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ARTICLE INFO ABSTRACT

This article provides for the first time a general analytical solution to the Lane-Emden equation of the first kind.
So far only three known analytical solutions are found in the literature, for the following values of n: 0, 1 and 5.
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Eoim L;iary canditions A common feature these three solutions share is their boundary conditions: 8(£)[:_, = 1 and %?-lg:(] =0.Ifa
olytropic gas

PP 2ack . >
Ultra-relativistic gas third boundary condition ddafz’)lgzg, = — 11is used, only the solution for n = 1 is able to meet all three. In order to
Adiabatic star =
Exoplanets address this difference, our solution aims to be more inclusive and takes into account 6(£) = ; and the constant

solution. By keeping 7 in parametric form, we found out that 8(£(7)) = — 1 when ¢ — 0. Thus proving that

1
()
i — 1 in the origin. It is worth noting that upon integrating the Lane-Emden equation, we came across five
;)arameters. Three of them depend on the three boundary conditions used and two can be adjusted numerically.

In order to demonstrate the validity of our solution, we tested it on six cases of interest to the scientific
community related to studies on real stars and exoplanets. The adiabatic exponents are n = 1.5,n = 2, n = 2.592,
n = 3,n = 3.23 and n ~ 5 contained in the intervals 1 < n < 5and 5 £n < 9. It is worth noting that four of these
cases are of particular importance; n = 1.5, which corresponds to an adiabatic star supported by the pressure of
non-relativistic gas; n = 3, which corresponds to an adiabatic star supported by the pressure of an ultra-re-
lativistic gas. Finally, n = 2.592 and n = 3.23, which correspond to exoplanets. The obtained solution of the

Lane-Emden equation of the first kind proves valid for any value of n.

1. Introduction

As far as the mathematical aspect behind this work goes, the ap-
plicability of the Lane-Emden equation of the first kind simply cannot
be overstated. Problems that cannot be solved exactly, such as those
defined on infinite or semi-infinite intervals, are traditionally addressed
using semi-analytical or numerical approximation methods (e.g. the
Adomian decomposition method or the Homotopy perturbation
method, see (Parand et al.,, 2017). Every field, ranging from astro-
physics and fluid dynamics to quantum mechanics, has problems like
these.

The physical aspect of the first-kind Lane-Emden equation involves
the analysis of different phenomena of equilibrium for non rotating
fluids of self-gravitating stars. Although limited in precision, existing
models are accurate enough to model stellar structures. A minor in-
fluence over stars is required to reduce the effects that break up the
rotational symmetry, such as convections, magnetic fields B, and other
existing physical phenomena. It is implied non stationary states occur in
gasses (for example star’s pulsation) when there is a great influence
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from rotational effect and / or a strong magnetic field B.

The very same effects that influence the system’s spherical sym-
metry are the very same conditions used to model the non-linear and
differential Lane-Emden equation of the first kind of index n. Gasses
become stable in the g <y< % interval, which is exactly where the
hydrostatic model is applied.

Concrete examples involve, for example, exoplanet systems, or the
individual exoplanets among the thousands discovered in the last
twenty years or so. For the former, see HD10180, Kepler — 32,
Kepler — 33, Kepler102, and Kepler — 186, see Geroyannis (2015). For
the latter, those seven Earth-sized planets transiting the ultracool dwarf
star TRAPPIST-1, see (Lingam and Loeb, 2018) and Geroyannis (2017).
Other scenarios apply for stellar structures and polytropic gasses as
well. For instance, studies involving the evolution of compact binary
stellar systems with mass-losing secondary masses that range between
~ 0.0lM; and ~ 1M, (M, representing solar mass), see
Rappaport et al. (1983). Another example includes (Jang, 2013), who
studied the nonlinear instability modeled by the Euler-Poisson system,
which applies to polytropic gasses. The solution herein described
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complements the findings that have made use of numerical aproxima-

tion methods.
i zds@))
The equation itself is usually expressed as giz e —on(&),
where 0(&) represents the polytropic star’s temperature and ¢ its di-
mensionless radius. Previous solutions for this equation exist. They are

limited to the boundary conditions 8(¢ = 0) = 1, representing the sys-

tem’s central density, and %?)]5:0 = 0, which proves there is no mass
inside a radius that equals zero. We can go even further and define a
B(E)lt—g = —1. The rational behind
it is that since 6(¢) monotonically decreases as £ increases —and even-
tually vanishes at point &, (i.e. €(§,) = 0) — & is the first root of 6, see
Geroyannis (1993). What this means is that the second derivative re-
presents the system’s mass change rate. When positive, the system’s
mass increases or decreases quicker; when negative, it increases or
decreases slower.

By adjusting two parameters, ¢ and k, numerically, and taking into
account all three boundary conditions, we obtain an analytical solution
that applies to any value of n; not to mention that the parameters
themselves depend on n as well. Our solution is validated by testing it
on four cases of particular importance: n =15 and 3 (see
Rappaport et al. (1983)), for stars, and n = 2.592 and 3.23, for exo-
planets. n = 1.5 corresponds to an adiabatic star supported by the
pressure of a non-relativistic gas (fully convective star, asa M, L, or T
dwarf for n = 0 to 1.5). n = 3 corresponds to an adiabatic star sup-
ported by the pressure of an ultra-relativistic gas (fully radiative star).
n = 2.592 corresponds to an exoplanet, see Geroyannis (2015), detected
via a variety of techniques, see Kane and Gelino (2014).

This paper is organized as follows. In section 2, we present the exact
solutions for the Lane-Emden equation of the first kind. In section 3, the
solutions validation of the Lane-Emden equation. Finally, in section 4
we present the conclusions.

third boundary condition given by

2. Theoretical analysis; first-kind analytical solution

As stated by Bohmer and Harko (2009), the Lane-Emden equation of
the first kind is as follows:

d8®) | 2d6E) | ue
dgz T E dE e )

where 0(¢) is related to the density by means of the definition
p=p8%%), and n is called the polytropic index, subject to the

boundary conditions 9(§)|§:0 =1, ﬂ—)lg_n =0 and d e(g)

‘g_g, —1.In
order to further prove the validity of our analytical solutlon the fol-

lowing boundary conditions were also used: 6(£)]z—q = 1, d{f) le=o = 0
and 8(¢ )e=g, = 0 where &, is the first root of 8(¢).

Currently, three exact solutions to Eq. (1) exist, forn = 0, 1 and 5, as
3 y
shown next (respectively): 8(§) = 1 — %, () = %@ and8(¢) = 7‘17

\fl + —;
(see Bender et al. (1989)). Only 8(£) = & satisfies all three initial
conditions. OQur solution applies for any Value of n.

In order to extend our solution from the initial values of n to just
about any value, we proceed as follows. Substituing £ =exp(t) as well
as 6(t) = w(t)exp(at) in Eq. (1), with a = l— (which is only valid for
n = 3, as shown below, see Eqs. (8) and (9)) leads to Eq. (1) becoming:

d2w(t) n—5dw() 26 -n) PR
i TRl & o Ewi=o )

for n = 1, see Béhmer and Harko (2009).

2.1. Proof of equation (2)

Substituting & = exp(f) into Eq. (1), we obtain:
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de(t)  dé(n)

P T ®
by stating that 8(t) = w(t)exp(at), Eq. (3) is transformed to:
dz:;;gt) + (2a + l)dw(r) + (a? + )w () + w(Dexp((ha —a +2)) =0

4
From Egq. (3), one can obtain na — a + 2 = 0; therefore, o = ﬁ
Eq. (4) is then transformed to:
d2w(t) n—5dw(t) 203 —n)
t () =0
B T rel @& T epprotwd )

by considering &(t) = w(t)exp(Fat) and &= exp(t), the solution of
Eq. (3) for the interval 0 < n < 1 so long as 6(t) = w(t)exp(—at) is:

B(E(D) = Ep(E(D) + iy (E(x) = B(r) = a + m T detidi () -

The following cases must meet 8(r) = w(r)exp(ar) then is obtained

BE@) =@ + @) =0 =a+ ﬁ +det i (7) o

and are valid for interval 1 < n < 5:

eE@ =@M +enE@) =06 =a+ ﬁ +deEas (1) ®)

and for interval 5 <n < 9:

0((D)) = 0y (@) + BnE@) = 8(1) = a + —— + deki s (2)

b
&(n) (9)

2.2. Proof of the transformation
Using the chain rule in order to obtain the second derivative of
6(£(1)), the following is stated:

d*(¢) _Tigner . 70 do(E(@)) _ e
dE%(r) Iz £ @y o (10)

results of Eq. (32),

and

and  using  the given by

E@= d"r(,r) Ll = y(£(0)), then &_(7) = y.(£(1)). A specific
i F+aR@+3)
case, when o = %, should satisfy Eq. (1)and it is obtained from

Eq. (7), more especifically by 8(£(z)) = df* (d is an arbitrary con-
stant); then, by deriving with respect to 7, the following expression is
obtained:

0 (1) = &% + af* 4L, and 0, (5(1)) = 208" %, + a(a — 1)E5%4E?
+ afe (11)

by substituing Eq. (11) into Eq. (10), the following expression is ob-
tained:

6z (@) = [ - Za— +afax — 1)& Zr]é'“ and g@e(E(r))

12 2ca']§,‘r

&g &
124
and by substituing in ds(f) ”6(5)
df § df

() =y((r) and & (1) = y.(£(1)), and by substituing them into of
Eq. (12), the following is obtained:

1
[7 + 25:5
¥ ¥

12)

+ 6"(£) = 0, and now by using

-1
+ala — 1DE2r + 22— + 2af2r [£5 = —6n(¢)
y

a3

let y = %, and by substituting it into Eq. (13), the next expression is
obtained:

[ww, + 2(a + 1)~ w]E* = —a(a + 1)E2+ar — 0n(§) (14)
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for 6"(£) = (z£%)", and by equating to expression (14), the following is
obtained:
[ww, + 2(a + 1)EW]EF = —a(a + 1)E2+3r — gnEen (15)

and the next expression is obtained:
ww, + 2(a + DEw = —ala + 1)E2 — (m)tg—2 (16)

by applying the transformation &w = v to Eq. (16), the following is
obtained:

w, + 2o + v =—a(a + )7 — " 17)

where Eq. (17) is an Abel-family differential equation, see
Panayotounkos (2005) and Polyanin and Zaitsev (1999).
By substituting v = i{ in Eq. (17):

dr
de dg dr .
T dr +(2a+1)a_—a(ct+1)f—r 18)
then Eq. (18) is changed to:
d*r
F+(2a+1)~+cr(a+ D= = 19)

and ¢ = log(£), applied to Eq. (19), produces:

§ﬁ+(2a+z)§—+a(a+1)f—

dg? dé (20)
now, let the transformation be t=8(£){~* and substituting into
Eq. (20):

. d2eE) | 2d0@) |,
it is reduced to a + E & +onE =0 @1)

which is the spherical Lane-Emden equation of the first kind.
3. Solutions validation

The analytical solution of the Lane-Emden equation of the first kind
is found in the parametric form. That is, the solution of Eq. (1) is pro-
vided by 8(&(7)) = 6(r), where 7 is a dummy variable. Thus the ana-
Iytical solution, Egs. (8) and (9), are determined by the parameters a, b
and d, which are arbitrary constants (see Tables 1, 2). We turn our
attention to determining the influence of the three model parameters on
the solution profiles, which depends of the value of n and the boundary
conditions given by Egs. (22) and (23):

_, (5) PE,
8O0 =1, — |0 = 0 and az le=o = -1 )
and/or

dé
8()e=0 = 1, ©) —22 o = 0 and 8(E)|z_g, = 0,

dt (23)
where & is the first root of 6(&€).

3.1. Caseiforl <n<25

Let w(t) = 5 in Eq. (2), and 8(t) = w(t)exp(at) =g exp(%) and

considering “ d”(”) = v, then Eq. (2) changes to:

@_5—71@_@_5—}1 Rl P

d® n—1dt dt n-1' "(m—12' ! (24)
dr1 _ d_wdn dry

now, using the chain rule in —
Eq. (24) (see Eq. (17)):

dv, n—I[
Lt n—1 =
A=)y

B

s aen = B and substiting it into

g B—3 T—l’f]=v1ﬂ—‘|}|

5—-n (}1—1)Zl

n-3 [n—l]”“n
=2—7q5—-|— T
(5 —n)? 5—n (25)
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where (:—:;)r, = 1, which happens to be incomplete. It ought to be:

dv, — n—23 _[n—l]”“r:'f
A —rt)ZZ 5—n

v— —
de (5

n (26)
This happens to be an Abel equation. i was obtained by adjusting the
analytical solution ©(£) =
reported in the literature. T”l;é lsolur_ion of Eq. (26) is:

flgff‘x, Eq. (1), with numerical solutions

dg 1 1
=—=—(g+)R(R) + =
1= = e ORE@ D) 27)
(Panayotounkos, 2005).
Now, considering f; = In(§)), Eq. (27) changes to:
n—1, dg dn 1,n-—
= o+ ¢)(R(n) +
- din(Z)  dIn(Z) ol @+ ORE) ) (28)
then, by solving Eq. (28), it is obtained:
n—1
2dn " n—
exp f (—21 = &5
@+ JR@) +3) (29)
where:
2d1
f=exp f (— : T
(% + )R() + 3) (30)
Eq. (30) represents a straight line, as plotted below in Fig. 1.
3.1.1. Proof that equation (30) is a straight line
The equality
6E@) =& (31)
2,
represents a straight line, where Eq. (31) must satisfy % =0 (as-
suming 7 = 7). By substituing Eq. (30) into Equatio E; )
_ @) _ 2% (7) _dr _ (T+ )R+ 3)
@ == (T+ORD +3) Or == 2%() .
. o R 2%(x) % (D)Re(7)
i dr? (t+ c)(R(r)-f—%) (T-t—c)z(R(r)-e-%) (r+c)(R(r)+%)Z
B rg(R(rJ+§l)+(r+c)R§—(r) (r+c)(R(r)+%)
®= %0 T #m (32)
and
8 (E (D)) = ds(r(f) _ dﬂ("i(r))df = 8,(¢())% then
d6(£(0)) d*r do(£(1)) d dze( (1))
__dgzir _ 5 ir T)z 5T = TEEQT@(T)) + 1 qoﬂ(g(r)) (33)

o(t) 25

20+

Fig. 1. Asymptotic Linear behavior of Lane-Emden equation of the first kind.
Forn = 1.5, 2, 2.592 and 3. in Eq. (30), for &(z), which must represent a straight
line.
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By substituing in Ldz(;) the results of Egs. (32) and (33) and
8(£(r)) = £(1), we obtain:

PoEw) _ | 3RO+ DHEFORE EHARE+S) i
dc? %0 T RO
ik 2£r() 2%(7) E@OR@ | _
3 e 3 1 1o |1—
(T+c)R(T)+ 3) (t+c) (R(r)+;) (T+c)(R(T)+ E)
FRO+Y  @roR)  CHIRO+D |
N 0] %@ 20 w
+72 AC 2%(D) _ EOR@ |_
EHORD+T)  T+PRO+D E+OREO+ P
_ROFD  pior | CHOR@ED
2% () 2D 22 (r)re
2%} 2w 2R}

(r+ )R + %) e+ PR + é) (r+ )R + %)2 -

1
_ R@D+3) Rr(r) 1 1

2%(0) (R(r)+%) Tt * o

1
RO+ qror@m _ R

(+OR ()
%D %) but

®@+hH T EO

(T+c)(R(T)+%)
2(1)

Re(1) = 7R (7) R.(T)

1
Pot) _ KO aropm | THIROTD Lo
- - T

then
& R@+3) %@ R+ )A()

_+oR@ _ g
Z(0) (34)

3.2. Numerical simulation

Expression (30) is denoted by:

RE@) = 2,/-F cos()

(G+F)

- _7 = L
where, p = s+ 4(r+2c;‘ ap = cos™H( . 7( ) and
_ 2() 4((1—21:) — (Py3 2
T T3+ for 0=(; ) + ) <0, (<0 (35)

where the constants k and ¢ depend on the specific problem’s condi-
tions. For example, Eq. (30) must be a straight line only valid for some
specific values of c.

The function Q must satisfy the condition Q < 0, which may be
written as Q = k. Now we can find function G, where k < 0. Therefore,
the function G, once found, is provided as:

=V + % + Q- /3G, - 61/4)/f;] where
Q=P +($7>0and

2
p=a— 2, g =2%P - 2 +a,

[fg*%fuz*f}*v’%(MJrg)] e [3f0*7f0+5f2+64]

a, = - '
0 I 1 7
61
[3%-%] 4F 4
G=—7" f0=3+(1+2r)’ h= (T +20)’ k=3 =hF
27
fy=2f —64f, — 27k, k<0  and
Z(" 32)1n(2€+r) G0 fingze + )t
P e for1<n<5

n

2 =10 1(2e 4 7) - e
Fo | o=

)("+')|]n(2L+r)|"

for 5Ssn<9

n

F= [Aln(?c+r)—B|ln(2r+r)]”

= ] for other cases

(36)
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Eq. (36) must also be completed according to the condition Q; > 0,
where the arbitrary constant ¢ corresponds to the solution of the Abel’s
differential Eq. (15). It so happens that function F corresponds to the
non-homogeneous part of Eq. (15).

The applicability of Eq. (30) is a fundamental part of the solution to
Equation(7), which happens to be obtained from Eq. (15).

3.2.1. Proof of equation (29)
From Eq. (8), and only considering solution €(§) = £ a2s and sub-
stituing it in (1), we obtain:

d’r (&) n—3.dr(€) n—23 4(n-3)
4 + 2 r = -7 "( ) n—5s
S n—5 dt o S (37)
now, let £ = exp(t), then it is obtained:
d(t) n-1dc(t) 3)
t) = -1t
az “m—5 & (1—n) 0= T()e’q’( =57 e
and let t = 1y exp(f3,), substituing in Eq. (38), it is obtained:
?'( n— 1%
G+ [ ] (B e 2 [s 0=
= — ' (Dexp(Bn — B, + ”%:]) (39)
then, 8,n — 3, + 4(:: D=0= B= # Eq. (39) changes to:
d’i(t) | n—5dn(t) n (1)
2 t t -
az Tw-1 dt ( s)lﬁ( Y= =2y (40)

which is Eq. (24) and its solution is Eq (26). Therefore T = i and
£ = £5 n and consequently () = T§l‘ = Tgnis.

3.3. Casellfor5sn <9

The solution 8(£) = t(£)& 124 is substituted into (1) to obtain:

§Zd:r;f) - Zf:zgd;(f) + 2(::1)2r(§') = £ (&), and substituing
£ = exp(t), it is obtained —'ff;g” f:—:g%
2(::1”)21'&) = —exp(20)7t(£)", now substituing in last equation
7(t) = p(t)exp(at), then it is obtained that o = %ﬂ and
d’5(t) | 9 —n,dn(l) - 7 (1)
+20 £) = —o(1)"
a? 1-n° df ( 1)27"( )= —H@ == (41)

By following the same procedure used to obtain from
Eqs. (25)-(29), which is how we obtained 8(¢) = TgniD (assuming

T = 79), and substituting it in (1), we obtain:

d*c (&) 8 dT(vf) 4 4
& dt? +[ —9+2]§ dt rz—9(n—9_1)r(§)

_§2+ g(n=lzn (42)

now, let £ = exp(r) and 7 = 7; exp(3,t), we obtain:

dry(t) n—1 dm(t)
=3k [2.@;: + m] [52

ras |mo=

= — 7 (t)exp(Bn — B, + 6':[%292) (43)
when §, = —%, it is obtained:
d?, (1) {n -5 dm(t) n 7, (1)
0=—() » -2
e ] i ] OB IO

(44)
which happens to be identical to Eq. (24).

3.3.1. Solution behavior for €(& (7)) and o€ @)
In order to obtain coefficients a, b and d, given by Egs. (8) and (9),
we applied the initial conditions given by Eq. (22). Such coefficients are
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obtained through Eqgs. (45) and (46), as shown numerically in tables 1
and 2.

-1
d = 1 1
((Fle=g, = (Fle=0)Tele=o + &Pl
b = dry and a=1—b where g = 5 for the interval 1
<n<5
and B = for the interval 5 <n <9

(45)
and the parameters a, b, d of the solutions are subject to the boundary
conditions given by Eq. (23), then it is obtained ;

-1
(tgle=o + 232T¢le=0)
b = dtz and a=1—b for the interval 1 <n <5

d =

g -1

(Tgele=o + Zﬁ‘fﬂgzo)
b = driz and a=1—-b for the interval 5<n <9 (46)
where 7 = % and 7z = :—; are defined in Egs. (32) and (35). Note that

the analytical solutions agree well with both boundary conditions, see
Figs. 2 to 7 and tables 1 and 2.

n ¢ k d b a
1.5 1.15 —0.65 —0484 —1.144 2.144
2 1.2 —0.7 —0.5746 — 1.4349 24349
2592 14 —075 —09315 —2.7436 3.7436
3 1.61 —-09 4.564 15.3187 — 14.3187
3.23 0.865 —0.86 1.6404 3.1412 —2.1412 47)

Table 1.-The valued parameters for 1 < n < 5,

. and
n c k d b a
5 0.876 —.006115 14611 1.6505 — 0.6505 (48)

Table 2.- The valued parameters for 5 <n < 9

We next prepared five cases for analysis with regards to the influ-
ence of n on solutions of Eq. (1); for real stars, we have n = 1.5, n = 2,
n = 3, and for exoplanet systems n = 2.592 and n = 3.23, for the interval
1<n<5.

Figures 2 to 6 show the proposed solution 8(£(17)) given in Eq. (8),
the exact polytrope function. It is proven that boundary conditions
(b.c.) of Egs. (22) and (23) are satisfied for n = 1.5, 2, 2.592,3 and 3.23.
Also, the behavior of w is shown.

Fig. 7 shows that for n =~ 5, (for interval 5 < n < 9), the proposed

solution satisfies Eq. (9), with the boundary conditions given by (22)
and (23), for % and 6(£(0)).

OE(eN1
0.9

0.8

0.7
0.6
0.5
0.4
0.3
0.2

0.1

d 0EE)) o

dET) 0 0.5 1 1.5 2 25 3 35 4 4.5
&)

Fig. 2. For n = 1.5.
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B(E(x) T T T T bo Eazz
0.9 b.c. Eq.23

b.c. Eq.22

0.8 b.c. Eq.23

0.7
0.6
0.5
04
0.3}
0.2
0.1

dors
d é(TJ‘ )O 5

=

)
Fig. 3. For n = 2.

05
0.4
0.3
0.2
01

dBE(T)
d5r) 0

Fig. 4. For n = 2.592.

b.c. Eq.22
b.c. Eq.23
b.c. Eq.22
b.c. Eq.23

0.8} B

0.6

0.4

0.zt

dO(E(x)Of
dE(r)

02 1 | | 1 | L
0

§)
Fig. 5. Forn = 3.

The values used in Eq. (45) of &,, which is the first root of 8(¢) are:
forn =3, = 6.8965; forn = 1.5, &, = 3.65375; forn = 2, £, = 4.35 (see
edd (1926)); for n = 2.592, §, = 5.58; for n = 3.23, {, = 7.91, where
8(&)lg, = 0. Figures 2 through 6 show that the sphere’s radius is finite
and borders its surface. Fig. 7, on the other hand, shows the behavior of
o )lg,~ . where the sphere’s radius extends infinitely for &, — <.

Figures 2 to 6 apply particularly for n = 3.23, 3, 2.592, 2 and 1.5, as
used in Eq. (8) and the approximation of ¢ and k given by Table 1. And,
considering the case n =~ 5 as used Eq. (9), and the approximation of
selected values of the parameters ¢ and k as shown at Table 2.

We show the influence of n on the solutions given by Eq. (1). We
have studied many of the mathematical properties of the boundary
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b.c. Eq.22
b.c. Eq.23

0.8

0.6

0.4

0.2

d 0(E(t))g
dg()
02 . . . . L L .
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Fig. 6. For n = 3.23.
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Fig. 7. For n ~ 5, also the boundary condition Eq. (23) is not complete for 8(£)
due to & is not a root of 8(&).

conditions given by Egs. (22) and (23). Now, we turn our attention to
determining the influence of the coefficients ¢ and k. These parameters
determine the solution profiles, given by Eqs. (30) and (36).

Fig. 8 shows the comparison between the different solution of
Eg. (8).

Now, Fig. 9 shows the case n ~ 5 used in Eq. (1) and its solution
given by Eq. (9), and the approximation of selected values of the
parameters ¢ and k, as shown at Table 2.

Fig. 10 shows the comparison between the solution of Eq. (8) and
the numerical solution (dots curve) obtained by edd (1926).

Figs. 11 and 12 show the Lane-Emden equation of the first kind for

0(&£(r)) and di(f(({?), for n = 2 and 3, which is compared graphically with

1.2

OE(D) 4

0.8

0.6

0.4

0.2

\ -
n=2  n=2.592 n=3 n=3.23

()

Fig. 8. The proposed solution for Eq. (8) that satisfies all boundary conditions
of Eq. (22) is shown.
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&

Fig. 9. The proposed solution for Eq. (9), which satisfies all boundary condi-
tions of Eq. (22).

&(r)

Fig. 10. The Lane-Emden equation of the first kind for 6(¢) when n =3 is
compared graphically with the deriving of the analytical Eq. (8) and the nu-
merical solution (as shown by the dot curve).Fig. 10. The Lane-Emden equation
of the first kind for 6(¢) when n = 3 is compared graphically with the deriving
of the analytical Eq. (8) and the numerical solution (as shown by the dot curve).
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Fig. 11. The proposed solution for Eq. (8) satisfies all boundary conditions of
Eq. (22), forn = 2.

the deriving of the analytical Eq. (8) and the numerical solutions ob-
tained by edd (1926), as plotted:

Fig. 13 shows the solutions for the Lane-Emden equation of the first
kind for 6(£(7)), di(;((:))) and 6(&€), %@) for n ~ 5. They are then graphi-
cally compared with the analytical solution given by (9), the numerical
solutions given by edd (1926), and the exact solution @({) =

e
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Fig. 12. The proposed solution for Eq. (8) satisfies all boundary conditions of
Eq. (22). The case n = 3 corresponds to an adiabatic star supported by the
pressure of ultra-relativistic gas.
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Fig. 13. The proposed solution for Eq. (9) satisfies all boundary conditions of
Eq. (23).

In fact, the results are almost indistinguishable from the solution
given by Eq. (9) and the exact solution 8(&)= L

f 2

Vit
4. Conclusions

We have presented the exact and analytical solution to the nonlinear
singular Lane-Emden equation of the first kind. The Lane-Emden type
equation describes numerous problems in mathematical physics (as-
trophysics, in particular). In astrophysics, the equation of the first kind
describes the equilibrium of non-rotating polytropic fluids in a self-
gravitating star. Through the temperature variation subjected to the
laws of classical thermodynamics, the spherical symmetry and the gas
cloud are affected by molecular attractions.

In many reported studies, the function 8,(¢) = ! is a homogeneous
solution of the corresponding nonhomogeneous Equation (1). Though,
it is usually not taken into account because the limit 8,(& — 0) — o=,
and because it does not satisfy the boundary condition 8(¢ — 0) — fi-
nite value. In our analytical solution, as introduced by Egs. (8) and (9),
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we showed that the function 6,(£) = é|5:0—>ﬁnjte value is satisfied,
5

Likewise the boundary condition, 6(§ — 0) = é = 1 is satisfied too.

Now, considering the case of the degenerate gas cloud for n = 1.5
(only in this case, our proposed solution for the first root is obtained as
£y — 4 and not & — 3.65, as reported in the literature) and n = 3,
substituting these values in Eq. (8), the boundary conditions are com-
plete. The solutions given by Equations (8) and (9) are validated for the
intervals,1 < n < 5and 5 <n < 9, excluding n = 0, 1, 5. The solution
given by 6(¢) allows us to study the energy transport through mass
transfer between the star’s different levels, defined by %@) and mass

4’8(8)
change rate® .

By comparing the parameters @, b and d from tables 1 and 2, it can
be validated that for n = 3 and n ~ 5, the arithmetic signs are changed.
Moreover, to determine c and k, they must be ajusted in such a way that
6(£ (1)) = £(r) must behave as a straight line.

The nonlinear Lane-Emden equation has been solved in this work.
Another main advantage for the solution is the analytic expression for
the mass M(r), and the polytropic temperature 8(¢). Lastly, the pro-
posed solution applies, with really good precision, to the modeling of
the structures of stars and galaxies.
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