated 
by a massless strut are derived and studied. After solving the axis conditions and establishing the 
absence of magnetic charges in the solution, one gets two 4-parametric corotating binary black hole 
models endowed with electric charge, where each source contains equal/opposite electric charge in the 
first/second configuration. Since the black hole horizons are given by concise expressions in terms of 
physical parameters, all their thermodynamical properties satisfying the Smarr relation for the mass are 
also obtained. We discuss the physical limits of both models.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Recent results on gravitational waves detection [1] open new expectations on the search of interacting binary black hole (BH) models 
that might be helpful to analyze and study this physical phenomenon in an exact form, since until this day numerical relativity has 
been the main tool to treat the process of binary BH mergers. Regarding the last point, in stationary spacetimes, simplified models of 
binary systems have been taken into account since the early days of general relativity, perhaps the most famous is that one described by 
the Bach-Weyl solution [2] which illustrates two arbitrary Schwarzschild BHs interacting due to their gravitational attraction. In Einstein 
vacuum systems, the double-Kerr solution [3] of Kramer and Neugebauer is very helpful to describe unequal binary configurations of 
interacting BHs, where the nonlinear superposition of the fields of each Kerr BH is carried out after solving analytically the axis conditions, 
permitting that both sources are held apart by a conical singularity [2,4]. The solving of the axis conditions had been one of the main 
highly complicated problems to study dynamical and thermodynamical aspects of two interacting Kerr BHs, which fortunately has been 
concluded recently in [5]. Naturally, one may have in mind the possibility of extending this result by adding the electromagnetic field. 
However, the bad thing is that such a process increases enormously the complexity of finding exact results, since the axis conditions must 
be solved in combination with the condition that avoid the presence of magnetic charges in the solution, with the aim to determine binary 
configurations of Kerr-Newman BHs separated by a massless strut (conical singularity). The last point suggests us the idea of treating cases 
of identical BH configurations, due to their more symmetric character.

This letter pursues the main objective of extending the earlier results provided in [6,7] in relation to identical corotating BHs, where 
now the sources containing aligned spins will be endowed with electric charges. In this work, we derive two 4-parametric binary models 
of corotating Kerr-Newman BHs where the first of them contains equal electric charges, while the second one carries opposite electric 
charges. In addition, all the physical limits and thermodynamical properties of both models are well defined by concise expressions in 
terms of arbitrary Komar parameters [8]. It is also included a concise metric in the extreme limit case of BHs, where are obtained simple 
expressions for the force related to the strut and area of the horizon during the touching limit, extending the recent result of [9].
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2. The asymptotically flat exact solution

Within the context of exact solutions it is well-known that stationary axisymmetric spacetimes can be described by means of the line 
element [10]

ds2 = f −1
[

e2γ (dρ2 + dz2) + ρ2dϕ2
]
− f (dt − ωdϕ)2, (1)

where the metric coefficients f , ω and γ depend only on cylindrical coordinates (ρ, z). In this sense, Ernst formalism reduces the Einstein-
Maxwell field equations into a new coupled system [11]

(
ReE+ |%|2

)
&E= (∇E+ 2%̄∇%) · ∇E,

(
ReE+ |%|2

)
&% = (∇E+ 2%̄∇%) · ∇%,

(2)

where E = f − |%|2 + i' and % = −A4 + i A′
3 are the Ernst complex potentials. Any explicit knowledge of (E, %) provides the above 

stationary metric Eq. (1) after solving a complicated set of differential equations:

4γ,ρ = ρ f −2
[
|E,ρ + 2%̄%,ρ |2 − |E,z + 2%̄%,z|2

]
− 4ρ f −1(|%,ρ |2 − |%,z|2),

2γ,z = ρ f −2Re
[
(E,ρ + 2%̄%,ρ)(Ē,z + 2%̄%,z)

]
− 4ρ f −1Re(%̄,ρ%,z),

ω,ρ = −ρ f −2Im(E,z + 2%%̄,z), ω,z = ρ f −2Im(E,ρ + 2%%̄,ρ). (3)

The difficult task to obtain exact solutions from Ernst’s equations can be achieved by using Sibgatullin’s method (SM) [12]; a modern 
generation technique of exact solutions in stationary axisymmetric Einstein-Maxwell spacetimes, which is based on the soliton theory. 
According to SM, we must begin with the next representation of the Ernst potentials on the upper part of the symmetry axis (the axis 
data) [17]:

e(z) = 1 +
2∑

i=1

ei

z − βi
, f (z) =

2∑

i=1

f i

z − βi
, (4)

being e(z) := E(ρ = 0, z) and f (z) := %(ρ = 0, z). In addition, the above axis data is depicted by six arbitrary complex constants contained 
inside of the set {ei, f i, βi}, i = 1, 2. Since the SM provides the Ernst potentials, and therefore, the full metric in the whole spacetime once 
we adopt a specific form of the axis data, it is necessary to give it first a more physical representation in order to gain more insight and 
simplicity at the moment of studying physical and dynamical aspects of binary systems. To accomplish such a task we begin with the 
characteristic equation

e(z) + ē(z) + 2 f (z) f̄ (z) = 0, (5)

whose roots αn , for n = 1,4, define the location of the sources on the symmetry axis. By placing the axis data Eq. (4) into this characteristic 
equation we have

2 +
2∑

i=1

(
ei

z − βi
+ ēi

z − β̄i

)
+ 2

2∑

i, j=1

f i f̄ j

(z − βi)(z − β̄ j)
= 2

∏4
n=1(z − αn)

∏2
i=1(z − βi)(z − β̄i)

, (6)

where after performing a partial fraction decomposition it is possible to obtain the relations

e1 = 2
∏4

n=1(β1 − αn)

(β1 − β2)(β1 − β̄1)(β1 − β̄2)
−

2∑

i=1

2 f1 f̄ i

β1 − β̄i
, e2 = 2

∏4
n=1(β2 − αn)

(β2 − β1)(β2 − β̄1)(β2 − β̄2)
−

2∑

i=1

2 f2 f̄ i

β2 − β̄i
, (7)

which allows us to change the set of parameters {ei, f i, βi} by the new ones {αn, f i, βi}. It follows that the first Simon’s multipole moments 
[13] like the total mass of the system M , NUT charge J0 [16], as well as the total electromagnetic charge Q + iB can be computed from 
the above axis data Eq. (4) via the Hoenselaers-Perjés procedure [14,15], having

−e1 + e2

2
= M + i J0, f1 + f2 = Q + iB. (8)

Additionally, the total angular momentum J , and electric/magnetic dipole moment Qo/Bo are given by

Im

[(
e1 + e2

2

)2

− e1β1 + e2β2

2

]

= J , − (e1 + e2)( f1 + f2)

2
+ f1β1 + f2β2 =Qo + iBo, (9)

and after placing Eq. (8) into the second formula of Eq. (9) it might be possible to get the following expressions:

f1,2 = ±−(Q + iB)(M + i J0 + β2,1) +Qo + iBo

β1 − β2
. (10)

2
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On the other hand, the substitution of Eq. (7) inside of the left-hand side of Eq. (8) leads to the relation for the total mass

β1 + β2 + β̄1 + β̄2 −
4∑

n=1

αn = −2M, (11)

whereas the choice of the suitable parametrization

α1,2 = R
2

± σ1, α3,4 = − R
2

± σ2, (12)

reduces one parameter in the general solution, since 
∑4

n=1 αn = 0. In this case R plays the role of the relative distance among the sources, 
where σ 2

i ≥ 0 defines BHs while σ 2
i < 0 is referring to hyperextreme sources. By adopting the simple redefinitions Qo = qo − B(q + J0), 

Bo = bo + Q (q + J0), and β1 + β2 = −M + iq, the above-mentioned Eq. (10) turns out to be

f1,2 = ± (Q + iB)β1,2 + qo + ibo

β1 − β2
. (13)

Therefore, the problem of representing the axis data with a more physical appearance is accomplished with the choice of βi that 
satisfies Eq. (11) as follows:

β1,2 = −M + iq ± √
p + iδo

2
, (14)

where a few more trivial redefinitions given by

p = R2 + M2 − q2 − 2&o + 2
(
ϵ1 − ϵ2 R − qS1 + 2(qo Q + bo B)

M

)
,

δo = −2(2P2 + Mq), S1 = P1 + P2, ϵ1,2 = σ 2
1 ± σ 2

2 , &o = M2 − Q 2 − B2 − q2, (15)

permit us to demonstrate that the Ernst potentials given by Eq. (4) acquire the final aspect

E(0, z) =
z2 − [M + i(q + 2 J0)]z +P+ + i P1 − 2i J0

[
M − iq + P2

q

]

z2 + (M − iq)z +P− + i P2
, %(0, z) = (Q + iB)z + qo

z2 + (M − iq)z +P− + i P2
,

P± = M(2&o − R2) − 2
[
Mϵ1 ±

(
ϵ2 R − qS1 + 2(Q qo + Bbo)

)]

4M
, qo = qo + ibo, (16)

while the NUT charge and total angular momentum are simplified as

J0 = q

8M2

(
N

q2P− + P2(P2 + Mq)

)
, J = Mq − P1 − P2

2
+ J0

(
2M + P2

q

)
,

N = M2
{

4(P1 P2 + |qo|2) + (R2 − &o)(2ϵ1 − &o) + ϵ2
2

}
− [qS1 − ϵ2 R − 2(Q qo + Bbo)]2 , |qo|2 = q2

o + b2
o . (17)

It is worthwhile to stress the fact that in the absence of the electromagnetic field Eq. (16) reduces to the axis data derived in Ref. [5]
for vacuum systems, which have been very fit to treat unequal configurations of interacting BHs. With the main purpose to treat 
binary configurations composed by identical sources, we just make σ1 = σ2 = σ , P1 = −P2 = δ as well as the following changes 
{M, q, Q , B, qo, bo} → {2M, 2q, 2Q , 2B, 2qo, 2bo}, to obtain

E(0, z) =
z2 − 2[M + i(q + 2 J0)]z + P+ + iδ − 8i J0

[
M − iq − δ

4q

]

z2 + 2(M − iq)z + P− − iδ
, %(0, z) = 2(Q + iB)z + 2qo

z2 + 2(M − iq)z + P− − iδ
,

P± = 2&o − R2/4 − σ 2 ∓ 2(Q qo + Bbo)/M, (18)

where now 2M and 2(Q + iB) represent the total mass and total electromagnetic charge of the system, respectively. In addition, the 
electric/magnetic dipole moment Qo/Bo is given by

Qo = 2qo − 4B(q + J0), Bo = 2bo + 4Q (q + J0), (19)

where J0 is expressed as

J0 = q

2M2

(
M2 [

(σ 2 − &o)(R2 − 4&o) − δ2 + 4|qo|2
]
− 4(Q qo + Bbo)

2

4q2 P− + δ(δ − 4Mq)

)
. (20)

Finally it is not difficult to show that the total angular momentum of the system is expressed in the simple form

2 J = 4Mq − δ + 2 J0

(
4M − δ

2q

)
. (21)

Then we have that the sources are two thin rods separated by a coordinate distance R and their location on the symmetry axis depends 
on the values α1 = −α4 = R/2 + σ , α2 = −α3 = R/2 − σ , as shown in Fig. 1. As it is well-known, an asymptotically flat spacetime might 
be considered after killing the NUT charge J0, where in this case such a condition is satisfied by means of

3
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σ =
√

& − 4
[
|qo|2 − (Q /M)2q2

o
]
− δ2

R2 − 4&
, & = M2 − Q 2 − q2, (22)

where we have first eliminated the total magnetic charge from the binary system; i.e., B = 0. At this point, it is worth noting that each 
source contains identical magnetic charge with opposite sign. Following the approach of Ref. [17], after the application of straight but 
non-trivial calculations, eventually one gets the following representation for the Ernst potentials and metric functions

E= - + .

- − .
, % = χ

- − .
, %2 = F

- − .
, f = |-|2 − |.|2 + |χ |2

|- − .|2 , ω = 4q +
Im

[
(- − .)G− χI

]

|-|2 − |.|2 + |χ |2 ,

e2γ = |-|2 − |.|2 + |χ |2
64σ 4 R4κ2

o r1r2r3r4
,

- = 2σ 2
[

R2κo(r1 + r2)(r3 + r4) + 4a(r1 − r3)(r2 − r4)
]
+ 2R2

[
κo(2& − σ 2) − a

]
(r1 − r2)(r3 − r4)

+ 2iR
{(

2qRe(s+) + Im(p+)
)[

R(r1 − r2)(r3 − r4) − 2σ
(
r1r4 − r2r3 + 4σ r3r4

)]

+ qκo

[
r1

(
R2r3 − κor4

)
− r2

(
κor3 − R2r4

)
− 8σ 2r3r4

]}
,

. = 4σ R (M.o − bχ+) , F = (4q + iz)χ − iI, χ = −4σ R (Q .o + 2Qχ+) , .o = Rχ− − 2σχs + 2χ1+,

G= 2z. + 8σ 2
{

R
[

2
(
Re(a) − 2|qo|2

)
+ Q 2κo

]
(r1r2 − r3r4) + 2iqR2κo(r2r3 + r1r4) + 2i

[
RIm(a) + Q ξ0 − 4q|qo|2

]

× (r1 − r3)(r2 − r4)

}
− 4R2

{
σ

[
2a − (R − 2σ )

(
2(R + 2iq)s+ + p+

)]
+ i

(
Q ξo + 2Q boκo − 4q|qo|2

)}
(r1 − r2)(r3 − r4)

+ 2σ R
{

4R
(

2κo& − Re(a)
)

r4 +
[

Q (4qo + Q R)κo + 4R|qo|2
]
(r3 + r4)

}
(r1 − r2)

+ 2σ R
{

4R
(

2κo& − Re(a)
)

r2 −
[

Q (4qo − Q R)κo − 4R|qo|2
]
(r1 + r2)

}
(r3 − r4) + 4Mσ R

(
κoχ+ + 2Rχ1− + 4σχp

)

− 4bσ R(Rχ− + 2σχs) − 8σ R(Q b + 2MQ)
[

2q̄o
(
r1 − r2 + r3 − r4

)
+ Q κo(r1 − r2 − r3 + r4)

]
,

I= A
[

4σ 2(r1 − r3)(r2 − r4) − R2(r1 − r2)(r3 − r4)
]
+ Rκ−

[
B+κor1 − B−Rr2

]
r4 + Rκ+

[
B−κor2 − B+Rr1

]
r3

− 16σ 2 R
{[

M(R + 2σ )(κ+ + 2Q R) − B+qo

]
r3r4 − Rκo(2MQ+ Q b)

}
+ 8Qσ R(χ1+ + σχs)

+ 2σ R
[

Q
(
2R2 − 8& + κo

)
+ 8iqQ

]
χ+ + 12σ R2Qχ− + 8Q σ R(Rχ1− + 2σχp),

χ± = s+r1 − s−r2 ± (s̄−r3 − s̄+r4), χ1± = p+r1 + p−r2 ± (p̄−r3 + p̄+r4), χs = s+r1 + s−r2 + s̄−r3 + s̄+r4,

χp = p+r1 − p−r2 + p̄−r3 − p̄+r4, a = (R + 2iq)p+ − s+
[
s+ − (R + 2iq)2], b = −2qo(Q /M) + i(δ − 4Mq),

A = 4M
[(

2Q+ Q (R − 2σ )
)

s+ + 2Q p+
]
+ B+

[
Q

(
R2 − 4&

)
− 2(R + 2iq)qo

]
, κ± = 2qo − Q (R ± 2σ ), κo = R2 − 4σ 2,

B± =
[

Rs± ± p± + 2Q
(
2q̄o + Q (R ± 2σ )

)]
/M, p± = −σ (R2 − 4&) ± i

[
2Mδ + 4bo Q − (R + 2iq)Im(s±)

]
,

s± = 2& ± σ R + iq(R ± 2σ ), ξo = 4Q
[

Mδ + 2bo Q + q(& − σ 2)
]
− (2bo + qQ )(R2 − 4&), Q= qo + 2iqQ ,

r1,4 = (R − 2σ )r1,4, r2,3 = (R + 2σ )r2,3, r1,2 =
√

ρ2 + (z − R/2 ∓ σ )2, r3,4 =
√

ρ2 + (z + R/2 ∓ σ )2, (23)

where Eq. (23) is depicted by a total of seven parameters {M, Q , q, qo, bo, δ, R}. Notice that Eq. (23) also shows the Kinnersley potential 
%2 [18] in order to get directly the magnetic potential A3 through

A3 = Re(%2) = −4qA4 − z A′
3 + Im

( I
- − .

)
. (24)

3. Corotating Kerr-Newman binary BHs

The above solution Eq. (23) cannot be considered to describe a pair of BHs unless we have been able to solve the axis condition in the 
middle region among the sources, namely,

ω
(
ρ = 0, |z| < Re(α2)

)
= 0, (25)

where it ensures that both BHs will be apart by a massless strut. The substitution of Eq. (22) into Eq. (25) will leads us to a quadratic 
equation for any of the variables qo , bo or δ, namely

4
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8qP0b2
o + 2P0(2Q bo + Mδ)(R2 − 4&) −

[
2qso − (R + 2M)δ

]
(R2 − 4&)2 + 4q

{
(P0 − 2so)

[
2q2

o
(
1 − 2(Q /M)2) − δ2

]

+ 4soq2
o

}
= 0,

P0 = (R + 2M)2 + 4q2, so = M(R + 2M) − Q 2, (26)

and since this algebraic equation can be readily solved, it is possible to assume for one instant that we know explicitly its solution, thus 
having two corotating charged sources separated by a massless strut [2]. Later on, we will combine Eq. (26) together with the condition 
that annihilates to each individual magnetic charge with the aim to define corotating Kerr-Newman binary BHs. Thanks to the fact that the 
strut is massless, the BHs can be surrounded by a Gauss-type law via Komar integrals [8], where the horizon mass of each BH accomplishes 
its own Smarr formula [19]. On the other hand, in stationary axisymmetric spacetimes Tomimatsu formulas [20] provide us an easy way 
to calculate straightforwardly Komar conserved quantities in a two-body system once we know a specific metric. Nevertheless, Clément 
and Gal’tsov [21] recently have shown that Tomimatsu formulas are not correct in the presence of magnetic charges, because the mass of 
the horizon MH suffers contributions coming from a Dirac string joined to the BHs; i.e., each BH is carrying a magnetic flux. Therefore, 
the corrected Tomimatsu formulas acquire the form [20,21]

MH = − 1
8π

∫

H

ω',z dϕdz − M S
A, Q H + iB H = 1

4π i

∫

H

ω%,z dϕdz,

J H = − 1
8π

∫

H

ω

[
1 + ω',z

2
− Ã3 A′

3,z

]
dϕdz − ωH M S

A

2
, (27)

where ' = Im(E) and Ã3 = A3 +ωA4. Also, ωH is the value of the metric function ω over the horizon, while M S
A is an extra term related 

to the presence of the Dirac string, which is given by

M S
A = − 1

4π

∫

H

(A′
3 A3),zdϕdz. (28)

For such a case, the Smarr formula [19] for each BH still holds and reads [21]

MH = κ S
4π

+ 23 J H + %H
E Q H = σ + 23 J H + %H

E Q H , (29)

where κ and S are the surface gravity and the area of the horizon, respectively; both are related to σ . Furthermore, 3 = 1/ωH is the 
angular velocity and %H

E = −AH
4 − 3AH

3 defines the electric potential in the corotating frame of the BH. The aforementioned integrals 
Eqs. (27) are evaluated on the corresponding region that each rod represents the BH horizon [see Fig. 1(a)]. In this case, one may consider 
the values of the upper BH horizon: R/2 − σ ≤ z ≤ R/2 + σ , ρ → 0, and 0 ≤ ϕ ≤ 2π , due that the length of both sources is equal. 
Replacing Eq. (23) into Eq. (27), it can be proven that the mass MH and electromagnetic charge Q H + iB H for the upper BH assume the 
form

MH = M + 2qo(Q /M)P0 R(R2 − 4&)
[
(R + 2M)(R2 − 4&) − 4qδ

]2
+ 64q2q2

o(Q /M)2
− M S

A,

Q H + iB H = Q + 2
P0(qo + ibo) + i Q

(
q(R2 − 4&) + (R + 2M)

[
δ + 2iqo(Q /M)

])

(R + 2M)(R2 − 4&) − 4q
[
δ + 2iqo(Q /M)

] . (30)

It is important to note that the individual masses, electric charges, and angular momenta will not be necessarily half of 2M , 2Q , and 
2 J , respectively, unless the magnetic charges vanish. Moreover, the lower BH will contain a mass MH(qo→−qo) and electromagnetic charge 
2Q − Q H − iB H . In the following, we are going to consider two electrically charged models where an absence of magnetic charges is taken 
into account.

3.1. Identically charged Kerr-Newman BHs

The first case that is considered here emerges if qo = 0 and Q = Q H , in the formulas of the current section. We find from Eqs. (26)
and (30) that an absence of magnetic charges (B H = 0) is achieved when

δ = 2q(R2 − 4&)
[
M P0 + Q 2

H (R + 2M)
]

(R2 + 2M R + 4q2)P0 + 8q2 Q 2
H

, bo = − qQ H (R2 − 4&)
(

P0 + 2Q 2
H

)

(R2 + 2M R + 4q2)P0 + 8q2 Q 2
H

, (31)

and therefore MH = M since the term M S
A vanishes. For such a situation, the expression for σ in the identically charged case is obtainable 

from Eq. (22); it reads

σ =

√√√√√& +
4q2(R2 − 4&)

[[
M P0 + Q 2

H (R + 2M)
]2 − Q 2

H

(
P0 + 2Q 2

H

)2
]

[
(R2 + 2M R + 4q2)P0 + 8q2 Q 2

H

]2 , (32)

5
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Fig. 1. Different types of identical Kerr-Newman sources on the symmetry axis: (a) BH configuration σ 2 > 0; (b) hyperextreme sources if σ → iσ (or σ 2 < 0); (c) the extreme 
limit case if σ = 0.

whereas the angular momentum of each BH is given by

J H ≡ J = 2Mq − δ

2
= 2Mq − q(R2 − 4&)

[
M P0 + Q 2

H (R + 2M)
]

(R2 + 2M R + 4q2)P0 + 8q2 Q 2
H

. (33)

In this binary BH setup, the electric and magnetic dipole moments are specified as Qo = 0 and Bo = 2bo + 4qQ H . Regarding now the 
thermodynamical properties contained within the Smarr formula Eq. (29) we have that 3 and %H

E are

3 = q
[

R2 − 4& + 2σ (R + 2σ )
]
− 2(2bo Q H + Mδ)

L2 +M2 , %H
E = Q H

(R + 2σ )L− 2(bo/Q H )M
L2 +M2 ,

L= M R + 2& + (R + 2M)σ , M= δ + q(R + 2σ ), (34)

and the area of the horizon S as well as the surface gravity κ may be obtained via the formulas [20,22]

S = 4πσ

κ
, κ =

√
−32e−2γ H

, (35)

where γ H defines the value that metric function γ takes at the horizon. A straightforward calculation yields us to

S
4π

= σ

κ
= L2 +M2

R(R + 2σ )
. (36)

On the other hand, when analyzing the energy-momentum tensor, the line source of pressure and a negative energy density numerically 
equal to it defines a massless strut [4]. Therefore, in order to interpret the pressure exerted on each source, it is necessary to compute the 
interaction force associated to the strut, which can be obtained in a simple manner with the formula F = (e−γs − 1)/4 [4,23], where γs

denotes the constant value that metric function γ acquires on the middle region among the sources, thus getting

F =
[
(M2 − Q 2

H )P 2
0 − 4q2 Q 4

H

]
(P0 − 8q2) − 16q2 Q 2

H

[
so P0 − Q 4

H

]

(R2 − 4&)P 3
0

. (37)

Contrary to the vacuum scenario [7], Eq. (33) cannot be solved analytically because it is leading us to a quintic algebraic equation in the 
variable q. So, whenever the numerical analysis should be performed, it is necessary to bear in mind, the physical limits of the solution. In 
this sense, the minimal distance at which the BH horizons are touching each other (the merger limit) is given by Rmin = 2

√
M2 − Q 2

H − q2, 

while the force F → ∞. After taking into account this distance value, we notice from Eqs. (32) and (33) that σ =
√

M2 − Q 2
H − ( J/2M)2

and q = J/2M , respectively, having the following result

Rmin = 2

√

M2 − Q 2
H −

(
J

2M

)2

≡ 2σ , (38)

which is leading us to very simple expressions for 3, %H
E , κ , and S:

3 = J/M
4d0

, %H
E = Q H (M + σ )

d0
,

S
4π

= σ

κ
= 2d0,

d0 = (M + σ )2 + ( J/2M)2, (39)

where we have employed the fact that the parameters bo and δ are equal to zero during the merger limit. Another physical limit to be 
considered is when R → ∞, representing the physical case in which the sources move far away from each other and the interaction force 
F → 0. It is quite easy to show from Eqs. (31)-(33) that q = J/M and bo = −Q H J/M , and thereby one gets the thermodynamical features 
for a single Kerr-Newman BH, namely
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3 = J/M
d1

, %H
E = Q H (M + σ )

d1
,

S
4π

= σ

κ
= d1,

d1 = (M + σ )2 + ( J/M)2, σ =
√

M2 − Q 2
H − ( J/M)2, (40)

where one confirms that the size of the BH horizon 2σ during the merger limit is bigger in comparison to the isolated case, but its ther-
modynamical properties decrease their corresponding values. This statement is in agreement with the Smarr formula. At large distances 
the interaction force acquires the approximate value

F ≃ M2 − Q 2
H

R2

[

1 + 4
[
M2 − Q 2

H − 3( J/M)2]

R2 + 8( J/M)2[10M4 − 15M2 Q 2
H + 3Q 4

H

]

M(M2 − Q 2
H )R3

+ O
(

1
R4

)]

. (41)

3.2. Oppositely charged Kerr-Newman BHs

The second electrically charged model comes to light immediately when the total electric charge is eliminated from the binary system 
by doing now Q = 0. Then, the magnetic charges can be removed from the solution only if bo = 0 and

δ = 2q(R2 − 4M2 + 4q2)
[
M P0 − Q 2

H (R + 2M)
]

(R2 + 2M R + 4q2)P0 − 8q2 Q 2
H

, qo = Q H R(R2 − 4M2 + 4q2)P0

2
[
(R2 + 2M R + 4q2)P0 − 8q2 Q 2

H

] , (42)

where Eqs. (26) and (30) are identically fulfilled with these expressions. Notice that once again MH = M and M S
A = 0, where now the 

electric and magnetic dipole moments are Qo = 2qo and Bo = 0. In the oppositely charged case σ takes the form

σ =

√√√√√M2 − q2 +
(R2 − 4M2 + 4q2)

[[
2q

(
M P0 − Q 2

H (R + 2M)
)]2 − (Q H R P0)2

]

[
(R2 + 2M R + 4q2)P0 − 8q2 Q 2

H

]2 , (43)

and the angular momentum is expressed by means of another quintic algebraic equation

J = 2Mq − q(R2 − 4M2 + 4q2)
[
M P0 − Q 2

H (R + 2M)
]

(R2 + 2M R + 4q2)P0 − 8q2 Q 2
H

. (44)

It follows that we have obtained a corotating black dihole model which in the lack of rotation (q = 0) specifies a non-extreme Emparan’s 
dihole [25]. With regard to the thermodynamical characteristics we have now that 3, %H

E , κ , and S are simplified as

3 = q
[

R2 − 4M2 + 4q2 + 2σ (R + 2σ )
]
− 2Mδ

N2 +M2 , %H
E = Q H

2(qo/Q H )N
N2 +M2 ,

S
4π

= σ

κ
= N

2 +M2

R(R + 2σ )
,

N = M R + 2M2 − 2q2 + (R + 2M)σ , (45)

while the formula of the force reads

F =
(
M2 P 2

0 − 4q2 Q 4
H

)
(P0 − 8q2) + Q 2

H P0

[
R2 P0 − 4q2(R2 − 4M2 + 4q2)

]

(R2 − 4M2 + 4q2)P 3
0

. (46)

Similar to the situation with identical electric charges, it follows that the merger limit now results to be

Rmin = 2

√

M2 −
(

J
2M

)2

≡ 2σ , (47)

where q = J/2M . In this limit value of the distance the properties on the horizon are written down as follows

3 = J/M
4d0

, %H
E = 0,

S
4π

= σ

κ
= 2d0, (48)

from which it is shown that the electric potential vanishes, and therefore, the event horizon 2σ contains the same length as in the 
vacuum case [6,7]. Furthermore, in the other limit R → ∞, we have that q = J/M and the electric dipole behaves as Qo ∼ Q H R , where 
it is possible to recover the description of one isolated Kerr-Newman BH when deriving exactly the same formulas described above in 
Eq. (40). Finally, the force at infinite separation distance contains the next behavior

F ≃ M2 + Q 2
H

R2

[

1 − 4M Q 2
H

M2 + Q 2
H

(
1
R

− 3M
R2

)

+ 4
[
M2 − 3( J/M)2]

R2 +
8
[
( J/M)2(10M4 + 19M2 Q 2

H + 3Q 4
H

)
− 6M4 Q 2

H

]

M(M2 + Q 2
H )R3

+ O
(

1
R4

)]

. (49)

The physical values for the variable q earlier discussed for the non-extreme case are shown in Fig. 2.
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Fig. 2. Behavior of the parameter q in the non-extreme situation, taking the values M = 1, J H = 1.6, and Q H = 0.5. The identically/oppositely charged case is denoted with 
the same/contrary signs inside the brackets. Also, the vacuum scenario is indicated by Q H = 0.0.

3.3. The extreme case of BHs

The extreme limit of Eq. (23) can be achieved once is established σ = 0, where such a metric may be expressed in a quite simple form 
by using the Perjes factor structure [26], thus having

E= - − .

- + .
, % = χ

- + .
, %2 = (4q + iαxy)χ − iI

- + .
, f = DN , ω = α(x − 1)(y2 − 1)W

D , e2γ = D
α8(x2 − y2)4 ,

- = α2
[

p(x2 − y2)2 + &(x4 − 1)
]
+ (qr − &p)(y4 − 1) + 2iαxy

[
(r + qα2)(y2 − 1) − α2q(x2 + y2 − 2)

]
,

. = 2MP1 − ϵP2, χ = 2(Q P1 + qoP2),

I= −α2
{

2qo

[
M(1 − y2) + 4iqy

]
+ Q

[
2αMox + ϵ̄(1 + y2) + 2

[
α(2Mx + α) − 2bo y − 2p

]
y
]}

(x2 − 1)

−
{
qo

[
(2Mp − iqϵ̄)(1 + y2) − 2αx

[
4(αMx + &) − ϵ̄ y

]
+ 4i(α2q − r)y

]

+ Q
[
(pϵ̄ − 2iMr)(1 + y2) − 2αx

[
αϵx − M̄o p + i(2r − α2q)

]
− 2

[
(α2 + 2&)p + iMor

]
y
]}

(1 − y2) + 2(qo + Q M̄o)P1,

P1 = α3x(x2 − 1) + (αpx − iry)(1 − y2), P2 = α2 y(x2 − 1) + (py − iqαx)(1 − y2),

N =D+ 45 − (1 − y2)(x − 1)6T, D= 42 + (x2 − 1)(y2 − 1)62, W= (x + 1)65 − 4T,

4 = α2
[

p(x2 − y2)2 + &(x2 − 1)2
]
+ (qr − &p)(y2 − 1)2, 6 = 2α

(
α2qx2 − ry2

)
,

5 = 2αx
[

2α2M(x2 − y2) + 2α(2M2 − Q 2)x + (2M& + qδ)(1 + y2)
]
− 2y

{
bo

[
α2(x2 − y2) + 2αMx

+ &(1 + y2) − bo y
]
− (δ2 − 2|qo|2)y

}
, T = 2

[
α

[
ao + δ(αx + M) + qbo y

]
(1 + x) + (2Mr + pδ)(1 − y2)

]
,

r = ao − q(p − &), p = α2 − &, ϵ = bo + iδ, ao = Mδ + 2bo Q , bo = −2qo(Q /M), Mo = M + iq, (50)

where (x, y) are prolate spheroidal coordinate denoted as

x = r+ + r−
2α

, y = r+ − r−
2α

, r± =
√

ρ2 + (z ± α)2. (51)

Therefore, this metric allows to treat identically charged extreme Kerr-Newman BHs once is established first qo = 0, and Q = Q H on 
it. The explicit values of the angular momentum will depend on the parameter q after solving Eq. (32) for the condition σ = 0. Typical 
shapes are shown in Figs. 3 and 4.

Let us now consider the extreme case of BHs during the merger limit, with the goal to derive non-trivial expressions for the force and 
area of the horizon at this particular distance value. We notice from Eq. (38) that the minimal distance is given by Rmin = 0 from which 
it is possible to get

J = 2M
√

M2 − Q 2
H , (52)

where q =
√

M2 − Q 2
H . For such a situation, the merger process will start to form a single extreme Kerr-Newman BH of total mass 

MT = 2M , total electric charge Q T = 2Q H , and total angular momentum J T = 2 J , fulfilling a well-known relation, namely

J T = MT

√
M2

T − Q 2
T . (53)
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Fig. 3. The parameter q in the extreme case for fixed mass M = 1 and electric charge Q H = 0.1.

Fig. 4. The angular momentum in the extreme case for M = 1 and electric charge Q H = 0.4.

So, in order to compute the final values that the force and horizon area acquire in the physical scenario where both extreme BHs 
touch to each other (but they do not merge yet!), we are going to establish initially σ = 0 in Eq. (32), and later on, we will apply Taylor’s 
expansion around R = 0 by using q =

√
M2 − Q 2

H + C0 R , with the aim to calculate a first order contribution in the whole set of physical 
and thermodynamical properties. With this procedure, the result turns out to be

C0 = −4 + 3x2 + δ1

4(4 − x2)
√

1 − x2
, x := |Q H |

M
< 1,

δ1 = ε
√

(2 − x2)(16 − 16x2 + x4), ε = ±1, (54)

whereas the force and area of the horizon are given explicitly by

F = 16 − 24x2 + 3x4 + 3x6 + 2(4 − 3x2)δ1

16(2 − x2)3 , S = 4π M2(2 − x2)

[
1 +

(
4 − 3x2 − δ1

(4 − x2)
√

1 − x2

)2]
. (55)

The angular velocity and electric potential are obtained from Eq. (39) by doing simply σ = 0 and these properties do not require to 
much special attention from us. It should be pointed out that there exist two states during the merger limit depending on the sign of ε. 
In the first/second case; i.e., when ε = +1/ − 1, the force is positive/negative and therefore attractive/repulsive, where the area of the 
horizon is smaller in the attractive case compared to the repulsive case. In addition, in the absence of electric charge Q H = 0 one gets the 
following formulas

F = 1 + 2ε
√

2
8

, S = 16π(2 − ε
√

2)M2, (56)

where it can be seen that only the attractive case has been considered earlier in [9].1

1 By applying the same limiting procedure in the unequal vacuum case [5,24], one might be able to obtain the non-identical version of Eq. (56), namely

F = M1 M2 + ε
√

2M1 M2(M1 + M2)

2(M1 + M2)2 , Si = 8π Mi(M1 + M2)2
(

M1 + M2 − ε
√

2M1 M2

M2
1 + M2

2

)
, i = 1,2, (57)

where M1 = M2 = M , recovers it.
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When is now placed Q = 0 and bo = 0 in Eq. (50) one may treat oppositely charged extreme Kerr-Newman BHs. In the same manner 
as in the identically charged situation, the angular momentum adopts the values from the parameter q that fulfill the condition σ = 0
[see Figs. 3 and 4]. Moreover, in the merger limit of extreme oppositely charged BHs, the same limiting procedure described before might 
be also included here. In this respect, we have from Eq. (47) that Rmin = 0 is valid only if the angular momentum and mass are related 
by means of J = 2M2, while now q = M . After carrying out once again Taylor’s expansion around R = 0, eventually the interaction force 
and area of the horizon are expressed as

F = 16 + 8x2 + 3x4 + 2
√

2ε(4 + x2)
√

16 + x4

128
, S = 8π M2

[
1 +

(
4 + x2 − ε

√
2
√

16 + x4

4 − x2

)2]
, (58)

where according to the sign taken by ε there exist two states that also behave exactly in the same manner as in the identically charged 
case. These expressions are reduced to the aforementioned Eq. (56) if the electric charges are not present.

4. Conclusion

In this paper, we have worked out a physical metric that permits us the study of identical corotating Kerr-Newman binary BH models 
in which the sources contain equal (or opposite) electric charges. These clearly extend the earlier results provided in Refs. [6,7]. In order 
to derive these 4-parametric physical models, the axis condition in between sources has been combined with the one eliminating the 
magnetic charges; therefore, the sources are two Kerr-Newman BHs supported by a conical singularity. Our suitable parametrization 
allowed us to get concise formulas for the physical and thermodynamical features of the BHs, after getting first the half-length parameter 
σ which represents the BH horizon in cylindrical coordinates. On one hand, in both models the horizon mass MH = M due to the fact 
that magnetic charges are not involved. On the other hand, it is quite clear that MH ≠ M if there exists a Dirac string joined to the BHs 
[21,27]. The contribution of the string mass M S

A clearly deserves further research. We believe that the whole thermodynamical components 
that are being part of the Smarr formula in each corotating charged model are useful to complement the recent results of [28], where 
the notion of thermodynamic length [29,30] has been considered to study the first law of thermodynamics in binary systems of equal 
counterrotating Kerr-Newman BHs.

In the extreme limit of BHs we have introduced a binary metric with a quite simple aspect. Remarkably, our physical treatment led 
us to derive in both models two final states during the merger limit, in which the force is attractive/repulsive while the horizon area is 
smaller in the attractive case in contrast to the repulsive scenario. It is presumable that such an extreme metric will be helpful to extend 
the previous results included in Ref. [9] on a near extreme binary BH geometry, with a more physical aspect. To conclude, we would like 
to mention that the most satisfactory exact solution as describing unequal configurations is extremely complicated, but we do not exclude 
that after some efforts this problem might be solved by following the approach considered within this work.
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