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Featured Application: Based on the catalogue L10 life, the paper let us to select the ball
bearing that corresponds to the analyzed application, both formulation and steps are given.
Moreover, when the actual application conditions are different of those at which the ball bearing
was designed, the proposed method let practitioners to determine the real L-life (or reliability)
that corresponds to the actual conditions, a step by step application and formulation is presented.
Additionally, this methodology can be applied to any field or application where the input variables
are either contact stress or principal stress values.

Abstract: Since the designed bearing’s reliability of 90% was determined in a lab environment, it does
not represent the actual used environment. In this paper, a new methodology to determine the actual
reliability that corresponds to the use conditions is offered. This new method is based on the standard
method used to select the ball bearing. The proposed method is based on the two parameters of
Weibull distribution, where the shape (β) and scale (η) parameters are both determined from the
Hertz contact stresses values, which are generated under the surface of the motionless outer race,
and by the forces transmitted between the ball and the outer race. Therefore, the derived reliability is
different from the 90% index offered by manufacturers.

Keywords: weibull analysis; hertz stress; ball bearing; dynamic load; mechanical design; reliability

1. Introduction

Ball bearings are important machine components that are used in vehicles, machines, airplanes,
appliances, and precision equipment [1,2]. Defects of ball bearings are the main cause of failure of a
rotating machine [3,4]. A ball bearing failure caused a mechanical machine to stop working, resulting
in economic losses. Therefore, fatigue life prediction for bearing has an important significance and
practical value [5]. Currently, bearing manufactures offer their products with a reliability based on the
L10 life percentile, that is obtained through tests performed on static loads and at a certain rotation
speed [6]. Therefore, machine designers and people who use machines need to know the actual
reliability that corresponds to their own application. In various articles, Erwing Zarestsky explained
how the L10 life equation has been analyzed in different models such as the Waloddi Weibull fatigue
life model, Lundberg-Palmgren model, Ionnides-Harris model, and Zaretsky model [7–9]. In 1962,
The Lundberg-Palmgren life equation has been incorporated into the International Organization for
Standardization (ISO). Over the years, the formula has been questioned for various reasons, one of
which is that it was obtained by testing bearings of the same model and under laboratory conditions.
The aim of this article is not to criticize the formula, but rather, to make use of it in a new methodology
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to obtain the reliability in a current ball bearing application. The actual reliability must be different
from the reliability offered in the L10 life equation.

Consequently, in this article, a new methodology to determine the reliability of a ball bearing in
its actual application is given. The proposed method is based on the generated Hertz contact stresses
values, which are present on the fixed outer ring race.

Moreover, this proposed method is based on the traditional method to select a ball bearing,
and in Hertz theory, both methods let us determine the magnitude of the generated contact stresses.
Then, based on these Hertz stresses values, the parameters shape beta (β) and scale eta (η) parameters of
the Weibull distribution are determined. Finally, by using them, the corresponding actual ball bearing
reliability is determined. Consequently, since the actual reliability index is based on the generated
stresses, then the proposed methodology can also be used to determine the reliability of a single-row
deep groove ball bearings application.

The present work is organized as follows. Section 2 explains the Hertz theory. Section 2.1
describes the steps to determine the contact stresses and the L10 life of a ball bearing, while Section 2.2
describes the steps to determine the contact area of a ball bearing. In Section 2.3, the steps to determine
the principal stresses are given. Section 2.4 shows how to determine the Weibull shape β and scale
η parameters, and Section 2.5 shows the steps to determine the actual reliability of the selected
ball bearing. In Section 3, an application of the new methodology is presented. Finally, in Section 4,
the conclusions are given.

2. Hertz Contact Generalities

In 1879, Heinrich Hertz found that the way to determine the stresses on the surface of rolling
bodies was only through an approximation, which was done using a set of empirical assumptions.
In 1881, Hertz proposed the contact stress theory or Hertz theory. This theory is a mathematical
analysis of the relationship between the shape of the geometry, the size of the contact area, and the
distribution of the stresses in two bodies with curved surfaces. Later, some researchers added to the
existing theory the fact that the maximum stresses that cause the ball bearings to break are generated
below the contact surface [7,10–13]. Contact stresses occur when two bodies transmit loads across
their surfaces, generating a point or a line contact [14]. There are three ways in which contact forces
can occur: The first is when a sphere or a roller is pressed on a flat surface, the second occurs when
two spheres or two rollers are pressed against each other, and the third is when a roller or a sphere is
pressed against a concave curved surface. When applying a force on two bodies, the surface that is in
contact flattens out and takes an elliptical, circular, or rectangular shape, this depends on the shape of
the bodies that are in contact. In the case analyzed in this article, the contact between a ball and the
outer race, generates an elliptical contact surface. Therefore, it meets the conditions to apply the Hertz
theory. Among these conditions, we have that (a) the materials of both bodies must be homogeneous
and isotropic, (b) the contact areas are relatively small compared to the curvature radius, (c) the contact
surfaces have an elastic behavior, and (d) loads are normal to contact surfaces [13,15,16].

On the other hand, from the Weibull analysis performed to determine the life of the bearing,
the generated contact stresses are used to determine the corresponding Weibull parameters.
Then, the relevant stresses are the main stresses σx, σy, σz and the maximum shear stress τmax

that are generated below the bearing surface [13]. Note that at the point where τmax occurs, the cracking
occurs in the outer race and that generates the failure. Therefore, the analysis is performed on the outer
race of the ball bearing. The analysis is as follows.

2.1. Steps to Determine the Contact Stresses and the L10 Life of a Ball Bearing Subsection

Step 0. Determine the loads that are acting on the ball bearings.
Step 1. From the static shaft analysis, determine the design Pd load at which the ball bearing

will be subjected. By using the radial (Fr) and axial (Fa) forces determined in the static shaft analysis,
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with the X radial and Y axial ball bearing coefficients given in the selected ball bearings’ catalogues,
determine the equivalent radial load p-value from Equation (1) as:

P = XFr + YFa (1)

then, by using the P radial force with the rotation factor V, determine the design load value as:

Pd = VP (2)

Note that from Equation (2) if the interior race is rotating, then V = 1 and, in contrast, if the exterior
ring is rotating, then V = 1.2 (see Figure 1).

Figure 1. Interior and exterior rings and interior and exterior races of a ball bearing.

Note 1: The Pd-value in Equation (2) is determined in the static phase analysis and, is done based
on the applied loads that correspond to the point where the ball bearing is going to be mounted.

Step 2. Select the ball bearing, which can be selected from a catalogue. To do this, the type of
ball bearing that corresponds to the application is first determined. In this paper, a deep groove ball
bearing is used. To select it from the catalogues, the catalogues’ diameter must be the shaft’s diameter
value where the ball bearing is going to be mounted. In addition, the designed load Pd addressed in
step 1 must be lower than the catalogues’ dynamic load (C). If C is lower than Pd, another type of ball
bearing must be selected. Similarly, the rotation speed at which the ball bearing is going to be mounted
must be lower than the one given in the catalogue. Additionally, the Pd-value has to be lower than the
basic static load (Co) of the catalogue.

Step 3. Determine the designed L10 life of the ball bearing. By using C from step 2 and Pd from
step 1, the ball bearing L10 life is given as [2,17]:

L10 = 106
( C

Pd

)3
(3)

where L10 represents the expected number of cycles at which 10% of the ball bearings will fail.

2.2. Steps to Determine the Contact Area of the Ball Bearing

Step 4. Determine the total curvature R of the contact area. In this case, the curvature analysis is
performed between the outer race and the ball bearing. From this analysis, the total curvature R is
determined based on the ball bearing dimensions, the inner race radius, and on the radius of the ball
bearing [12,18]. Since in a ball bearing the curvature is generated in the x and y directions, then the
total curvature is given as:

1
R

=
1

Rx
+

1
Ry

(4)

where:
1

Rx
=

1
rax

+
1

rbx
(5)
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1
Ry

=
1

ray
+

1
rby

(6)

In addition, since rax and ray are the radius of the ball in the x and y direction, respectively,
then rax = ray. Moreover, rbx is the curvature radius from the center of the ball bearing to the race of the
exterior ring, and rby is the curvature radius of the race of the exterior ring (see Figure 2). As seen in
Figure 1, a ball bearing has two races, one in the exterior ring and one in the inner ring. Note that
the analysis is performed over the race of the outer ring due to fact that the distribution of the load
between the race of the exterior ring and the ball is higher than between the race of the inner ring and
the ball [19].

Figure 2. Ratio of the ball and the race of the exterior ring.

Nevertheless, since most of the catalogues do not contain the radius of the race of the exterior
ring, then it is determined as in Equation (7), where Rr is the race conformity of the race of the exterior
ring with a standardized value of 0.52 [17,20], and dB is the ball diameter. Therefore, the race of the
exterior ring rby radius is given as:

Rr =
rby

dB
(7)

Step 5. Determine the curvature’s index αr as:

αr =
Ry

Rx
(8)

Step 6. Determine the elliptical parameter ke as:

ke = (αr)
2/π (9)

Step 7. From Table 1, select the elliptical equations to be used to determine the a and b axes of the
contact ellipse, as mentioned from step 7.1 to step 9.

Step 7.1. Determine the value of the simplified ellipticals integralsF yE, given in Table 1, which are
determined by using the curvature’s index αr and the elliptical parameter ke in the corresponding
elliptical functions.

The elliptical integral functions of first order (F ) and second order (E), the geometry of the
generated ellipse, and the ellipticity ratio (ke) all them depend on the curvature index αr, in such a way
that if 1 ≤ αr ≤ 100, the equations from the left column of Table 1 [12] must be selected. In contrast if
0.01 ≤ αr ≤ 1, the equations from the right column of Table 1 must be selected. From Table 1, also note
that based on the αr value and from the x and y axes of the generated contact ellipse, the a and b values
are determined.

Here noticed that the contact ellipse area is generated when a force pressures the ball against the
race of the exterior ring as shown in Figure 3.
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Figure 3. Ellipse generated between the ball and the race of the exterior ring.

Table 1. Simplified equations of the ellipticals integrals.

Range of the Curvature’s Radius

Property (1 ≤ αr ≤ 100) (0.01 ≤ αr ≤ 1)

Geometry

Ellipticity ratio ke = αr
2
π ke = αr

2
π

Elliptical integer of first order F F = π
2 +

(
π
2 − 1

)
lnαr F = π

2 −
(
π
2 − 1

)
lnαr

Elliptical integer of second order E E = 1 + π−2
2αr

E = 1 +
(
π
2 − 1

)
αr

Step 8. Determine the effective elasticity module (E’). Based on the Poisson coefficient (v) and on
the elasticity module (E) of the used materials, the effective elasticity module is given as:

E′ =
2

(1−va2)
Ea

+
(1−vb

2)
Eb

(10)

In Equation (10), va is the Poisson coefficient of the ball, and vb is the Poisson coefficient of the
outer ring. Similarly, Ea is the elasticity module of the ball, and Eb is the elasticity module of the
exterior ring.

Step 9. Determine the a and b dimensions of the semiaxes of the ellipse. An ellipse is formed in
the contact point between the ball and the race of the exterior ring (see Table 1). The a and b values are
determined as one half of the dimensions of the (Dy) and (Dx) diameters of the ellipse given as:

Dy = 2
(

6ke
2
EPdR
πE′

)1/3

(11)

Dx = 2
(

6EPdR
πkeE′

)1/3

(12)

Note 2. Note in the ellipse that “a” always represents the higher semi axis. For example, if Dy > Dx,
then a = Dy/2 and b = Dx/2, in contrast if Dx > Dy, then a = Dx/2 and b = Dy/2.

Now based on the above dimensions, the values of the principal contact stresses have to be
calculated. This is due to the fact that these values are used in the proposed method to determine the
Weibull parameters, which are used to compute the actual ball bearing reliability.
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2.3. Steps to Determine the Contact Principal Stresses Values

Step 10. Determine the maximum stress Pmax value, which occurs in the contact point between
the ball and the race of the exterior ring and is given as:

Pmax =
6Pd

πDxDy
(13)

Step 11. Determine the contact principal stresses σx, σy, σz, and τmax values, which are given as:

σx = [M(Ωx + v Ω′x)]
b
∆

(14)

σy =
[
M

(
Ωy + v Ω′y

)] b
∆

(15)

σz = −
[M

2

(1
n
− n

)] b
∆

(16)

From Equations (14)–(16), the maximum and minimum principal stresses values are selected
according to the stress’s values determined in step 11. For example, if σx > σy > σz, then σx is taken
as the maximum principal stress σ1 value and σ3 is taken as the minimum principal stress value.
Therefore, based on the σ1 and σ3 values, the shear stress that causes the failure in the ball bearing is
given as:

τmax =
(σ1 − σ3)

2
(17)

In the following sub-steps, the parameters to determine the σx, σy, y σz values are given.
Step 11.1. Determine the k, k’ and z value. The functional relation between the a and b values of

the contact ellipse is given by:

k =
b
a

(18)

k′ =
√

1− k2 (19)

In addition, the depth z value at which the maximum shear stress is generated is given [21] as:

z = 0.78 b (20)

Step 11.2. Determine the n, M, Ωx, Ωy, Ω’x, Ω’y y ∆ parameters, which are given as:

n =

√√√√√√k2 + k2
(

z
b

)2

1 + k2
(

z
b

)2 (21)

M =
2k

k′2E
(22)

Ωx = −
1− n

2
+ k

z
b
[F −E] (23)

Ω′x = −
n
k2 + 1 + k

z
b

[( 1
k2

)
E−F

]
(24)

Ωy =
1

2n
+

1
2
−

n
k2 + k

z
b

[( 1
k2

)
E−F

]
(25)

Ω′y = −1 + n + k
z
b
(F −E) (26)
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∆ =
1

A + B

(
1 − va

2

Ea
+

1 − vb
2

Eb

)
(27)

In Equation (27), the va, vb, Ea, and Eb values are the Poisson coefficient and elasticity module
values used in step 8. In addition, A and B are the constant values that depend on the curvature ratio
of the ball and inner race.

Step 11.3. Determine the A and B values. The functional relation is:

A =
1
2

(
1

ray
+

1
rby

)
(28)

B =
1
2

(
1

rax
+

1
rbx

)
(29)

where the ratios rax, ray, rbx y rby were determined in step 4. Now, let’s present the steps to determine
the Weibull parameters.

2.4. Steps to Determine the Weibull Shape and Scale Parameters

Based on the maximum σ1 and minimum σ3 stresses values, the Weibull scale η and shape β
parameters are determined as follows.

Step 12. Determine the Weibull η and β parameters. The scale parameter is given as:

ηuse =
√
σ1σ3 (30)

and the shape parameter is given as:

βuse = −
4µy

0.995 ∗ ln(σ1/σ3)
(31)

The β and ηuse parameters are the Weibull parameters that completely represent the addressed
principal stresses σ1 and σ3 values [17].

2.5. Steps to Determine the Actual Reliability of the Selected Ball Bearing

The actual reliability of the ball bearing is determined by using the L10 life value of step 3, with the
addressed Weibull βuse and ηuse parameters, as well as with the Weibull supplier ηcat parameter.

Step 13a. Determine the reliability that corresponds to the L10 life and the ηuse parameter. By using
the L10 life of step 3 and the β and ηuse parameter of step 12, determine the reliability of the ball
bearing as:

(t) = exp

−
(

L10

ηuse

)β (32)

Step 13b. Determine the actual Luse life for which R(t) = 0.90. Using the ηuse and β parameters
estimated in step 12 with R(t) = 0.9 in Equation (32), the Luse life value is given as:

Luse = ηuse
β
√
− ln(0.90) (33)

Step 13c. Determine the catalogue ηcat value that corresponds to the L10 life. Using the β value in
step 12 with the L10 life in step 3, and R(t) = 0.90 from Equation (32), the catalogue scale parameter is
given as:

ηcat =
L10

β
√
− ln(0.90)

(34)
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Step 13d. Determine the actual reliability of the selected ball bearing, which is given as:

R(t) = exp

−
(

Luse

ηcat

)β (35)

From Equation (35), note that the given R(t) value represents the actual reliability that the
ball bearing presents under the actual conditions. In addition, this occurs since in Equation (35),
Luse represents the expected life under the actual conditions and ηcat represents the actual strength
that the selected ball bearing by design (inherently) presents to overcome the applied stress. Now,
let’s present the numerical application.

3. Application of the Proposed Method

The application of the proposed method is based on the traditional design methodology. Therefore,
the application is as shown in Figure 4. As an application, the intermediate shaft of the speed reducer
is used to determine the principal stresses values that are acting on the ball bearing. Here, the speed is
reduced from the initial 188 rad/s to a final speed of 47 rad/s. Initially, the motor transmits a constant
power of 8.95 × 106 N mm/s. Additionally, in the intermediate shaft and through the gears, the initial
speed of 188 rad/s is reduced to 94 rad/s, while the power of 8.95 × 106 N mm/s remains constant.
The intermediate shaft is shown in Figure 5. This shaft is made of AISI 1020 steel with a shaft’s diameter
(dS) of 45 mm. The designed shaft will rotate with an angular speed of 94 rad/s. In addition, while the
pass diameter of gear B is 127 mm, for gear C it is 76.2 mm. Moreover, the pression angle between
these gears is 20◦, as shown in Figure 6.

Figure 4. Speed reducer design connected to a motor.

Figure 5. Top view of shaft 2.
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Figure 6. Gear’s pressure angle.

By having the dimensions of the selected bearing, the application of the Hertz theory is carried
out to obtain the main stresses that are acting in the bearing outer race. This is done in order to use
them for determining the Weibull distribution parameters that will allow us to determine the actual
reliability of the ball bearing.

The step-by-step analysis given in Section 2.1 is as follows.
Step 0. The loads which are acting in shaft 2 are first determined. Since the torque generated on

axis 2 depends on the angular speed (ω) of rotation and the power (P) that the axis transmits, then the
constant torque generated on shaft 2 is:

T =
P
ω

=
8.95 × 106 N·mm/s

94 rad/s
= 95, 212.76 N·mm (36)

Additionally, since shaft 2 is in the equilibrium, then the generated torque in gears B and C is
equal but in an opposite direction. This is to say that the torque in C is Tc = −95,212.76 N mm. On the
other hand, as shown in Figure 6, the radial and tangential forces that are acting on the gears depend
on the pression angle of Φ = 20◦.

Therefore, in the function of the torque and convergence ratio, the tangential force is given by:

Ft =
T
r

(37)

Then, the corresponding radial force is given by:

Fr = (Ft) tan∅ (38)

Additionally, since for gears B and C Φ = 20◦, and rB = 63.5 mm and rC = 38.1 mm, then numerically:
FtB = T

rB
= 95,212.76 N·mm

63.5 mm = 1500 N,

and FrB = FtBtan∅ = (1500 N) tan 20◦ = 546 NFtC = T
rC

= 95,212.76 N·mm
38.1 mm = 2500 N,

and FrC = FrCtan∅ = (2500 N) tan 20◦ = 910 N.
The radial and tangential forces, as well as the corresponding reactions that are acting in the x-y

and in the x-z plane, are shown in Figure 7.

Figure 7. Forces and reactions in the x-y and x-z planes.
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Thus, as shown in Figure 7a, the forces and reactions that are acting in the x-y plane are:
+ 	

∑
MD = 0 = (910 N)(76.2 mm) + (546 N)(254 mm) − (330.2m)

(
RAy

)
; RAy = 630 N;∑

Fy = 0 = 630 N− 546 N− 910 N + RDy; RDy = 826 N.
Similarly, as shown in Figure 7b, the forces and reactions that are acting in the x-z plane are:

+ 	
∑

MD = 0 = (RAz)(330.2 mm) − (1500 N)(254 mm) − (2500 N)(76.2 mm); RAz = 1730 N;∑
Fz = 0 = −1730 N + 1500 N + 2500 N−RDz; RDz = 2270 N.

Therefore, the reaction forces in points A and D are:

RA =
√

R2
Ay + R2

AZ = 1841 N (39)

RD =
√

R2
Dy + R2

DZ = 2415.6 N (40)

Additionally, since RD > RA, then RD represents the reaction force value base on which the ball
bearing is selected.

Step 1. Since we do not have an axial force for shaft 2, then from Equation (1) the design load is
directly given by the radial force represented by RD. Therefore, P = RD = 2415.6 N. Additionally, since
the inner race is the one that is rotating, then V = 1, and consequently, from Equation (2) the designed
load is:

Pd = VP = (1)(2415.6 N) = 2415.6 N

Step 2. Since from the design shaft phase, the diameter of shaft 2 is 45 mm, and from step 1
Pd = 2415.6 N, then from the SKF catalogue the selected ball bearing is the 6009 SKF type ball bearing
with a bore diameter of 45 mm. The related ball bearing characteristics are given in Figure 8 and in
Table 2.

Figure 8. Ball bearing dimensions.

Table 2. Ball bearing specifications.

Bearing Type Capped Single Row Deep Groove Ball Bearings

Bore Diameter (d) 45 mm

Outer Diameter (D) 75 mm

Width (B) 16 mm

Dynamic Load Rating (C) 22,100 N

Static Load Rating (Co) 14,600 N

Max Speed 1047 rad/s

Max. Shaft Shoulder Dia. Inner (Ui) 67.8 mm

Min. Housing Shoulder Dia., Outer (Uo) 54.7 mm

Chamfer radius (r) 1 mm

Ball Quantity 13

Ball Diameter (db) 8.731 mm

Material 52,100 Chrome Steel
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Step 3. According to the catalogues, the designed L10 life of the ball bearing is:

L10 = 106
(22, 100 N

2415.6 N

)3
= 765.77 × 106 rev

With this data, the contact area generated in the ball bearing mentioned in Section 2.1 is determined
as follows.

Step 4. Since the curvature generated in the x direction is rax = ray = 4.365 mm and
rbx = 35.003125 mm, then 1

Rx
= 1

4.365 mm −
1

35.003125 mm = 0.20052 mm−1, and therefore,
Rx = 4.986 mm.

Additionally, since the outer ratio rby is unknown, then from Equation (7) by using the compliance
value of 0.52, the rby value is rby = dRr = (8.731 mm)(0.52) = 4.54 mm, therefore, 1

Ry
= 1

4.365 mm −

1
4.54 mm = 0.00883 mm−1 implying Ry = 113.24 mm. Moreover, since 1

R = 0.20052 mm−1 +

0.00883 mm−1 = 0.20935 mm−1, then the total curvature is R = 4.77 mm .
Step 5. From Equation (8), the curvature’s index αr is:

αr =
113.24 mm
4.986 mm

= 22.7

Step 6. From Equation (9), the elliptical parameter ke is:

ke = (22.7)
2/π = 7.3

Step 7. Since ke < 100, the equations of Table 1 are selected.
Step 7.1. The simplified values of the first and second order elliptical equations F y E are:

F =
π
2
+

(
π
2
− 1

)
ln(22.7) = 3.353

E = 1 +

(
π
2 − 1

)
22.7

= 1.025

Step 8. From Equation (10) by using the Poisson ratio of AISI 52100 va = vb = 0.30 and its elasticity
module Ea = Eb = 200 GPa of the material, the effective elasticity module is:

E′ =
2

[1−(0.30)2]

200×109 Pa +
[1−(0.30)2]

200×109 Pa

= 219.8 GPa

Step 9. Based on the diameter Dy and Dx of the ellipse formed in the contact area between the ball
and the outer ring given in Equations (11) and (12), the a y b values of the axis are:

Dy = 2

6(7.3)2(1.025)(2415.6 N)(4.77 mm)

π(219, 800N/mm2)

1/3

= 3.52 mm

a =
3.52 mm

2
= 1.76 mm

Dx = 2
[

6(1.025)(2415.6 N)(4.77 mm)

π(7.3)(219, 800 N/mm2)

]1/3

= 0.48 mm

b =
0.48 mm

2
= 0.24 mm

Now, based on the above analysis, the contact principal stresses values mentioned in Section 2.3
are determined as follows.
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Step 10. From Equation (13) the maximum stress Pmax value is:

Pmax =
6(2415.6 N)

π(3.52 mm)(0.48 mm)
= 2713.5 N/mm2

Step 11. From Equations (14) to (17) the principal contact stresses σx, σy, σz, values, and the
maximum shear τmax value, as well as the depth at which τmax occurs are as follows.

Step 11.1. From Equations (18) and (19) the k, k’ values are:

k =
b
a

=
0.24 mm
1.76 mm

= 0.137

k′ =
√

1− k2 =

√
1− (0.137)2 = 0.9905

Additionally, from Equation (20) the corresponding depth value is:

z = 0.78 b = 0.78(0.24 mm) = 0.188 mm

Step 11.2. From Equations (21) to (27) the n, M, Ωx, Ωy, Ω’x, Ω’y and ∆ parameters used to
determine the corresponding σx, σy y σz values are:

n =

√√√√√√k2 + k2
(

z
b

)2

1 + k2
(

z
b

)2 =

√√√√√√ (0.137)2 + (0.137)2
(

0.188 mm
0.24 mm

)2

1 + (0.137)2
(

0.188 mm
0.24 mm

)2 = 0.172

M =
2k

k′2E
=

2(0.137)

(0.9905)2(1.025)
= 0.2724

Ωx = −
1− n

2
+ k

z
b
[F −E]

Ωx = −
(1− 0.172

2

)
+ (0.137)

(0.188 mm
0.24 mm

)
(3.353− 1.025)

Ωx = −0.164

Ω′x = −
n
k2 + 1 + k

z
b

[( 1
k2

)
E−F

]
Ω′x = −[

0.172

(0.137)2 ] + 1 + 0.137
(0.18798

0.24

)[ 1

(0.137)2 ](1.025) − 3.353


Ω′x = −2.72

Ωy =
1

2n
+

1
2
−

n
k2 + k

z
b

[( 1
k2

)
E−F

]
Ωy =

1
2(0.172)

+
1
2
−

0.172

(0.137)2 + 0.137
(0.18798

0.24

)[ 1

(0.137)2 ](1.025) − 3.353


Ωy = −0.3286

Ω′y = −1 + n + k
z
b
(F −E)

Ω′y = −1 + 0.172 + 0.137
(0.18798

0.24

)
(3.353− 1.025)

Ω′y = −0.579
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Step 11.3. From Equations (28) and (29) the A and B values to determine ∆ are:

A =
1
2

( 1
4.365 mm

+
1

−4.54 mm

)
= 4.415× 10−3 mm−1

B =
1
2

( 1
4.365 mm

+
1

−35.003125 mm

)
= 0.10026 mm−1

Therefore, from Equation (27) the values are:

∆ = 1
4.415×10−3 mm−1+0.10026 mm−1

[
1−(0.30)2

200,000N/mm2 +
1−(0.30)2

200,000N/mm2

]
= 8.6933× 10−5mm3/N

Then, from Equations (14) to (16) the principal contact stresses values are:

σx =
[
[0.2724(−0.1648 + (0.30)(−2.7238)]

( 0.24
8.7× 10−5

)]
σx = −741, 522, 665.686 Pa

σy =
[
[0.2764(−0.3286 + (0.30)(−0.5785)]

( 0.241
8.7× 10−5

)]
σy = −384, 772, 372.51 Pa

σz =
[
−

[0.2764
2

( 1
0.1727

− 0.1727
)]( 0.241

8.6933× 10−5

)]
σz = −2, 152, 276, 334.65 Pa

Additionally, from Equation (17) the maximum shear stress value is:

τmax =
(2, 152, 276, 334.65− 384, 772, 372.51 )

2
= 883, 751, 981.07 Pa

Now, based on the above stress values, the Weibull parameters used to determine the actual life
and reliability of the ball bearing are determined, as mentioned in Section 2.4.

Step 12. Determine the Weibull η and β parameters. By using the maximum contact stress value
σ1 and minimum contact stress value in Equation (30), the use Weibull scale parameter is [22]:

ηuse =
√
σ1 σ3 =

√
(2, 152, 276, 334.65)(384, 772, 372.51) = 910, 020, 039.1

Additionally, from Equation (31) the Weibull shape parameter is:

β = −
4µy

0.995ln
(
σ1
σ3

) = −
4(−0.54562412)

0.995 ln
(

2,152,276,334.65
384,772,372.51

) = 1.274062 � 1.27

Therefore, the Weibull parameters to determine the life of the ball bearing are W (1.28,
910,020,039.1 rev). With these parameters, the actual reliability of the ball bearing is as mentioned in
Section 2.5.

Step 13a. From Equation (32) using the catalogues L10 life of 765.77 × 106 rev and the Weibull
scale parameter, the reliability of the ball bearing is estimated to be:

R(t) = exp

−
(

L10

ηuse

)β = exp

−
(

765.77× 106

910, 020, 039.1

)1.28
 = 0.4485

At this point, it is very important to note that the used L10 value does not represent the applied
stress, (it represents the expected life at the conditions at which the ball bearing was designed).
In addition, the ηuse value does not represent the strength conditions at which the ball bearing was
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designed. Therefore, the estimated reliability of R(t) = 0.4485 does not represent the life that corresponds
to the actual environment at which shaft 2 operates. Therefore, to determine the actual reliability we
must proceed with the next steps.

Step 13b. By setting Equation (32) at R(t) = 0.90, the actual L10(use) life that
represents the actual conditions at which shaft 2 operates is given from Equation (33) as
L10(use) = ηuse

(
β
√
− ln(0.90)

)
= 156, 862, 111.04 rev.

Now that the L10(use) value represents the environmental actual stress, it is necessary to determine
the Weibull scale parameter that represents the strength of the selected ball bearing. It is determined
as follows.

Step 13c. The catalogues strength ηcat value that represents the strength of the ball bearing is
determined from Equation (34) using the catalogue L10 life. It is ηcat =

L10
β
√
− ln(0.90)

= 4,442,538,996.4 rev.

Finally, using the L10(use) value and the ηcat value, the actual reliability is as follows.
Step 13d. From Equation (32) the actual reliability of the selected ball bearing is:

R(t) = exp

−
(L10(use)

η cat

)β = exp
{
−

( 15, 686, 211.04
4, 442, 538, 996.4

)1.28}
= 0.9992

Finally, in step 13d, the actual reliability of the ball bearing is higher than the designed reliability of
R(t) = 0.90. In addition, this occurs mainly since the estimated L10(use) life is lower than the catalogues
L10 life (L10(use) < L10). The actual reliability resulting in the ball bearing is greater than the reliability
of the life equation L10 offered by the manufacturer due to the fact that it was analyzed with different
loads than those used by the manufacturer. Since the actual reliability is different, it can be said that this
methodology can be used to obtain the reliability in cases where the bearing is subjected to different
load magnitudes and is required to know its current reliability.

4. Conclusions

1. The environment in which the catalog life of ball bearings is determined does not correspond to
its use in practice.

2. Based on the contact stresses generated between the ball and the race, the proposed method
allows us to determine the current life of the ball bearing, which represents the conditions of use.

3. In determining the current reliability of the ball bearing, the Weibull distribution of two parameters
is used where the parameters are directly determined from the contact stresses.

4. The efficiency of the method to determine the life of the ball bearing is based on the fact that the
catalog η used represents the resistance of the ball bearing material.

5. The proposed method can be applied to determine the reliability for different bearing applications.
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